Sample records for improve stability yield

  1. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  2. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments.

  3. Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.

    PubMed

    Park, Joong Pill; Kim, Sang-Wook

    2016-05-01

    One of the most highlighted cadmium-free quantum dots (QDs), InP-based QDs, have improved their optical properties. However, InP-based QDs have some practical drawbacks, for example, stability, compared with CdSe-based QDs. Poor stability of InP-based QDs yields critical problems, such as agglomeration and photoluminescence quenching in light emitting diode (LED). It has to be solved for applications and most research has focused on thick outer shells as an effective solution. We introduced magnesium cations for improving stability of InP-based QDs. We applied very small amounts of Mg cations as surface stabilizers, as a result, stability of QDs is clearly improved. Then, QD based LED chips also yield improved values including RA of 84.4, CCT of 3799 K, and luminous efficiency of 129.57 Im/W, which are highly improved data compared with our previous results.

  4. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

    DTIC Science & Technology

    2015-11-25

    1 Dielectric coating thermal stabilization during GaAs-based laser fabrication for improved device yield 1 Michael K. Connors a, c), Jamal...side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs...slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating, by means of outgassing and stress reduction

  5. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental stresses. This could help to sustain future yield levels in challenging production environments. PMID:25658914

  6. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    NASA Astrophysics Data System (ADS)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  7. Improved production of isomaltulose by a newly isolated mutant of Serratia sp. cells immobilized in calcium alginate.

    PubMed

    Kim, Yonghwan; Koo, Bong-Seong; Lee, Hyeon-Cheol; Yoon, Youngdae

    2015-03-01

    Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production.

  8. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  9. Experimental and analytical investigations to improve low-speed performance and stability and control characteristics of supersonic cruise fighter vehicles

    NASA Technical Reports Server (NTRS)

    Graham, A. B.

    1977-01-01

    Small- and large-scale models of supersonic cruise fighter vehicles were used to determine the effectiveness of airframe/propulsion integration concepts for improved low-speed performance and stability and control characteristics. Computer programs were used for engine/airframe sizing studies to yield optimum vehicle performance.

  10. Stabilization of computational procedures for constrained dynamical systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1988-01-01

    A new stabilization method of treating constraints in multibody dynamical systems is presented. By tailoring a penalty form of the constraint equations, the method achieves stabilization without artificial damping and yields a companion matrix differential equation for the constraint forces; hence, the constraint forces are obtained by integrating the companion differential equation for the constraint forces in time. A principal feature of the method is that the errors committed in each constraint condition decay with its corresponding characteristic time scale associated with its constraint force. Numerical experiments indicate that the method yields a marked improvement over existing techniques.

  11. Effect of seven different additives on the properties of MR fluids

    NASA Astrophysics Data System (ADS)

    Zhang, J. Q.; Zhang, J.; Jing, Q.

    2009-02-01

    Magnetorheological (MR) fluids have been developed for application in semi-active magnetorheological fluid dampers and other magnetorheological fluid devices. In order to prepare special MR fluids to satisfy the demands of tracked vehicle, two different carrier fluids were chose to prepare MR fluids. Preparation of MR fluids, which are based on carriers such as special shock absorption fluid and 45# transformer oil, was finished. And characteristics of these samples were tested and analyzed. Results indicate, Tween-80 and Span-80 can improve sedimentary stability. Using 45# transformer oil instead of special shock absorption fluid as a carrier, the shear yield stress remains nearly invariable but the viscosity and the sedimentary stability are reduced. MR fluids with diameter of 2.73μm show better sedimentary stability than that of the MR fluids with diameter of 2.3μm, or 4.02μm. Stearic acid obviously improves sedimentary stability and off-state viscosity, but don't perform an obvious function on shear yield stress. In magnetic field of 237KA/m, the shear yield stress of MR fluid based on special shock absorption fluid and 45# transformer oil is 18.34KPa, 14.26KPa, respectively.

  12. Improvement of cloud stability, yield and β-carotene content of carrot juice by process modification.

    PubMed

    Yu, Li Juan; Rupasinghe, H P Vasantha

    2013-10-01

    This study investigated the effects of three processing factors, acid blanching, centrifugation and dynamic high pressure homogenization, on cloud stability of carrot juice. Results indicated that the optimum processing condition for stabilized carrot juice were with dynamic high pressure homogenization at 100 MPa combined with 2% citric acid blanching at 95-100  for 2 min followed by 2000 r/min centrifugation for 10 min. The improvement of juice yield was also investigated using a pre-treatment of three commercial enzymes: Pectinex 3XL® (pectinase), Celluclast 1.5 L® (cellulase) and Novozyme 188™ (β-glucosidase). The combination of 0.1 g/kg of Pectinex 3XL®, 0.1 g/kg of Celluclast 1.5 L® and 0.1 g/kg of Novozyme 188™ at 50  and pH 4.0 for 90 min was the most effective condition to improve carrot juice yield from 49% to 67%. The enzymatic treatment increased juice total soluble solids from 7.5 to 8.9°Brix and β-carotene content from 21.4 to 33.7 mg/kg.

  13. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.

    PubMed

    Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P

    2015-10-09

    Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced yields. While decreasing the isoelectric point of double disulfide mutants of single domain antibodies may improve protein production, charge addition appears to consistently improve refolding and some charge changes can also improve thermal stability, thus providing a number of benefits making the examination of such mutations worth consideration.

  14. Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis

    PubMed Central

    Carvalho, A. F. A.; Shinya, T. Y.; Mazali, G. S.; Herculano, R. D.; Oliva-Neto, P.

    2017-01-01

    The immobilization of cellulases could be an economical alternative for cost reduction of enzyme application. The derivatives obtained in the immobilization derivatives were evaluated in recycles of paper filter hydrolysis. The immobilization process showed that the enzyme recycles were influenced by the shape (drop or sheet) and type of the mixture. The enzyme was recycled 28 times for sheets E′ and 13 times for drops B′. The derivative E′ showed the highest stability in the recycle obtaining 0.05 FPU/g, RA of 10%, and FPU Yield of 1.64 times, higher than FPU spent or Net FPU Yield of 5.3 times, saving more active enzymes. The derivative B showed stability in recycles reaching 0.15 FPU/g of derivative, yield of Recovered Activity (RA) of 25%, and FPU Yield of 1.57 times, higher than FPU spent on immobilization or Net PFU Yield of 2.81 times. The latex increased stability and resistance of the drops but did not improve the FPU/gram of derivative. PMID:28465836

  15. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability.

    PubMed

    Albacete, Alfonso A; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco

    2014-01-01

    Securing food production for the growing population will require closing the gap between potential crop productivity under optimal conditions and the yield captured by farmers under a changing environment, which is termed agronomical stability. Drought and salinity are major environmental factors contributing to the yield gap ultimately by inducing premature senescence in the photosynthetic source tissues of the plant and by reducing the number and growth of the harvestable sink organs by affecting the transport and use of assimilates between and within them. However, the changes in source-sink relations induced by stress also include adaptive changes in the reallocation of photoassimilates that influence crop productivity, ranging from plant survival to yield stability. While the massive utilization of -omic technologies in model plants is discovering hundreds of genes with potential impacts in alleviating short-term applied drought and salinity stress (usually measured as plant survival), only in relatively few cases has an effect on crop yield stability been proven. However, achieving the former does not necessarily imply the latter. Plant survival only requires water status conservation and delayed leaf senescence (thus maintaining source activity) that is usually accompanied by growth inhibition. However, yield stability will additionally require the maintenance or increase in sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves and to delayed stress-induced leaf senescence. This review emphasizes the role of several metabolic and hormonal factors influencing not only the source strength, but especially the sink activity and their inter-relations, and their potential to improve yield stability under drought and salinity stresses. © 2013.

  16. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Stability region maximization by decomposition-aggregation method. [Skylab stability

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Cuk, S. M.

    1974-01-01

    This work is to improve the estimates of the stability regions by formulating and resolving a proper maximization problem. The solution of the problem provides the best estimate of the maximal value of the structural parameter and at the same time yields the optimum comparison system, which can be used to determine the degree of stability of the Skylab. The analysis procedure is completely computerized, resulting in a flexible and powerful tool for stability considerations of large-scale linear as well as nonlinear systems.

  18. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production.

    PubMed

    Honda, Kohsuke; Inoue, Mizuha; Ono, Tomohiro; Okano, Kenji; Dekishima, Yasumasa; Kawabata, Hiroshi

    2017-06-01

    Directed evolution of enantio-selective carbonyl reductase from Ogataea minuta was conducted to improve the operational stability of the enzyme. A mutant library was constructed by an error-prone PCR and screened using a newly developed colorimetric assay. The stability of a mutant with two amino acid substitutions was significantly higher than that of the wild type at 50°C in the presence of dimethyl sulfoxide. Site-directed mutagenesis analysis showed that the improved stability of the enzyme can be attributed to the amino acid substitution of V166A. The half-lives of the V166A mutant were 11- and 6.1-times longer than those of the wild type at 50°C in the presence and absence, respectively, of 20% (v/v) dimethyl sulfoxide. No significant differences in the substrate specificity and enantio-selectivity of the enzyme were observed. The mutant enzyme converted 60 mM 2,2,2-trifluoroacetophenone to (R)-(-)-α-(trifluoromethyl)benzyl alcohol in a molar yield of 71% whereas the conversion yield with an equivalent concentration of the wild-type enzyme was 27%. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  20. Investigations of modifications to improve the spin resistance of a high-wing, single-engine, light airplane

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Dicarlo, D. J.; Stough, H. P., III; Brown, P. W.; Stuever, R. A.

    1989-01-01

    A general aviation aircraft with drooped leading edge modifications for improvement of lateral stability at high angles of attack has been flight tested in combination with a ventral fin which improves directional stability. The two modifications were assessed in light of spin-resistance criteria proposed for incorporation into FAA certification regulations. The configuration combining outboard wing leading-edge droop and a ventral fin yielded a substantial increase in spin resistance, but fell short of all requirements encompassed by the proposed spin-resistance criteria.

  1. Enhanced direct-drive implosions with thin high-Z ablation layers.

    PubMed

    Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L

    2008-02-22

    New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.

  2. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  3. Drought Tolerance during Reproductive Development is Important for Increasing wheat yield Potential under Climate change in Europe.

    PubMed

    Senapati, Nimai; Stratonovitch, Pierre; Paul, Matthew J; Semenov, Mikhail A

    2018-06-12

    Drought stress during reproductive development could drastically reduce grain number and wheat yield, but quantitative evaluation of such effect is unknown under climate change. The objectives of this study were to a) evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and b) identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimise drought tolerant (DT) and drought sensitive (DS) wheat ideotypes under future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared to DS, with the double yield stability for DT. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared to DS in southern Europe. In contrast, no yield difference (≤ 1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.

  4. Beyond the plot: technology extrapolation domains for scaling out agronomic science

    NASA Astrophysics Data System (ADS)

    Rattalino Edreira, Juan I.; Cassman, Kenneth G.; Hochman, Zvi; van Ittersum, Martin K.; van Bussel, Lenny; Claessens, Lieven; Grassini, Patricio

    2018-05-01

    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland. Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment.

  5. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  6. Soil water holding capacity mitigates maize production downside risk and volatility across the US Corn Belt: Time to invest in soil organic matter?

    USDA-ARS?s Scientific Manuscript database

    Protecting global food security from predicted declines in yield stability will be aided by improved understanding of how agricultural soil management may buffer yields against increased weather variability. To support regional climate adaptation strategies, we present a novel synthesis of extensive...

  7. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  8. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  9. Effects of pH-Shift Processing and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar System

    PubMed Central

    Hong, Geun-Pyo; Chun, Ji-Yeon; Jo, Yeon-Ji

    2014-01-01

    This study investigated the effects of microbial transglutaminase (MTGase) and pH-shift processing on the functional properties of porcine myofibrillar proteins (MP). The pH-shift processing was carried out by decreasing the pH of MP suspension to 3.0, followed by re-adjustment to pH 6.2. The native (CM) and pH-shifted MP (PM) was reacted with and without MTGase, and the gelling and emulsion characteristics were compared. To compare the pH-shifted MTGase-treated MP (PT), deamidation (DM) was conducted by reacting MTGase with MP at pH 3.0. Rigid thermal gel was produced by MTGase-treated native MP (CT) and PT. PM and DM showed the lowest storage modulus (G') at the end of thermal scanning. Both MTGase and pH-shifting produced harder MP gel, and the highest gel strength was obtained in PT. All treatments yielded lower than CM, and CT showed significantly higher yield than PM and DM treatments. For emulsion characteristics, pH-shifting improved the emulsifying ability of MP-stabilized emulsion, while the treatments had lower emulsion stability. PM-stabilized emulsion exhibited the lowest creaming stability among all treatments. The emulsion stability could be improved by the usage of MTGase. The results indicated that pH-shifting combined with MTGase had a potential application to modify or improve functional properties of MP in manufacturing of meat products. PMID:26760940

  10. Cobalt Fischer-Tropsch catalysts having improved selectivity

    DOEpatents

    Miller, James G.; Rabo, Jule A.

    1989-01-01

    The promoter(s) Mn oxide or Mn oxide and Zr oxide are added to a cobalt Fischer-Tropsch catalyst combined with the molecular sieve TC-103 or TC-123 such that the resultant catalyst demonstrates improved product selectivity, stability and catalyst life. The improved selectivity is evidenced by lower methane production, higher C5+ yield and increased olefin production.

  11. Improving the Yield and Nutritional Quality of Forage Crops

    PubMed Central

    Capstaff, Nicola M.; Miller, Anthony J.

    2018-01-01

    Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability. PMID:29740468

  12. Yield performance and stability of CMS-based triticale hybrids.

    PubMed

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  13. [Genetic improvement of cotton varieties in Huang-Huai region in China since 1950's. III. Improvement on agronomy properties, disease resistance and stability].

    PubMed

    Jiang, B G; Kong, F L; Zhang, Q Y; Yang, F X; Jiang, R Q

    2000-01-01

    Data from a set of 5-location and 2-year experiments on 10 representative historical cotton varieties and the data of Huang-Huai Regional Cotton Trials from 1973 to 1996 were analyzed to estimate the effects of genetic improvement in agronomy properties, disease resistance and stability of cotton in Huang-Huai Region in China. The results indicated that a great genetic progress of earliness and disease resistance had been achieved by breeding programs since 1950's. The maturity was shortened 3-5 days; The rate of preforst yield was increased about 7 percentages. The problem of resistance to Fususium wilt has been solved and the resistance to Verticillum wilt was improving. Some progress in stability of cotton varieties also has been achieved by breeding programs since 1950.

  14. [Solidification of volatile oil with graphene oxide].

    PubMed

    Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao

    2015-02-01

    To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.

  15. Noise parameter estimation for poisson corrupted images using variance stabilization transforms.

    PubMed

    Jin, Xiaodan; Xu, Zhenyu; Hirakawa, Keigo

    2014-03-01

    Noise is present in all images captured by real-world image sensors. Poisson distribution is said to model the stochastic nature of the photon arrival process and agrees with the distribution of measured pixel values. We propose a method for estimating unknown noise parameters from Poisson corrupted images using properties of variance stabilization. With a significantly lower computational complexity and improved stability, the proposed estimation technique yields noise parameters that are comparable in accuracy to the state-of-art methods.

  16. Impact of heterozygosity and heterogeneity on cotton lint yield stability: II. Lint yield components

    USDA-ARS?s Scientific Manuscript database

    In order to determine which yield components may contribute to yield stability, an 18-environment field study was undertaken to observe the mean, standard deviation (SD), and coefficient of variation (CV) for cotton lint yield components in population types that differed for lint yield stability. Th...

  17. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan) Peel

    PubMed Central

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (−2.66, 62.66 mg/mL), Arabic gum (−1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved. PMID:22489134

  18. Optimization of freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel.

    PubMed

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (-2.66, 62.66 mg/mL), Arabic gum (-1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved.

  19. Effect of replacing dietary vitamin E by sage on performance and meatiness of spent hens, and the oxidative stability of sausages produced from their meat.

    PubMed

    Loetscher, Y; Kreuzer, M; Albiker, D; Stephan, R; Messikommer, R E

    2014-01-01

    A total of 3960 hens (half ISA Warren and half Dekalb White) were housed in 18 compartments with 220 hens each. The effect of replacing dietary vitamin E by sage on productivity, meat yield and oxidative stability of sausages was studied. One third of all animals received either a vitamin E deficient diet (negative control) or diets supplemented with 30 mg/kg α-tocopherylacetate (positive control) or 25 g sage leaves/kg. At slaughter, meat yield was assessed and sausages were produced (n = 12 per treatment). The omission of vitamin E did not impair the oxidative stability of the raw sausage material or the spiced sausages in comparison to the positive control. Sage supplementation improved oxidative stability after 7 m of frozen storage, but not after 1, 4 and 10 m. Spice addition during meat processing had an antioxidant effect regardless of dietary treatment. Diet supplementation of any type did not affect laying performance and sausage meat yield. Feeding antioxidants to spent hens seemed to be not as efficient as in growing chickens, while seasoning with spices during sausage production proved to be a feasible way to delay lipid oxidation.

  20. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  1. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

    NASA Astrophysics Data System (ADS)

    Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai

    2016-07-01

    Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.

  2. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250-915 eV.

    PubMed

    Vlachos, Dimitrios; Craven, Alan J; McComb, David W

    2005-03-01

    The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.

  3. Phosphazene Polymers Containing Carborane

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Basi, R. J.

    1986-01-01

    Addition of carborane increases thermal stability. Carborane-substituted polyphosphazenes prepared by thermal polymerization of phenylcarbonyl-pentachlorocyclotriphosphazene followed by reaction with sodium trifluoroethoxide to replace remaining chlorine atoms with trifluoroethoxy groups. Improved polymers offer high char yields and resistance to hydrolysis.

  4. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery.

    PubMed

    Date, Abhijit A; Vador, Nimish; Jagtap, Aarti; Nagarsenker, Mangal S

    2011-07-08

    To evaluate the ability of Gelucire 50/13 (an amphiphilic lipid excipient) to act as a stabilizer for lipid nanocarriers such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) and to establish the ability of Gelucire 50/13 based lipid nanocarriers to improve oral delivery of hydrophobic drugs using repaglinide (RPG) as a model drug. The ability of Gelucire 50/13 to nanosize various solid lipids was evaluated. The ability of Gelucire 50/13 to yield NLC was evaluated by using Precirol ATO 5 as a model solid lipid and various liquid lipids (oils). Gelucire 50/13 based NLC (GeluPearl) were evaluated for their ability to improve the efficacy of RPG on oral administration in comparison to RPG tablets. The short term stability of RPG-GeluPearl was evaluated at 25 °C/60% RH. Gelucire 50/13 could successfully yield SLN and NLC of various solid lipids, demonstrating its potential to act as a novel stabilizer. DSC studies indicated that Gelucire 50/13 interacts with Precirol ATO 5 and this interaction suppresses polymorphic transitions of both the components. RPG-GeluPearl exhibited significantly higher anti-diabetic activity compared to marketed RPG tablets. RPG-GeluPearl demonstrated good colloidal and chemical stability at the end of 1 month.

  5. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Date, Abhijit A.; Vador, Nimish; Jagtap, Aarti; Nagarsenker, Mangal S.

    2011-07-01

    Purpose. To evaluate the ability of Gelucire 50/13 (an amphiphilic lipid excipient) to act as a stabilizer for lipid nanocarriers such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) and to establish the ability of Gelucire 50/13 based lipid nanocarriers to improve oral delivery of hydrophobic drugs using repaglinide (RPG) as a model drug. Methods. The ability of Gelucire 50/13 to nanosize various solid lipids was evaluated. The ability of Gelucire 50/13 to yield NLC was evaluated by using Precirol ATO 5 as a model solid lipid and various liquid lipids (oils). Gelucire 50/13 based NLC (GeluPearl) were evaluated for their ability to improve the efficacy of RPG on oral administration in comparison to RPG tablets. The short term stability of RPG-GeluPearl was evaluated at 25 °C/60% RH. Results. Gelucire 50/13 could successfully yield SLN and NLC of various solid lipids, demonstrating its potential to act as a novel stabilizer. DSC studies indicated that Gelucire 50/13 interacts with Precirol ATO 5 and this interaction suppresses polymorphic transitions of both the components. RPG-GeluPearl exhibited significantly higher anti-diabetic activity compared to marketed RPG tablets. RPG-GeluPearl demonstrated good colloidal and chemical stability at the end of 1 month. Indian patent application number 2167/MUM/2008.

  6. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds.

    PubMed

    Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza

    2017-10-15

    Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hydrogen production by photoelectrolytic decomposition of H2O using solar energy

    NASA Technical Reports Server (NTRS)

    Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.

    1980-01-01

    Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.

  8. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  9. Effects of replacing beef fat with pre-emulsified pumpkin seed oil on some quality characteristics of model system chicken meat emulsions

    NASA Astrophysics Data System (ADS)

    Serdaroğlu, M.; Nacak, B.; Karabıyıkoğlu, M.; Tepe, M.; Baykara, I.; Kökmen, Y.

    2017-09-01

    In this study, the effects of adding pumpkin seed oil (PSO) in water emulsion to model system chicken meat emulsions (MSME) on product quality and oxidative stability were investigated. MSME were produced by replacing 25% (P25) and 50% (P50) of beef fat with PSO-in-water emulsion (PSO/W) while control treatment was prepared with only beef fat. Addition of PSO/W to the formulation resulted in significant differences in chemical composition and pH values of both raw and cooked MSME treatments. The use of PSO/W produced significant improvements to emulsion stability, oxidative stability and cooking yield of MSME. It was determined that the use of PSO/W formulation results in decreased total expressible fluid values and increased cooking yields of the emulsions. It was observed that the highest cooking yield and the lowest total expressible fluid were found in the sample containing 50% PSO/W. It should be a feasible strategy to produce fat-reduced meat products with healthier lipid profiles by using PSO/W.

  10. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?

    PubMed Central

    Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde

    2016-01-01

    Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666

  11. Effects of electron beam irradiated natural casings on the quality properties and shelf stability of emulsion sausage

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Choi, Ji-Hun; Choi, Yun-Sang; Kim, Hack-Youn; Hwang, Ko-Eun; Song, Dong-Heon; Lee, Ju-Woon; Kim, Cheon-Jei

    2012-05-01

    The effect of electron beam irradiated hog and sheep casings (1, 3, and 8 kGy) on the physicochemical properties and shelf stability of emulsion sausage was evaluated. There were no significant differences in pH, instrumental color, sensory properties (overall acceptability), and hardness between all the samples. The cooking yields for the irradiated treated samples were larger than that of the yields obtained for the non-irradiated samples for both the hog and sheep casing. The irradiated natural casings accelerated lipid oxidation, and inhibited the formation of volatile basic nitrogen and the increase in total aerobic bacteria. In conclusion, the natural casings irradiated below at a dose of 3 kGy had no effect on physicochemical and sensory properties of the emulsion sausages, however, that improved the shelf-stability over 5 weeks. Therefore, natural casings irradiated at moderate doses are suitable for sausage production.

  12. New singlet oxygen donors based on naphthalenes: synthesis, physical chemical data, and improved stability.

    PubMed

    Klaper, Matthias; Linker, Torsten

    2015-06-01

    Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25 new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for "dark oxygenations" and future applications in medicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stabilized display of coronary x-ray image sequences

    NASA Astrophysics Data System (ADS)

    Close, Robert A.; Whiting, James S.; Da, Xiaolin; Eigler, Neal L.

    2004-05-01

    Display stabilization is a technique by which a feature of interest in a cine image sequence is tracked and then shifted to remain approximately stationary on the display device. Prior simulations indicate that display stabilization with high playback rates ( 30 f/s) can significantly improve detectability of low-contrast features in coronary angiograms. Display stabilization may also help to improve the accuracy of intra-coronary device placement. We validated our automated tracking algorithm by comparing the inter-frame difference (jitter) between manual and automated tracking of 150 coronary x-ray image sequences acquired on a digital cardiovascular X-ray imaging system with CsI/a-Si flat panel detector. We find that the median (50%) inter-frame jitter between manual and automatic tracking is 1.41 pixels or less, indicating a jump no further than an adjacent pixel. This small jitter implies that automated tracking and manual tracking should yield similar improvements in the performance of most visual tasks. We hypothesize that cardiologists would perceive a benefit in viewing the stabilized display as an addition to the standard playback of cine recordings. A benefit of display stabilization was identified in 87 of 101 sequences (86%). The most common tasks cited were evaluation of stenosis and determination of stent and balloon positions. We conclude that display stabilization offers perceptible improvements in the performance of visual tasks by cardiologists.

  14. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64%more » of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.« less

  15. Utilization of spent coffee grounds for isolation and stabilization of Paenibacillus chitinolyticus CKS1 cellulase by immobilization.

    PubMed

    Buntić, Aneta V; Pavlović, Marija D; Antonović, Dušan G; Šiler-Marinković, Slavica S; Dimitrijević-Branković, Suzana I

    2016-08-01

    This study has explored the feasibility of using spent coffee grounds as a good supporting material for the Paenibacillus chitinolyticus CKS1 cellulase immobilization. An optimal operational conditions in a batch-adsorption system were found to be: carrier mass of 12 g/L, under the temperature of 45 °C and no pH adjustments. The immobilization yield reached about 71%. An equilibrium establishment between the cellulase and the carrier surface occurred within 45 min, whereas the process kinetics may be predicted by the pseudo-second-order model. An immobilized cellulase preparation expressed very good avicelase activity, this reached up to 2.67 U/g, and revealed an improved storage stability property, compared to free enzyme sample counterpart. The addition of metal ions, such as K(+) and Mg(2+) did not affect positively immobilization yield results, but on the contrary, contributed to an improved bio-activities of the immobilized cellulase, thus may be employed before each enzyme application. The method developed in this study offers a cheap and effective alternative for immediate enzyme isolation from the production medium and its stabilization, compared to other carriers used for the immobilization.

  16. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also bettermore » than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.« less

  17. AMMI adjustment for statistical analysis of an international wheat yield trial.

    PubMed

    Crossa, J; Fox, P N; Pfeiffer, W H; Rajaram, S; Gauch, H G

    1991-01-01

    Multilocation trials are important for the CIMMYT Bread Wheat Program in producing high-yielding, adapted lines for a wide range of environments. This study investigated procedures for improving predictive success of a yield trial, grouping environments and genotypes into homogeneous subsets, and determining the yield stability of 18 CIMMYT bread wheats evaluated at 25 locations. Additive Main effects and Multiplicative Interaction (AMMI) analysis gave more precise estimates of genotypic yields within locations than means across replicates. This precision facilitated formation by cluster analysis of more cohesive groups of genotypes and locations for biological interpretation of interactions than occurred with unadjusted means. Locations were clustered into two subsets for which genotypes with positive interactions manifested in high, stable yields were identified. The analyses highlighted superior selections with both broad and specific adaptation.

  18. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    NASA Astrophysics Data System (ADS)

    Wang, Shujuan; Wang, Xiao; Jia, Beibei; Jing, Xinli

    2017-01-01

    In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A2 + B3 strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph-O-B and B-O-B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N2) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N2 and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  19. Translating knowledge about abiotic stress tolerance to breeding programmes.

    PubMed

    Gilliham, Matthew; Able, Jason A; Roy, Stuart J

    2017-06-01

    Plant breeding and improvements in agronomic practice are making a consistent contribution to increasing global crop production year upon year. However, the rate of yield improvement currently lags behind the targets set to produce enough food to meet the demands of the predicted global population in 2050. Furthermore, crops that are exposed to harmful abiotic environmental factors (abiotic stresses, e.g. water limitation, salinity, extreme temperature) are prone to reduced yields. Here, we briefly describe the processes undertaken in conventional breeding programmes, which are usually designed to improve yields in near-optimal conditions rather than specifically breeding for improved crop yield stability under stressed conditions. While there is extensive fundamental research activity that examines mechanisms of plant stress tolerance, there are few examples that apply this research to improving commercial crop yields. There are notable exceptions, and we highlight some of these to demonstrate the magnitude of yield gains that could be made by translating agronomic, phenological and genetic solutions focused on improving or mitigating the effect of abiotic stress in the field; in particular, we focus on improvements in crop water-use efficiency and salinity tolerance. We speculate upon the reasons for the disconnect between research and research translation. We conclude that to realise untapped rapid gains towards food security targets new funding structures need to be embraced. Such funding needs to serve both the core and collaborative activities of the fundamental, pre-breeding and breeding research communities in order to expedite the translation of innovative research into the fields of primary producers. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China.

    PubMed

    Zhang, Xubo; Sun, Nan; Wu, Lianhai; Xu, Minggang; Bingham, Ian J; Li, Zhongfang

    2016-08-15

    Although organic carbon sequestration in agricultural soils has been recommended as a 'win-win strategy' for mitigating climate change and ensuring food security, great uncertainty still remains in identifying the relationships between soil organic carbon (SOC) sequestration and crop productivity. Using data from 17 long-term experiments in China we determined the effects of fertilization strategies on SOC stocks at 0-20cm depth in the North, North East, North West and South. The impacts of changes in topsoil SOC stocks on the yield and yield stability of winter wheat (Triticum aestivum L.) and maize (Zea mays L.) were determined. Results showed that application of inorganic fertilizers (NPK) plus animal manure over 20-30years significantly increased SOC stocks to 20-cm depth by 32-87% whilst NPK plus wheat/maize straw application increased it by 26-38% compared to controls. The efficiency of SOC sequestration differed between regions with 7.4-13.1% of annual C input into the topsoil being retained as SOC over the study periods. In the northern regions, application of manure had little additional effect on yield compared to NPK over a wide range of topsoil SOC stocks (18->50MgCha(-1)). In the South, average yield from manure applied treatments was 2.5 times greater than that from NPK treatments. Moreover, the yield with NPK plus manure increased until SOC stocks (20-cm depth) increased to ~35MgCha(-1). In the northern regions, yield stability was not increased by application of NPK plus manure compared to NPK, whereas in the South there was a significant improvement. We conclude that manure application and straw incorporation could potentially lead to SOC sequestration in topsoil in China, but beneficial effects of this increase in SOC stocks to 20-cm depth on crop yield and yield stability may only be achieved in the South. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Synthesis, Bioconjugation and Stability Studies of [18 F] Ethenesulfonyl Fluoride.

    PubMed

    Zhang, Bo; Pascali, Giancarlo; Wyatt, Naomi; Matesic, Lidia; Klenner, Mitchell A; Sia, Tiffany R; Guastella, Adam J; Massi, Massimiliano; Robinson, Andrea J; Fraser, Benjamin H

    2018-06-20

    Fluorine-18 labelled prosthetic groups (PGs) are often necessary for radiolabelling sensitive biological molecules such as peptides and proteins. Several shortcomings, however, often diminish the final yield of radiotracer. In an attempt to provide higher yielding and operationally efficient tools for radiolabelling biological molecules, we describe herein the first radiochemical synthesis of [ 18 F] ethenesulfonylfluoride ([ 18 F] ESF) and its Michael conjugation with amino acids and proteins. The synthesis of [ 18 F] ESF was optimised using a microfluidic reactor under both carrier-added (c.a.) and no-carrier-added (n.c.a.) conditions, affording, in a straightforward procedure, 30-50% radiochemical yield (RCY) for c.a. [ 18 F] ESF and 60-70% RCY for n.c.a. [ 18 F] ESF. The conjugation reactions were performed at room temperature using 10 mg/mL precursor in aqueous/organic solvent mixtures for 15 min. The radiochemical stability of the final conjugates was evaluated in injectable formulation and rat serum, and resulted strongly substrate dependent and generally poor in rat serum. Therefore, in this work we have optimised a straightforward synthesis of [ 18 F] ESF and its Michael conjugation with model compounds, without requiring chromatographic purification. However, given the general low stability of the final products, further studies will be required for improving conjugate stability, before assessing the use of this PG for PET imaging. This article is protected by copyright. All rights reserved.

  2. TECHNICAL NOTE: The strengthening effect of guar gum on the yield stress of magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Wu, Wei Ping; Zhao, Bin Yuan; Wu, Qing; Chen, LeSheng; Hu, Ke Ao

    2006-08-01

    In this paper we present a novel approach for producing obvious strengthening of the magnetorheological (MR) effect of MR fluids. Carbonyl iron powders coated with guar gum were used as magnetic particles in the MR fluid. Experimental results showed that inducing a guar gum coating not only greatly improved the sedimentation stability but also strengthened the yield stress of the MR fluid. An intermolecular force based model was proposed for explaining the strengthening effect.

  3. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  4. Relationship between rotor-bearing system stability and supporting bearings

    NASA Astrophysics Data System (ADS)

    Xu, Longxiang; Zhu, Jun

    1993-04-01

    Results of an investigation of the relationship between the rotor-bearing system stability of a large rotating machinery and the supporting bearings are presented. The contribution factor of the bearings to the system stability is established. The bearing with the largest contribution factor yields the greatest contribution to the system stability. Rotor-bearing system stability depends mainly on the dynamic characteristic performance of the sensitive bearings. Appropriate readjustment in the type or design parameters of these bearings will result in a significant improvement in the stability margin. Numerical examples are carried out for a model rotor-bearing system with five bearings in a domestic 200-MW turbine generator set; they show that the calculated results are in good agreement with those measured for some actual rotating machinery. A scheme to reconstruct the domestic 200-MW turbine generator set is discussed.

  5. A dynamic network model for interbank market

    NASA Astrophysics Data System (ADS)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  6. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp.

    PubMed

    Bayr, S; Ojanperä, M; Kaparaju, P; Rintala, J

    2014-10-01

    In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55°C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m(3)d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm(3)/kg VS(fed). On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500-680 dm(3)/kg VS(fed)). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rice Root Architectural Plasticity Traits and Genetic Regions for Adaptability to Variable Cultivation and Stress Conditions1[OPEN

    PubMed Central

    Sandhu, Nitika; Raman, K. Anitha; Torres, Rolando O.; Audebert, Alain; Dardou, Audrey; Kumar, Arvind; Henry, Amelia

    2016-01-01

    Future rice (Oryza sativa) crops will likely experience a range of growth conditions, and root architectural plasticity will be an important characteristic to confer adaptability across variable environments. In this study, the relationship between root architectural plasticity and adaptability (i.e. yield stability) was evaluated in two traditional × improved rice populations (Aus 276 × MTU1010 and Kali Aus × MTU1010). Forty contrasting genotypes were grown in direct-seeded upland and transplanted lowland conditions with drought and drought + rewatered stress treatments in lysimeter and field studies and a low-phosphorus stress treatment in a Rhizoscope study. Relationships among root architectural plasticity for root dry weight, root length density, and percentage lateral roots with yield stability were identified. Selected genotypes that showed high yield stability also showed a high degree of root plasticity in response to both drought and low phosphorus. The two populations varied in the soil depth effect on root architectural plasticity traits, none of which resulted in reduced grain yield. Root architectural plasticity traits were related to 13 (Aus 276 population) and 21 (Kali Aus population) genetic loci, which were contributed by both the traditional donor parents and MTU1010. Three genomic loci were identified as hot spots with multiple root architectural plasticity traits in both populations, and one locus for both root architectural plasticity and grain yield was detected. These results suggest an important role of root architectural plasticity across future rice crop conditions and provide a starting point for marker-assisted selection for plasticity. PMID:27342311

  8. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production.

    PubMed

    Slewinski, Thomas L

    2012-08-01

    A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.

  9. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study.

    PubMed

    Ma, Yingfang; Yang, Haiquan; Chen, Xianzhong; Sun, Bo; Du, Guocheng; Zhou, Zhemin; Song, Jiangning; Fan, You; Shen, Wei

    2015-10-01

    In this study, atmospheric and room temperature plasma (ARTP), a promising mutation breeding technique, was successfully applied to generate Bacillus subtilis mutants that yielded large quantities of recombinant protein. The high throughput screening platform was implemented to select those mutants with the highest yield of recombinant alkaline α-amylase (AMY), including the preferred mutant B. subtilis WB600 mut-12#. The yield and productivity of recombinant AMY in B. subtilis WB600 mut-12# increased 35.0% and 8.8%, respectively, the extracellular protein concentration of which increased 37.9%. B. subtilis WB600 mut-12# exhibited good genetic stability. Cells from B. subtilis WB600 mut-12# became shorter and wider than those from the wild-type. This study is the first to report a novel powerful mutagenesis tool (ARTP) that significantly improves the yield of recombinant proteins in B. subtilis and may therefore play an important role in the high expression level of proteins in recombinant microbial hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing.

    PubMed

    Sato, Yuichiro; Fukuda, Hisashi; Zhou, Yan; Mikami, Shigeaki

    2010-12-01

    We purified three xylanase isozymes (XynF1, XynF3 and XynG2) from a solid-state Aspergillus oryzae RIB128 culture using chromatography. The results of our sake-brewing experiment, in which we used exogenously supplemented enzymes, revealed that only XynG2 improved the alcohol yield and the material utilization. The alcohol yield of the XynG2 batch displayed an increase of 4.4% in comparison to the control, and the amount of sake cake decreased by 4.6%. The contribution of XynG2 was further confirmed through our brewing experiment in which we used the yeast heterogeneously expressing fungal xylanase isozymes. Interestingly XynG1, an enzyme with a XynG2-like sequence that is more vulnerable to ethanol, did not improve the sake-mash fermentation. The stability of XynG2 in ethanol was prominent, and it retained most of its original activity after we exposed it to 80% ethanol for 30min, whereas the stability of the other isozymes in ethanol, including XynG1, was much lower (20-25% ethanol). We concluded, therefore, that the improvement of material utilization achieved with XynG2 is primarily attributable to its characteristically high stability in ethanol, thereby, effectively degrading rice endosperm cell walls under high-alcohol conditions such as a sake-mash environment. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1.

    PubMed

    Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan; Aleksandrov, Andrei A; Khazanov, Netaly; Zhou, Qingxian; An, Jianli; Mezzell, Andrew T; Xavier, Bala M; Ding, Haitao; Riordan, John R; Senderowitz, Hanoch; Kappes, John C; Brouillette, Christie G; Urbatsch, Ina L

    2018-05-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is an ABC transporter containing two transmembrane domains forming a chloride ion channel, and two nucleotide binding domains (NBD1 and NBD2). CFTR has presented a formidable challenge to obtain monodisperse, biophysically stable protein. Here we report a comprehensive study comparing effects of single and multiple NBD1 mutations on stability of both the NBD1 domain alone and on purified full length human CFTR. Single mutations S492P, A534P, I539T acted additively, and when combined with M470V, S495P, and R555K cumulatively yielded an NBD1 with highly improved structural stability. Strategic combinations of these mutations strongly stabilized the domain to attain a calorimetric T m  > 70 °C. Replica exchange molecular dynamics simulations on the most stable 6SS-NBD1 variant implicated fluctuations, electrostatic interactions and side chain packing as potential contributors to improved stability. Progressive stabilization of NBD1 directly correlated with enhanced structural stability of full-length CFTR protein. Thermal unfolding of the stabilized CFTR mutants, monitored by changes in intrinsic fluorescence, demonstrated that Tm could be shifted as high as 67.4 °C in 6SS-CFTR, more than 20 °C higher than wild-type. H1402S, an NBD2 mutation, conferred CFTR with additional thermal stability, possibly by stabilizing an NBD-dimerized conformation. CFTR variants with NBD1-stabilizing mutations were expressed at the cell surface in mammalian cells, exhibited ATPase and channel activity, and retained these functions to higher temperatures. The capability to produce enzymatically active CFTR with improved structural stability amenable to biophysical and structural studies will advance mechanistic investigations and future cystic fibrosis drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Yield stability of processing sweet corn and relationship to genotype adoption

    USDA-ARS?s Scientific Manuscript database

    Yield stability is a crop genotype’s performance over a range of environmental conditions, such that a specific genotype may be less sensitive to environmental change (i.e. above-average stability) or more sensitive to environmental change (i.e. below-average stability) relative to other genotypes. ...

  13. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newlymore » modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.« less

  14. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS⃞

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  15. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.

    PubMed

    Molinuevo-Salces, Beatriz; Gómez, Xiomar; Morán, Antonio; García-González, Mari Cruz

    2013-06-01

    Anaerobic digestion of livestock wastes (swine manure (SM) and poultry litter (PL)) and vegetable processing wastes (VPW) mixtures was evaluated in terms of methane yield, volatile solids removal and lignocellulosic material degradation. Batch experiments were performed with 2% VS (volatile solids) to ensure complete conversion of TVFAs (total volatile fatty acids) and to avoid ammonia inhibition. Experimental methane yields obtained for the mixtures resulted in higher values than those obtained from the sum of the methane yields from the individual components. VPW addition to livestock wastes before anaerobic digestion also resulted in improved VS elimination. In SM-VPW co-digestions, CH4 yield increased from 111 to 244 mL CH4 g VS added(-1), and the percentage of VS removed increased from 50% to 86%. For PL-VPW co-digestions, the corresponding values were increased from 158 to 223 mL CH4 g VS added(-1) and from 70% to 92% VS removed. Hemicelluloses and more than 50% of cellulose were degraded during anaerobic digestion. Thermal analyses indicated that the stabilization of the wastes during anaerobic digestion resulted in significantly less energy being released by digestate samples than fresh samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Improving aerobic stability and biogas production of maize silage using silage additives.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    PubMed Central

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  18. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  19. Stability analysis of oil yield in oil palm (Elaeis guineensis) progenies in different environments.

    PubMed

    Rafii, M Y; Jalani, B S; Rajanaidu, N; Kushairi, A; Puteh, A; Latif, M A

    2012-10-04

    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.

  20. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  1. Evaluation of constraint stabilization procedures for multibody dynamical systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.

  2. Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-fat Pork Patties.

    PubMed

    Verma, Akhilesh K; Chatli, Manish Kumar; Kumar, Devendra; Kumar, Pavan; Mehta, Nitin

    2015-02-01

    The present study was conducted to investigate the efficacy of sweet potato powder (SPP) and water as a fat replacer in low-fat pork patties. Low-fat pork patties were developed by replacing the added fat with combinations of SPP and chilled water. Three different levels of SPP/chilled water viz. 0.5/9.5% (T-1), 1.0/9.0% (T-2), and 1.5/8.5% (T-3) were compared with a control containing 10% animal fat. The quality of low-fat pork patties was evaluated for physico-chemical (pH, emulsion stability, cooking yield, aw), proximate, instrumental colour and textural profile, and sensory attributes. The cooking yield and emulsion stability improved (p<0.05) in all treatments over the control and were highest in T-2. Instrumental texture profile attributes and hardness decreased, whereas cohesiveness increased compared with control, irrespective of SPP level. Dimensional parameters (% gain in height and % decrease in diameter) were better maintained during cooking in the low-fat product than control. The sensory quality attributes juiciness, texture and overall acceptability of T-2 and T-3 were (p<0.05) higher than control. Results concluded that low-fat pork patties with acceptable sensory attributes, improved cooking yield and textural attributes can be successfully developed with the incorporation of a combination of 1.0% SPP and 9.0% chilled water.

  3. Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-fat Pork Patties

    PubMed Central

    Verma, Akhilesh K.; Chatli, Manish Kumar; Kumar, Devendra; Kumar, Pavan; Mehta, Nitin

    2015-01-01

    The present study was conducted to investigate the efficacy of sweet potato powder (SPP) and water as a fat replacer in low-fat pork patties. Low-fat pork patties were developed by replacing the added fat with combinations of SPP and chilled water. Three different levels of SPP/chilled water viz. 0.5/9.5% (T-1), 1.0/9.0% (T-2), and 1.5/8.5% (T-3) were compared with a control containing 10% animal fat. The quality of low-fat pork patties was evaluated for physico-chemical (pH, emulsion stability, cooking yield, aw), proximate, instrumental colour and textural profile, and sensory attributes. The cooking yield and emulsion stability improved (p<0.05) in all treatments over the control and were highest in T-2. Instrumental texture profile attributes and hardness decreased, whereas cohesiveness increased compared with control, irrespective of SPP level. Dimensional parameters (% gain in height and % decrease in diameter) were better maintained during cooking in the low-fat product than control. The sensory quality attributes juiciness, texture and overall acceptability of T-2 and T-3 were (p<0.05) higher than control. Results concluded that low-fat pork patties with acceptable sensory attributes, improved cooking yield and textural attributes can be successfully developed with the incorporation of a combination of 1.0% SPP and 9.0% chilled water. PMID:25557822

  4. Total amino acid stabilization during cell-free protein synthesis reactions.

    PubMed

    Calhoun, Kara A; Swartz, James R

    2006-05-17

    Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.

  5. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    PubMed Central

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  6. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance[].

    PubMed

    Moore, Evan G; D'Aléo, Anthony; Xu, Jide; Raymond, Kenneth N

    2009-10-13

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV/visible and then efficiently transfer the energy to the lanthanoid center. The synthesis and the complexation of Ln(III) cations (Ln=Eu; Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu(III) complex ([Eu(3LI-bis-LYS-1,2-HOPO)](-)) has been evaluated in terms of its thermodynamic stability, UV/visible absorption and luminescence properties. For this complex the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid (DTPA) at pH= 7.4. This Eu(III) complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH= 7.4) when compared to other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)](-). This overall improvement was achieved by saturating the coordination sphere of the Eu(III) cation, yielding an increased metal centered efficiency by excluding solvent water molecules from the metal's inner sphere.

  7. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output.

    PubMed

    Loening, Andreas Markus; Fenn, Timothy David; Wu, Anna M; Gambhir, Sanjiv Sam

    2006-09-01

    Luciferases, which have seen expansive employment as reporter genes in biological research, could also be used in applications where the protein itself is conjugated to ligands to create probes that are appropriate for use in small animal imaging. As the bioluminescence activity of commonly used luciferases is too labile in serum to permit this application, specific mutations of Renilla luciferase, selected using a consensus sequence driven strategy, were screened for their ability to confer stability of activity in serum as well as their light output. Using this information, a total of eight favorable mutations were combined to generate a mutant Renilla luciferase (RLuc8) that, compared with the parental enzyme, is 200-fold more resistant to inactivation in murine serum and exhibits a 4-fold improvement in light output. Results of the mutational analysis were also used to generate a double mutant optimized for use as a reporter gene. The double mutant had half the resistance to inactivation in serum of the native enzyme while yielding a 5-fold improvement in light output. These variants of Renilla luciferase, which exhibit significantly improved properties compared with the native enzyme, will allow enhanced sensitivity in existing luciferase-based assays as well as enable the development of novel probes labeled with the luciferase protein.

  8. Genetic analysis of some agronomic and fiber traits in Gossypium hirsutum L. grown in field conditions

    USDA-ARS?s Scientific Manuscript database

    Cotton production is an essential component of the economy of Pakistan, and continuing to improve the yield and fiber quality of this crop will ensure the future stability of this industry. Combining ability describes the performance of genotypes when they are crossed together, and it is a common me...

  9. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments

    PubMed Central

    Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito

    2016-01-01

    Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557

  10. Selection of common bean genotypes for the Cerrado/Pantanal ecotone via mixed models and multivariate analysis.

    PubMed

    Corrêa, A M; Pereira, M I S; de Abreu, H K A; Sharon, T; de Melo, C L P; Ito, M A; Teodoro, P E; Bhering, L L

    2016-10-17

    The common bean, Phaseolus vulgaris, is predominantly grown on small farms and lacks accurate genotype recommendations for specific micro-regions in Brazil. This contributes to a low national average yield. The aim of this study was to use the methods of the harmonic mean of the relative performance of genetic values (HMRPGV) and the centroid, for selecting common bean genotypes with high yield, adaptability, and stability for the Cerrado/Pantanal ecotone region in Brazil. We evaluated 11 common bean genotypes in three trials carried out in the dry season in Aquidauana in 2013, 2014, and 2015. A likelihood ratio test detected a significant interaction between genotype x year, contributing 54% to the total phenotypic variation in grain yield. The three genotypes selected by the joint analysis of genotypic values in all years (Carioca Precoce, BRS Notável, and CNFC 15875) were the same as those recommended by the HMRPGV method. Using the centroid method, genotypes BRS Notável and CNFC 15875 were considered ideal genotypes based on their high stability to unfavorable environments and high responsiveness to environmental improvement. We identified a high association between the methods of adaptability and stability used in this study. However, the use of centroid method provided a more accurate and precise recommendation of the behavior of the evaluated genotypes.

  11. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification productsmore » and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.« less

  12. Many shades of gray—The context-dependent performance of organic agriculture

    PubMed Central

    Seufert, Verena; Ramankutty, Navin

    2017-01-01

    Organic agriculture is often proposed as a more sustainable alternative to current conventional agriculture. We assess the current understanding of the costs and benefits of organic agriculture across multiple production, environmental, producer, and consumer dimensions. Organic agriculture shows many potential benefits (including higher biodiversity and improved soil and water quality per unit area, enhanced profitability, and higher nutritional value) as well as many potential costs including lower yields and higher consumer prices. However, numerous important dimensions have high uncertainty, particularly the environmental performance when controlling for lower organic yields, but also yield stability, soil erosion, water use, and labor conditions. We identify conditions that influence the relative performance of organic systems, highlighting areas for increased research and policy support. PMID:28345054

  13. Stabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin

    PubMed Central

    Yoo, Dae-Goon; Compans, Richard W.; Prausnitz, Mark R.; Kang, Sang-Moo

    2009-01-01

    Background Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy. Methodology/Principal Findings Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge. Conclusions/Significance The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too. PMID:19779615

  14. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  15. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement.

    PubMed

    Pu, Chuanfen; Tang, Wenting

    2017-11-15

    Aiming to improve the stability of lycopene and incorporate it into a complex nutraceutical, exogenous lycopene-loaded Chlorella pyrenoidosa cells (CPCs) were developed. The complex had an encapsulation yield of 13.06±0.89% and an encapsulation efficiency of 96.31±3.10%. Fluorescence analyses indicated that lycopene was encapsulated in the CPCs. X-ray diffraction, thermogravimetric and differential scanning calorimetric analyses were conducted and compared to those of the non-loaded CPCs, lycopene and their physical mixture. These studies demonstrated that lycopene was amorphous in the complex. The degradation kinetics indicated that encapsulation increased the stability of lycopene. The antioxidant activity of lycopene loaded CPCs against DPPH free radicals was higher than that of the unencapsulated lycopene after storage at 25°C for 25d. This study proved the feasibility of encapsulation of lycopene in the CPCs and combined the activities of both materials, which could be employed in the production of novel nutraceuticals to reduce oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanochemical Synthesis of Pharmaceutical Cocrystal Suspensions via Hot Melt Extrusion: Enhancing Cocrystal Yield.

    PubMed

    Li, Shu; Yu, Tao; Tian, Yiwei; Lagan, Colette; Jones, David S; Andrews, Gavin P

    2017-11-22

    Pharmaceutical cocrystals have attracted increasing attention over the past decade as an alternative way to modify the physicochemical properties and hence improve the bioavailability of a drug, without sacrificing thermodynamic stability. Our previous work has demonstrated the viability of in-situ formation of ibuprofen/isonicotinamide cocrystal suspensions within a matrix carrier via a single-step hot-melt extrusion (HME) process. The key aim of the current work is to establish optimised processing conditions to improve cocrystal yield within extruded matrices. The solubility of each individual cocrystal component in the matrix carrier was estimated using two different methods, calculation of Hansen solubility parameters, and Flory-Huggins solution theory using melting point depression measurement, respectively. The latter was found to be more relevant to extrusion cocrystallisation because of the ability to predict miscibility across a range of temperatures. The predictions obtained from the F-H phase diagrams were verified using ternary extrusion processing. Temperatures that promote solubilisation of the parent reagents during processing, and precipitation of the newly formed cocrystal were found to be the most suitable in generating high cocrystal yields. The incorporation of intensive mixing/kneading elements to the screw configuration was also shown to significantly improve the cocrystal yield when utilising a matrix platform. This work has shown that intensive mixing in combination with appropriate temperature selection, can significantly improve the cocrystal yield within a stable and low viscosity carrier during HME processing. Most importantly, this work reports, for the very first time in the literature, the use of the F-H phase diagrams to predict the most appropriate HME processing window to drive higher cocrystal yield.

  17. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.).

    PubMed

    Cormier, Fabien; Faure, Sébastien; Dubreuil, Pierre; Heumez, Emmanuel; Beauchêne, Katia; Lafarge, Stéphane; Praud, Sébastien; Le Gouis, Jacques

    2013-12-01

    By comparing 195 varieties in eight trials, this study assesses nitrogen use efficiency improvement in high and low nitrogen conditions in European winter wheat over the last 25 years. In a context where European agriculture practices have to deal with environmental concerns and nitrogen (N) fertiliser cost, nitrogen use efficiency (NUE) has to be improved. This study assessed genetic progress in winter wheat (Triticum aestivum L.) NUE. Two hundred and twenty-five European elite varieties were tested in four environments under two levels of N. Global genetic progress was assessed on additive genetic values and on genotype × N interaction, covering 25 years of European breeding. To avoid sampling bias, quality, precocity and plant height were added as covariates in the analyses when needed. Genotype × environment interactions were highly significant for all the traits studied to such an extent that no additive genetic effect was detected on N uptake. Genotype × N interactions were significant for yield, grain protein content (GPC), N concentration in straw, N utilisation, and NUE. Grain yield improvement (+0.45 % year(-1)) was independent of the N treatment. GPC was stable, thus grain nitrogen yield was improved (+0.39 % year(-1)). Genetic progress on N harvest index (+0.12 % year(-1)) and on N concentration in straw (-0.52 % year(-1)) possibly revealed improvement in N remobilisation. There has been an improvement of NUE additive genetic value (+0.33 % year(-1)) linked to better N utilisation (+0.20 % year(-1)). Improved yield stability was detected as a significant improvement of NUE in low compared to high N conditions. The application of these results to breeding programs is discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayr, S., E-mail: suvi.bayr@jyu.fi; Ojanperä, M.; Kaparaju, P.

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. • Free NH{sub 3} inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55more » °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.« less

  19. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems

    PubMed Central

    Li, Qisong; Chen, Jun; Wu, Linkun; Luo, Xiaomian; Li, Na; Arafat, Yasir; Lin, Sheng; Lin, Wenxiong

    2018-01-01

    Intercropping has been widely used to control disease and improve yield in agriculture. In this study, maize and peanut were used for non-separation intercropping (NS), semi-separation intercropping (SS) using a nylon net, and complete separation intercropping (CS) using a plastic sheet. In field experiments, two-year land equivalent ratios (LERs) showed yield advantages due to belowground interactions when using NS and SS patterns as compared to monoculture. In contrast, intercropping without belowground interactions (CS) showed a yield disadvantage. Meanwhile, in pot experiments, belowground interactions (found in NS and SS) improved levels of soil-available nutrients (nitrogen (N) and phosphorus (P)) and enzymes (urease and acid phosphomonoesterase) as compared to intercropping without belowground interactions (CS). Soil bacterial community assay showed that soil bacterial communities in the NS and SS crops clustered together and were considerably different from the CS crops. The diversity of bacterial communities was significantly improved in soils with NS and SS. The abundance of beneficial bacteria, which have the functions of P-solubilization, pathogen suppression, and N-cycling, was improved in maize and peanut soils due to belowground interactions through intercropping. Among these bacteria, numbers of Bacillus, Brevibacillus brevis, and Paenibacillus were mainly increased in the maize rhizosphere. Burkholderia, Pseudomonas, and Rhizobium were mainly increased in the peanut rhizosphere. In conclusion, using maize and peanut intercropping, belowground interactions increased the numbers of beneficial bacteria in the soil and improved the diversity of the bacterial community, which was conducive to improving soil nutrient (N and P) supply capacity and soil microecosystem stability. PMID:29470429

  20. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population.

    PubMed

    Xavier, Alencar; Jarquin, Diego; Howard, Reka; Ramasubramanian, Vishnu; Specht, James E; Graef, George L; Beavis, William D; Diers, Brian W; Song, Qijian; Cregan, Perry B; Nelson, Randall; Mian, Rouf; Shannon, J Grover; McHale, Leah; Wang, Dechun; Schapaugh, William; Lorenz, Aaron J; Xu, Shizhong; Muir, William M; Rainey, Katy M

    2018-02-02

    Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations. Copyright © 2018 Xavier et al.

  1. Usefulness of the HMRPGV method for simultaneous selection of upland cotton genotypes with greater fiber length and high yield stability.

    PubMed

    Farias, F J C; Carvalho, L P; Silva Filho, J L; Teodoro, P E

    2016-08-19

    The harmonic mean of the relative performance of genotypic predicted value (HMRPGV) method has been used to measure the genotypic stability and adaptability of various crops. However, its use in cotton is still restricted. This study aimed to use mixed models to select cotton genotypes that simultaneously result in longer fiber length, higher fiber yield, and phenotypic stability in both of these traits. Eight trials with 16 cotton genotypes were conducted in the 2008/2009 harvest in Mato Grosso State. The experimental design was randomized complete blocks with four replicates of each of the 16 genotypes. In each trial, we evaluated fiber yield and fiber length. The genetic parameters were estimated using the restricted maximum likelihood/best linear unbiased predictor method. Joint selection considering, simultaneously, fiber length, fiber yield, stability, and adaptability is possible with the HMRPGV method. Our results suggested that genotypes CNPA MT 04 2080 and BRS CEDRO may be grown in environments similar to those tested here and may be predicted to result in greater fiber length, fiber yield, adaptability, and phenotypic stability. These genotypes may constitute a promising population base in breeding programs aimed at increasing these trait values.

  2. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    USDA-ARS?s Scientific Manuscript database

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  3. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones

    PubMed Central

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. PMID:26406470

  4. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    PubMed

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.

  5. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  6. Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality.

    PubMed

    Thakur, Deepika; Jain, Ashay; Ghoshal, Gargi; Shivhare, U S; Katare, O P

    2017-07-01

    β-Carotene, abundant majorly in carrot, pink guava yams, spinach, kale, sweet potato, and palm oil, is an important nutrient for human health due to its scavenging action upon reactive free radicals wherever produced in the body. Inclusion of liposoluble β-carotene in foods and food ingredients is a challenging aspect due to its labile nature and low absorption from natural sources. This fact has led to the application of encapsulation of β-carotene to improve stability and bioavailability. The present work was aimed to fabricate microcapsules (MCs) of β-carotene oily dispersion using the complex coacervation technique with casein (CA) and guar gum (GG) blend. The ratio of CA:GG was found to be 1:0.5 (w/v) when optimized on the basis of zeta potential-yield stress phenomenon. These possessed a higher percentage yield (71.34 ± 0.55%), lower particle size (176.47 ± 4.65 μm), higher encapsulation efficiency (65.95 ± 5.33%), and in general, a uniform surface morphology was observed with particles showing optimized release behavior. Prepared MCs manifested effective and controlled release (up to 98%) following zero-order kinetics which was adequately explained by the Korseymer-Peppas model. The stability of the freeze-dried MCs was established in simulated gastrointestinal fluids (SGF, SIF) for 8 h. Antioxidant activity of the MCs was studied and revealed the retention of the functional architecture of β-carotene in freeze-dried MCs. Minimal photolytic degradation upon encapsulation of β-carotene addressed the challenge regarding photo-stability of β-carotene as confirmed via mass spectroscopy.

  7. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation.

    PubMed

    Nguyen, Minh Hiep; Yu, Hong; Kiew, Tie Yi; Hadinoto, Kunn

    2015-10-01

    While the wide-ranging therapeutic activities of curcumin have been well established, its successful delivery to realize its true therapeutic potentials faces a major challenge due to its low oral bioavailability. Even though nano-encapsulation has been widely demonstrated to be effective in enhancing the bioavailability of curcumin, it is not without drawbacks (i.e. low payload and costly preparation). Herein we present a cost-effective bioavailability enhancement strategy of curcumin in the form of amorphous curcumin-chitosan nanoparticle complex (or curcumin nanoplex in short) exhibiting a high payload (>80%). The curcumin nanoplex was prepared by a simple yet highly efficient drug-polysaccharide complexation method that required only mixing of the curcumin and chitosan solutions under ambient condition. The effects of (1) pH and (2) charge ratio of chitosan to curcumin on the (i) physical characteristics of the nanoplex (i.e. size, colloidal stability and payload), (ii) complexation efficiency, and (iii) production yield were investigated from which the optimal preparation condition was determined. The nanoplex formation was found to favor low acidic pH and charge ratio below unity. At the optimal condition (i.e. pH 4.4. and charge ratio=0.8), stable curcumin nanoplex (≈260nm) was prepared at >90% complexation efficiency and ≈50% production yield. The amorphous state stability, colloidal stability, and in vitro non-cytotoxicity of the nanoplex were successfully established. The curcumin nanoplex produced prolonged supersaturation (3h) in the presence of hydroxypropyl methylcellulose (HPMC) at five times of the saturation solubility of curcumin. In addition, curcumin released from the nanoplex exhibited improved chemical stability owed to the presence of chitosan. Both results (i.e. high supersaturation and improved chemical stability) bode well for the ability of the curcumin nanoplex to enhance the bioavailability of curcumin clinically. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Organic Semiconductors for Sprayable Solar Cells: Improving Stability and Efficiency

    DTIC Science & Technology

    2008-03-25

    adopt a bulk heterojunction approach (where donor and acceptor are mixed before deposition). This decision immediately removed pentacene - based...derivative (ADTz) was the first screened, and unfortunately did not yield any photovoltaic performance. The fullerene adduct of pentacene and C60 was...continue). The most encouraging acceptor was the dicyano pentacene chromophore (DC_Pn). The derivatives shown above varied in efficiency from

  9. Effects of chitosan molecular weight on the physical and dissolution characteristics of amorphous curcumin-chitosan nanoparticle complex.

    PubMed

    Yu, Hong; Nguyen, Minh-Hiep; Hadinoto, Kunn

    2018-01-01

    To investigate the effects of varying molecular weight (MW) of chitosan (CHI) used in the complexation with curcumin (CUR) on the physical and dissolution characteristics of the amorphous CUR-CHI nanoparticle complex produced. Amorphous CUR-CHI nanoparticle complex (or CUR nanoplex in short) recently emerged as a promising bioavailability enhancement strategy of CUR attributed to its fast dissolution, supersaturation generation capability, and simple preparation. Existing CUR nanoplex prepared using low MW CHI, however, exhibited poor colloidal stability during storage. Herein we hypothesized that the colloidal stability could be improved by using CHI of higher MW. The effects of this approach on the nanoplex's other characteristics were simultaneously investigated. The CUR nanoplex was prepared by electrostatically driven self-assembled complexation between CUR and oppositely charged CHI of three different MWs (i.e. low, medium, and high). Besides colloidal stability, the effects of MW variation were investigated for the nanoplex's (1) other physical characteristics (i.e. size, zeta potential, CUR payload, amorphous state stability), (2) preparation efficiency (i.e. CUR utilization rate, yield), and (3) dissolutions under sink condition and supersaturation generation. CUR nanoplex prepared using CHI of high MW exhibited improved colloidal stability, larger size, superior morphology, and prolonged supersaturation generation. On the other hand, the effects of MW variation on the payload, amorphous state stability, preparation efficiency, and dissolution under sink condition were found to be insignificant. Varying MW of CHI used was an effective means to improve certain aspects of the CUR nanoplex characteristics with minimal adverse effects on the others.

  10. Genetic and management approaches to boost UK wheat yields by ameliorating water deficits.

    PubMed

    Dodd, Ian C; Whalley, W R; Ober, Eric S; Parry, M A J

    2011-11-01

    Faced with the challenge of increasing global food production, there is the need to exploit all approaches to increasing crop yields. A major obstacle to boosting yields of wheat (an important staple in many parts of the world) is the availability and efficient use of water, since there is increasing stress on water resources used for agriculture globally, and also in parts of the UK. Improved soil and crop management and the development of new genotypes may increase wheat yields when water is limiting. Technical and scientific issues concerning management options such as irrigation and the use of growth-promoting rhizobacteria are explored, since these may allow the more efficient use of irrigation. Fundamental understanding of how crops sense and respond to multiple abiotic stresses can help improve the effective use of irrigation water. Experiments are needed to test the hypothesis that modifying wheat root system architecture (by increasing root proliferation deep in the soil profile) will allow greater soil water extraction thereby benefiting productivity and yield stability. Furthermore, better knowledge of plant and soil interactions and how below-ground and above-ground processes communicate within the plant can help identify traits and ultimately genes (or alleles) that will define genotypes that yield better under dry conditions. Developing new genotypes will take time and, therefore, these challenges need to be addressed now.

  11. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  12. Electrorheological fluid with an extraordinarily high yield stress

    NASA Astrophysics Data System (ADS)

    Zhang, Yuling; Lu, Kunquan; Rao, Guanghui; Tian, Yu; Zhang, Shaohua; Liang, Jingkui

    2002-02-01

    Surface modified complex strontium titanate microparticles are synthesized by means of a modified sol-gel technique. A suspension composed of these particles immersed in a silicone oil exhibits excellent electrorheological properties attractive to industry and technology applications: a yield stress as high as 27 kPa in an applied electric field of 3 kV/mm, a low leakage current, wide dynamic ranges in temperature and shear rate, and a long-term stability against sedimentation. In addition to the high dielectric constant of strontium titanate, surfactant and water-free character of the particles may be responsible for the dramatic improvement of the electrorheological properties of the suspension.

  13. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    PubMed

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  14. "Housing First" for Homeless Youth With Mental Illness.

    PubMed

    Kozloff, Nicole; Adair, Carol E; Palma Lazgare, Luis I; Poremski, Daniel; Cheung, Amy H; Sandu, Rebeca; Stergiopoulos, Vicky

    2016-10-01

    "Housing First" has been shown to improve housing stability in homeless individuals with mental illness, but had not been empirically tested in homeless youth. We aimed to evaluate the effect of "Housing First" on housing stability in homeless youth aged 18 to 24 years participating in At Home/Chez Soi, a 24-month randomized trial of "Housing First" in 5 Canadian cities. Homeless individuals with mental illness were randomized to receive "Housing First" (combined with assertive community treatment or intensive case management depending on their level of need) or treatment as usual. We defined our primary outcome, housing stability, as the percent of days stably housed as a proportion of days for which residence data were available. Of 2148 participants who completed baseline interviews and were randomized, 7% (n = 156) were youth aged 18 to 24 years; 87 received "Housing First" and 69 received treatment as usual. In an adjusted analysis, youth in "Housing First" were stably housed a mean of 437 of 645 (65%) days for which data were available compared with youth in treatment as usual, who were stably housed a mean of 189 of 582 (31%) days for which data were available, resulting in an adjusted mean difference of 34% (95% confidence interval, 24%-45%; P < .001). "Housing First" was associated with improved housing stability in homeless youth with mental illness. Future research should explore whether adaptations of the model for youth yield additional improvements in housing stability and other outcomes. Copyright © 2016 by the American Academy of Pediatrics.

  15. Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics.

    PubMed

    Chen, Xiaohong; Matsumoto, Norio; Hu, Yibai; Wilson, George S

    2002-01-15

    A procedure is described that provides for electrochemically mediated deposition of enzyme and a polymer layer permselective for endogenous electroactive species. Electrodeposition was first employed for the direct immobilization of glucose oxidase to produce a uniform, thin, and compact film on a Pt electrode. Electropolymerization of phenol was then employed to form an anti-interference and protective polyphenol film within the enzyme layer. In addition, a stability-reinforcing membrane derived from (3-aminopropyl)trimethoxysilane was constructed by electrochemically assisted cross-linking. This hybrid film outside the enzyme layer contributed to the improved stability and permselectivity. The resulting glucose sensor was characterized by a short response time (<4 s), high sensitivity (1200 nA/mM x cm2), low interference from endogenous electroactive species, and working lifetime of more than 50 days.

  16. In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability

    DOE PAGES

    Yoon, Won -Sub; Yang, Xiao -Qing; Haas, Otto; ...

    2014-10-29

    Tracking thermally induced reactions has always been challenging for electrode materials of electrochemical battery systems. Traditionally, a variety of calorimetric techniques and in situ XRD at elevated temperatures has been used to evaluate the thermal stability of electrode materials. These techniques are capable of providing variations in heat capacity, mass and average bulk composition of materials only. Herein, we report investigation of thermal characteristics of Li 0.33Ni 0.8Co 0.15Al 0.05O 2 by using in situ soft XAS measurements in combination with XRD. Fluorescence yield and partial electron yield measurements are used simultaneously to obtain element selective surface and bulk information.more » Fluorescence yield measurements reveal no energy change of the absorption peak and thus no valence state change in the bulk. However, electron yield measurements indicate that NiO-type rock salt structure is formed at the surface at temperatures above 200°C while no evidence for a surface reaction near Co sites in investigated temperature range is found. These results clearly show that in situ soft XAS can give a unique understanding of the role of each element in the structural transformation under thermal abuse offering a useful guidance in developing new battery system with improved safety performance.« less

  17. Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production

    NASA Astrophysics Data System (ADS)

    Zheng, Y. C.; Yu, X. H.; Yang, J.

    2017-06-01

    Biodiesel has recently gained extensive attention. Catalysts play an important role in producing biodiesel by transesterification reaction. In this study, CaO-CeO2 catalysts are developed as the solid base catalyst. Using PDMS-PEO as a structure-directing agent, the prepared CaO-CeO2 catalysts have a three-dimensional interconnected porous structure, which benefits the transesterification reaction. While the added Ce slightly decreases the catalytic activity, the stability of the catalyst shows remarkable improvement. Considering the catalytic activity and stability, the best catalyst is determined to be catalyst 0.15-1073 (Ce/Ca molar ratio of 0.15 and calcination temperature of 1073 K). Under optimum reaction conditions, the biodiesel yield reaches to 97.5% and metal leaching is 117.7 ppm. For catalyst 0.15-1073 regenerated after four reaction cycles, the biodiesel yield is 94.1%. The results reveal that the CaO-CeO2 catalyst has good potential for application in large-scale biodiesel production in the future.

  18. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  19. Improved synthesis of ADAM10 inhibitor GI254023X.

    PubMed

    Hoettecke, Nicole; Ludwig, Andreas; Foro, Sabine; Schmidt, Boris

    2010-01-01

    The metalloproteinases ADAM10 and ADAM17 are involved in various diseases: neurodegeneration, cancer and inflammation. The inhibition of these proteases is a promising target in the treatment of inflammation and cancer. In this study, we present an improved synthesis of the ADAM10 reference inhibitor GI254023X with a higher overall yield, enhanced detection ability and increased acid stability, providing easier handling. This upscaled synthesis, free of diastereomeric intermediates, ensures single-batch identity, thus warranting its reproducibility in further biological investigations. 2010 S. Karger AG, Basel.

  20. Synthetic and natural consensus design for engineering charge within an affibody targeting epidermal growth factor receptor.

    PubMed

    Case, Brett A; Hackel, Benjamin J

    2016-08-01

    Protein ligand charge can impact physiological delivery with charge reduction often benefiting performance. Yet neutralizing mutations can be detrimental to protein function. Herein, three approaches are evaluated to introduce charged-to-neutral mutations of three cations and three anions within an affibody engineered to bind epidermal growth factor receptor. These approaches-combinatorial library sorting or consensus design, based on natural homologs or library-sorted mutants-are used to identify mutations with favorable affinity, stability, and recombinant yield. Consensus design, based on 942 affibody homologs, yielded a mutant of modest function (Kd  = 11 ±4 nM, Tm  = 62°C, and yield = 4.0 ± 0.8 mg/L as compared to 5.3 ± 1.7 nM, 71°C, and 3.5 ± 0.3 mg/L for the parental affibody). Extension of consensus design to 10 additional mutants exhibited varied performance including a substantially improved mutant (Kd  = 6.9 ± 1.4 nM, Tm  = 71°C, and 12.7 ± 0.9 mg/L yield). Sorting a homolog-based combinatorial library of 7 × 10(5) mutants generated a distribution of mutants with lower stability and yield, but did identify one strongly binding variant (Kd  = 1.2 ± 0.3 nM, Tm  = 69°C, and 6.0 ± 0.4 mg/L yield). Synthetic consensus design, based on the amino acid distribution in functional library mutants, yielded higher affinities (P = 0.05) with comparable stabilities and yields. The best of four analyzed clones had Kd  = 1.7 ± 0.5 nM, Tm  = 68°C, and 7.0 ± 0.5 mg/L yield. While all three approaches were effective in creating targeted affibodies with six charged-to-neutral mutations, synthetic consensus design proved to be the most robust. Synthetic consensus design provides a valuable tool for ligand engineering, particularly in the context of charge manipulation. Biotechnol. Bioeng. 2016;113: 1628-1638. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Effect of Extraction Method on the Oxidative Stability of Camelina Seed Oil Studied by Differential Scanning Calorimetry.

    PubMed

    Belayneh, Henok D; Wehling, Randy L; Cahoon, Edgar B; Ciftci, Ozan N

    2017-03-01

    Camelina seed is a new alternative omega-3 source attracting growing interest. However, it is susceptible to oxidation due to its high omega-3 content. The objective of this study was to improve the oxidative stability of the camelina seed oil at the extraction stage in order to eliminate or minimize the use of additive antioxidants. Camelina seed oil extracts were enriched in terms of natural antioxidants using ethanol-modified supercritical carbon dioxide (SC-CO 2 ) extraction. Oxidative stability of the camelina seed oils extracted by ethanol modified SC-CO 2 was studied by differential scanning calorimeter (DSC), and compared with cold press, hexane, and SC-CO 2 methods. Nonisothermal oxidation kinetics of the oils obtained by different extraction methods were studied by DSC at varying heating rates (2.5, 5, 10, and 15 °C/min). Increasing ethanol level in the ethanol-modified SC-CO 2 increased the oxidative stability. Based on oxidation onset temperatures (T on ), SC-CO 2 containing 10% ethanol yielded the most stable oil. Oxidative stability depended on the type and content of the polar fractions, namely, phenolic compounds and phospholipids. Phenolic compounds acted as natural antioxidants, whereas increased phospholipid contents decreased the stability. Study has shown that the oxidative stability of the oils can be improved at the extraction stage and this may eliminate the need for additive antioxidants. © 2017 Institute of Food Technologists®.

  2. New insights into phosphorus management in agriculture--A crop rotation approach.

    PubMed

    Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F

    2016-01-15

    This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure and chemical fertilizers.

  3. Genotype × Environment Interactions of Yield Traits in Backcross Introgression Lines Derived from Oryza sativa cv. Swarna/Oryza nivara

    PubMed Central

    Balakrishnan, Divya; Subrahmanyam, Desiraju; Badri, Jyothi; Raju, Addanki Krishnam; Rao, Yadavalli Venkateswara; Beerelli, Kavitha; Mesapogu, Sukumar; Surapaneni, Malathi; Ponnuswamy, Revathi; Padmavathi, G.; Babu, V. Ravindra; Neelamraju, Sarla

    2016-01-01

    Advanced backcross introgression lines (BILs) developed from crosses of Oryza sativa var. Swarna/O. nivara accessions were grown and evaluated for yield and related traits. Trials were conducted for consecutive three seasons in field conditions in a randomized complete block design with three replications. Data on yield traits under irrigated conditions were analyzed using the Additive Main Effect and Multiplicative Interaction (AMMI), Genotype and Genotype × Environment Interaction (GGE) and modified rank-sum statistic (YSi) for yield stability. BILs viz., G3 (14S) and G6 (166S) showed yield stability across the seasons along with high mean yield performance. G3 is early in flowering with high yield and has good grain quality and medium height, hence could be recommended for most of the irrigated locations. G6 is a late duration genotype, with strong culm strength, high grain number and panicle weight. G6 has higher yield and stability than Swarna but has Swarna grain type. Among the varieties tested DRRDhan 40 and recurrent parent Swarna showed stability for yield traits across the seasons. The component traits thousand grain weight, panicle weight, panicle length, grain number and plant height explained highest genotypic percentage over environment and interaction factors and can be prioritized to dissect stable QTLs/ genes. These lines were genotyped using microsatellite markers covering the entire rice genome and also using a set of markers linked to previously reported yield QTLs. It was observed that wild derived lines with more than 70% of recurrent parent genome were stable and showed enhanced yield levels compared to genotypes with higher donor genome introgressions. PMID:27807437

  4. An analysis of yield stability in a conservation agriculture system

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increasing growing-season weather variability, with negative consequences for crop production. Maintaining agricultural productivity despite variability in weather (i.e., crop yield stability) will be critical to meeting growing global demand. Conservation agriculture is an ...

  5. Stabilization of IgG1 in spray-dried powders for inhalation.

    PubMed

    Schüle, S; Schulz-Fademrecht, T; Garidel, P; Bechtold-Peters, K; Frieb, W

    2008-08-01

    The protein stabilizing capabilities of spray-dried IgG1/mannitol formulations were evaluated. The storage stability was tested at different residual moisture levels prepared by vacuum-drying or equilibration prior to storage. Vacuum-drying at 32 degrees C/0.1mbar for 24h reduced the moisture level below 1%, constituting an optimal basis for improved storage stability. The crystalline IgG1/mannitol powders with a weight ratio of 20/80 up to 40/60 failed to prevent the antibody aggregation as assessed by size exclusion chromatography during storage. Ratios of 60/40 up to 80/20 IgG1/mannitol provided superior stability of the antibody and the powders could be produced with high yields. The lower the residual moisture, the better was the stabilizing capability. An amount of 20% mannitol provided the best stabilization. Storage stability of 60/40, 70/30, and 80/20 IgG1/mannitol formulations over one year was adequate at 2-8 degrees C and 25 degrees C. Closed storage (sealed in vials) at 40 degrees C/75% RH and open storage at 25 degrees C/60% RH revealed that the stability still required optimization. The lower the protein content, the better was the powder flowability. The aerodynamic properties of powders spray-dried with 10% solids content were inadequate, as the particle size ranged between 5.1 and 7.2 microm and the fine particle fraction accounted for only 4-11%. Reduction of the solids content to 2.5% did improve the aerodynamic properties as the mass mean aerodynamic diameter was reduced to 3.6 microm and the fine particle fraction was increased to about 14%. The reduction of the solids content did not influence the storage stability significantly. Also spray-drying at higher temperatures had no significant impact on the storage stability, despite a higher tendency to form amorphous systems. In order to improve the storage stability and to maintain the good flowability of 70/30 IgG1/mannitol powder or to keep the storage stability but to improve the flowability of the 80/20 IgG1/mannitol powder, mannitol was partially substituted by a second excipient such as trehalose, sucrose, glycine, lactose, lactosucrose, or dextran 1. Differences in the stabilizing capability were noticeable upon closed storage at 40 degrees C/75% RH and open powder storage. Protein stabilization was improved by the addition of glycine but trehalose and sucrose were most effective in preventing aggregation, which can be primarily attributed to the water replacement properties of the sugars. The addition of another excipient, isoleucine had positive effects on both flowability and protein stability.

  6. Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid.

    PubMed

    Mahbubul, I M; Elcioglu, Elif Begum; Saidur, R; Amalina, M A

    2017-07-01

    Nanofluids are promising in many fields, including engineering and medicine. Stability deterioration may be a critical constraint for potential applications of nanofluids. Proper ultrasonication can improve the stability, and possibility of the safe use of nanofluids in different applications. In this study, stability properties of TiO 2 -H 2 O nanofluid for varying ultrasonication durations were tested. The nanofluids were prepared through two-step method; and electron microscopies, with particle size distribution and zeta potential analyses were conducted for the evaluation of their stability. Results showed the positive impact of ultrasonication on nanofluid dispersion properties up to some extent. Ultrasonication longer than 150min resulted in re-agglomeration of nanoparticles. Therefore, ultrasonication for 150min was the optimum period yielding highest stability. A regression analysis was also done in order to relate the average cluster size and ultrasonication time to zeta potential. It can be concluded that performing analytical imaging and colloidal property evaluation during and after the sample preparation leads to reliable insights. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Experimental and Numerical Optimization of a High-Lift System to Improve Low-Speed Performance, Stability, and Control of an Arrow-Wing Supersonic Transport

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Glaab, Louis J.

    1999-01-01

    An investigation was performed to evaluate leading-and trailing-edge flap deflections for optimal aerodynamic performance of a High-Speed Civil Transport concept during takeoff and approach-to-landing conditions. The configuration used for this study was designed by the Douglas Aircraft Company during the 1970's. A 0.1-scale model of this configuration was tested in the Langley 30- by 60-Foot Tunnel with both the original leading-edge flap system and a new leading-edge flap system, which was designed with modem computational flow analysis and optimization tools. Leading-and trailing-edge flap deflections were generated for the original and modified leading-edge flap systems with the computational flow analysis and optimization tools. Although wind tunnel data indicated improvements in aerodynamic performance for the analytically derived flap deflections for both leading-edge flap systems, perturbations of the analytically derived leading-edge flap deflections yielded significant additional improvements in aerodynamic performance. In addition to the aerodynamic performance optimization testing, stability and control data were also obtained. An evaluation of the crosswind landing capability of the aircraft configuration revealed that insufficient lateral control existed as a result of high levels of lateral stability. Deflection of the leading-and trailing-edge flaps improved the crosswind landing capability of the vehicle considerably; however, additional improvements are required.

  8. Effect of formulation variables on the physical properties and stability of Dead Sea mud masks.

    PubMed

    Shahin, Sawsan; Hamed, Saja; Alkhatib, Hatim S

    2015-01-01

    The physical stability of Dead Sea mud mask formulations under different conditions and their rheological properties were evaluated as a function of the type and level of thickeners, level of the humectant, incorporation of ethanol, and mode of mud treatment. Formulations were evaluated in terms of visual appearance, pH, moisture content, spreadability, extrudability, separation, rate of drying at 32 degrees C, and rheological properties. Prepared mud formulations and over-the-shelf products showed viscoplastic shear thinning behavior; satisfactory rheological behavior was observed with formulations containing a total concentration of thickeners less than 10% (w/w). Casson and Herschel-Bulkley models were found the most suitable to describe the rheological data of the prepared formulations. Thickener incorporation decreased phase separation and improved formulation stability. Bentonite incorporation in the mud prevented color changes during stability studies while glycerin improved spreadability. Addition of 5% (w/w) ethanol improved mud extrudability, slightly increased percent separation, accelerated drying at 32 degrees C, and decreased viscosity and yield stress values. Different mud treatment techniques did not cause a clear behavioral change in the final mud preparation. B10G and K5B5G were labeled as "best formulas" based on having satisfactory physical and aesthetic criteria investigated in this study, while other formulations failed in one or more of the tests we have performed.

  9. Degradation Mechanisms in Blue Phosphorescent Organic Light-Emitting Devices by Exciton-Polaron Interactions: Loss in Quantum Yield versus Loss in Charge Balance.

    PubMed

    Zhang, Yingjie; Aziz, Hany

    2017-01-11

    We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.

  10. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.

    PubMed

    Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao

    2018-03-01

    This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.

    PubMed

    Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M

    2009-04-01

    The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.

  12. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers.

    PubMed

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; Mao, Xiaoyun; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a peat substitute.

  13. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions

    PubMed Central

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics. PMID:28115885

  14. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    PubMed

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples ( p <0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  15. Polymer-directed crystallization of atorvastatin.

    PubMed

    Choi, Hyemin; Lee, Hyeseung; Lee, Min Kyung; Lee, Jonghwi

    2012-08-01

    Living organisms secrete minerals composed of peptides and proteins, resulting in "mesocrystals" of three-dimensional-assembled composite structures. Recently, this biomimetic polymer-directed crystallization technique has been widely applied to inorganic materials, although it has seldom been used with drugs. In this study, the technique was applied to the drowning-out crystallization of atorvastatin using various polymers. Nucleation and growth at optimized conditions successfully produced composite crystals with significant polymer contents and unusual characteristics. Atorvastatin composite crystals containing polyethylene glycol, polyacrylic acid, polyethylene imine, and chitosan showed a markedly decreased melting point and heat of fusion, improved stability, and sustained-release patterns. The use of hydroxypropyl cellulose yielded a unique combination of enhanced in vitro release and improved drug stability under a forced degradation condition. The formation hypothesis of unique mesocrystal structures was strongly supported by an X-ray diffraction pattern and substantial melting point reduction. This polymer-directed crystallization technique offers a novel and effective way, different from the solid dispersion approach, to engineer the release, stability, and processability of drug crystals. Copyright © 2012 Wiley Periodicals, Inc.

  16. Protein Engineering by Random Mutagenesis and Structure-Guided Consensus of Geobacillus stearothermophilus Lipase T6 for Enhanced Stability in Methanol

    PubMed Central

    Dror, Adi; Shemesh, Einav; Dayan, Natali

    2014-01-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. PMID:24362426

  17. Whole cell biocatalysts: essential workers from Nature to the industry.

    PubMed

    de Carvalho, Carla C C R

    2017-03-01

    Microorganisms have been exposed to a myriad of substrates and environmental conditions throughout evolution resulting in countless metabolites and enzymatic activities. Although mankind have been using these properties for centuries, we have only recently learned to control their production, to develop new biocatalysts with high stability and productivity and to improve their yields under new operational conditions. However, microbial cells still provide the best known environment for enzymes, preventing conformational changes in the protein structure in non-conventional medium and under harsh reaction conditions, while being able to efficiently regenerate necessary cofactors and to carry out cascades of reactions. Besides, a still unknown microbe is probably already producing a compound that will cure cancer, Alzeihmer's disease or kill the most resistant pathogen. In this review, the latest developments in screening desirable activities and improving production yields are discussed. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2015-01-01

    This paper reviews test data for cermet fuel samples developed in the 1960's to better quantify Nuclear Thermal Propulsion (NTP) cermet engine performance, and to better understand contemporary fuel testing results. Over 200 cermet (W-UO2) samples were tested by thermally cycling to 2500 deg (2770 K) in hydrogen. The data indicates two issues at high temperatures: the vaporization rate of UO2 and the chemical stability of UO2. The data show that cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance, while other approaches yield smaller, incremental improvements. Data is very limited above 2770 K, and this complicates predictions of engine performance at high Isp. The paper considers how this material performance data translates into engine performance. In particular, the location of maximum temperature within the fuel element and the effect of heat deposition rate are examined.

  19. Using the properties of soil to speed up the start-up process, enhance process stability, and improve the methane content and yield of solid-state anaerobic digestion of alkaline-pretreated poplar processing residues.

    PubMed

    Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe

    2014-01-01

    Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutritional requirements. The results showed that the lignocellulosic structures of the poplar sample were effectively changed by NaOH pretreatment, as indicated by scanning electron microscopy and Fourier transform infrared spectra analysis. The start-up was markedly hastened, and the process stability was enhanced. After NaOH pretreatment, the maximum methane yield (96.1 L/kg volatile solids (VS)) was obtained under a poplar processing residues-to-soil sample (P-to-S) ratio of 2.5:1, which was 29.9% and 36.1% higher than that of PPRs (74.0 L/kg VS) and that of experiments without NaOH pretreatment (70.6 L/kg VS), respectively. During steady state, the increase in the methane content of the experiment with a P-to-S ratio of 2.5:1 was 4.4 to 50.9% higher than that of the PPRs. Degradation of total solids and volatile solids ranged from 19.3 to 33.0% and from 34.9 to 45.9%, respectively. The maximum reductions of cellulose and hemicellulose were 52.6% and 42.9%, respectively, which were in accordance with the maximal methane yield. T 80 for the maximum methane yield for the experiments with NaOH pretreatment was 11.1% shorter than that for the PPRs. Pretreatment with NaOH and addition of soil led to a significant improvement in the process performance and the methane yield of SS-AD of PPRs. The changes in lignocellulosic structures induced by NaOH pretreatment led to an increase in methane yield. For the purpose of practical applications, SS-AD with soil addition is a convenient, economical, and practical technique.

  20. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  1. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    PubMed

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  3. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  4. Effects of Hydrogen-Donating or Metal-Chelating Antioxidants on the Oxidative Stability of Organogels Made of Beeswax and Grapeseed Oil Exposed to Light Irradiation.

    PubMed

    Hong, Seungmi; Kim, Mi-Ja; Park, Sungkwon; Lee, Suyong; Lee, Jonggil; Lee, JaeHwan

    2018-04-01

    To enhance the oxidative stability of organogels made from grapeseed oil, the antioxidant effects of sesamol, α-tocopherol, β-carotene, ethylenediaminetetraacetic acid (EDTA), and citric acid were determined in beeswax-based organogels stored under light or in the dark conditions at 25 °C. Without the addition of antioxidants, the organogels rapidly oxidized under light irradiation but not during storage in the dark. Sesamol showed the highest antioxidant activity at concentrations of 10 to 40 ppm, whereas the other compounds exhibited no antioxidant activity at 10 ppm. α-Tocopherol and β-carotene improved the oxidative stability of organogels at concentrations above 40 and 100 ppm, respectively. The addition of sesamol yielded better oxidative stability than the addition of EDTA or a mixture of sesamol and citric acid. Sesamol can improve the oxidative stability of organogels, which could lead to economic benefits for the food industry. Recently, interest in organogels has increased due to their properties of maintaining a solid state at room temperature and composition of trans-free and highly unsaturated fatty acids. However, the addition of antioxidants is necessary due to the high degree of unsaturation in organogels. The results of this study showed that the addition of sesamol significantly enhanced the oxidative stability of organogels under light irradiation. Therefore, the use of sesamol-supplemented organogels could prolong the shelf-life of bakery or meat food products. © 2018 Institute of Food Technologists®.

  5. Biomechanical Comparison of an Intramedullary and Extramedullary Free-Tissue Graft Reconstruction of the Acromioclavicular Joint Complex

    PubMed Central

    Garg, Rishi; Javidan, Pooya; Lee, Thay Q.

    2013-01-01

    Background Several different surgical techniques have been described to address the coracoclavicular (CC) ligaments in acromioclavicular (AC) joint injuries. However, very few techniques focus on reconstructing the AC ligaments, despite its importance in providing stability. The purpose of our study was to compare the biomechanical properties of two free-tissue graft techniques that reconstruct both the AC and CC ligaments in cadaveric shoulders, one with an extramedullary AC reconstruction and the other with an intramedullary AC reconstruction. We hypothesized intramedullary AC reconstruction will provide greater anteroposterior translational stability and improved load to failure characteristics than an extramedullary technique. Methods Six matched cadaveric shoulders underwent translational testing at 10 N and 15 N in the anteroposterior and superoinferior directions, under AC joint compression loads of 10 N, 20 N, and 30 N. After the AC and CC ligaments were transected, one of the specimens was randomly assigned the intramedullary free-tissue graft reconstruction while its matched pair received the extramedullary graft reconstruction. Both reconstructed specimens then underwent repeat translational testing, followed by load to failure testing, via superior clavicle distraction, at a rate of 50 mm/min. Results Intramedullary reconstruction provided significantly greater translational stability in the anteroposterior direction than the extramedullary technique for four of six loading conditions (p < 0.05). There were no significant differences in translational stability in the superoinferior direction for any loading condition. The intramedullary reconstructed specimens demonstrated improved load to failure characteristics with the intramedullary reconstruction having a lower deformation at yield and a higher ultimate load than the extramedullary reconstruction (p < 0.05). Conclusions Intramedullary reconstruction of the AC joint provides greater stability in the anteroposterior direction and improved load to failure characteristics than an extramedullary technique. Reconstruction of the injured AC joint with an intramedullary free tissue graft may provide greater strength and stability than other currently used techniques, allowing patients to have improved clinical outcomes. PMID:24340150

  6. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  7. Identification of potentially high yielding irradiated cassava ‘Gajah’ genotype with different geographic coordinates

    NASA Astrophysics Data System (ADS)

    Subekti, I.; Khumaida, N.; Ardie, SW

    2017-01-01

    Cassava is one of the main and important carbohydrate producing crops in Indonesia. Thus cassava production and its tuber quality need to be improved. ‘Gajah’ genotype is a local genotypes cassava from East Kalimantan, has high potential yield (> 60 ton Ha-1). However, the harvest time of this genotype is quite long (>= 12 months). The objective of this research was to identify the high yielding cassava mutants from the gamma rays irradiated ‘Gajah’ genotype at M1V3 population and potential yield at different location. Several putative cassava mutants (12 mutants) were planted in Cikabayan Experimental Field, IPB from March 2015 to March 2016 and the yields compared with the same genotype grown at different location by seeing its coordinates to observe the potential yield. Our result showed that the fresh tuber weight per plant of some putative mutants could reach more than 8 kg (yield potential of 64 ton Ha-1). The harvested tubers also had sweet flavor, although the tubers of some putative mutants were bitter. Based on previous research study, the different geographic coordinate has resulted variability on fresh tuber yield. It seems that it needs to observe the stability of ‘Gajah’- irradiated mutants in several location in Java Island.

  8. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles.

    PubMed

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  9. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles

    PubMed Central

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M.

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding. PMID:26909096

  10. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation.

    PubMed

    Zhang, Chen; Yun, Sining; Li, Xue; Wang, Ziqi; Xu, Hongfei; Du, Tingting

    2018-05-11

    To improve the methane yield and digestate utilization of anaerobic digestion (AD), low-cost composited accelerants consisting of urea (0.2-0.5%), bentonite (0.5-0.8%), active carbon (0.6-0.9%), and plant ash (0.01-0.3%) were designed and tested in batch experiments. Total biogas yield (485.7-681.9 mL/g VS) and methane content (63.0-66.6%) were remarkably enhanced in AD systems by adding accelerants compared to those of control group (361.9 mL/g VS, 59.4%). Composited accelerant addition led to the highest methane yield (454.1 mL/g VS), more than double that of control group. The TS, VS, and CODt removal rates (29.7-55.3%, 50.9-63.0%, and 46.8-69.1%) for AD with accelerants were much higher than control group (26.2%, 37.1%, and 39.6%). The improved digestate stability and enhanced fertilizer nutrient content (4.95-5.66%) confirmed that the digestate of AD systems with composited accelerants could safely serve as a potential component of bioorganic fertilizer. These findings open innovative avenues in composited accelerant development and application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Influence of bidentate ligand donor types on the formation and stability in 2 + 1 fac-[MI(CO)3]+ (M = Re, 99mTc) complexes.

    PubMed

    Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D

    2017-01-24

    In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.

  12. Influence of Bidentate Ligand Donor Types on the Formation and Stability in 2+1 fac-[MI(CO)3]+ (M = Re, 99mTc) Complexes

    PubMed Central

    Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.

    2017-01-01

    In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466

  13. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  14. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline.

    PubMed

    Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-Um, Suriyan

    2017-01-01

    The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. 'Tainung 57' using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, 'Japanese Yellow', with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in 'Tainung 57' plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g -1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant -1 ) at the harvesting stage. A positive relationship between photon yield of PSII (Φ PSII ) and net photosynthetic rate was demonstrated ( r 2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield.

  15. Water-Deficit Tolerance in Sweet Potato [Ipomoea batatas (L.) Lam.] by Foliar Application of Paclobutrazol: Role of Soluble Sugar and Free Proline

    PubMed Central

    Yooyongwech, Suravoot; Samphumphuang, Thapanee; Tisarum, Rujira; Theerawitaya, Cattarin; Cha-um, Suriyan

    2017-01-01

    The objective of this study was to elevate water deficit tolerance by improving soluble sugar and free proline accumulation, photosynthetic pigment stabilization, photosynthetic abilities, growth performance and storage root yield in sweet potato cv. ‘Tainung 57’ using a foliar application of paclobutrazol (PBZ). The experiment followed a Completely Randomized Block Design with four concentrations of PBZ: 0 (control), 17, 34, and 51 μM before exposure to 47.5% (well irrigation), 32.3% (mild water deficit) or 17.5% (severe water deficit) soil water content. A sweet potato cultivar, ‘Japanese Yellow’, with water deficit tolerance attributes was the positive check in this study. Total soluble sugar content (sucrose, glucose, and fructose) increased by 3.96-folds in ‘Tainung 57’ plants treated with 34 μM PBZ grown under 32.3% soil water content (SWC) compared to the untreated plants, adjusting osmotic potential in the leaves and controlling stomatal closure (represented by stomatal conductance and transpiration rate). In addition, under the same treatment, free proline content (2.15 μmol g-1 FW) increased by 3.84-folds when exposed to 17.5% SWC. PBZ had an improved effect on leaf size, vine length, photosynthetic pigment stability, chlorophyll fluorescence, and net photosynthetic rate; hence, delaying wilting symptoms and maintaining storage root yield (26.93 g plant-1) at the harvesting stage. A positive relationship between photon yield of PSII (ΦPSII) and net photosynthetic rate was demonstrated (r2 = 0.73). The study concludes that soluble sugar and free proline enrichment in PBZ-pretreated plants may play a critical role as major osmoprotectant to control leaf osmotic potential and stomatal closure when plants were subjected to low soil water content, therefore, maintaining the physiological and morphological characters as well as storage root yield. PMID:28848596

  16. Adaptability and stability of soybean cultivars for grain yield and seed quality.

    PubMed

    Silva, K B; Bruzi, A T; Zambiazzi, E V; Soares, I O; Pereira, J L A R; Carvalho, M L M

    2017-05-10

    This study aimed at verifying the adaptability and stability of soybean cultivars, considering the grain yield and quality of seeds, adopting univariate and multivariate approaches. The experiments were conducted in two crops, three environments, in 2013/2014 and 2014/2015 crop seasons, in the county of Inconfidentes, Lavras, and Patos de Minas, in the Minas Gerais State, Brazil. We evaluated 17 commercial soybean cultivars. For adaptability and stability evaluations, the Graphic and GGE biplot methods were employed. Previously, a selection index was estimated based on the sum of the standardized variables (Z index). The data relative to grain yield, mass of one thousand grain, uniformity test (sieve retention), and germination test were standardized (Z ij ) per cultivar. With the sum of Z ij , we obtained the selection index for the four traits evaluated together. In the Graphic method evaluation, cultivars NA 7200 RR and CD 2737 RR presented the highest values for selection index Z. By the GGE biplot method, we verified that cultivar NA 7200 RR presented greater stability in both univariate evaluations, for grain yield, and for selection index Z.

  17. Optimization of vehicle-trailer connection systems

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2016-09-01

    The three main requirements of a vehicle-trailer connection system are: en route stability, over- or under-steering restraint, minimum off-tracking along curved path. Linking the two units by four-bar trapeziums, wider stability margins may be attained in comparison with the conventional pintle-hitch for both instability types, divergent or oscillating. The stability maps are traced applying the Hurwitz method or the direct analysis of the characteristic equation at the instability threshold. Several types of four-bar linkages may be quickly tested, with the drawbars converging towards the trailer or the towing unit. The latter configuration appears preferable in terms of self-stability and may yield high critical speeds by optimising the geometrical and physical properties. Nevertheless, the system stability may be improved in general by additional vibration dampers in parallel with the connection linkage. Moreover, the four-bar connection may produce significant corrections of the under-steering or over-steering behaviour of the vehicle-train after a steering command from the driver. The off- tracking along the curved paths may be also optimized or kept inside prefixed margins of acceptableness. Activating electronic stability systems if necessary, fair results are obtainable for both the steering conduct and the off-tracking.

  18. Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization

    NASA Astrophysics Data System (ADS)

    Hinohara, Takuya; Hamada, Yuki I.; Nakamura, Ippei; Matsushita, Michio; Fujiyoshi, Satoru

    2013-06-01

    A great advantage of single-molecule fluorescence imaging is the localization precision of molecule beyond the diffraction limit. Although longer signal-acquisition yields higher precision, acquisition time at room temperature is normally limited by photobleaching, thermal diffusion, and so on. At low temperature of a few kelvins, much longer acquisition is possible and will improve precision if the sample and the objective are held stably enough. The present work examined holding stability of the sample and objective at 1.5 K in superfluid helium in the helium bath. The stability was evaluated by localization precision of a point scattering source of a polymer bead. Scattered light was collected by the objective, and imaged by a home-built rigid imaging unit. The standard deviation of the centroid position determined for 800 images taken continuously in 17 min was 0.5 nm in the horizontal and 0.9 nm in the vertical directions.

  19. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability.

    PubMed

    Goldenzweig, Adi; Goldsmith, Moshe; Hill, Shannon E; Gertman, Or; Laurino, Paola; Ashani, Yacov; Dym, Orly; Unger, Tamar; Albeck, Shira; Prilusky, Jaime; Lieberman, Raquel L; Aharoni, Amir; Silman, Israel; Sussman, Joel L; Tawfik, Dan S; Fleishman, Sarel J

    2016-07-21

    Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Dopamine D(3) receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans.

    PubMed

    Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H

    2001-12-20

    5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.

  1. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3

    NASA Astrophysics Data System (ADS)

    Tordjman, Moshe; Weinfeld, Kamira; Kalish, Rafi

    2017-09-01

    An advanced charge-transfer yield is demonstrated by employing single monolayers of transition-metal oxides—tungsten trioxide (WO3) and rhenium trioxide (ReO3)—deposited on the hydrogenated diamond surface, resulting in improved p-type sheet conductivity and thermal stability. Surface conductivities, as determined by Hall effect measurements as a function of temperature for WO3, yield a record sheet hole carrier concentration value of up to 2.52 × 1014 cm-2 at room temperature for only a few monolayers of coverage. Transfer doping with ReO3 exhibits a consistent narrow sheet carrier concentration value of around 3 × 1013 cm-2, exhibiting a thermal stability of up to 450 °C. This enhanced conductivity and temperature robustness exceed those reported for previously exposed surface electron acceptor materials used so far on a diamond surface. X-ray photoelectron spectroscopy measurements of the C1s core level shift as a function of WO3 and ReO3 layer thicknesses are used to determine the respective increase in surface band bending of the accumulation layers, leading to a different sub-surface two-dimensional hole gas formation efficiency in both cases. This substantial difference in charge-exchange efficiency is unexpected since both surface acceptors have very close work functions. Consequently, these results lead us to consider additional factors influencing the transfer doping mechanism. Transfer doping with WO3 reveals the highest yet reported transfer doping efficiency per minimal surface acceptor coverage. This improved surface conductivity performance and thermal stability will promote the realization of 2D diamond-based electronic devices facing process fabrication challenges.

  2. [Stability of whole cell biocatalyst for biodiesel production from renewable oils].

    PubMed

    Sun, Ting; Du, Wei; Liu, Dehua; Li, Wei; Zeng, Jing; Dai, Lingmei

    2009-09-01

    Lipase-mediated biodiesel production becomes increasingly important because of mild reaction conditions, pollution free during the process and easy product separation. Compared with traditional immobilized lipase, whole cell biocatalyst is promising for biodiesel production because it is easy to prepare and has higher enzyme activity recovery. Rhizopus oryzae IFO4697 can be used as the catalyst for biodiesel production. To further study the stability of the whole cell biocatalyst is extremely important for its further application on large scale. This paper focuses on the stability study of Rhizopus oryzae IFO4697 when used for the methanolysis of renewable oils for biodiesel production. The results showed that water content was important for achieving high catalytic activity and good stability of the biocatalyst. The optimum water content was found to be 5%-15%. Both particle size and desiccation methods showed no obvious effect on the stability of the biocatalyst. With GA cross-linking pretreatment, the stability of the biocatalyst could be improved significantly. When Rhizopus oryzae IFO4697 repeatedly used for next batch reaction, direct vacuum filtration was found to be a good way for the maintenance of good stability of the biocatalyst. Under the optimum reaction conditions, the methyl ester yield could keep over 80% during 20 repeated reaction batches.

  3. Prestress Strengthens the Shell of Norwalk Virus Nanoparticles

    PubMed Central

    Baclayon, Marian; Shoemaker, Glen K.; Uetrecht, Charlotte; Crawford, Sue E.; Estes, Mary K.; Prasad, B. V. Venkataram; Heck, Albert J. R.; Wuite, Gijs J. L.; Roos, Wouter H.

    2014-01-01

    We investigated the influence of the protruding domain of Norwalk virus-like particles (NVLP) on its overall structural and mechanical stability. Deletion of the protruding domain yields smooth mutant particles and our AFM nanoindentation measurements show a surprisingly altered indentation response of these particles. Notably, the brittle behavior of the NVLP as compared to the plastic behavior of the mutant reveals that the protruding domain drastically changes the capsid’s material properties. We conclude that the protruding domain introduces prestress, thereby increasing the stiffness of the NVLP and effectively stabilizing the viral nanoparticles. Our results exemplify the variety of methods that nature has explored to improve the mechanical properties of viral capsids, which in turn provides new insights for developing rationally designed, self-assembled nanodevices. PMID:21967663

  4. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  5. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  6. The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations

    NASA Astrophysics Data System (ADS)

    Ishida, Keisuke; Ohta, Takeshi; Miyamoto, Hirotaka; Kumazaki, Takahito; Tsushima, Hiroaki; Kurosu, Akihiko; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-03-01

    Multiple patterning ArF immersion lithography has been expected as the promising technology to satisfy tighter leading edge device requirements. One of the most important features of the next generation lasers will be the ability to support green operations while further improving cost of ownership and performance. Especially, the dependence on rare gases, such as Neon and Helium, is becoming a critical issue for high volume manufacturing process. The new ArF excimer laser, GT64A has been developed to cope with the reduction of operational costs, the prevention against rare resource shortage and the improvement of device yield in multiple-patterning lithography. GT64A has advantages in efficiency and stability based on the field-proven injection-lock twin-chamber platform (GigaTwin platform). By the combination of GigaTwin platform and the advanced gas control algorithm, the consumption of rare gases such as Neon is reduced to a half. And newly designed Line Narrowing Module can realize completely Helium free operation. For the device yield improvement, spectral bandwidth stability is important to increase image contrast and contribute to the further reduction of CD variation. The new spectral bandwidth control algorithm and high response actuator has been developed to compensate the offset due to thermal change during the interval such as the period of wafer exchange operation. And REDeeM Cloud™, new monitoring system for managing light source performance and operations, is on-board and provides detailed light source information such as wavelength, energy, E95, etc.

  7. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    PubMed

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  8. Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?

    NASA Astrophysics Data System (ADS)

    Reilly, Anthony; Tkatchenko, Alexandre

    2014-03-01

    Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.

  9. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  10. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  11. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses

    PubMed Central

    Shahriari, Zolfaghar; Dadkhodaie, Ali

    2018-01-01

    Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014–2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars. PMID:29715274

  12. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses.

    PubMed

    Shahriari, Zolfaghar; Heidari, Bahram; Dadkhodaie, Ali

    2018-01-01

    Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014-2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars.

  13. A general synthesis of C8-arylpurine phosphoramidites.

    PubMed

    Vongsutilers, Vorasit; Daft, Jonathan R; Shaughnessy, Kevin H; Gannett, Peter M

    2009-09-02

    A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2'-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.

  14. Yield Potential of Sugar Beet – Have We Hit the Ceiling?

    PubMed Central

    Hoffmann, Christa M.; Kenter, Christine

    2018-01-01

    The yield of sugar beet has continuously increased in the past decades. The question arises, whether this progress will continue in the future. A key factor for increasing yield potential of the crop is breeding progress. It was related to a shift in assimilate partitioning in the plant toward more storage carbohydrates (sucrose), whereas structural carbohydrates (leaves, cell wall compounds) unintendedly declined. The yield potential of sugar beet was estimated at 24 t sugar ha-1. For maximum yield, sufficient growth factors have to be available and the crop has to be able to fully utilize them. In sugar beet, limitations result from the lacking coincidence of maximum irradiation rates and full canopy cover, sink strength for carbon assimilation and high water demand, which cannot be met by rainfall alone. After harvest, sugar losses during storage occur. The paper discusses options for a further increase in yield potential, like autumn sowing of sugar beet, increasing sink strength and related constraints. It is prospected that yield increase by further widening the ratio of storage and structural carbohydrates will come to its natural limit as a certain cell wall stability is necessary. New challenges caused by climate change and by prolonged processing campaigns will occur. Thus breeding for improved pathogen resistance and storage properties will be even more important for successful sugar beet production than a further increase in yield potential itself. PMID:29599787

  15. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers

    PubMed Central

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a peat substitute. PMID:28832651

  16. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models.

    PubMed

    Torres, F E; Teodoro, P E; Rodrigues, E V; Santos, A; Corrêa, A M; Ceccon, G

    2016-04-29

    The aim of this study was to select erect cowpea (Vigna unguiculata L.) genotypes simultaneously for high adaptability, stability, and yield grain in Mato Grosso do Sul, Brazil using mixed models. We conducted six trials of different cowpea genotypes in 2005 and 2006 in Aquidauana, Chapadão do Sul, Dourados, and Primavera do Leste. The experimental design was randomized complete blocks with four replications and 20 genotypes. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction, and selection was based on the harmonic mean of the relative performance of genetic values method using three strategies: selection based on the predicted breeding value, having considered the performance mean of the genotypes in all environments (no interaction effect); the performance in each environment (with an interaction effect); and the simultaneous selection for grain yield, stability, and adaptability. The MNC99542F-5 and MNC99-537F-4 genotypes could be grown in various environments, as they exhibited high grain yield, adaptability, and stability. The average heritability of the genotypes was moderate to high and the selective accuracy was 82%, indicating an excellent potential for selection.

  17. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    PubMed

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.

  18. Report on Progress Toward Security and Stability in Afghanistan and United States Plan for Sustaining the Afghanistan National Security Forces

    DTIC Science & Technology

    2011-04-01

    Ug99 stem rust resistant wheat breeder seed to MAIL, which will be released to farmers for commercial planting in fall 2011. Poppy yields decreased...level continues to improve the Afghan Government’s overall agricultural sector. Wheat is a key staple in Afghanistan, accounting for over one-half of...tight global supply could affect the country’s food security. Afghanistan’s wheat production routinely does not meet demand and is subject to sizable

  19. Development of mono- and di-AcO substituted BODIPYs on the boron center.

    PubMed

    Jiang, Xin-Dong; Zhang, Jian; Furuyama, Taniyuki; Zhao, Weili

    2012-01-06

    Mono- and di-AcO substituted BODIPYs (1 and 2) were synthesized from TM-BDP. The structures of 1 and 2 were supported by single crystal X-ray analysis. Both 1 and 2 possess a large absorption coefficient, high fluorescence quantum yield, and high light stability. Compound 2 has much improved water solubility which is highly desirable for biological applications. Theoretical calculation supports our observations in X-ray analysis, absorption, and cyclic voltammetry. © 2011 American Chemical Society

  20. Non-linear modelling and control of semi-active suspensions with variable damping

    NASA Astrophysics Data System (ADS)

    Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin

    2013-10-01

    Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.

  1. Improved biogas production from whole stillage by co-digestion with cattle manure.

    PubMed

    Westerholm, Maria; Hansson, Mikael; Schnürer, Anna

    2012-06-01

    Whole stillage, as sole substrate or co-digested with cattle manure, was evaluated as substrate for biogas production in five mesophilic laboratory-scale biogas reactors, operating semi-continuously for 640 days. The process performance was monitored by chemical parameters and by quantitative analysis of the methanogenic and acetogenic population. With whole stillage as sole substrate the process showed clear signs of instability after 120 days of operation. However, co-digestion with manure clearly improved biogas productivity and process stability and indicated increased methane yield compared with theoretical values. The methane yield at an organic loading rate (OLR) at 2.8 g VS/(L×day) and a hydraulic retention time (HRT) of 45 days with a substrate mixture 85% whole stillage and 15% manure (based on volatile solids [VS]) was 0.31 N L CH(4)/gVS. Surprisingly, the abundance of the methanogenic and acetogenic populations remained relatively stable throughout the whole operation and was not influenced by process performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Biochar in vineyards: impact on soil quality and crop yield four years after the application

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Verheijen, Frank; Puga, João; Keizer, Jacob; Ferreira, António

    2017-04-01

    Biochar is a recalcitrant organic carbon compound, created by biomass heating at high temperatures (300-1000°C) under low oxygen concentrations. Biochar application to agricultural soils has received increasing attention over the last years, due to its climate change mitigation and adaptation potential and reported improved soil properties and functions relevant to agronomic and environmental performance. Reported impacts are linked with increased cation exchange capacity, enhanced nutrient and water retention, and positive influences on soil microbial communities, which influence crop yields. Nevertheless, few studies have focused on mid-to-long term impacts of biochar application. This study investigated the impact of biochar on soil quality and crop yield four years after biochar application in a vineyard in North-Central Portugal. The site has a Mediterranean climate with a strong Atlantic Ocean influence, with mean annual rainfall and temperature of 1100 mm and 15°C, respectively. The soil is a relatively deep ( 80cm) sandy loam Cambisol, with gentle slopes (3°). The experimental design included three treatments: (i) control, without biochar; (ii) high biochar application rate (40 ton/ha); and (iii) biochar compost (40 ton/ha, 10% biochar). Three plots per treatment (2m×3m) were installed in March 2012, using a mini-rotavator (0-15cm depth). In May 2016, soil quality was also assessed through soil surveys and sampling. Penetration resistance was performed at the soil surface with a pocket penetrometer, and soil surface sampling rings were used for bulk density analyses (100 cm3). Bulked soil samples (0-30 cm) were collected in each plot for aggregate stability, microbial biomass (by chloroform fumigation extraction) and net mineralization rate (through photometric determination of non-incubated and incubated samples). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number, type and biomass of earthworms was recorded in each plot, at the soil surface (through excavation, 30cm×30cm×30cm) and sub-surface (using a mustard-tap water solution in the excavated hole). Crop yield was evaluated during harvesting (August 2016), through the number and weight of grape clusters. The potential impact of biochar on grape quality was investigated by total acidity, pH, potential alcoholic strength and total sugar in must analyses. Four years after the application, plots with high biochar showed lowest soil resistance, slightly lower bulk density, higher crop yield and must quality, than control plots. However, the soil of biochar plots also displayed slightly lower aggregate stability, microbial biomass, number and biodiversity of earthworms, although higher net-N mineralization, decomposition rate and litter stabilization. Plots with biochar and compost showed lowest earthworms, decomposition rate and litter stabilization, but highest crop yield that the other two treatments. Nevertheless, minor differences between three treatment plots suggest that potential impacts of biochar on soil quality and crop yield may persist during a relatively short period.

  3. Impacts of ridge-furrow rainfall concentration systems and mulches on corn growth and yield in the semiarid region of China.

    PubMed

    Ren, Xiao-Long; Zhang, Peng; Chen, Xiao-Li; Jia, Zhi-Kuan

    2016-08-01

    Plastic-covered ridge-furrow farming systems for rainfall concentration (RC) improve the water availability for crops and increase the water use efficiency (WUE), thereby stabilizing high yields. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semiarid agricultural areas. We conducted a 4-year field study to determine the RC effects on corn production of mulching in furrows with 8% biodegradable films (RCSB ), liquid film (RCSL ), bare furrow (RCSN ) and conventional flat (CF) farming. We found that RC significantly (P > 0.05) increased the soil moisture in the top 0-100 cm layer and the topsoil temperature (0-20 cm) during the corn-growing period. Mulching with different materials in planting furrows further improved the rain-harvesting, moisture-retaining and yield-increasing effects of RC planting. Compared with CF, the 4-year average total dry matter amount per plant for RCSB , RCSL and RCSN treatments increased by 42.1%, 30.8% and 17.2%, respectively. The grain yield increased by 59.7%, 53.4% and 32.6%, respectively. Plastic-covered ridge and furrow mulched with biodegradable film and liquid film is recommended for use in the semiarid Loess Plateau of China to alleviate the effects of drought on crop production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  5. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    Useful and informative results were obtained on virtually all materials investigated. For example, the stability of ITO-based arc-proof transparent coatings was greatly improved by substitution of silicon oxide for magnesium fluoride as a dopant. Research on 'air-doped' ITO films has yielded new insight into their conduction mechanism which will help in further development of these coatings. Some air-doped films were found to be extremely pressure sensitive. This work may lead to improved, low-cost gas sensors and vacuum gauges. Work on another promising transparent arc-proof coating (titanium oxide) was initiated in collaboration with industry. Graphite oxide-like materials were synthesized and tested for possible use in high energy-density batteries and other applications. We also started a high-priority project to find the cause of unexpected environmental damage to the exterior of the Hubble Space Telescope (HST) discovered on a recent Shuttle mission. Materials were characterized before and after exposure to soft x-rays and other threats in ground-based simulators.

  6. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    NASA Astrophysics Data System (ADS)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  7. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  8. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  9. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery

    PubMed Central

    Tang, Lidan; Sun, Runing; Shi, Di; Webster, Thomas J; Tu, Jiasheng; Sun, Chunmeng

    2017-01-01

    To achieve enhanced physical stability of poly(ethylene glycol)-poly(d,l-lactide) polymeric micelles (PEG-PDLLA PMs), a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG) and mPEG-PDLLA-poly(l-lysine) (mPEG-PDLLA-PLL) copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1H-nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and their molecular weights were calculated by 1H-NMR and gel permeation chromatography (GPC). Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT). Transmission electron microscopy (TEM) images showed that DPT polyion complex micelles (DPT-PCMs) were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers. PMID:29133981

  10. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery.

    PubMed

    Wang, Yutong; Huang, Liping; Shen, Yan; Tang, Lidan; Sun, Runing; Shi, Di; Webster, Thomas J; Tu, Jiasheng; Sun, Chunmeng

    2017-01-01

    To achieve enhanced physical stability of poly(ethylene glycol)-poly(d,l-lactide) polymeric micelles (PEG-PDLLA PMs), a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG) and mPEG-PDLLA-poly(l-lysine) (mPEG-PDLLA-PLL) copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1 H-nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and their molecular weights were calculated by 1 H-NMR and gel permeation chromatography (GPC). Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT). Transmission electron microscopy (TEM) images showed that DPT polyion complex micelles (DPT-PCMs) were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers.

  11. 2D Perovskites with Short Interlayer Distance for High-Performance Solar Cell Application.

    PubMed

    Ma, Chunqing; Shen, Dong; Ng, Tsz-Wai; Lo, Ming-Fai; Lee, Chun-Sing

    2018-05-01

    2D perovskites have emerged as one of the most promising photovoltaic materials owing to their excellent stability compared with their 3D counterparts. However, in typical 2D perovskites, the highly conductive inorganic layers are isolated by large organic cations leading to quantum confinement and thus inferior electrical conductivity across layers. To address this issue, the large organic cations are replaced with small propane-1,3-diammonium (PDA) cations to reduce distance between the inorganic perovskite layers. As shown by optical characterizations, quantum confinement is no longer dominating in the PDA-based 2D perovskites. This leads to considerable enhancement of charge transport as confirmed with electrochemical impedance spectroscopy, time-resolved photoluminescence, and mobility measurements. The improved electric properties of the interlayer-engineered 2D perovskites yield a power conversion efficiency of 13.0%. Furthermore, environmental stabilities of the PDA-based 2D perovskites are improved. PDA-based 2D perovskite solar cells (PSCs) with encapsulation can retain over 90% of their efficiency upon storage for over 1000 h, and PSCs without encapsulation can maintain their initial efficiency at 70 °C for over 100 h, which exhibit promising stabilities. These results reveal excellent optoelectronic properties and intrinsic stabilities of the layered perovskites with reduced interlayer distance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan

    Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.

  13. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production.

    PubMed

    Brown, Dan; Shi, Jian; Li, Yebo

    2012-11-01

    Lignocellulosic biomass feedstocks (switchgrass, corn stover, wheat straw, yard waste, leaves, waste paper, maple, and pine) were evaluated for methane production under liquid anaerobic digestion (L-AD) and solid-state anaerobic digestion (SS-AD). No significant difference in methane yield between L-AD and SS-AD, except for waste paper and pine, were found. However, the volumetric productivity was 2- to 7-fold greater in the SS-AD system compared with the L-AD system, except for paper. Methane yields from corn stover, wheat straw, and switchgrass were 2-5 times higher than those from yard waste, maple, and pine biomass. Waste paper had a methane yield of only 15 L/kg VS caused by souring during SS-AD due to organic overloading. Pine also had very low biogas yield of 17 L/kg VS, indicating the need for pretreatment prior to SS-AD. The findings of this study can guide future studies to improve the efficiency and stability of SS-AD of lignocellulosic biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    NASA Technical Reports Server (NTRS)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.

  15. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    NASA Astrophysics Data System (ADS)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  16. Purification and characterization of sheep brain cold-stable microtubules.

    PubMed Central

    Pirollet, F; Job, D; Fischer, E H; Margolis, R L

    1983-01-01

    The isolation of cold-stable microtubules in high yields, described previously only from rodents, was extended to the brain of higher animals. Under optimal conditions, yields of 30 mg of cold-stable microtubles per 100 g of sheep brain could be obtained routinely. Material purified by two polymerization cycles displayed the same stability to cold temperature or to millimolar concentrations of calcium and the same lability to calmodulin and to ATP as did the purified material obtained from the rat [Job, D., Rauch, C.T., Fischer, E.H. & Margolis, R.L. (1982) Biochemistry 21, 509]. Furthermore, DE-52 chromatography of this material yielded a fraction that restored cold stability when added to cold-labile microtubules. Known to bind to calmodulin and to enhance microtubule assembly, tau proteins had no cold-stabilizing activity. Protein profiles of the cold-stabilizing fraction from sheep and rat brain were similar to one another but showed no protein bands corresponding to the tau proteins. Images PMID:6572919

  17. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment.

    PubMed

    Petridis, Antonios; van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan; Graham, Julie; Hancock, Robert D

    2018-05-25

    Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments.

  18. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment

    PubMed Central

    van der Kaay, Jeroen; Chrysanthou, Elina; McCallum, Susan

    2018-01-01

    Abstract Published evidence indicates that nearly 60% of blueberry-producing countries experience yield instability. Yield is a complex trait determined by genetic and environmental factors. Here, using physiological and biochemical approaches, we tested the hypothesis that yield instability results from year-to-year environmental variation that limits carbon assimilation, storage and partitioning. The data indicate that fruit development depends primarily on the daily production of non-structural carbohydrates by leaves, and there is no accumulation of a starch buffer to allow continuous ripening under conditions limiting for photosynthesis. Photosynthesis was saturated at moderate light irradiance and this was mainly due to stomatal and biochemical limitations. In a dynamic light environment, photosynthesis was further limited by slow stomatal response to increasing light. Finally, labelling with 13CO2 at specific stages of fruit development revealed a relatively even distribution of newly assimilated carbon between stems, roots and fruits, suggesting that the fruit is not a strong sink. We conclude that a significant component of yield variability results from limitations in photosynthetic efficiency that are compounded by an inability to accumulate starch reserves in blueberry storage tissues in a typical northern European environment. This work informs techniques for improving agronomic management and indicates key traits required for yield stability in such environments. PMID:29590429

  19. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.

    PubMed

    Pelegri-O'Day, Emma M; Maynard, Heather D

    2016-09-20

    Protein-polymer conjugates are unique constructs that combine the chemical properties of a synthetic polymer chain with the biological properties of a biomacromolecule. This often leads to improved stabilities, solubilities, and in vivo half-lives of the resulting conjugates, and expands the range of applications for the proteins. However, early chemical methods for protein-polymer conjugation often required multiple polymer modifications, which were tedious and low yielding. To solve these issues, work in our laboratory has focused on the development of controlled radical polymerization (CRP) techniques to improve synthesis of protein-polymer conjugates. Initial efforts focused on the one-step syntheses of protein-reactive polymers through the use of functionalized initiators and chain transfer agents. A variety of functional groups such as maleimide and pyridyl disulfide could be installed with high end-group retention, which could then react with protein functional groups through mild and biocompatible chemistries. While this grafting to method represented a significant advance in conjugation technique, purification and steric hindrance between large biomacromolecules and polymer chains often led to low conjugation yields. Therefore, a grafting from approach was developed, wherein a polymer chain is grown from an initiating site on a functionalized protein. These conjugates have demonstrated improved homogeneity, characterization, and easier purification, while maintaining protein activity. Much of this early work utilizing CRP techniques focused on polymers made up of biocompatible but nonfunctional monomer units, often containing oligoethylene glycol meth(acrylate) or N-isopropylacrylamide. These branched polymers have significant advantages compared to the historically used linear poly(ethylene glycols) including decreased viscosities and thermally responsive behavior, respectively. Recently, we were motivated to use CRP techniques to develop polymers with rationally designed and functional biological properties for conjugate preparation. Specifically, two families of saccharide-inspired polymers were developed for stabilization and activation of therapeutic biomolecules. A series of polymers with trehalose side-chains and vinyl backbones were prepared and used to stabilize proteins against heat and lyophilization stress as both conjugates and additives. These materials, which combine properties of osmolytes with nonionic surfactants, have significant potential for in vivo therapeutic use. Additionally, polymers that mimic the structure of the naturally occurring polysaccharide heparin were prepared. These polymers contained negatively charged sulfonate groups and imparted stabilization to a heparin-binding growth factor after conjugation. A screen of other sulfonated polymers led to the development of a polymer with improved heparin mimesis, enhancing both stability and activity of the protein to which it was attached. Chemical improvements over the past decade have enabled the preparation of a diverse set of protein-polymer conjugates by controlled polymerization techniques. Now, the field should thoroughly explore and expand both the range of polymer structures and also the applications available to protein-polymer conjugates. As we move beyond medicine toward broader applications, increased collaboration and interdisciplinary work will result in the further development of this exciting field.

  20. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress

    PubMed Central

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785

  1. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.

    PubMed

    Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila

    2017-01-01

    Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.

  2. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  3. An Engineered Community Approach for Industrial Cultivation of Microalgae

    PubMed Central

    Kazamia, Elena; Riseley, Anthony S.; Howe, Christopher J.; Smith, Alison G.

    2014-01-01

    Although no species lives in isolation in nature, efforts to grow organisms for use in biotechnology have generally focused on a single-species approach, particularly where a product is required at high purity. In such scenarios, preventing the establishment of contaminants requires considerable effort that is economically justified. However, for some applications in biotechnology where the focus is on lower-margin biofuel production, axenic culture is not necessary, provided yields of the desired strain are unaffected by contaminants. In this article, we review what is known about interspecific interactions of natural algal communities, the dynamics of which are likely to parallel contamination in industrial systems. Furthermore, we discuss the opportunities to improve both yields and the stability of cultures by growing algae in multi-species consortia. PMID:25729339

  4. Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors

    DOE PAGES

    Lustig, William P.; Wang, Fangming; Teat, Simon J.; ...

    2016-05-31

    Here, energy-efficient solid-state-lighting (SSL) technologies are rapidly developing, but the lack of stable, high-performance rare-earth free phosphors may impede the growth of the SSL market. One possible alternative is organic phosphor materials, but these can suffer from lower quantum yields and thermal instability compared to rare-earth phosphors. However, if luminescent organic chromophores can be built into a rigid metal-organic framework, their quantum yields and thermal stability can be greatly improved. This Forum Article discusses the design of a group of such chromophore-based luminescent metal-organic frameworks with exceptionally high performance and rational control of the important parameters that influence their emissionmore » properties, including electronic structures of chromophore, coligands, metal ions, and guest molecule s.« less

  5. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes.

    PubMed

    Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M

    2018-01-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

  6. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  7. Industrial scale garage-type dry fermentation of municipal solid waste to biogas.

    PubMed

    Qian, M Y; Li, R H; Li, J; Wedwitschka, H; Nelles, M; Stinner, W; Zhou, H J

    2016-10-01

    The objectives of this study was to through monitoring the 1st industrial scale garage-type dry fermentation (GTDF) MSW biogas plant in Bin County, Harbin City, Heilongjiang Province, China, to investigate its anaerobic digestion (AD) performance and the stability of process. After a monitoring period of 180days, the results showed that the volumetric biogas production of the digesters and percolate tank was 0.72 and 2.22m(3) (m(3)d)(-1), respectively, and the specific biogas yield of the feedstock was about 270m(3)CH4tVS(-1), which indicated that the GTDF is appropriate for the Chinese MSW. This paper also raised some problems aimed at improving the process stability and AD efficiency. Copyright © 2016. Published by Elsevier Ltd.

  8. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty.

    PubMed

    Raineri, Jesica; Ribichich, Karina F; Chan, Raquel L

    2015-12-01

    Arabidopsis transgenic plants expressing the sunflower transcription factor HaWRKY76 exhibit increased yield and tolerance to drought and flood stresses. The genetic construct containing HaWRKY76 is proposed as a potential biotechnological tool to improve crops. Water deficit and water excess are abiotic stress factors that seriously affect crops worldwide. To increase the tolerance to such stresses without causing yield penalty constitutes a major goal for biotechnologists. In this survey, we report that HaWRKY76, a divergent sunflower WRKY transcription factor, is able to confer both dehydration and submergence tolerance to Arabidopsis transgenic plants without yield penalty. The expression pattern of HaWRKY76 was analyzed in plants grown in standard conditions and under different watering regimes indicating a regulation by water availability. The corresponding cDNA was isolated and cloned under the control of a constitutive promoter and Arabidopsis plants were transformed with this construct. These transgenic plants presented higher biomass, seed production and sucrose content than controls in standard growth conditions. Moreover, they exhibited tolerance to mild drought or flood (complete submergence/waterlogging) stresses as well as the same or increased yield, depending on the stress severity and plant developmental stage, compared with controls. Drought tolerance occurred via an ABA-independent mechanism and induction of stomatal closure. Submergence tolerance can be explained by the carbohydrate (sucrose and starch) preservation achieved through the repression of fermentation pathways. Higher cell membrane stability and chlorenchyma maintenance could be the nexus between tolerance responses in front of both stresses. Altogether, the obtained results indicated that HaWRKY76 can be a potential biotechnological tool to improve crops yield as well as drought and flood tolerances.

  9. Suspended-sediment yields and stream-channel processes on Judy's Branch watershed in the St. Louis Metro East region in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Johnson, Gary P.; Roseboom, Donald P.; Sierra, Carlos R.

    2006-01-01

    Judy's Branch watershed, a small basin (8.64 square miles) in the St. Louis Metro East region in Illinois, was selected as a pilot site to determine suspended-sediment yields and stream-channel processes in the bluffs and American Bottoms (expansive low-lying valley floor in the region). Suspended-sediment and stream-chan-nel data collected and analyzed for Judy's Branch watershed are presented in this report to establish a baseline of data for water-resource managers to evaluate future stream rehabilitation and manage-ment alternatives. The sediment yield analysis determines the amount of sediment being delivered from the watershed and two subwatersheds: an urban tributary and an undeveloped headwater (pri-marily agricultural). The analysis of the subwater-sheds is used to compare the effects of urbanization on sediment yield to the river. The stream-channel contribution to sediment yield was determined by evaluation of the stream-channel processes operat-ing on the streambed and banks of Judy's Branch watershed. Bank stability was related to hydrologic events, bank stratigraphy, and channel geometry through model development and simulation. The average suspended-sediment yield from two upland subwatersheds (drainage areas of 0.23 and 0.40 sq.mi. was 1,163 tons per square mile per year (tons/sq.mi.-year) between July 2000 and June 2004. The suspended-sediment yield at the Route 157 station was 2,523 tons/sq.mi.-year, near the outlet of Judy's Branch watershed (drainage area = 8.33 sq.mi.). This is approximately 1,360 tons/sq.mi.-year greater than the average at the upland stations for the same time period. This result is unexpected in that, generally, the suspended-sediment yield decreases as the watershed area increases because of sediment stored in the channel and flood plain. The difference indicates a possible increase in yield from a source, such as bank retreat, and supports the concept that land-use changes increase stream-flows that may in turn result in higher rates of bank retreat. Utilizing both bank-rod data and resurveyed cross-section data, it was determined that approxi-mately half of the suspended- sediment yield at Route 157 during July 2000-June 2004 came from bank retreat. Given that bank retreat can be a substantial portion of the sediment yield, understanding bank stability processes is important. Bank stability can be assessed mathematically by computing the factor of safety, which is defined by the ratio of the shear strength (resisting force) along the failure surface and the shear stress (driving gravitational force). Once the factor of safety falls below one, the bank theoretically becomes unstable. Bank-stability conditions were related to hydrologic events, bank type, and channel geometry through model develop-ment and simulation. The most common type of bank in the watershed consists of cohesive alluvial soil deposits overlying a stiff glacial till. A stabil-ity chart for different bank types was developed using a bank-stability analysis. Banks steeper than 70 degrees and higher than from 10 to 11.5 feet (depending on bank type) become at risk for mass failure in the watershed under conditions that pro-mote saturation of the bank and a sudden drop in the river level.

  10. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability

    PubMed Central

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Kan, Yue

    2014-01-01

    There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4–0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity. PMID:25531111

  11. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  12. Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Ereifej, Khalil; Gammoh, Sana; Kubow, Stan; Tawalbeh, Deia

    2017-05-01

    This investigation was aimed to study the molecular, physico-chemical, and biofunctional health properties of mayonnaise prepared using proteins isolated from broad bean, lupin and chickpea flour. Proteins were isolated from chickpea (CPPI), broad bean (BBPI) and lupin (LPPI) flour and assessed for molecular, physico-chemical, biofunctional, and protein yield. The highest water holding capacity, foaming stability, emulsion stability as well as protein yield and protein content of 44.0, 70.8, 37.5, 81.2, and 36.4, respectively were observed for BBPI. Mayonnaise prepared from the isolated plant proteins was evaluated for chemical composition, molecular properties of the protein subunits, and potential nutraceutical properties. Preparation of mayonnaise using BBPI or a mixture of either BBPI and CPPI or BBPI and LPPI showed superior values for lightness and lowered values for redness. Mayonnaise prepared from either BBPI or the BBPI and CPPI mixture showed the best antioxidant, antihypertensive and antidiabetic properties. The present study results indicated that the use of the BBPI and CPPI mixture can be a novel technological approach for the development of a mayonnaise with improved health promoting properties.

  13. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Lei; Peng, Bo; Zhu, Xinli

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenolsmore » as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.« less

  14. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.

    PubMed

    Battini, Swapna; Mannava, M K Chaitanya; Nangia, Ashwini

    2018-06-01

    The classic fixed-dose combination (FDC) of 4 tuberculosis drugs, namely rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol dihydrochloride (EDH) has the twin issues of physical stability and RIF cross-reaction in the 4-FDC. The major reason for these quality issues is the interaction between RIF and INH to yield isonicotinyl hydrazone in drug tablets. Pharmaceutical cocrystals of INH with caffeic acid (CFA) (PZA + EDH + RIF + INH-CFA cocrystal) and vanillic acid (VLA) (PZA + EDH + RIF + INH-VLA cocrystal) are able to stabilize the FDC formulation compared with the reference batch (PZA + EDH + RIF + INH). Stability studies under accelerated humidity and temperature stress conditions of 40°C and 75% relative humidity showed that the physical stability of the cocrystal formulation was superior by powder X-ray diffraction and scanning electron microscopy analysis, and chemical purity was analyzed by high-performance liquid chromatography. Changes in the composition and structure were monitored on samples drawn at 7, 15, 22, and 30 days of storage. FDC-INH-CFA cocrystal batch exhibited greater stability compared with FDC-INH-VLA cocrystal and FDC reference drug batches. The superior stability of INH-CFA cocrystal is attributed to the presence of stronger hydrogen bonds and cyclic O-H⋯O synthon in the crystal structure. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

    PubMed

    Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao

    2016-09-27

    Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

  16. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2002-01-01

    A state-of-the-art CFD code (APNASA) was employed in a computationally based investigation of the impact of casing bleed and injection on the stability and performance of a moderate speed fan rotor wherein the stalling mass flow is controlled by tip flow field breakdown. The investigation was guided by observed trends in endwall flow characteristics (e.g., increasing endwall aerodynamic blockage) as stall is approached and based on the hypothesis that application of bleed or injection can mitigate these trends. The "best" bleed and injection configurations were then combined to yield a self-recirculating casing treatment concept. The results of this investigation yielded: 1) identification of the fluid mechanisms which precipitate stall of tip critical blade rows, and 2) an approach to recirculated casing treatment which results in increased compressor stall range with minimal or no loss in efficiency. Subsequent application of this approach to a high speed transonic rotor successfully yielded significant improvements in stall range with no loss in compressor efficiency.

  17. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  18. Mutational analysis of microbial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) towards enhancement of binding affinity: A computational approach.

    PubMed

    Kumar, Pravin; Ghosh Sachan, Shashwati; Poddar, Raju

    2017-10-01

    Improving the industrial enzyme for better yield of the product is important and a challenging task. One of such important industrial enzymes is microbial Hydroxycinnamoyl-CoA hydratase-lyase (HCHL). It converts feruloyl-CoA to vanillin. We place our efforts towards the improvement of its catalytic activity with comprehensive computational investigation. Catalytic core of the HCHL was explored with molecular modeling and docking approaches. Site-directed mutations were introduced in the catalytic site of HCHL in a sequential manner to generate different mutants of HCHL. Basis of mutation is to increase the interaction between HCHL and substrate feruloyl-CoA through interatomic forces and hydrogen bond formation. A rigorous molecular dynamics (MD) simulation was performed to check the stability of mutant's structure. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), dynamic cross correlation (DCCM) and principal component analysis (PCA) were also performed to analyze flexibility and stability of structures. Docking studies were carried out between different mutants of HCHL and feruloyl-CoA. Investigation of the different binding sites and the interactions with mutant HCHLs and substrate allowed us to highlight the improved performance of mutants than wild type HCHL. This was further validated with MD simulation of complex consisting of different mutants and substrate. It further confirms all the structures are stable. However, mutant-2 showed better affinity towards substrate by forming hydrogen bond between active site and feruloyl-CoA. We propose that increase in hydrogen bond formation might facilitate in dissociation of vanillin from feruloyl-CoA. The current work may be useful for the future development of 'tailor-made' enzymes for better yield of vanillin. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  20. Peat Soil Stabilization using Lime and Cement

    NASA Astrophysics Data System (ADS)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  1. Development of cellulase-nanoconjugates with enhanced ionic liquid and thermal stability for in situ lignocellulose saccharification.

    PubMed

    Grewal, Jasneet; Ahmad, Razi; Khare, S K

    2017-10-01

    The present work aimed to improve catalytic efficiency of Trichoderma reesei cellulase for enhanced saccharification. The cellulase was immobilized on two nanomatrices i.e. magnetic and silica nanoparticles with immobilization efficiency of 85% and 76% respectively. The nanobioconjugates exhibited increase in V max , temperature optimum, pH and thermal stability as compared with free enzyme. These could be efficiently reused for five repeated cycles and were stable in 1-ethyl-3-methylimidazoliumacetate [EMIM][Ac], an ionic liquid. Ionic liquids (IL) are used as green solvents to dissolve lignocellulosic biomass and facilitate better saccharification. The cellulase immobilized on magnetic nanoparticles was used for in situ saccharification of [EMIM][Ac] pretreated sugarcane bagasse and wheat straw for two cycles. The structural deconstruction and decrease in biomass crystallinity was confirmed by SEM, XRD and FTIR. The high hydrolysis yields (∼89%) obtained in this one-pot process coupled with IL stability and recycled use of immobilized cellulase, potentiates its usefulness in biorefineries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Enhancing protein stability with extended disulfide bonds

    DOE PAGES

    Liu, Tao; Wang, Yan; Luo, Xiaozhou; ...

    2016-05-09

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less

  3. Reliability improvements in tunable Pb1-xSnxSe diode lasers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.

    1980-01-01

    Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.

  4. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance.

    PubMed

    Xia, Wei; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Bai, Yingguo; Luo, Huiying; Ma, Rui; Yao, Bin

    2016-01-01

    β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the pH stability by reducing the O-glycosylation. And the enhanced mutants showed much better application prospect with substantially improved saccharification efficiency on cellulosic materials.

  5. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    PubMed

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  6. Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage.

    PubMed

    Arora, Neha; Dar, M Ibrahim; Abdi-Jalebi, Mojtaba; Giordano, Fabrizio; Pellet, Norman; Jacopin, Gwénolé; Friend, Richard H; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2016-11-09

    We report on both the intrinsic and the extrinsic stability of a formamidinium lead bromide [CH(NH 2 ) 2 PbBr 3 = FAPbBr 3 ] perovskite solar cell that yields a high photovoltage. The fabrication of FAPbBr 3 devices, displaying an outstanding photovoltage of 1.53 V and a power conversion efficiency of over 8%, was realized by modifying the mesoporous TiO 2 -FAPbBr 3 interface using lithium treatment. Reasons for improved photovoltaic performance were revealed by a combination of techniques, including photothermal deflection absorption spectroscopy (PDS), transient-photovoltage and charge-extraction analysis, and time-integrated and time-resolved photoluminescence. With lithium-treated TiO 2 films, PDS reveals that the TiO 2 -FAPbBr 3 interface exhibits low energetic disorder, and the emission dynamics showed that electron injection from the conduction band of FAPbBr 3 into that of mesoporous TiO 2 is faster than for the untreated scaffold. Moreover, compared to the device with pristine TiO 2 , the charge carrier recombination rate within a device based on lithium-treated TiO 2 film is 1 order of magnitude lower. Importantly, the operational stability of perovskites solar cells examined at a maximum power point revealed that the FAPbBr 3 material is intrinsically (under nitrogen) as well as extrinsically (in ambient conditions) stable, as the unsealed devices retained over 95% of the initial efficiency under continuous full sun illumination for 150 h in nitrogen and dry air and 80% in 60% relative humidity (T = ∼60 °C). The demonstration of high photovoltage, a record for FAPbBr 3 , together with robust stability renders our work of practical significance.

  7. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    PubMed

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  8. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-01

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0-100 cm layer and the topsoil temperature (0-10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha-1 to 2937.3 kg ha-1 using RC with mulch treatments and the WUE increased by 2.3 kg ha-1 mm-1 to 5.1 kg ha-1 mm-1.

  9. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau.

    PubMed

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-11

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0-100 cm layer and the topsoil temperature (0-10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha(-1) to 2937.3 kg ha(-1) using RC with mulch treatments and the WUE increased by 2.3 kg ha(-1) mm(-1) to 5.1 kg ha(-1) mm(-1).

  10. Characterization and Stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a Candidate Antigen for a Therapeutic Vaccine Against Chagas Disease.

    PubMed

    Biter, Amadeo B; Weltje, Sarah; Hudspeth, Elissa M; Seid, Christopher A; McAtee, C Patrick; Chen, Wen-Hsiang; Pollet, Jeroen B; Strych, Ulrich; Hotez, Peter J; Bottazzi, Maria Elena

    2018-05-01

    Chagas disease due to chronic infection with Trypanosoma cruzi is a neglected cause of heart disease, affecting approximately 6-10 million individuals in Latin America and elsewhere. T. cruzi Tc24, a calcium-binding protein in the flagellar pocket of the parasite, is a candidate antigen for an injectable therapeutic vaccine as an alternative or a complement to chemotherapy. Previously, we reported that a genetically engineered construct from which all cysteine residues had been eliminated (Tc24-C4) yields a recombinant protein with reduced aggregation and improved analytical purity in comparison to the wild-type form, without compromising antigenicity and immunogenicity. We now report that the established process for producing Escherichia coli-expressed Tc24-C4 protein is robust and reproducibly yields protein lots with consistent analytical characteristics, freeze-thaw, accelerated, and long-term stability profiles. The data indicate that, like most proteins, Tc24-C4 should be stable at -80°C, but also at 4°C and room temperature for at least 30 days, and up to 7-15 days at 37°C. Thus, the production process for recombinant Tc24-C4 is suitable for Current Good Manufacturing Practice production and clinical testing, based on process robustness, analytical characteristics, and stability profile. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model

    PubMed Central

    Bruni, Antonio; Pepper, Andrew R.; Gala-Lopez, Boris; Pawlick, Rena; Abualhassan, Nasser; Crapo, James D.; Piganelli, Jon D.; Shapiro, A. M. James

    2016-01-01

    ABSTRACT Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes. PMID:27220256

  12. A novel redox-active metalloporphyrin reduces reactive oxygen species and inflammatory markers but does not improve marginal mass engraftment in a murine donation after circulatory death islet transplantation model.

    PubMed

    Bruni, Antonio; Pepper, Andrew R; Gala-Lopez, Boris; Pawlick, Rena; Abualhassan, Nasser; Crapo, James D; Piganelli, Jon D; Shapiro, A M James

    2016-07-03

    Islet transplantation is a highly effective treatment for stabilizing glycemic control for select patients with type-1 diabetes. Despite improvements to clinical transplantation, single-donor transplant success has been hard to achieve routinely, necessitating increasing demands on viable organ availability. Donation after circulatory death (DCD) may be an alternative option to increase organ availability however, these organs tend to be more compromised. The use of metalloporphyrin anti-inflammatory and antioxidant (MnP) compounds previously demonstrated improved in vivo islet function in preclinical islet transplantation. However, the administration of MnP (BMX-001) in a DCD islet isolation and transplantation model has yet to be established. In this study, murine donors were subjected to a 15-min warm ischemic (WI) period prior to isolation and culture with or without MnP. Subsequent to one-hour culture, islets were assessed for in vitro viability and in vivo function. A 15-minute WI period significantly reduced islet yield, regardless of MnP-treatment relative to yields from standard isolation. MnP-treated islets did not improve islet viability compared to DCD islets alone. MnP-treatment did significantly reduce the presence of extracellular reactive oxygen species (ROS) (p < 0 .05). Marginal, syngeneic islets (200 islets) transplanted under the renal capsule exhibited similar in vivo outcomes regardless of WI or MnP-treatment. DCD islet grafts harvested 7 d post-transplant exhibited sustained TNF-α and IL-10, while MnP-treated islet-bearing grafts demonstrated reduced IL-10 levels. Taken together, 15-minute WI in murine islet isolation significantly impairs islet yield. DCD islets do indeed demonstrate in vivo function, though MnP therapy was unable to improve viability and engraftment outcomes.

  13. Evaluation of Disulfide Bond Position to Enhance the Thermal Stability of a Highly Stable Single Domain Antibody

    PubMed Central

    Zabetakis, Dan; Olson, Mark A.; Anderson, George P.; Legler, Patricia M.; Goldman, Ellen R.

    2014-01-01

    Single domain antibodies are the small recombinant variable domains derived from camelid heavy-chain-only antibodies. They are renowned for their stability, in large part due to their ability to refold following thermal or chemical denaturation. In addition to refolding after heat denaturation, A3, a high affinity anti-Staphylococcal Enterotoxin B single domain antibody, possesses a melting temperature of ∼84°C, among the highest reported for a single domain antibody. In this work we utilized the recently described crystal structure of A3 to select locations for the insertion of a second disulfide bond and evaluated the impact that the addition of this second bond had on the melting temperature. Four double-disulfide versions of A3 were constructed and each was found to improve the melting temperature relative to the native structure without reducing affinity. Placement of the disulfide bond at a previously published position between framework regions 2 and 3 yielded the largest improvement (>6°C), suggesting this location is optimal, and seemingly provides a universal route to raise the melting temperature of single domain antibodies. This study further demonstrates that even single domain antibodies with extremely high melting points can be further stabilized by addition of disulfide bonds. PMID:25526640

  14. The role of oxygen in the photostimulation luminescence process of europium doped potassium chloride

    PubMed Central

    Xiao, Zhiyan; Mazur, Thomas R.; Driewer, Joseph P.; Li, H. Harold

    2015-01-01

    A recent suggestion that europium doped potassium chloride (KCl:Eu2+) has the potential to significantly advance the state-of-the-art in radiation therapy dosimetry has generated a renewed interest in a classic storage phosphor material. The purposes of this work are to investigate the role of oxygen in the photostimulation luminescence (PSL) process and to determine if both increased PSL yield and improved temporal stability could be realized in KCl:Eu2+ by incorporating oxygen in the material fabrication process. Regardless of synthesis atmosphere, air or pure nitrogen, PSL amplitude shows a maximum at 1.0 mol % Eu. Depending on europium concentration, dosimeters fabricated in air exhibit stronger PSL by a factor of 2 to 4 compared to those made in N2. There is no change in PSL stimulation spectrum while noticeable shifts in both photoluminescence and PSL emission spectra are observed for air versus nitrogen. Almost all charge-storage centers are spatially correlated, suggesting oxygen’s stabilization role in the PSL process. However, oxygen alone does not improve material’s temporal stability in the first few hours post irradiation at room temperature, probably because a significant portion of radiation-induced holes are stored in the Vk centers which are mobile. PMID:25897274

  15. Reactive Molecular Dynamics Simulations on the Disintegration of PVDF, FP-POSS, and Their Composite during Atomic Oxygen Impact.

    PubMed

    Zeng, Fanlin; Peng, Chao; Liu, Yizhi; Qu, Jianmin

    2015-07-30

    Poly(vinylidene fluoride) (PVDF) is a kind of important piezoelectric polymer used in spacecraft industry. But the atomic oxygen (AO) is the most abundant element in the low Earth orbit (LEO) environment. AO collision degradation is an important issue in the application of PVDF on spacecrafts. To investigate the erosion behaviors of PVDF during AO impacts and how to improve the stability of PVDF against AO impacts, the temperature evolution, mass loss, and erosion yields of neat PVDF, neat polyhedral oligomeric silsesquioxanes compound (3,3,3-trifluoropropyl)8Si8O12 (FP-POSS) and the PVDF/FP-POSS composite under AO impacts, as well as some key disintegrated structures and separated chemical compositions, were researched using the molecular dynamics (MD) simulations and the reactive ReaxFF force field. The simulation erosion yield result of PVDF is very close to the experiment results, which shows our simulations are reliable. The results of the temperature evolution, mass loss, and erosion yield of three materials show that the antierosion performance of PVDF is not outstanding. However, incorporating FP-POSS into PVDF matrix enhances the stability of PVDF against AO impact greatly and reduces the temperature rise, mass loss, and the erosion yield of PVDF rapidly. A detailed analysis on the flight chemical compositions and key snapshots of the structures reveals that the erosion process on PVDF and PVDF/FP-POSS is continuous and should be derived from the same PVDF matrix in two materials. In contrast, the erosion process on FP-POSS is stepped. The erosion will not take place until the number of AO reaches a specific value. There is a barrier for the erosion of high-energy AO because of the stable cagelike Si-O frame in FP-POSS molecules. This should be chiefly responsible for the high stability of FP-POSS and the reinforcement mechanism of FP-POSS on PVDF against AO impacts. This work is helpful for people to understand the erosion details of PVDF and POSS and provides valuable information to design effective protective structure for PVDF against AO impacts in LEO environment.

  16. Improvement of the classical assay method for liver glycogen fractions: ASG is the main and metabolic active fraction.

    PubMed

    Shokri-Afra, H; Ostovar-Ravari, A; Rasouli, M

    2016-10-01

    Acid digestion of animal tissues yields two fractions of glycogen, acid soluble (ASG) and insoluble (AIG). The current study was performed to improve the assay method for glycogen fractions in rat liver in different physiological states. All steps of the assay were manipulated and optimized to measure the content of ASG and AIG in fed and starved rat liver. In postmortem liver tissue, total glycogen was decreased slowly at 4°C and rapidly at 25°C but was well stabilized at -20°C and -70°C. At room temperature, ASG underwent autolysis at the rate of 1.3% and decreased by half at 35 min, while AIG increased slightly. The yield of the recovery of ASG during four successive extractions depends on the tissue concentration, and at the ratio of 50 mg tissue per 2 mL perchloric acid (PCA) was about 93.2%, 6.3%, 0.3% and 0.05% respectively. The increase in the time and extent of homogenization of the tissue with cold PCA and using ultrasonication had not any significant effect on the extraction yield of ASG. The time of centrifugation of the tissue extract could be reduced from 15 to 7.5 minutes with no significant decrease in the recovery of ASG. On extraction with ethanol, the yield of recovery of ASG reached the maximal level of 97.5% at a final ethanol concentration of 60%. The recovery of ASG was not improved in the presence of KCl. During 24 starvation, total glycogen depleted completely and the change occurred entirely in ASG, while AIG did not change significantly. The CV% was less than 5% for the optimized assays of glycogen fractions. ASG is the main and metabolically active portion of glycogen in rat liver.

  17. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.

    PubMed

    Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R

    2017-09-26

    A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.

  18. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R

    2018-06-19

    Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.

  19. Electrospun Polymer Nanofibers Decorated with Noble Metal Nanoparticles for Chemical Sensing.

    PubMed

    Chen, Chen; Tang, Yongan; Vlahovic, Branislav; Yan, Fei

    2017-12-01

    The integration of different noble metal nanostructures, which exhibit desirable plasmonic and/or electrocatalytic properties, with electrospun polymer nanofibers, which display unique mechanical and thermodynamic properties, yields novel hybrid nanoscale systems of synergistic properties and functions. This review summarizes recent advances on how to incorporate noble metal nanoparticles into electrospun polymer nanofibers and illustrates how such integration paves the way towards chemical sensing applications with improved sensitivity, stability, flexibility, compatibility, and selectivity. It is expected that further development of this field will eventually make a wide impact on many areas of research.

  20. From hemodynamic towards cardiomechanic sensors in implantable devices

    NASA Astrophysics Data System (ADS)

    Ferek-Petric, Bozidar

    2013-06-01

    Sensor could significantly improve the cardiac electrotherapy. It has to provide long-term stabile signal not impeding the device longevity and lead reliability. It may not introduce special implantation and adjustment procedures. Hemodynamic sensors based on the blood flow velocity and cardiomechanic sensors based on the lead bending measurement are disclosed. These sensors have a broad clinical utility. Triboelectric and high-frequency lead bending sensors yield accurate and stable signals whereby functioning with every cardiac lead. Moreover, high frequency measurement avoids use of any kind of special hardware mounted on the cardiac lead.

  1. Enhanced retention of a maxillofacial prosthetic obturator using precision attachments: Two case reports

    PubMed Central

    Murat, Sema; Gurbuz, Ayhan; Isayev, Abulfaz; Dokmez, Bahadir; Cetin, Unsun

    2012-01-01

    The majority of maxillary defects can be rehabilitated with conventional simple obturator prosthesis. However, inadequate retention, stability and support may be associated with the use of an obturator. Precision attachments have been used to retain obturators for some time. The use of precision attachments in a dentate maxillectomy patient can yield significant functional improvement while maintaining the obturator’s aesthetic advantages. This clinical report describes the prosthetic rehabilitation of two maxillary defects with an obturator retained using extracoronal resilient precision attachments. PMID:22509126

  2. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755.

    PubMed

    Suo, Yukai; Luo, Sheng; Zhang, Yanan; Liao, Zhengping; Wang, Jufang

    2017-08-01

    The response of Clostridium tyrobutyricum to butyric acid stress involves various stress-related genes, and therefore overexpression of stress-related genes can improve butyric acid tolerance and yield. Class I heat shock proteins (HSPs) play an important role in the process of protecting bacteria from sudden changes of extracellular stress by assisting protein folding correctly. The results of quantitative real-time PCR indicated that the Class I HSGs grpE, dnaK, dnaJ, groEL, groES, and htpG were significantly upregulated under butyric acid stress, especially the dnaK and groE operons. Overexpression of groESL and htpG could significantly improve the tolerance of C. tyrobutyricum to butyric acid, while overexpression of dnaK and dnaJ showed negative effects on butyric acid tolerance. Acid production was also significantly promoted by increased GroESL expression levels; the final butyric acid and acetic acid concentrations were 28.2 and 38% higher for C. tyrobutyricum ATCC 25755/groESL than for the wild-type strain. In addition, when fed-batch fermentation was carried out using cell immobilization in a fibrous-bed bioreactor, the butyric acid yield produced by C. tyrobutyricum ATCC 25755/groESL reached 52.2 g/L, much higher than that for the control. The improved butyric acid yield is probably attributable to the high GroES and GroEL levels, which can stabilize the biosynthetic machinery of C. tyrobutyricum under extracellular butyric acid stress.

  3. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    PubMed

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  4. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification.

    PubMed

    Wang, C L; Xu, H Y; Xie, L; Lu, Y Q; Yang, X G; Lu, S S; Lu, K H

    2016-06-01

    Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Management of the Northern Chesapeake Bay American Shad Fishery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foerster, J.W.; Reagan, S.P.

    1977-11-01

    The Shad fisheries of the Chesapeake Bay in Maryland have been declining since an 1897 peak of 7860 x 10/sup 3/ kg. No periods of stability have been recorded. Data are presented to trace the decline not only as a function of specific areas within the Northern Chesapeake Bay but also in terms of environmental problems including reduction of spawning grounds and predation by dams and recruitment overfishing. The problem is related to improving the commercial fishing yield. An estimation of a maximum effort of 200,000 man-hours is suggested if a stable yield is to be approached. Methods for obtainingmore » this goal include alternating of closed fishing areas, adoption of rest days, enforcement of fisheries regulations and reduction of the number of meters of gill net used per fisherman.« less

  6. Nickel ferrite aerogels with monodisperse nanoscale building blocks--the importance of processing temperature and atmosphere.

    PubMed

    Pettigrew, Katherine A; Long, Jeffrey W; Carpenter, Everett E; Baker, Colin C; Lytle, Justin C; Chervin, Christopher N; Logan, Michael S; Stroud, Rhonda M; Rolison, Debra R

    2008-04-01

    Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.

  7. Cultivar evaluation and essential test locations identification for sugarcane breeding in China.

    PubMed

    Luo, Jun; Pan, Yong-Bao; Xu, Liping; Zhang, Hua; Yuan, Zhaonian; Deng, Zuhu; Chen, Rukai; Que, Youxiong

    2014-01-01

    The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China.

  8. Cultivar Evaluation and Essential Test Locations Identification for Sugarcane Breeding in China

    PubMed Central

    Luo, Jun; Xu, Liping; Zhang, Hua; Yuan, Zhaonian; Deng, Zuhu; Chen, Rukai

    2014-01-01

    The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China. PMID:24982939

  9. A modeling framework for evaluating streambank stabilization practices for reach-scale sediment reduction

    USDA-ARS?s Scientific Manuscript database

    Streambank stabilization techniques are often implemented to reduce sediment loads from unstable streambanks. Process-based models can predict sediment yields with stabilization scenarios prior to implementation. However, a framework does not exist on how to effectively utilize these models to evalu...

  10. Sustainable-yield estimation for the Sparta Aquifer in Union County, Arkansas

    USGS Publications Warehouse

    Hays, Phillip D.

    2000-01-01

    Options for utilizing alternative sources of water to alleviate overdraft from the Sparta aquifer and ensure that the aquifer can continue to provide abundant water of excellent quality for the future are being evaluated by water managers in Union County. Sustainable yield is a critical element in identifying and designing viable water supply alternatives. With sustainable yield defined and a knowledge of total water demand in an area, any unmet demand can be calculated. The ground-water flow model of the Sparta aquifer was used to estimate sustainable yield using an iterative approach. The Sparta aquifer is a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. Currently, the rate of withdrawal in some areas greatly exceeds the rate of recharge to the aquifer and considerable water-level declines have occurred. Ground-water flow model results indicate that the aquifer cannot continue to meet growing water-use demands indefinitely and that water levels will drop below the top of the primary producing sand unit in Union County (locally termed the El Dorado sand) by 2008 if current water-use trends continue. Declines of that magnitude will initiate dewatering of the El Dorado sand. The sustainable yield of the aquifer was calculated by targeting a specified minimum acceptable water level within Union County and varying Union County pumpage within the model to achieve the target water level. Selection of the minimum target water level for sustainable-yield estimation was an important criterion for the modeling effort. In keeping with the State Critical Ground-Water Area designation criteria and the desire of water managers in Union County to improve aquifer conditions and bring the area out of the Critical Ground-Water Area designation, the approximate altitude of the top of the Sparta Sand in central Union County was used as the minimum water level target for estimation of sustainable yield in the county. A specific category of sustainable yield? stabilization yield, reflecting the amount of water that the aquifer can provide while maintaining current water levels? also was determined and provides information for short-term management. The top of the primary producing sand unit (the El Dorado sand) was used as the minimum water-level target for estimating stabilization yield in the county because current minimum water levels in central Union County are near the top of the El Dorado sand. Model results show that withdrawals from the Sparta aquifer in Union County must be reduced to 28 percent of 1997 values to achieve sustainable yield and maintain water levels at the top of the Sparta Sand if future pumpage outside of Union County is assumed to increase at the rate observed from 1985-1997. Results of the simulation define a very large current unmet demand and represent a substantial reduction in the county?s current dependence upon the aquifer. If future pumpage outside of Union County is assumed to increase at double the rate observed from 1985-1997, withdrawals from the Sparta aquifer in Union County must be reduced to 25 percent of 1997 values to achieve sustainable yield. Withdrawals from the Sparta aquifer in Union County must be reduced to about 88 to 91 percent (depending on pumpage growth outside of the county) of 1997 values to stabilize water levels at the top of the El Dorado sand. This result shows that 1997 rate of withdrawal in the county is considerably greater than the rate needed to halt the rapid decline in water levels.

  11. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress.

    PubMed

    Dai, S F; Wang, L K; Wen, A Y; Wang, L X; Jin, G M

    2009-05-01

    1. The present study was conducted to investigate the effects of dietary glutamine (Gln) supplementation on growth performance, carcase characteristics and meat quality in broilers exposed to high ambient temperature. 2. A total of 240 35-d-old male Arbor Acres broilers were randomly assigned to 4 treatment groups (three replicates of 20 birds per cage). The broilers were kept in a temperature-controlled room at either 23 degrees C (no-stress groups, NS) or 28 degrees C (heat stress groups, HS). The broilers were fed either on a basal diet (control, NS) or on the basal diet supplemented with 0, 0.5 or 1.0% Gln (HS). 3. Compared with the NS, the HS (0% Gln) group gained less weight and consumed less feed, had lower final body weight, gain-to-feed ratio, and abdominal fat yield. Breast meat in HS (0% Gln) had lower pH, water-holding capacity (WHC), a* value, ether extract (EE) content and crude protein (CP) content, and had higher shear force (SF) and L* value. 4. Linear increase were found in groups supplemented with Gln (0, 0.5% and 1.0%) for final body weight, weight gain, feed consumption, gain-to-feed ratio and abdominal fat yield. Supplementation with Gln improved breast meat pH, WHC, SF, L* value, a* value, EE content and CP content in broilers exposed to heat stress. No significant difference was observed in all the indices determined between the HS (1% Gln) and the NS. 5. Heat stress caused obvious breast meat discoloration in L*, a* and b* values. However, dietary supplementation with Gln gave a better colour stability. 6. The results indicated that dietary supplementation with Gln may alleviate heat stress-caused deterioration in growth performance, carcase characteristics, meat quality and meat colour stability of broilers.

  12. C1-C2 intra-articular screw fixation for atlantoaxial posterior stabilization.

    PubMed

    Tokuhashi, Y; Matsuzaki, H; Shirasaki, Y; Tateishi, T

    2000-02-01

    A trial of a new posterior stabilization technique for atlantoaxial instability and a report of preliminary results. To describe a new posterior stabilization technique for atlantoxial instability. Magerl's transarticular screw fixation is an accepted technique for rigid atlantoaxial stabilization, which reportedly has yielded many good clinical results. However, the technique is technically demanding and poses a risk of injury to the nerves and veins. Eleven patients who had been treated with intra-articular screw fixation in combination with Halifax interlaminar clamp (OSTEONICS, Allendale, NJ) for atlantoaxial instability were observed. Results of their clinical examinations and biomechanical studies using resinous bones of a cervical spine model were reviewed. In all patients, occipital pain, neck pain, and neural deficit improved, and bony fusion with no correction loss was shown on radiography. To date, no vascular or neural complications have been found, and no instrumentation failures have occurred. In the biomechanical study, the Halifax with transarticular screw fixation had significantly greater flexion stiffness than the Halifax only or the Halifax with intra-articular screw fixation, but the torsion stiffness of the Halifax with intra-articular screw fixation was significantly greater than that of the other Halifax combinations. The preliminary results showed that this technique was effective in strengthening the rotational stability of the atlantoaxial fixation and was considered useful for atlantoaxial posterior stabilization.

  13. Towards a Probabilistic Preliminary Design Criterion for Buckling Critical Composite Shells

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Hilburger, Mark W.

    2003-01-01

    A probability-based analysis method for predicting buckling loads of compression-loaded laminated-composite shells is presented, and its potential as a basis for a new shell-stability design criterion is demonstrated and discussed. In particular, a database containing information about specimen geometry, material properties, and measured initial geometric imperfections for a selected group of laminated-composite cylindrical shells is used to calculate new buckling-load "knockdown factors". These knockdown factors are shown to be substantially improved, and hence much less conservative than the corresponding deterministic knockdown factors that are presently used by industry. The probability integral associated with the analysis is evaluated by using two methods; that is, by using the exact Monte Carlo method and by using an approximate First-Order Second- Moment method. A comparison of the results from these two methods indicates that the First-Order Second-Moment method yields results that are conservative for the shells considered. Furthermore, the results show that the improved, reliability-based knockdown factor presented always yields a safe estimate of the buckling load for the shells examined.

  14. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    PubMed

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  16. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    USDA-ARS?s Scientific Manuscript database

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  17. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Initial ACT configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial ACT configuration design task of the integrated application of active controls (IAAC) technology project within the Energy Efficient Transport Program is summarized. A constrained application of active controls technology (ACT) resulted in significant improvements over a conventional baseline configuration previously established. The configuration uses the same levels of technology, takeoff gross weight, payload, and design requirements/objectives as the baseline, except for flying qualities, flutter, and ACT. The baseline wing is moved forward 1.68 m. The configuration incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail size), lateral/directional-augmented stability, an angle of attack limiter, wing load alleviation, and flutter mode control. This resulted in a 930 kg reduction in airplane operating empty weight and a 3.6% improvement in cruise efficiency, yielding a 13% range increase. Adjusted to the 3590 km baseline mission range, this amounts to 6% block fuel reduction and a 15.7% higher incremental return on investment, using 1978 dollars and fuel cost.

  18. Enhanced methodology of focus control and monitoring on scanner tool

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Jen; Kim, Young Ki; Hao, Xueli; Gomez, Juan-Manuel; Tian, Ye; Kamalizadeh, Ferhad; Hanson, Justin K.

    2017-03-01

    As the demand of the technology node shrinks from 14nm to 7nm, the reliability of tool monitoring techniques in advanced semiconductor fabs to achieve high yield and quality becomes more critical. Tool health monitoring methods involve periodic sampling of moderately processed test wafers to detect for particles, defects, and tool stability in order to ensure proper tool health. For lithography TWINSCAN scanner tools, the requirements for overlay stability and focus control are very strict. Current scanner tool health monitoring methods include running BaseLiner to ensure proper tool stability on a periodic basis. The focus measurement on YIELDSTAR by real-time or library-based reconstruction of critical dimensions (CD) and side wall angle (SWA) has been demonstrated as an accurate metrology input to the control loop. The high accuracy and repeatability of the YIELDSTAR focus measurement provides a common reference of scanner setup and user process. In order to further improve the metrology and matching performance, Diffraction Based Focus (DBF) metrology enabling accurate, fast, and non-destructive focus acquisition, has been successfully utilized for focus monitoring/control of TWINSCAN NXT immersion scanners. The optimal DBF target was determined to have minimized dose crosstalk, dynamic precision, set-get residual, and lens aberration sensitivity. By exploiting this new measurement target design, 80% improvement in tool-to-tool matching, >16% improvement in run-to-run mean focus stability, and >32% improvement in focus uniformity have been demonstrated compared to the previous BaseLiner methodology. Matching <2.4 nm across multiple NXT immersion scanners has been achieved with the new methodology of set baseline reference. This baseline technique, with either conventional BaseLiner low numerical aperture (NA=1.20) mode or advanced illumination high NA mode (NA=1.35), has also been evaluated to have consistent performance. This enhanced methodology of focus control and monitoring on multiple illumination conditions, opens an avenue to significantly reduce Focus-Exposure Matrix (FEM) wafer exposure for new product/layer best focus (BF) setup.

  19. Silylated Zeolites With Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    PubMed Central

    Vu, Hue-Tong; Harth, Florian M.; Wilde, Nicole

    2018-01-01

    A systematic silylation approach using mono-, di-, and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing (APP) conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.2 M levulinic acid (LA) and 0.6 M formic acid (FA) at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g−1 and 507 m2 g−1 for the silylated zeolite Y functionalized with n-octadecyltrichlorosilane compared to 0.51 cm3 g−1 and 788 m2 g−1 for the parent zeolite Y. The hydrogenation of LA to γ-valerolactone (GVL) was conducted over 3 wt.-% Pt on zeolite Y (3PtY) silylated with either n-octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n-octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12 vs. 34% for 3PtY after 24 h. PMID:29868552

  20. Silylated Zeolites with Enhanced Hydrothermal Stability for the Aqueous-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone

    NASA Astrophysics Data System (ADS)

    Vu, Hue-Tong; Harth, Florian M.; Wilde, Nicole

    2018-05-01

    A systematic silylation approach using mono-, di- and trichlorosilanes with different alkyl chain lengths was employed to enhance the hydrothermal stability of zeolite Y. DRIFT spectra of the silylated zeolites indicate that the attachment of the silanes takes place at surface silanol groups. Regarding hydrothermal stability under aqueous-phase processing conditions, i.e., pH ≈ 2, 473 K and autogenous pressure, the selective silylation of the zeolite surface using monochlorosilanes has no considerable influence. By using trichlorosilanes, the hydrothermal stability of zeolite Y can be improved significantly as proven by a stability test in an aqueous solution of 0.6 M levulinic acid (LA) and 0.2 M formic acid (FA) at 473 K. However, the silylation with trichlorosilanes results in a significant loss of total specific pore volume and total specific surface area, e.g., 0.35 cm3 g-1 and 507 m2 g 1 for the silylated zeolite Y functionalized with n octadecyltrichlorosilane compared to 0.51 cm3 g 1 and 788 m2 g-1 for the parent zeolite Y. The hydrogenation of LA to γ valerolactone (GVL) was conducted over 3 wt.-% Pt on zeolite Y (3PtY) silylated with either n octadecyltrichlorosilane or methyltrichlorosilane using different reducing agents, e.g., FA or H2. While in the stability test an enhanced hydrothermal stability was found for zeolite Y silylated with n octadecyltrichlorosilane, its stability in the hydrogenation of LA was far less pronounced. Only by applying an excess amount of methyltrichlorosilane, i.e., 10 mmol per 1 g of zeolite Y, presumably resulting in a high degree of polymerization among the silanes, a recognizable improvement of the stability of the 3 PtY catalyst could be achieved. Nonetheless, the pore blockage found for zeolite Y silylated with an excess amount of methyltrichlorosilane was reflected in a drastically lower GVL yield at 493 K using FA as reducing agent, i.e., 12% vs. 34% for 3PtY after 24 h.

  1. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    PubMed

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  2. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    NASA Astrophysics Data System (ADS)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2016-03-01

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  3. Application of JAERI quantum molecular dynamics model for collisions of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Hashimoto, Shintaro; Sato, Tatsuhiko; Niita, Koji

    2016-06-01

    The quantum molecular dynamics (QMD) model incorporated into the general-purpose radiation transport code PHITS was revised for accurate prediction of fragment yields in peripheral collisions. For more accurate simulation of peripheral collisions, stability of the nuclei at their ground state was improved and the algorithm to reject invalid events was modified. In-medium correction on nucleon-nucleon cross sections was also considered. To clarify the effect of this improvement on fragmentation of heavy nuclei, the new QMD model coupled with a statistical decay model was used to calculate fragment production cross sections of Ag and Au targets and compared with the data of earlier measurement. It is shown that the revised version can predict cross section more accurately.

  4. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+

    NASA Astrophysics Data System (ADS)

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W.

    2016-02-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.

  5. Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.).

    PubMed

    Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W

    2016-12-01

    Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe(3+) ion made these CDs a luminescent probe for selective detection of Fe(3+) ion.

  6. Adaptability and stability of soybean genotypes in off-season cultivation.

    PubMed

    Batista, R O; Hamawaki, R L; Sousa, L B; Nogueira, A P O; Hamawaki, O T

    2015-08-14

    The oil and protein contents of soybean grains are important quantitative traits for use in breeding. However, few breeding programs perform selection based on these traits in different environments. This study assessed the adaptability and stability of 14 elite early soybean breeding lines in off-season cultivation with respect to yield, and oil and protein contents. A range of statistical methods was applied and these analyses indicated that for off-season cultivation, the lines UFUS 5 and UFUS 10 could be recommended due to their superior performance in grain yield, oil content, and specific adaptability to unfavorable environments along with high stability in these characteristics. Also recommended were UFUS 06, which demonstrated superior performance in all three tested characteristics and showed adaptation to favorable environments, and UFUS 13, which showed high adaptability and stability and a superior performance for protein content.

  7. Preparation and characterisation of protein hydrolysates from Indian defatted rice bran meal.

    PubMed

    Bandyopadhyay, Kakali; Misra, Gautam; Ghosh, Santinath

    2008-01-01

    Rice bran meal is a very good source of protein along with other micronutrients. Rice bran meal has been utilized to produce protein isolates and respective protein hydrolysates for potential application in various food products. De-oiled rice bran meal, available from Indian rice bran oil extraction plants, was initially screened by passing through an 80-mesh sieve (yield about 70%). A fraction (yield-30%) rich in fibre and silica was initially discarded from the meal. The protein content of the through fraction increased from 20.8% to 24.1% whereas silica content reduced from 3.1% to 0.4%. Rice bran protein isolate (RPI) was prepared by alkaline extraction followed by acidic precipitation at isoelectric point. This protein isolate was hydrolysed by papain at pH 8.0 and at 37 degrees C for 10, 20, 30, 45 and 60 minutes. The peptides produced by partial hydrolysis had been evaluated by determining protein solubility, emulsion activity index (EAI), emulsion stability index (ESI), foam capacity and foam stability (FS). All protein hydrolysates showed better functional properties than the original protein isolate. These improved functional properties of rice bran protein hydrolysates would make it useful for various application especially in food, pharmaceutical and related industries.

  8. Global agricultural intensification during climate change: a role for genomics.

    PubMed

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Microencapsulation Approach for Orally Extended Delivery of Glipizide: In vitro and in vivo Evaluation

    PubMed Central

    Abdelbary, A.; El-gendy, N. A.; Hosny, A.

    2012-01-01

    Glipizide is an effective antidiabetic agent, however, it suffers from relatively short biological half-life. To solve this encumbrance, it is a prospective candidate for fabricating glipizide extended release microcapsules. Microencapsulation of glipizde with a coat of alginate alone or in combination with chitosan or carbomer 934P was prepared employing ionotropic gelation process. The prepared microcapsules were evaluated in vitro by microscopical examination, determination of the particle size, yield and microencapsulation efficiency. The filled capsules were assessed for content uniformity and drug release characteristics. Stability study of the optimised formulas was carried out at three different temperatures over 12 weeks. In vivo bioavailability study and hypoglycemic activity of C9 microcapsules were done on albino rabbits. All formulas achieved high yield, microencapsulation efficiency and extended t1/2. C9 and C19 microcapsules attained the most optimised results in all tests and complied with the dissolution requirements for extended release dosage forms. These two formulas were selected for stability studies. C9 exhibited longer shelf-life and hence was chosen for in vivo studies. C9 microcapsules showed an improvement in the drug bioavailability and significant hypoglycemic activity compared to immediate release tablets (Minidiab® 5 mg). The optimised microcapsule formulation developed was found to produce extended antidiabetic activity. PMID:23626387

  10. Rx for low cash yields.

    PubMed

    Tobe, Chris

    2003-10-01

    Certain strategies can offer not-for-profit hospitals potentially greater investment yields while maintaining stability and principal safety. Treasury inflation-indexed securities can offer good returns, low volatility, and inflation protection. "Enhanced cash" strategies offer liquidity and help to preserve capital. Stable value "wrappers" allow hospitals to pursue higher-yielding fixed-income securities without an increase in volatility.

  11. Characterization of Chemically and Thermally Treated Oil-in-Water Heteroaggregates and Comparison to Conventional Emulsions.

    PubMed

    Maier, Christiane; Reichert, Corina L; Weiss, Jochen

    2016-10-01

    Heteroaggregated oil-in-water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3-dimensional network at comparably low-fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d 43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ 0 ) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP-based emulsions (τ 0 , SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29-fold (glutaraldehyde) and 2-fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin-driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents. © 2016 Institute of Food Technologists®.

  12. Metal-Assisted Channel Stabilization: Disposition of a Single Histidine on the N-terminus of Alamethicin Yields Channels with Extraordinarily Long Lifetimes

    PubMed Central

    Noshiro, Daisuke; Asami, Koji; Futaki, Shiroh

    2010-01-01

    Abstract Alamethicin, a member of the peptaibol family of antibiotics, is a typical channel-forming peptide with a helical structure. The self-assembly of the peptide in the membranes yields voltage-dependent channels. In this study, three alamethicin analogs possessing a charged residue (His, Lys, or Glu) on their N-termini were designed with the expectation of stabilizing the transmembrane structure. A slight elongation of channel lifetime was observed for the Lys and Glu analogs. On the other hand, extensive stabilization of certain channel open states was observed for the His analog. This stabilization was predominantly observed in the presence of metal ions such as Zn2+, suggesting that metal coordination with His facilitates the formation of a supramolecular assembly in the membranes. Channel stability was greatly diminished by acetylation of the N-terminal amino group, indicating that the N-terminal amino group also plays an important role in metal coordination. PMID:20441743

  13. A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy.

    PubMed

    Hassan, Sally; Keshavarz-Moore, Eli; Ward, John

    2016-09-01

    With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  14. Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate.

    PubMed

    Rahman, Ida Nurhazwani Abdul; Attan, Nursyafreena; Mahat, Naji Arafat; Jamalis, Joazaizulfazli; Abdul Keyon, Aemi S; Kurniawan, Cepi; Wahab, Roswanira Abdul

    2018-04-24

    The chemical-catalyzed transesterification process to produce biofuels i.e. pentyl valerate (PeVa) is environmentally unfriendly, energy-intensive with tedious downstream treatment. The present work reports the use of Rhizomucor miehei lipase (RML) crosslinked onto magnetic chitosan/chitin nanoparticles (RML-CS/CH/MNPs). The approach used to immobilize RML onto the CS/CH/MNPs yielded RML-CS/CH/MNPs with an immobilized protein loading and specific activity of 7.6 mg/g and 5.0 U·g -1 , respectively. This was confirmed by assessing data of field emission scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis and Fourier transform infrared spectroscopy. A three-level-four-factor Box-Behnken design (incubation time, temperature, substrate molar ratio, and enzyme loading) was used to optimize the RML-CS/CH/MNP-catalyzed esterification synthesis of PeVa. Under optimum condition, the maximum yield of PeVa (97.8%) can be achieved in 5 h at 50 °C using molar ratio valeric acid:pentanol (1:2) and an enzyme load of 2 mg/mL. Consequently, operational stability experiments showed that the protocol adopted to prepare the CS/CH/MNP nanoparticles had increased the durability of RML. The RML-CS/CH/MNP could catalyze up to eight successive esterification cycles to produce PeVa. The study also demonstrated the functionality of CS/CH/MNP nanoparticles as an eco-friendly support matrix for improving enzymatic activity and operational stability of RML to produce PeVa. Copyright © 2018. Published by Elsevier B.V.

  15. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell.

    PubMed

    Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae

    2018-01-01

    A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Optimized pH method for DNA elution from buccal cells collected in Whatman FTA cards.

    PubMed

    Lema, Carolina; Kohl-White, Kendra; Lewis, Laurie R; Dao, Dat D

    2006-01-01

    DNA is the most accessible biologic material for obtaining information from the human genome because of its molecular stability and its presence in every nucleated cell. Currently, single nucleotide polymorphism genotyping and DNA methylation are the main DNA-based approaches to deriving genomic and epigenomic disease biomarkers. Upon the discontinuation of the Schleicher & Schuell IsoCode product (Dassel, Germany), which was a treated paper system to elute DNA from several biologic sources for polymerase chain reaction (PCR) analysis, a high-yielding DNA elution method was imperative. We describe here an improved procedure of the not fully validated Whatman pH-based elution protocol. Our DNA elution procedure from buccal cells collected in Whatman FTA cards (Whatman Inc., Florham Park, NJ) yielded approximately 4 microg of DNA from a 6-mm FTA card punch and was successfully applied for HLA-DQB1 genotyping. The genotypes showed complete concordance with data obtained from blood of the same subjects. The achieved high DNA yield from buccal cells suggests a potential cost-effective tool for genomic and epigenomic disease biomarkers development.

  17. Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance)

    NASA Astrophysics Data System (ADS)

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Lam, Cheung Lung; Lin, Xiangui; Wong, Ming Hung

    2014-04-01

    Both biochar application and mycorrhizal inoculation have been proposed to improve plant growth and alter bioaccumulation of toxic metals. A greenhouse pot trial was conducted to investigate growth and Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with Glomus caledonium and/or applied with biochar. Compared with the monocultural control, intercropping with stonecrop (IS) decreased kangkong Cd acquisition via rhizosphere competition, and also decreased kangkong yield. Gc inoculation (+M) accelerated growth and Cd acquisition of stonecrop, and hence resulted in further decreases in kangkong Cd acquisition. Regardless of IS and +M, biochar addition (+B) increased kangkong yield via elevating soil available P, and decreased soil Cd phytoavailability and kangkong Cd concentration via increasing soil pH. Compared with the control, the treatment of IS + M + B had a substantially higher kangkong yield (+25.5%) with a lower Cd concentration (-62.7%). Gc generated additive effects on soil alkalinization and Cd stabilization to biochar, causing lower DTPA-extractable (phytoavailable) Cd concentrations and post-harvest transfer risks.

  18. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Nicolas; Thimmulappa, Rajesh; Thomas, Catherine M.R.

    2011-03-11

    Research highlights: {yields} Nrf2 anti-oxidant function is impaired when HDAC activity is inhibited. {yields} HDAC inhibition decreases Nrf2 protein stability. {yields} HDAC2 is involved in reduced Nrf2 stability and both correlate in COPD samples. {yields} HDAC inhibition increases Nrf2 acetylation. -- Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show thatmore » down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H{sub 2}O{sub 2}) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H{sub 2}O{sub 2}-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.« less

  20. Quality and storability of chicken nuggets formulated with green banana and soybean hulls flours.

    PubMed

    Kumar, Vinay; Biswas, Ashim Kumar; Sahoo, Jhari; Chatli, Manish Kumar; Sivakumar, S

    2013-12-01

    The present study was envisaged to investigate the effect of green banana (GBF) and soybean hulls flours (SHF) on the physicochemical characteristics, colour, texture and storage stability of chicken meat nuggets. The addition of GBF and SHF in the nugget formulations was effective in sustaining desired cooking yield and emulsion stability besides nutritional benefits. Protein and fat contents were decreased (p > 0.05), but fibers and ash contents was increased (p < 0.05) amongst treatments. The flour formulated samples were lighter (L* value) less dark (a*) than control. Textural values were affected significantly. On storage, samples with GBF showed lower pH (p > 0.05%) than control and treatments. Lipid oxidation products, however, unaffected (p > 0.05) but increased in all samples over storage time. Flour treatments showed a positive impact in respect to microbiological quality, however, sensory evaluation indicated comparable scores for all attributes at all times. So, incorporation of GBF and SHF in the formulation could improve the quality and storage stability of chicken nuggets.

  1. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  2. A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering.

    PubMed

    Kruziki, Max A; Bhatnagar, Sumit; Woldring, Daniel R; Duong, Vandon T; Hackel, Benjamin J

    2015-07-23

    Small protein ligands can provide superior physiological distribution compared with antibodies, and improved stability, production, and specific conjugation. Systematic evaluation of the PDB identified a scaffold to push the limits of small size and robust evolution of stable, high-affinity ligands: 45-residue T7 phage gene 2 protein (Gp2) contains an α helix opposite a β sheet with two adjacent loops amenable to mutation. De novo ligand discovery from 10(8) mutants and directed evolution toward four targets yielded target-specific binders with affinities as strong as 200 ± 100 pM, Tms from 65 °C ± 3 °C to 80°C ± 1 °C, and retained activity after thermal denaturation. For cancer targeting, a Gp2 domain for epidermal growth factor receptor was evolved with 18 ± 8 nM affinity, receptor-specific binding, and high thermal stability with refolding. The efficiency of evolving new binding function and the size, affinity, specificity, and stability of evolved domains render Gp2 a uniquely effective ligand scaffold. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  4. Application of polynomial control to design a robust oscillation-damping controller in a multimachine power system.

    PubMed

    Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj

    2015-11-01

    This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. The role of algae in agriculture: a mathematical study.

    PubMed

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  6. Heterologous laccase production and its role in industrial applications

    PubMed Central

    Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Sannia, Giovanni

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  7. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design.

    PubMed

    Bu, Yifan; Cui, Yinglu; Peng, Ying; Hu, Meirong; Tian, Yu'e; Tao, Yong; Wu, Bian

    2018-04-01

    Xylanases, which cleave the β-1,4-glycosidic bond between xylose residues to release xylooligosaccharides (XOS), are widely used as food additives, animal feeds, and pulp bleaching agents. However, the thermally unstable nature of xylanases would hamper their industrial application. In this study, we used in silico design in a glycoside hydrolase family (GH) 11 xylanase to stabilize the enzyme. A combination of the best mutations increased the apparent melting temperature by 14 °C and significantly enhanced thermostability and thermoactivation. The variant also showed an upward-shifted optimal temperature for catalysis without compromising its activity at low temperatures. Moreover, a 10-fold higher XOS production yield was obtained at 70 °C, which compensated the low yield obtained with the wild-type enzyme. Collectively, the variant constructed by the computational strategy can be used as an efficient biocatalyst for XOS production at industrially viable conditions.

  8. Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding.

    PubMed

    Urbano, Laura; Clifton, Luke; Ku, Hoi Ki; Kendall-Troughton, Hannah; Vandera, Kalliopi-Kelli A; Matarese, Bruno F E; Abelha, Thais; Li, Peixun; Desai, Tejal; Dreiss, Cécile A; Barker, Robert D; Green, Mark A; Dailey, Lea Ann; Harvey, Richard D

    2018-05-17

    π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.

  9. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    DOE PAGES

    Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...

    2014-10-27

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less

  10. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass.

    PubMed

    Rocha-Martín, Javier; Martinez-Bernal, Claudio; Pérez-Cobas, Yolanda; Reyes-Sosa, Francisco Manuel; García, Bruno Díez

    2017-11-01

    Linked to the development of cellulolytic enzyme cocktails from Myceliophthora thermophila, we studied the effect of different additives on the enzymatic hydrolysis yield. The hydrolysis of pretreated corn stover (PCS), sugar cane straw (PSCS) and microcrystalline cellulose (Avicel) was performed under industrial conditions using high solid loadings, limited mixing, and low enzyme dosages. The addition of polyethylene glycol (PEG4000) allowed to increase the glucose yields by 10%, 7.5%, and 32%, respectively in the three materials. PEG4000 did not have significant effect on the stability of the main individual enzymes but increased beta-glucosidase and endoglucanase activity by 20% and 60% respectively. Moreover, the presence of PEG4000 accelerated cellulase-catalyzed hydrolysis reducing up to 25% the liquefaction time. However, a preliminary economical assessment concludes that even with these improvements, a lower contribution of PEG4000 to the 2G bioethanol production costs would be needed to reach commercial feasibility. Copyright © 2017. Published by Elsevier Ltd.

  11. Optimizing Adipose Tissue Extract Isolation with Stirred Suspension Culture.

    PubMed

    Zhang, Yan; Yu, Mei; Zhao, Xueyong; Dai, Minjia; Chen, Chang; Tian, Weidong

    2018-05-31

    Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield and improve consistent potency metrics of ATE. ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by Western blot and qPCR. In addition, HE staining and LDH activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF and IL-6) showed no significant difference while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. Compared with adherent culture, stirred suspension culture is a reliable, time and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.

  12. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau

    PubMed Central

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-01

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0–100 cm layer and the topsoil temperature (0–10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha–1 to 2937.3 kg ha–1 using RC with mulch treatments and the WUE increased by 2.3 kg ha–1 mm–1 to 5.1 kg ha–1 mm–1. PMID:26751619

  13. High performance aluminum–cerium alloys for high-temperature applications

    DOE PAGES

    Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...

    2017-08-01

    Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less

  14. In vivo protein stabilization based on fragment complementation and a split GFP system.

    PubMed

    Lindman, Stina; Hernandez-Garcia, Armando; Szczepankiewicz, Olga; Frohm, Birgitta; Linse, Sara

    2010-11-16

    Protein stabilization was achieved through in vivo screening based on the thermodynamic linkage between protein folding and fragment complementation. The split GFP system was found suitable to derive protein variants with enhanced stability due to the correlation between effects of mutations on the stability of the intact chain and the effects of the same mutations on the affinity between fragments of the chain. PGB1 mutants with higher affinity between fragments 1 to 40 and 41 to 56 were obtained by in vivo screening of a library of the 1 to 40 fragments against wild-type 41 to 56 fragments. Colonies were ranked based on the intensity of green fluorescence emerging from assembly and folding of the fused GFP fragments. The DNA from the brightest fluorescent colonies was sequenced, and intact mutant PGB1s corresponding to the top three sequences were expressed, purified, and analyzed for stability toward thermal denaturation. The protein sequence derived from the top fluorescent colony was found to yield a 12 °C increase in the thermal denaturation midpoint and a free energy of stabilization of -8.7 kJ/mol at 25 °C. The stability rank order of the three mutant proteins follows the fluorescence rank order in the split GFP system. The variants are stabilized through increased hydrophobic effect, which raises the free energy of the unfolded more than the folded state; as well as substitutions, which lower the free energy of the folded more than the unfolded state; optimized van der Waals interactions; helix stabilization; improved hydrogen bonding network; and reduced electrostatic repulsion in the folded state.

  15. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less

  16. Recent advances in the application of microbial transglutaminase crosslinking in cheese and ice cream products: A review.

    PubMed

    Taghi Gharibzahedi, Seyed Mohammad; Koubaa, Mohamed; Barba, Francisco J; Greiner, Ralf; George, Saji; Roohinejad, Shahin

    2018-02-01

    Microbial transglutaminase (MTGase) has been currently utilized to form new food structures and matrices with high physicochemical stability. Incorporation of this multi-functional enzyme into structural composition of milk protein-based products, such as cheese and ice cream, can not only be a successful strategy to improve their nutritional and technological characteristics through intramolecular cross-linking, but also to reduce the production cost by decreasing fat and stabilizer contents. The recent research developments and promising results of MTGase application in producing functional formulations of cheese and ice cream with higher quality characteristics are reviewed. New interesting insights and future perspectives are also presented. The addition of MTGase to cheese led to significant improvements in moisture, yield, texture, rheology and sensory properties, without changes in the chemical composition. Furthermore, pH value of ice cream is not affected by the MTGase treatment. Compared to untreated ice creams, application of MTGase significantly promotes consistency, fat destabilization, overrun and organoleptic acceptance, while a substantial reduction in firmness and melting rate of samples was observed. The addition of MTGase to cheese and ice cream-milk provides reinforcement to the protein matrix and can be considered as a novel additive for improving the physicochemical and organoleptic properties of final products. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  18. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    PubMed

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  19. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    PubMed Central

    Jeon, In-Yup; Baek, Jong-Beom

    2010-01-01

    Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  20. Ethylene-propylene-diene monomer (EPDM) and fluorocarbon (FKM) elastomers in the geothermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, H.J.

    1983-07-01

    Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.

  1. Definition and application of longitudinal stability derivatives for elastic airplanes

    NASA Technical Reports Server (NTRS)

    Kemp, W. B., Jr.

    1972-01-01

    A set of longitudinal stability derivatives for elastic airplanes is defined from fundamental principles allowing perturbations in forward speed. Application of these derivatives to longitudinal stability analysis by use of approximate expressions for static stability and control parameters as well as the dynamic equations of motion is illustrated. One commonly used alternative formulation for elastic airplanes is shown to yield significant inaccuracies because of inappropriate interpretation of inertial effects.

  2. Fractionation and physicochemical characterization of lignin from waste jute bags: Effect of process parameters on yield and thermal degradation.

    PubMed

    Ahuja, Dheeraj; Kaushik, Anupama; Chauhan, Ghanshyam S

    2017-04-01

    In this work lignin was extracted from waste jute bags using soda cooking method and effect of varying alkali concentration and pH on yield, purity, structure and thermal degradation of lignin were studied. The Lignin yield, chemical composition and purity were assessed using TAPPI method and UV-vis spectroscopy. Yield and purity of lignin ranged from 27 to 58% and 50-94%, respectively for all the samples and was maximum for 8% alkali concentration and at pH 2 giving higher thermal stability. Chemical structure, thermal stability and elementary analysis of lignin were studied using FTIR, H NMR, thermo gravimetric analysis (TGA) and Elemental analyzer. FTIR and H NMR results showed that core structure of lignin starts breaking beyond 10% alkali concentration. S/G ratio shows the dominance of Syringyl unit over guaiacyl unit. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification of sorghum hybrids with high phenotypic stability using GGE biplot methodology.

    PubMed

    Teodoro, P E; Almeida Filho, J E; Daher, R F; Menezes, C B; Cardoso, M J; Godinho, V P C; Torres, F E; Tardin, F D

    2016-06-10

    The aim of this study was to identify sorghum hybrids that have both high yield and phenotypic stability in Brazilian environments. Seven trials were conducted between February and March 2011. The experimental design was a randomized complete block with 25 treatments and three replicates. The treatments consisted of 20 simple pre-commercial hybrids and five witnesses of grain sorghum. Sorghum genotypes were analyzed by the genotype main effects + genotype environment interaction (GGE) biplot method if significant genotype x environment interaction, adaptability, and phenotypic stability were detected. GGE biplot methodology identified two groups of environments, the first composed of Água Comprida-MG, Montividiu-GO, and Vilhena- RO and the second of Guaíra-SP and Sete Lagoas-MG. The BRS 308 and 1G282 genotypes were found to have high grain yield, adaptability, and phenotypic stability and are thus indicated for cultivation in the first and second groups of environments, respectively.

  4. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    PubMed Central

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  5. Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less

  6. Effect of Grape Seed Proanthocyanidin-Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions.

    PubMed

    Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long

    2015-11-25

    The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.

  7. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  8. Sliding mode control method having terminal convergence in finite time

    NASA Technical Reports Server (NTRS)

    Venkataraman, Subramanian T. (Inventor); Gulati, Sandeep (Inventor)

    1994-01-01

    An object of this invention is to provide robust nonlinear controllers for robotic operations in unstructured environments based upon a new class of closed loop sliding control methods, sometimes denoted terminal sliders, where the new class will enforce closed-loop control convergence to equilibrium in finite time. Improved performance results from the elimination of high frequency control switching previously employed for robustness to parametric uncertainties. Improved performance also results from the dependence of terminal slider stability upon the rate of change of uncertainties over the sliding surface rather than the magnitude of the uncertainty itself for robust control. Terminal sliding mode control also yields improved convergence where convergence time is finite and is to be controlled. A further object is to apply terminal sliders to robot manipulator control and benchmark performance with the traditional computed torque control method and provide for design of control parameters.

  9. The intrinsic role of membrane morphology to reduce defectivity in advanced photochemicals

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Wu, Aiwen; Miura, Kozue; Ohyashiki, Yasushi

    2018-03-01

    Defect source reduction in leading-edge iArF resists is a critical requirement to improve device performance and overall yield in lithography manufacturing processes. It is believed that some polar polymers can aggregate and be responsible for single or multiple micro-bridge defects. Further investigation into the formation of these defects is needed. We have previously presented the effective removal of gel-like polymers using nylon media [1]. However, as the industry is moving to smaller feature sizes, there is a need to further improve the defect removal efficiency. In this paper, a filter, comprised of a novel membrane called Azora with unique morphology and high flow performance is introduced. This new filter shows better on-wafer in an advanced ArF solution than conventional Nylon and UPE media. In addition, it shows improved stability during chemical storage. Results and possible retention mechanisms are discussed.

  10. Stability of compressible Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Chow, Chuen-Yen

    1991-01-01

    Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.

  11. AIRS Version 6 Products and Data Services at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.

    2013-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also demonstrate the various distribution and visualization services for AIRS data products. The cloud properties, model physics, and water and energy cycles research communities are invited to take advantage of the improvements in Version 6 AIRS products and the various services at GES DISC which provide them.

  12. Mobile Phenotyping System Using an Aeromotively Stabilized Cable-Driven Robot

    NASA Astrophysics Data System (ADS)

    Newman, M. B.; Zygielbaum, A. I.

    2017-12-01

    Agricultural researchers are constantly attempting to generate superior agricultural crops. Whether this means creating crops with greater yield, crops that are more resilient to disease, or crops that can tolerate harsh environments with fewer failures, test plots of these experimental crops must be studied in real-world environments with minimal invasion to determine how they will perform in full-scale agricultural settings. To monitor these crops without interfering with their natural growth, a noninvasive sensor system has been implemented. This system, instituted by the College of Agricultural Sciences and Natural Resources at the University of Nebraska - Lincoln (UNL), uses a system of poles, cables, and winches to support and maneuver a sensor platform above the crops at an outdoor phenotyping site. In this work, we improve upon the UNL outdoor phenotyping system presenting the concept design for a mobile, cable-driven phenotyping system as opposed to a permanent phenotyping facility. One major challenge in large-scale, cable-driven robots is stability of the end-effector. As a result, this mobile system seeks to use a novel method of end-effector stabilization using an onboard rotor drive system, herein referred to as the Instrument Platform Aeromotive Stabilization System (IPASS). A prototype system is developed and analyzed to determine the viability of IPASS.

  13. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    PubMed

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  14. Mixed models for selection of Jatropha progenies with high adaptability and yield stability in Brazilian regions.

    PubMed

    Teodoro, P E; Bhering, L L; Costa, R D; Rocha, R B; Laviola, B G

    2016-08-19

    The aim of this study was to estimate genetic parameters via mixed models and simultaneously to select Jatropha progenies grown in three regions of Brazil that meet high adaptability and stability. From a previous phenotypic selection, three progeny tests were installed in 2008 in the municipalities of Planaltina-DF (Midwest), Nova Porteirinha-MG (Southeast), and Pelotas-RS (South). We evaluated 18 families of half-sib in a randomized block design with three replications. Genetic parameters were estimated using restricted maximum likelihood/best linear unbiased prediction. Selection was based on the harmonic mean of the relative performance of genetic values method in three strategies considering: 1) performance in each environment (with interaction effect); 2) performance in each environment (with interaction effect); and 3) simultaneous selection for grain yield, stability and adaptability. Accuracy obtained (91%) reveals excellent experimental quality and consequently safety and credibility in the selection of superior progenies for grain yield. The gain with the selection of the best five progenies was more than 20%, regardless of the selection strategy. Thus, based on the three selection strategies used in this study, the progenies 4, 11, and 3 (selected in all environments and the mean environment and by adaptability and phenotypic stability methods) are the most suitable for growing in the three regions evaluated.

  15. Benefits of increasing plant diversity in sustainable agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Recent studies have revealed many potential benefits of increasing plant diversity in agroecosystems and production forests, including enhancing yields of crops, forage, and wood; stabilizing yields across time and space; enhancing pollinators and pollination; suppressing weeds and other pests; and ...

  16. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows.

    PubMed

    Oliveira, André S; Weinberg, Zwi G; Ogunade, Ibukun M; Cervantes, Andres A P; Arriola, Kathy G; Jiang, Yun; Kim, Donghyeon; Li, Xujiao; Gonçalves, Mariana C M; Vyas, Diwakar; Adesogan, Adegbola T

    2017-06-01

    Forages are usually inoculated with homofermentative and facultative heterofermentative lactic acid bacteria (LAB) to enhance lactic acid fermentation of forages, but effects of such inoculants on silage quality and the performance of dairy cows are unclear. Therefore, we conducted a meta-analysis to examine the effects of LAB inoculation on silage quality and preservation and the performance of dairy cows. A second objective was to examine the factors affecting the response to silage inoculation with LAB. The studies that met the selection criteria included 130 articles that examined the effects of LAB inoculation on silage quality and 31 articles that investigated dairy cow performance responses. The magnitude of the effect (effect size) was evaluated using raw mean differences (RMD) between inoculated and uninoculated treatments. Heterogeneity was explored by meta-regression and subgroup analysis using forage type, LAB species, LAB application rate, and silo scale (laboratory or farm-scale) as covariates for the silage quality response and forage type, LAB species, diet type [total mixed ration (TMR) or non-TMR], and the level of milk yield of the control cows as covariates for the performance responses. Inoculation with LAB (≥10 5 cfu/g as fed) markedly increased silage fermentation and dry matter recovery in temperate and tropical grasses, alfalfa, and other legumes. However, inoculation did not improve the fermentation of corn, sorghum, or sugarcane silages. Inoculation with LAB reduced clostridia and mold growth, butyric acid production, and ammonia-nitrogen in all silages, but it had no effect on aerobic stability. Silage inoculation (≥10 5 cfu/g as fed) increased milk yield and the response had low heterogeneity. However, inoculation had no effect on diet digestibility and feed efficiency. Inoculation with LAB improved the fermentation of grass and legume silages and the performance of dairy cows but did not affect the fermentation of corn, sorghum, and sugar cane silages or the aerobic stability of any silage. Further research is needed to elucidate how silage inoculated with homofermentative and facultative heterofermentative LAB improves the performance of dairy cows. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  17. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaobao; Zhou, Chuncai; Li, Peng

    Research highlights: {yields} Short antimicrobial peptides with nine and eleven residues were developed. {yields} These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. {yields} These peptides exhibit high stability in the presence of salts, and low cytotoxicity. {yields} These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested formore » their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 {mu}g ml{sup -1} against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 {mu}g ml{sup -1} against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 {mu}g ml{sup -1}).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.« less

  18. Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78-xB6Gax (x = 0-1.0) ribbons

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzheng; Zhong, Minglong; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Quan, Qichen; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen

    2017-08-01

    The Ce17Fe78-xB6Gax (x=0-1.0) ribbons were fabricated by a melt-spinning technique in order to study the mechanism of the valence variation of Ce and their magnetic properties as well as improve the thermal stability of Ce-based rare earth permanent magnets. The systematic investigations of the Ce17Fe78-xB6Gax (x=0-1.0) alloys show that the room-temperature coercivity increases significantly from 352 kA/m at x = 0 to 492 kA/m at x = 1.0. The Curie temperature (Tc) increases monotonically from 424.5 K to 433.6 K, and the temperature coefficients of remanence (α) and coercivity (β) of the ribbons are better off from -0.56 %/K, -0.75 %/K for x = 0 to -0.45 %/K, -0.65 %/K for x = 0.75 in the temperature range of 300-400 K, respectively. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield than fluorescence yield as Ce has a high affinity with oxygen. The weight of Ce3+ increases while the weight of Ce4+ decreases in Ga-added alloys. The refined grain size and a more uniform microstructure are mainly attributed to the improved magnetic properties and thermal stability with Ga doping. This paper may serve as a reference for further developing the so-called gap magnets and the effective utilization of the rare earth resources.

  19. An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid, for 64Cu radiopharmaceuticals.

    PubMed

    Cai, Hancheng; Li, Zibo; Huang, Chiun-Wei; Park, Ryan; Shahinian, Anthony H; Conti, Peter S

    2010-01-01

    Stable attachment of (64)Cu(2+) to a targeting molecule usually requires the use of a bifunctional chelator (BFC). Sarcophagine (Sar) ligands rapidly coordinate (64)Cu(2+) within the multiple macrocyclic rings comprising the cage structure under mild conditions, providing high stability in vivo. Previously, we have designed a new versatile cage-like BFC Sar ligand, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid (AmBaSar), for (64)Cu radiopharmaceuticals. Here we report the improved synthesis of AmBaSar, (64)Cu(2+) labeling conditions and its biological evaluation compared with the known BFC 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA). The AmBaSar was synthesized in four steps starting from (1,8-diamine-Sar) cobalt(III) pentachloride ([Co(DiAmSar)]Cl(5)) using an improved synthetic method. The AmBaSar was labeled with (64)Cu(2+) in pH 5.0 ammonium acetate buffer solution at room temperature, followed by analysis and purification with HPLC. The in vitro stability of (64)Cu-AmBaSar complex was evaluated in phosphate buffered saline (PBS), fetal bovine serum and mouse blood. The microPET imaging and biodistribution studies of (64)Cu-AmBaSar were performed in Balb/c mice, and the results were compared with (64)Cu-DOTA. The AmBaSar was readily prepared and characterized by MS and (1)H NMR. The radiochemical yield of (64)Cu-AmBaSar was >or=98% after 30 min of incubation at 25 degrees C. The (64)Cu-AmBaSar complex was analyzed and purified by HPLC with a retention time of 17.9 min. The radiochemical purity of (64)Cu-AmBaSar was more than 97% after 26 h of incubation in PBS or serum. The biological evaluation of (64)Cu-AmBaSar in normal mouse demonstrated renal clearance as the primary mode of excretion, with improved stability in vivo compared to (64)Cu-DOTA. The new cage-like BFC AmBaSar was prepared using a simplified synthetic method. The (64)Cu-AmBaSar complex could be obtained rapidly with high radiochemical yield (>/=98%) under mild conditions. In vitro and in vivo evaluation of AmBaSar demonstrated its promising potential for preparation of (64)Cu radiopharmaceuticals. Copyright 2010. Published by Elsevier Inc.

  20. Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

    DOE PAGES

    Carlson, Joseph S.; Marleau, Peter; Zarkesh, Ryan A.; ...

    2017-06-20

    A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicatedmore » improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. As a result, optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir 3+, respectively.« less

  1. An Overview of NSTX Research Facility and Recent Experimental Results

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2006-10-01

    The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.

  2. Modeling of Detached Solidification

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.; Wilcox, William R.; Popov, Dmitri

    1997-01-01

    Our long term goal is to develop techniques to achieve detached solidification reliably and reproducibly, in order to produce crystals with fewer defects. To achieve this goal it is necessary to understand thoroughly the physics of detached solidification. It was the primary objective of the current project to make progress toward this complete understanding. 'Me products of this grant are attached. These include 4 papers and a preliminary survey of the observations of detached solidification in space. We have successfully modeled steady state detached solidification, examined the stability of detachment, and determined the influence of buoyancy-driven convection under different conditions. Directional solidification in microgravity has often led to ingots that grew with little or no contact with the ampoule wall. When this occurred, crystallographic perfection was usually greatly improved -- often by several orders of magnitude. Indeed, under the Soviet microgravity program the major objective was to achieve detached solidification with its resulting improvement in perfection and properties. Unfortunately, until recently the true mechanisms underlying detached solidification were unknown. As a consequence, flight experiments yielded erratic results. Within the past three years, we have developed a new theoretical model that explains many of the flight results. This model gives rise to predictions of the conditions required to yield detached solidification.

  3. Taking Advantage of Disorder: Small-Molecule Organic Glasses for Radiation Detection and Particle Discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph S.; Marleau, Peter; Zarkesh, Ryan A.

    A series of fluorescent silyl-fluorene molecules were synthesized and studied with respect to their photophysical properties and response toward ionizing neutron and gamma-ray radiation. Optically transparent and stable organic glasses were prepared from these materials using a bulk melt-casting procedure. The prepared organic glass monoliths provided fluorescence quantum yields and radiation detection properties exceeding the highest-performing benchmark materials such as solution-grown trans-stilbene crystals. Co-melts based on blends of two different glass-forming compounds were prepared with the goal of enhancing the stability of the amorphous state. Accelerated aging experiments on co-melt mixtures ranging from 0% to 100% of each component indicatedmore » improved resistance to recrystallization in the glass blends, able to remain fully amorphous for >1 month at 60 °C. Secondary dopants comprising singlet fluorophores or iridium organometallic compounds provided further improved detection efficiency, as evaluated by light yield and neutron/gamma particle discrimination measurements. As a result, optimized singlet and triplet doping levels were determined to be 0.05 wt % 1,4-bis(2-methylstyryl)benzene singlet fluorophore and 0.28 wt % Ir 3+, respectively.« less

  4. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    PubMed

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    PubMed

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  6. Root adaptations to soils with low fertility and aluminium toxicity

    PubMed Central

    Rao, Idupulapati M.; Miles, John W.; Beebe, Stephen E.; Horst, Walter J.

    2016-01-01

    Background Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. Scope In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Conclusions Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop–livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability. PMID:27255099

  7. Improvement of bias-stability in amorphous-indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y{sub 2}O{sub 3} passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sungjin; Mativenga, Mallory; Kim, Youngoo

    2014-08-04

    We demonstrate back channel improvement of back-channel-etch amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors by using solution-processed yttrium oxide (Y{sub 2}O{sub 3}) passivation. Two different solvents, which are acetonitrile (35%) + ethylene glycol (65%), solvent A and deionized water, solvent B are investigated for the spin-on process of the Y{sub 2}O{sub 3} passivation—performed after patterning source/drain (S/D) Mo electrodes by a conventional HNO{sub 3}-based wet-etch process. Both solvents yield devices with good performance but those passivated by using solvent B exhibit better light and bias stability. Presence of yttrium at the a-IGZO back interface, where it occupies metal vacancy sites, is confirmed by X-ray photoelectronmore » spectroscopy. The passivation effect of yttrium is more significant when solvent A is used because of the existence of more metal vacancies, given that the alcohol (65% ethylene glycol) in solvent A may dissolve the metal oxide (a-IGZO) through the formation of alkoxides and water.« less

  8. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOEpatents

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  9. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  10. Stope Stability Assessment and Effect of Horizontal to Vertical Stress Ratio on the Yielding and Relaxation Zones Around Underground Open Stopes Using Empirical and Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Sepehri, Mohammadali; Apel, Derek; Liu, Wei

    2017-09-01

    Predicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio "k" on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.

  11. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more conservative than those yielded with the infinite slope stability model. The sensitivity of AUCROC to variations in the geohydraulic parameters remains small as long as the calculated degree of saturation of the soils is sufficient to result in the prediction of a significant amount of landslide release pixels. Due to the poor sensitivity of AUCROC to variations of the geotechnical and geohydraulic parameters it is hard to optimize the parameters by means of statistics. Instead, the results produced with many different combinations of parameters correspond reasonably well with the distribution of the observed landslide release areas, even though they vary considerably in terms of their conservativeness. Considering the uncertainty inherent in all geotechnical and geohydraulic data, and the impossibility to capture the spatial distribution of the parameters by means of laboratory tests in sufficient detail, we conclude that landslide susceptibility maps yielded by catchment-scale physically-based models should not be interpreted in absolute terms. Building on the assumption that our findings are generally valid, we suggest that efforts to develop better strategies for dealing with the uncertainties in the spatial variation of the key parameters should be given priority in future slope stability modelling efforts.

  12. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    NASA Astrophysics Data System (ADS)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  13. Better conditions for mammalian in vitro splicing provided by acetate and glutamate as potassium counterions

    PubMed Central

    Reichert, Vienna; Moore, Melissa J.

    2000-01-01

    We demonstrate here that replacing potassium chloride (KCl) with potassium acetate (KAc) or potassium glutamate (KGlu) routinely enhances the yield of RNA intermediates and products obtained from in vitro splicing reactions performed in HeLa cell nuclear extract. This effect was reproducibly observed with multiple splicing substrates. The enhanced yields are at least partially due to stabilization of splicing precursors and products in the KAc and KGlu reactions. This stabilization relative to KCl reactions was greatest with KGlu and was observed over an extended potassium concentration range. The RNA stability differences could not be attributed to heavy metal contamination of the KCl, since ultrapure preparations of this salt yielded similar results. After testing various methods for altering the salts, we found that substitution of KAc or KGlu for KCl and MgAc2 for MgCl2 in splicing reactions is the simplest and most effective. Since the conditions defined here more closely mimic in vivo ionic concentrations, they may permit the study of more weakly spliced substrates, as well as facilitate more detailed analyses of spliceosome structure and function. PMID:10606638

  14. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi.

    PubMed

    Ansari, M A; Butt, T M

    2011-06-01

    To determine the stability and conidial yield of two strains of the entomopathogenic fungus Metarhizium anisopliae and one strain of M. brunneum, being developed for the control of insect pests. The conidial yields and the shelf-life of the conidia of two commercially viable strains of M. anisopliae V275 (=F52) and ARSEF 4556 and one strain of M. brunneum (ARSEF 3297) were determined after harvesting conidia from in vitro subcultures on Sabouraud dextrose agar (SDA) and broken basmati rice. The strains were stable and showed no decline in virulence against Tenebrio molitor, even when subcultured successively 12 times on SDA. Conidia-bound Pr1 protease activity decreased in conidia harvested from SDA and mycosed cadavers after the 1st subculture, but increased in conidia produced on rice. The C:N ratio of conidia from mycosed cadavers was lower than that of conidia from rice or SDA. Irrespective of the number of subcultures, strain ARSEF 4556 produced significantly higher conidial yields than ARSEF 3297 and V275. The 12th subculture of V275 and ARSEF 3297 produced the lowest conidial yield. Shelf-life studies showed that conidia of strain ARSEF 4556 had a higher conidial viability than V275 and ARSEF 3297 after 4 months, stored at 4°C. The current study shows that determining strain stability and conidial yield through successive subculturing is an essential component for selecting the best strain for commercial purposes.   This is the first study to compare quality control parameters in the production of conidia on rice, and it shows that the level of Pr1 is comparatively high for inoculum produced on rice. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study

    PubMed Central

    Rüger, Matthias; Sellei, Richard M.; Stoffel, Marcus; von Rüden, Christian

    2015-01-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw–bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw–bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability. PMID:26835201

  16. The Effect of Polymethyl Methacrylate Augmentation on the Primary Stability of Cannulated Bone Screws in an Anterolateral Plate in Osteoporotic Vertebrae: A Human Cadaver Study.

    PubMed

    Rüger, Matthias; Sellei, Richard M; Stoffel, Marcus; von Rüden, Christian

    2016-02-01

    Study Design Cohort study. Objective Expandable anterolateral plates facilitate the reduction of posttraumatic deformities of thoracolumbar spine injuries and are commonly used in cases of unstable injuries or compromised bone quality. In this in vitro study, the craniocaudal yield load of the osseous fixation of an anterior angular stable plate fixation system and the effect of polymethyl methacrylate (PMMA) screw augmentation on the primary stability of the screw-bone interface during kyphosis reduction was evaluated in 12 osteoporotic human thoracolumbar vertebrae. Methods The anterolateral stabilization device used for this study is comprised of two swiveling flanges and an expandable midsection. It facilitates the controlled reduction of kyphotic deformities in situ with a geared distractor. Single flanges were attached to 12 thoracolumbar vertebrae. Six specimens were augmented with PMMA by means of cannulated bone screws. The constructs were subjected to static, displacement-controlled craniocaudal loading to failure in a servohydraulic testing machine. Results The uncemented screws cut out at a mean 393 ± 66 N, whereas the cemented screws showed significantly higher yield load of 966 ± 166 N (p < 0.02). We detected no significant correlation between bone mineral density and yield load in this setting. Conclusion Our results indicate that PMMA augmentation is an effective method to increase two- to threefold the primary stability of the screw-bone interface of an anterolateral spine stabilization system in osteoporotic bone. We recommend it in cases of severely compromised bone quality to reduce the risk of screw loosening during initial kyphosis correction and to increase long-term construct stability.

  17. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch

    2010-12-01

    Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

  18. Micellized tris(bipyridine)ruthenium catalysts affording preparative amounts of hydrated electrons with a green light-emitting diode.

    PubMed

    Naumann, Robert; Lehmann, Florian; Goez, Martin

    2018-05-16

    We have explored alkyl substitution of the ligands as a means to improve the performance of the title complexes in photoredox catalytic systems that produce synthetically useable amounts of hydrated electrons through photon pooling. Despite generating a superreductant, these electron sources only consume the bioavailable ascorbate and are driven by a green light-emitting diode (LED). The substitutions influence the catalyst activity through the quenching and recombination rates across the micelle-water interface, and the photoionization quantum yield. Laser flash photolysis yields comprehensive information on all these processes and allows quantitative predictions of the activity observed in LED kinetics, but the latter provides the only access to the catalyst stability under illumination on the timescale of the syntheses. The homoleptic complex with dimethylbipyridine ligands emerges as the optimum that combines an activity twice as high with an undiminished stability in relation to the parent compound. With this complex, we have effected dehalogenations of alkyl and aryl chlorides and fluorides, hydrogenations of carbon-carbon double bonds, and self- as well as cross-couplings. All the substrates employed are impervious to ordinary photoredox catalysts but present no problems to the hydrated electron as a super-reductant. A particularly attractive application is selective deuteration with high isotopic purity, which is achieved simply by using heavy water as the solvent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Crosslinked plastic scintillators: a new detection system for radioactivity measurement in organic and aggressive media.

    PubMed

    Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F

    2014-12-10

    The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.

  2. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    PubMed

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  3. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    PubMed

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  4. Large scale synthesis of α-Si3N4 nanowires through a kinetically favored chemical vapour deposition process

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Zhang, Xiaoguang; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Min, Xin

    2018-01-01

    Understanding the kinetic barrier and driving force for crystal nucleation and growth is decisive for the synthesis of nanowires with controllable yield and morphology. In this research, we developed an effective reaction system to synthesize very large scale α-Si3N4 nanowires (hundreds of milligrams) and carried out a comparative study to characterize the kinetic influence of gas precursor supersaturation and liquid metal catalyst. The phase composition, morphology, microstructure and photoluminescence properties of the as-synthesized products were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and room temperature photoluminescence measurement. The yield of the products not only relates to the reaction temperature (thermodynamic condition) but also to the distribution of gas precursors (kinetic condition). As revealed in this research, by controlling the gas diffusion process, the yield of the nanowire products could be greatly improved. The experimental results indicate that the supersaturation is the dominant factor in the as-designed system rather than the catalyst. With excellent non-flammability and high thermal stability, the large scale α-Si3N4 products would have potential applications to the improvement of strength of high temperature ceramic composites. The photoluminescence spectrum of the α-Si3N4 shows a blue shift which could be valued for future applications in blue-green emitting devices. There is no doubt that the large scale products are the base of these applications.

  5. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    PubMed

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.

  6. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel.

    PubMed

    Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu

    2014-07-01

    In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D.

    PubMed

    Damnjanović, Jasmina; Nakano, Hideo; Iwasaki, Yugo

    2014-04-01

    Supplementary phosphatidylinositol (PI) was shown to improve lipid metabolism in animals, thus it is interesting for pharmaceutical and nutritional applications. Homogenous PI can be produced in transphosphatidylation of phosphatidylcholine (PC) with myo-inositol catalyzed by phospholipase D (PLD). Only bacterial enzymes able to catalyze PI synthesis are Streptomyces antibioticus PLD (SaPLD) variants, among which DYR (W187D/Y191Y/Y385R) has the best kinetic profile. Increase in PI yield is possible by providing excess of solvated myo-inositol, which is achievable at high temperatures due to its highly temperature-dependent solubility. However, high-temperature PI synthesis requires the thermostable PLD. Previous site-directed combinatorial mutagenesis at the residues of DYR having high B-factor yielded the most improved variant, D40H/T291Y DYR, obtained by the combination of two selected mutations. D40 and T291 are located within dynamic surface loops, D37-G45 (termed D40 loop) and G273-T313. Thus, in this work, thermostabilization of DYR SaPLD was attempted by rational design based on deletion of the D40 loop, generating two variants, Δ37-45 DYR and Δ38-46 DYR PLD. Δ38-46 DYR showed highest thermostability as its activity half-life at 70°C proved 11.7 and 8.0 times longer than that of the DYR and Δ37-45 DYR, respectively. Studies on molecular dynamics predicted Δ38-46 DYR to have the least average RMSD change as temperature dramatically increases. At 60 and 70°C, both mutants synthesized PI in a twofold higher yield compared to the DYR, while at the same time produced less of the hydrolytic side-product, phosphatidic acid. © 2013 Wiley Periodicals, Inc.

  8. Hydrogen doping in HfO{sub 2} resistance change random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.; Magyari-Köpe, B.; Nishi, Y.

    2016-01-25

    The structures and energies of hydrogen-doped monoclinic hafnium dioxide were calculated using density-functional theory. The electronic interactions are described within the LDA + U formalism, where on-site Coulomb corrections are applied to the 5d orbital electrons of Hf atoms and 2p orbital electrons of the O atoms. The effects of charge state, defect-defect interactions, and hydrogenation are investigated and compared with experiment. It is found that hydrogenation of HfO{sub 2} resistance-change random access memory devices energetically stabilizes the formation of oxygen vacancies and conductive vacancy filaments through multiple mechanisms, leading to improved switching characteristic and device yield.

  9. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  10. Measurement of the B0 ---> Psi (2S) Lambda0 Branching Fraction on BaBar at the Stanford Linear Accelerator Center (Abstract Only)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas, Alexander Raymond, Jr.; /Colorado U.

    2005-11-16

    The decays of B{sup 0} mesons to hadronic final states remains a rich area of physics on BaBar. Not only do the c{bar c}-K final states (e.g. B{sup 0} {yields} {psi}(2S)K{sup 0}) allow for the measurement of CP Violation, but the branching fractions provide a sensitive test of the theoretical methods used to account for low energy non-perturbative QCD effects. They present the measurement of the branching fraction for the decay B{sup 0} {yields} {psi}(2S)K{sub s}. The data set consists of 88.8 {+-} 1.0 x 10{sup 6} B{bar b} pairs collected on the e{sup +}e{sup -} {yields} {Upsilon}(4S) resonance onmore » BaBar/PEP-II at the Stanford Linear Accelerator Center (SLAC). This analysis features a modification of present cuts, with respect to those published so far on BaBar, on the K{sub S} {yields} {pi}{sup +}{pi}{sup -} and {psi}(2S) {yields} J/{psi}{pi}{sup +}{pi}{sup -} which aim at reducing the background while keeping the signal intact. Various data selection criteria are studied for the lepton modes (e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -}) of the J/{psi} and {psi}(2S) to improve signal purity as well as study the stability of the resultant branching fractions.« less

  11. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4.

    PubMed

    Chen, Min-Yi; Lin, Jin-Tai; Hsu, Chia-Shuo; Chang, Chung-Kai; Chiu, Ching-Wen; Chen, Hao Ming; Chou, Pi-Tai

    2018-05-01

    Colloidal perovskite quantum dots represent one of the most promising materials for applications in solar cells and photoluminescences. These devices require a low density of crystal defects and a high yield of photogenerated carriers, which are difficult to realize in tin-halide perovskite because of the intrinsic instability of tin during nucleation. Here, an enhancement in the luminescent property of tin-halide perovskite nanoplates (TPNPs) that are composed of strongly coupled layered structures with the chemical formula of PEA 2 SnX 4 (PEA = C 6 H 5 (CH 2 ) 2 NH 3 , X = Br, I) is reported. TPNPs (X = I) show an emission at a wavelength of 640 nm, with high quantum yield of 6.40 ± 0.14% and full width at half maximum (FWHM) as small as 36 nm. The presence of aliphatic carboxylic acid is found to play a key role in reducing the tin perovskite defect density, which significantly improves the emission intensity and stability of TPNPs. Upon mixing iodo- and bromo- precursors, the emission wavelength is successfully tuned from 640 nm (PEA 2 SnI 4 ) to 550 nm (PEA 2 SnBr 4 ), with a corresponding emission quantum yield and FWHM of 0.16-6.40% and 36-80 nm, respectively. The results demonstrate a major advance for the emission yield and tunability of tin-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biochar and Glomus caledonium Influence Cd Accumulation of Upland Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii Hance)

    PubMed Central

    Hu, Junli; Wu, Fuyong; Wu, Shengchun; Lam, Cheung Lung; Lin, Xiangui; Wong, Ming Hung

    2014-01-01

    Both biochar application and mycorrhizal inoculation have been proposed to improve plant growth and alter bioaccumulation of toxic metals. A greenhouse pot trial was conducted to investigate growth and Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance) in a Cd-contaminated soil inoculated with Glomus caledonium and/or applied with biochar. Compared with the monocultural control, intercropping with stonecrop (IS) decreased kangkong Cd acquisition via rhizosphere competition, and also decreased kangkong yield. Gc inoculation (+M) accelerated growth and Cd acquisition of stonecrop, and hence resulted in further decreases in kangkong Cd acquisition. Regardless of IS and +M, biochar addition (+B) increased kangkong yield via elevating soil available P, and decreased soil Cd phytoavailability and kangkong Cd concentration via increasing soil pH. Compared with the control, the treatment of IS + M + B had a substantially higher kangkong yield (+25.5%) with a lower Cd concentration (−62.7%). Gc generated additive effects on soil alkalinization and Cd stabilization to biochar, causing lower DTPA-extractable (phytoavailable) Cd concentrations and post-harvest transfer risks. PMID:24728157

  13. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.

    PubMed

    Laosiripojana, N; Kiatkittipong, W; Sutthisripok, W; Assabumrungrat, S

    2010-11-01

    The transesterification and esterification of palm products i.e. crude palm oil (CPO), refined palm oil (RPO) and palm fatty acid distillate (PFAD) under near-critical methanol in the presence of synthesized SO(4)-ZrO(2), WO(3)-ZrO(2) and TiO(2)-ZrO(2) (with various sulfur- and tungsten loadings, Ti/Zr ratios, and calcination temperatures) were studied. Among them, the reaction of RPO with 20%WO(3)-ZrO(2) (calcined at 800 degrees C) enhanced the highest fatty acid methyl ester (FAME) yield with greatest stability after several reaction cycles; furthermore, it required shorter time, lower temperature and less amount of methanol compared to the reactions without catalyst. These benefits were related to the high acid-site density and tetragonal phase formation of synthesized WO(3)-ZrO(2). For further improvement, the addition of toluene as co-solvent considerably reduced the requirement of methanol to maximize FAME yield, while the addition of molecular sieve along with catalyst significantly increased FAME yield from PFAD and CPO due to the inhibition of hydrolysis reaction. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment.

    PubMed

    Shen, Fei; Li, Hanguang; Wu, Xiaoyu; Wang, Yuanxiu; Zhang, Qinghua

    2018-02-01

    In this study, rice straw (RS) and pig manure (PM) mixtures with or without bio-pretreatment were used as the substrates and digested in a 9 L of anaerobic reactor at Organic loading rates (OLRs) of 0.4-3.1 kg COD/(m 3  d). The volumetric methane production rate (VMPR), methane yield and anaerobic stability were comparatively investigated. The results showed the co-anaerobic digestion processes of RS and PM mixture after biological pretreatment were very stable at OLRs of 0.4-2.5 kg COD/(m 3  d), and its optimal VMPR and methane yield could reach 0.64 L CH 4 /(L d) and 0.4557 L CH 4 /g COD removed at OLR of 2.5 kg COD/(m 3  d), which were 62.4% and 37.8% higher than those of the control under the same OLR condition. This study indicated the biological pretreatment with a cellulolytic microbial consortium own great potential in improving the methane yield and productivity of RS and PM wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of inoculum to substrate ratio and co-digestion with bagasse on biogas production of fish waste.

    PubMed

    Xu, Jie; Mustafa, Ahmed M; Sheng, Kuichuan

    2017-10-01

    To overcome the biogas inhibition in anaerobic digestion of fish waste (FW), effects of inoculum to substrate ratio (I/S, based on VS) and co-digestion with bagasse on biogas production of FW were studied in batch reactors. I/S value was from 0.95 to 2.55, bagasse content in co-digestion (based on VS) was 25%, 50% and 75%. The highest biogas yield (433.4 mL/gVS) with 73.34% methane content was obtained at an I/S value of 2.19 in mono-digestion of FW; the biogas production was inhibited and the methane content was below 70% when I/S was below 1.5. Co-digestion of FW and bagasse could improve the stability and biogas potential, also reducing the time required to obtain 70% of the total biogas production, although the total biogas yield and methane content decreased with the increase in bagasse content in co-digestion. Biogas yield of 409.5 mL/gVS was obtained in co-digestion of 75% FW and 25% bagasse; simultaneously 78.46% of the total biogas production was achieved after 10 days of digestion.

  16. Evaluation of salt, polyphosphates and their blends at different levels on physicochemical properties of buffalo meat and patties.

    PubMed

    Anjaneyulu, A S; Sharma, N; Kondaiah, N

    1989-01-01

    The effects of sodium pyrophosphate (SPP), sodium tripolyphosphate (STPP), sodium hexametaphosphate (SHMP), sodium acid pyrophosphate (SAPP) and their blends at different levels (0·3, 0·5 and 0·7%), along with 2% sodium chloride on certain quality parameters of buffalo meat and patties were evaluated. The SPP, STPP and phosphate blends significantly increased pH, water-holding capacity (WHC), emulsifying capacity (EC), extractability of salt soluble proteins (SSP), colour of ground meat, decreased cooking loss (CL), improved emulsion stability (ES) and enhanced yield, texture and moisture retention of cooked patties. Compared to these phosphates, SAPP and SHMP had significantly poorer effects on improving the quality of meat and patties. The order of effectiveness of phosphates was SPP > STPP > SHMP. In general, pH, WHC, SSP, ES, yield and moisture content of patties increased progressively with increasing level of phosphate while CL decreased. Among blends containing two polyphosphates, those of 90% SPP + 10% SHMP and 75% SPP + 25% STPP were relatively more effective. A phosphate blend consisting of 65% SPP, 17·5% STPP and 17·5% SAPP was equally effective as that of SPP in improving the functionality of hot and chilled meat and had the advantage of reducing the amount of sodium by 3%. Copyright © 1989. Published by Elsevier Ltd.

  17. ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants

    PubMed Central

    Wang, Baomei; Li, Zhaoxia; Ran, Qijun; Li, Peng; Peng, Zhenghua; Zhang, Juren

    2018-01-01

    ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response. PMID:29896208

  18. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    NASA Astrophysics Data System (ADS)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  19. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  20. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    PubMed Central

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability. PMID:28084304

  1. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    PubMed

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  2. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    NASA Astrophysics Data System (ADS)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  3. Video image analysis in the Australian meat industry - precision and accuracy of predicting lean meat yield in lamb carcasses.

    PubMed

    Hopkins, D L; Safari, E; Thompson, J M; Smith, C R

    2004-06-01

    A wide selection of lamb types of mixed sex (ewes and wethers) were slaughtered at a commercial abattoir and during this process images of 360 carcasses were obtained online using the VIAScan® system developed by Meat and Livestock Australia. Soft tissue depth at the GR site (thickness of tissue over the 12th rib 110 mm from the midline) was measured by an abattoir employee using the AUS-MEAT sheep probe (PGR). Another measure of this thickness was taken in the chiller using a GR knife (NGR). Each carcass was subsequently broken down to a range of trimmed boneless retail cuts and the lean meat yield determined. The current industry model for predicting meat yield uses hot carcass weight (HCW) and tissue depth at the GR site. A low level of accuracy and precision was found when HCW and PGR were used to predict lean meat yield (R(2)=0.19, r.s.d.=2.80%), which could be improved markedly when PGR was replaced by NGR (R(2)=0.41, r.s.d.=2.39%). If the GR measures were replaced by 8 VIAScan® measures then greater prediction accuracy could be achieved (R(2)=0.52, r.s.d.=2.17%). A similar result was achieved when the model was based on principal components (PCs) computed from the 8 VIAScan® measures (R(2)=0.52, r.s.d.=2.17%). The use of PCs also improved the stability of the model compared to a regression model based on HCW and NGR. The transportability of the models was tested by randomly dividing the data set and comparing coefficients and the level of accuracy and precision. Those models based on PCs were superior to those based on regression. It is demonstrated that with the appropriate modeling the VIAScan® system offers a workable method for predicting lean meat yield automatically.

  4. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9.

    PubMed

    Nguyen, Phuong-Diem; Cong, Vu Thanh; Baek, Changyoon; Min, Junhong

    2017-03-15

    This study introduces the double-ligands stabilizing gold nanoclusters and the fabrication of gold nanocluster/graphene nanocomplex as a "turn-on" fluorescent probe for the detection of cancer-related enzyme matrix metalloproteinase-9. A facile, one-step approach was developed for the synthesis of fluorescent gold nanoclusters using peptides and mercaptoundecanoic acid as co-templating ligands. The peptide was designed to possess a metalloproteinase-9 cleavage site and to act not only as a stabilizer but also as a targeting ligand for the enzyme detection. The prepared gold nanoclusters show an intense red fluorescence with a broad adsorption spectrum. In the presence of the enzyme, due to the excellent quenching properties and the negligible background of graphene oxide, the developed peptide-gold nanocluster/graphene nanocomplex yielded an intense "turn-on" fluorescent response, which strongly correlated with the enzyme concentration. The limit of detection of the nanocomplex was 0.15nM. The sensor was successfully applied for "turn-on" detection of metalloproteinase-9 secreted from human breast adenocarcinoma MCF-7 cells with high sensitivity, selectivity, significant improvement in terms of detection time and simplicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity.

    PubMed

    Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu

    2015-06-01

    The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Projecting climate change impacts on the stability of productivities of maize and soybean in terms of probability of concurrent failure

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Iizumi, T.

    2012-12-01

    The globalization of the trade of food commodities has arranged agricultural production areas in the world. Current main production areas of maize and soybean, which are major cereal crops for human food and animal diet, are localized in the United States, China and Brazil. The amounts of production of maize and soybean from these three countries reached 70% and 74% of total production in the world in 2009, respectively. These three countries are hubs for the world food supply network. Simultaneous external disturbances to the localized hubs can make the network system unstable. Here, we projected the changes in stability of the productivities of maize and soybean under climate change. We used a process-based model for evaluating crop yield at a large scale for maize and soybean. The parameters are determined based on the historical agricultural statistics issued by administrative agencies during a period of 1981 to 2006 and a reanalysis data JRA25 provided by Japan Meteorological Agency. We used the climate change scenarios from outputs of MIROC5.0 simulations. We projected the time changes in maize and soybean yields of three countries under four climate change scenarios: RCP 2.6, 4.5, 6.0 and 8.5 for a period of 2010 to 2070. The significant declining trend of maize yield with time was projected in RCP 8.5 for all countries, while the yield appeared to decrease after 2050 in other RCP scenarios. The extents to which maize yield decrease in 2060s compared to the average over 1980 to 2006 were projected to be about 20% for the United States, 10% for Brazil and China in RCP 2.6, 4.5 and 6.0; 30% for the United States and Brazil, 40% for China in RCP 8.5. On the other hand, the projected changes in soybean yield were complicated. The projected extent to which soybean yield decrease in 2060s compared to the average over 1980 to 2006 was about 30% for the United States and Brazil and 20% for China in RCP 2.6. In RCP 4.5 and 6.0, the yield was projected to be constant or slightly increase compared to the average over 1980 to 2006 in Brazil and China, while the yield decrease by 20% in the United States. Yields of all the countries were projected to decrease up to 50% in RCP 8.5. We estimated the probability of concurrent failure, which is defined as function of the extent to which yields of three countries at a year decreased compared to the average yield over the past three years. We applied copula to measure the probability, which describe the relationship among multivariate probability distribution functions. For maize, the probability was projected to significantly increase in RCP 2.6 and 8.5, while that was projected to significantly increase only in RCP8.5 for soybean. The change in the probability was attributed to the increase of yearly yield variation and decreasing trend of yield over time. We extracted the trend component due to the improvements on agricultural technologies, therefore, the yearly variation and time trend in yield examined here can be attributed to climate change. From the sensitivity analyses, we found that the time trends in yields for maize and soybean were brought about mainly by the increase trend of mean temperature during the growing season.

  8. Fault stability under conditions of variable normal stress

    USGS Publications Warehouse

    Dieterich, J.H.; Linker, M.F.

    1992-01-01

    The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors

  9. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Lishuai; Zhang, Peipeng; Chen, Lianjun; Hao, Zhen; Sainoki, Atsushi; Mitri, Hani S.; Wang, Qingbiao

    2017-11-01

    Entry driven along goaf-side (EDG), which is the development of an entry of the next longwall panel along the goaf-side and the isolation of the entry from the goaf with a small-width yield pillar, has been widely employed in China over the past several decades . The width of such a yield pillar has a crucial effect on EDG layout in terms of the ground control, isolation effect and resource recovery rate. Based on a case study, this paper presents an approach for evaluating, designing and optimizing EDG and yield pillar by considering the results from numerical simulations and field practice. To rigorously analyze the ground stability, the numerical study begins with the simulation of goaf-side stress and ground conditions. Four global models with identical conditions, except for the width of the yield pillar, are built, and the effect of pillar width on ground stability is investigated by comparing aspects of stress distribution, failure propagation, and displacement evolution during the entire service life of the entry. Based on simulation results, the isolation effect of the pillar acquired from field practice is also considered. The suggested optimal yield pillar design is validated using a field test in the same mine. Thus, the presented numerical approach provides references and can be utilized for the evaluation, design and optimization of EDG and yield pillars under similar geological and geotechnical circumstances.

  10. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafontaine Rivera, Jimmy G.; Theisen, Matthew K.; Chen, Po-Wei

    The product formation yield (product formed per unit substrate consumed) is often the most important performance indicator in metabolic engineering. Until now, the actual yield cannot be predicted, but it can be bounded by its maximum theoretical value. The maximum theoretical yield is calculated by considering the stoichiometry of the pathways and cofactor regeneration involved. Here in this paper we found that in many cases, dynamic stability becomes an issue when excessive pathway flux is drawn to a product. This constraint reduces the yield and renders the maximal theoretical yield too loose to be predictive. We propose a more realisticmore » quantity, defined as the kinetically accessible yield (KAY) to predict the maximum accessible yield for a given flux alteration. KAY is either determined by the point of instability, beyond which steady states become unstable and disappear, or a local maximum before becoming unstable. Thus, KAY is the maximum flux that can be redirected for a given metabolic engineering strategy without losing stability. Strictly speaking, calculation of KAY requires complete kinetic information. With limited or no kinetic information, an Ensemble Modeling strategy can be used to determine a range of likely values for KAY, including an average prediction. We first apply the KAY concept with a toy model to demonstrate the principle of kinetic limitations on yield. We then used a full-scale E. coli model (193 reactions, 153 metabolites) and this approach was successful in E. coli for predicting production of isobutanol: the calculated KAY values are consistent with experimental data for three genotypes previously published.« less

  12. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  13. Integrated Approach To Producing High-Purity Trehalose from Maltose by the Yeast Yarrowia lipolytica Displaying Trehalose Synthase (TreS) on the Cell Surface.

    PubMed

    Li, Ning; Wang, Hengwei; Li, Lijuan; Cheng, Huiling; Liu, Dawen; Cheng, Hairong; Deng, Zixin

    2016-08-10

    An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.

  14. Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.

    PubMed

    Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos

    2013-05-01

    The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion

    PubMed Central

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2014-01-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  16. Wheat yield and yield stability of eight dryland crop rotations

    USDA-ARS?s Scientific Manuscript database

    The winter wheat (Triticum aestivum L.)-fallow (WF) dryland production system employed in the Central Great Plains has evolved in the past 40 years to include a diversity of other crops, with a reduction in fallow frequency. Wheat remains the base crop for essentially all cropping systems. Decisions...

  17. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  18. A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    NASA Technical Reports Server (NTRS)

    Ahmed, Shaffiq; Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.

    1987-01-01

    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Wang, Yan; Luo, Xiaozhou

    Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. In this paper, we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a librarymore » of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ~9 °C was identified. Finally, this result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.« less

  20. Comparative study of thermostability and ester synthesis ability of free and immobilized lipases on cross linked silica gel.

    PubMed

    Kumari, Annapurna; Mahapatra, Paramita; Kumar, Garlapati Vijay; Banerjee, Rintu

    2008-06-01

    A novel support has been utilized for immobilization of lipase, which was prepared by amination of silica with ethanolamine followed by cross linking with glutaraldehyde. Lipases from Rhizopus oryzae 3562 and Enterobacter aerogenes were immobilized on activated silica gel, where they retained 60 and 50% of respective original activity. The thermal stability of the immobilized lipases was significantly improved in comparison to the free forms while the pH stability remained unchanged. E. aerogenes and R. oryzae 3562 lipases retained 75 and 97% of respective initial activity on incubation at 90 degrees C, whereas both the free forms became inactive at this temperature. The conversion yield of isoamyl acetate was found to be higher with the immobilized fungal (90 vs. 21%) and bacterial lipases (64 vs. 18%) than the respective free forms. Immobilized R. oryzae 3562 lipases retained 50% activity for isoamyl acetate synthesis up to ten cycles whereas it was eight cycles for E. aerogenes.

  1. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  2. Accelerated curing and strength-modulus correlation for lime-stabilized soils : final report, January 2010.

    DOT National Transportation Integrated Search

    2010-01-01

    This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...

  3. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  4. Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites

    DOE PAGES

    Lafontaine Rivera, Jimmy G.; Theisen, Matthew K.; Chen, Po-Wei; ...

    2017-04-05

    The product formation yield (product formed per unit substrate consumed) is often the most important performance indicator in metabolic engineering. Until now, the actual yield cannot be predicted, but it can be bounded by its maximum theoretical value. The maximum theoretical yield is calculated by considering the stoichiometry of the pathways and cofactor regeneration involved. Here in this paper we found that in many cases, dynamic stability becomes an issue when excessive pathway flux is drawn to a product. This constraint reduces the yield and renders the maximal theoretical yield too loose to be predictive. We propose a more realisticmore » quantity, defined as the kinetically accessible yield (KAY) to predict the maximum accessible yield for a given flux alteration. KAY is either determined by the point of instability, beyond which steady states become unstable and disappear, or a local maximum before becoming unstable. Thus, KAY is the maximum flux that can be redirected for a given metabolic engineering strategy without losing stability. Strictly speaking, calculation of KAY requires complete kinetic information. With limited or no kinetic information, an Ensemble Modeling strategy can be used to determine a range of likely values for KAY, including an average prediction. We first apply the KAY concept with a toy model to demonstrate the principle of kinetic limitations on yield. We then used a full-scale E. coli model (193 reactions, 153 metabolites) and this approach was successful in E. coli for predicting production of isobutanol: the calculated KAY values are consistent with experimental data for three genotypes previously published.« less

  5. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system

    PubMed Central

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-01-01

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0–15 cm soil layer and 28.93% and 66.34% in the 15–30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0–15 cm), the maximum proportion of total aggregated carbon was retained with 0.25–0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg−1). However, different forms occurred at higher levels in the 15–30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively. PMID:27812038

  6. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force.

    PubMed

    Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J

    2018-03-01

    Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.

  7. Stabilization of pH in solid-matrix hydroponic systems

    NASA Technical Reports Server (NTRS)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  8. Designed protein reveals structural determinants of extreme kinetic stability

    PubMed Central

    Broom, Aron; Ma, S. Martha; Xia, Ke; Rafalia, Hitesh; Trainor, Kyle; Colón, Wilfredo; Gosavi, Shachi; Meiering, Elizabeth M.

    2015-01-01

    The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge. PMID:26554002

  9. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these experimental evaluations are presented herein, as are recommendations for further development and follow-on investigations. Also provided as an Appendix for reference are the basic results from the previous pneumatic HSCT investigations.

  10. Oil palm frond juice as future fermentation substrate: a feasibility study.

    PubMed

    Maail, Che Mohd Hakiman Che; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities.

  11. Three-Dimensional, Inkjet-Printed Organic Transistors and Integrated Circuits with 100% Yield, High Uniformity, and Long-Term Stability.

    PubMed

    Kwon, Jimin; Takeda, Yasunori; Fukuda, Kenjiro; Cho, Kilwon; Tokito, Shizuo; Jung, Sungjune

    2016-11-22

    In this paper, we demonstrate three-dimensional (3D) integrated circuits (ICs) based on a 3D complementary organic field-effect transistor (3D-COFET). The transistor-on-transistor structure was achieved by vertically stacking a p-type OFET over an n-type OFET with a shared gate joining the two transistors, effectively halving the footprint of printed transistors. All the functional layers including organic semiconductors, source/drain/gate electrodes, and interconnection paths were fully inkjet-printed except a parylene dielectric which was deposited by chemical vapor deposition. An array of printed 3D-COFETs and their inverter logic gates comprising over 100 transistors showed 100% yield, and the uniformity and long-term stability of the device were also investigated. A full-adder circuit, the most basic computing unit, has been successfully demonstrated using nine NAND gates based on the 3D structure. The present study fulfills the essential requirements for the fabrication of organic printed complex ICs (increased transistor density, 100% yield, high uniformity, and long-term stability), and the findings can be applied to realize more complex digital/analogue ICs and intelligent devices.

  12. Identification of soybean genotypes with high stability for the Brazilian macro-region 402 via biplot analysis.

    PubMed

    Junior, E U Ramos; Brogin, R L; Godinho, V P C; Botelho, F J E; Tardin, F D; Teodoro, P E

    2017-09-27

    Biplot analysis has often been used to recommend genotypes from different crops in the presence of the genotype x environment interaction (GxE). The objective of this study was to verify the association between the AMMI and GGE biplot methods and to select soybean genotypes that simultaneously meet high grain yield and stability to the environments belonging to the Edaphoclimatic Region 402, from Soybean Cultivation Region 4 (Mid-West), which comprises the Center North and West of Mato Grosso, and the southern region of Rondônia. Grain yield of 12 soybean genotypes was evaluated in seven competition trials of soybean cultivars in the 2014/2015 harvest. Significant GxE interaction revealed the need to use methods for recommending genotypes with adaptability and yield stability. The methods were complementary regarding the recommendation of the best genotypes. The AMMI analysis recommended MG/BR46 (Conquista) (G10) widely for all environments evaluated, whereas the BRY23-55012 (G9) and BRAS11-0149 (G2) were the most indicated genotypes by the GGE biplot method. However, the methods were concordant as to Porto Velho (PV1) environment that contributed least to the GxE interaction.

  13. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.

    PubMed

    Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F

    2015-06-04

    The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO.

  14. Composite stabilizer unit

    DOEpatents

    Ebaugh, Larry R.; Sadler, Collin P.; Carter, Gary D.

    1992-01-01

    An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

  15. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether triazine greater than polyphenylether greater than C-ether greater than fluorinated polyether.

  16. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability, and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter, and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether trizine greater than polyphenyl ether greater than C-ether greater than fluorinated polyether.

  17. Nitrogen source and rate effects on furrow irrigated corn yields and NUE

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) rate studies were conducted under furrow irrigated corn (Zea mays L.) production on a silty clay soil to compare polymer-coated urea (PCU) and stabilized urea (SU; contains urease and nitrification inhibitors) effects on corn yields, plant N uptake and N use efficiency (NUE) to granular...

  18. A multiloop generalization of the circle criterion for stability margin analysis

    NASA Technical Reports Server (NTRS)

    Safonov, M. G.; Athans, M.

    1979-01-01

    In order to provide a theoretical tool suited for characterizing the stability margins of multiloop feedback systems, multiloop input-output stability results generalizing the circle stability criterion are considered. Generalized conic sectors with 'centers' and 'radii' determined by linear dynamical operators are employed to specify the stability margins as a frequency dependent convex set of modeling errors (including nonlinearities, gain variations and phase variations) which the system must be able to tolerate in each feedback loop without instability. The resulting stability criterion gives sufficient conditions for closed loop stability in the presence of frequency dependent modeling errors, even when the modeling errors occur simultaneously in all loops. The stability conditions yield an easily interpreted scalar measure of the amount by which a multiloop system exceeds, or falls short of, its stability margin specifications.

  19. Establishment of a Charge Reversal Derivatization Strategy to Improve the Ionization Efficiency of Limaprost and Investigation of the Fragmentation Patterns of Limaprost Derivatives Via Exclusive Neutral Loss and Survival Yield Method

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai

    2018-04-01

    Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.

  20. Process and formulation effects on solar thermal drum dried prune pomace

    USDA-ARS?s Scientific Manuscript database

    The processing of dried plums into prune juice and concentrate yields prune pomace as a coproduct; the pomace could potentially be utilized as a food ingredient but requires stabilization for long-term storage. Drum drying is one method that could be used to dry and stabilize prune pomace, and a dru...

  1. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  2. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Towards Intravenous Drug Delivery: Augmenting the Stability and Dispersity of Bis-Demethoxy Curcumin Analog by Bottom-Up Strategy.

    PubMed

    Francis, Arul Prakash; Ramaprabhu, Sundara; Devasena, Thiyagarajan

    2016-01-01

    Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use.

  4. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation.

    PubMed

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J

    2018-05-07

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  5. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation

    NASA Astrophysics Data System (ADS)

    Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.

    2018-05-01

    Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.

  6. Impacts of root traits and genotypic diversity in switchgrass cropping systems on biogeochemical cycling of soil carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    De Graaff, M. A.; Jastrow, J. D.; Adkins, J.; Johns, A. C.; Morris, G.; Six, J.

    2016-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt by enhancing soil C sequestration upon land-use change, particularly when grown in diverse mixtures. Here we investigated how root traits and genotypic diversity in switchgrass (Panicum virgatum) impacts yield, nitrogen (N) cycling and soil C stabilization. Owing to extensive within-species variation in root morphology and architecture among the switchgrass cultivars, we hypothesized that increasing cultivar diversity would enhance belowground niche differentiation, thereby increasing N use efficiency, yield, and ultimately soil C stabilization. Our experiment was conducted at the Fermilab National Environmental Research Park, in northeastern Illinois, USA, where we varied the level of switchgrass genotypic diversity using various local and non-local cultivars (1, 2, 4, or 6 cultivars per plot) in a replicated field trial. We found that genotypic mixtures had one-third higher biomass production than the average monoculture, and no monoculture was significantly higher yielding than the average mixture. Further, year-to-year variation in yields was reduced in the mixture of switchgrass relative to the species monocultures. Despite positive impacts of increased intraspecific diversity on biomass production, we found no effect on N use efficiency, or soil C sequestration. However there were differences among cultivars in soil C input and soil C stabilization. These differences were related to specific root length (SRL), where greater SRL was accompanied by more root-derived soil C. Our findings suggest SRL is a root trait that affects soil C input, and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.

  7. Application of nanotechnology in the treatment and diagnosis of gastrointestinal cancers: review of recent patents.

    PubMed

    Prados, Jose; Melguizo, Consolacion; Perazzoli, Gloria; Cabeza, Laura; Carrasco, Esther; Oliver, Jaime; Jiménez-Luna, Cristina; Leiva, Maria C; Ortiz, Raúl; Álvarez, Pablo J; Aranega, Antonia

    2014-01-01

    Gastrointestinal cancers remain one of the main causes of death in developed countries. The main obstacles to combating these diseases are the limitations of current diagnostic techniques and the low stability, availability, and/or specificity of pharmacological treatment. In recent years, nanotechnology has revolutionized many fields of medicine, including oncology. The association of chemotherapeutic agents with nanoparticles offers improvement in the solubility and stability of antitumor agents, avoidance of drug degradation, and reductions in therapeutic dose and toxicity, increasing drug levels in tumor tissue and decreasing them in healthy tissue. The use of specific molecules that drive nanoparticles to the tumor tissue represents a major advance in therapeutic specificity. In addition, the use of nanotechnology in contrast agents has yielded improvements in the diagnosis and the follow-up of tumors. These nanotechnologies have all been applied in gastrointestinal cancer treatment, first in vitro, and subsequently in vivo, with promising results reported in some clinical trials. A large number of patents have been generated by nanotechnology research over recent years. The objective of this paper is to review patents on the clinical use of nanoparticles for gastrointestinal cancer diagnosis and therapy and to offer an overview of the impact of nanotechnology on the management of this disease.

  8. Production of biogas from co-digestion of livestock and agricultural residues: A case study.

    PubMed

    Arhoun, Brahim; Gomez-Lahoz, Cesar; Abdala-Diaz, Roberto Teofilo; Rodriguez-Maroto, Jose Miguel; Garcia-Herruzo, Francisco; Vereda-Alonso, Carlos

    2017-07-29

    This study was undertaken to determine the possible changes in the digester yield and performance for the anaerobic co-digestion under mesophilic conditions of strawberry residues (SRs) together with pig manure (PM). The first part of this paper deals with the digestion of SR as a single substrate. For organic loading rates (OLRs) of 4.4 (g L -1 d -1 ) or less, the experimental specific biogas and methane productions are 0.588 and 0.231 L g -1 , respectively. When higher OLRs (5.5 g L -1 d -1 ) are used the digester fails due to acidification. In the second part, the co-digestion of both residues is explored using a wide variety of SR:PM ratios and OLRs of 5.5 g L -1 d -1 with good stability. Therefore, it is demonstrated that co-digestion allows the improvement of the treatment capacity as compared with SR as a single residue. The methane and biogas productions increase as the SR:PM ratio increases. It may be concluded that, when a digester works with a certain OLR, the performance for co-digestion is always better than for single substrates because the presence of PM provides a better stability and the presence of SR improves the biogas and methane production.

  9. Human blood RNA stabilization in samples collected and transported for a large biobank

    PubMed Central

    2012-01-01

    Background The Norwegian Mother and Child Cohort Study (MoBa) is a nation-wide population-based pregnancy cohort initiated in 1999, comprising more than 108.000 pregnancies recruited between 1999 and 2008. In this study we evaluated the feasibility of integrating RNA analyses into existing MoBa protocols. We compared two different blood RNA collection tube systems – the PAXgene™ Blood RNA system and the Tempus™ Blood RNA system - and assessed the effects of suboptimal blood volumes in collection tubes and of transportation of blood samples by standard mail. Endpoints to characterize the samples were RNA quality and yield, and the RNA transcript stability of selected genes. Findings High-quality RNA could be extracted from blood samples stabilized with both PAXgene and Tempus tubes. The RNA yields obtained from the blood samples collected in Tempus tubes were consistently higher than from PAXgene tubes. Higher RNA yields were obtained from cord blood (3 – 4 times) compared to adult blood with both types of tubes. Transportation of samples by standard mail had moderate effects on RNA quality and RNA transcript stability; the overall RNA quality of the transported samples was high. Some unexplained changes in gene expression were noted, which seemed to correlate with suboptimal blood volumes collected in the tubes. Temperature variations during transportation may also be of some importance. Conclusions Our results strongly suggest that special collection tubes are necessary for RNA stabilization and they should be used for establishing new biobanks. We also show that the 50,000 samples collected in the MoBa biobank provide RNA of high quality and in sufficient amounts to allow gene expression analyses for studying the association of disease with altered patterns of gene expression. PMID:22988904

  10. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  11. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.

    PubMed

    Trbojević Ivić, Jovana; Veličković, Dušan; Dimitrijević, Aleksandra; Bezbradica, Dejan; Dragačević, Vladimir; Gavrović Jankulović, Marija; Milosavić, Nenad

    2016-09-01

    Biocatalysts are a promising alternative for the production of natural flavor compounds. Candida rugosa lipase (CRL) is a particularly important biocatalyst owing to its remarkable efficiency in both hydrolysis and synthesis. However, additional stabilization is necessary for successful industrial implementation. This study presents an easy and time-saving method for immobilizing this valuable enzyme on hydroxyapatite (HAP), a biomaterial with high protein-binding capacity. Targeted immobilized CRL was obtained in high yield of ≥98%. Significant lipase stabilization was observed upon immobilization: at 60 °C, immobilized lipase (HAP-CRL) retained almost unchanged activity after 3 h, while free CRL lost 50% of its initial activity after only 30 min. The same trend was observed with tested organic solvents. Methanol and hexane had the most pronounced effect: after 3 h, only HAP-CRL was stable and active, while CRL was completely inactivated. The practical value of the prepared catalyst was tested in the synthesis of the aroma ester methyl acetate in hexane. Reaction yields were 2.6 and 52.5% for CRL and HAP-CRL respectively. This research has successfully combined an industrially prominent biocatalyst, CRL, and a biocompatible, environmentally suitable carrier, HAP, into an immobilized preparation with improved catalytic properties. The obtained CRL preparation has excellent potential for the food and flavor industries, major consumers in the global enzyme market. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    PubMed Central

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M Lucia

    2015-01-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices. PMID:27877842

  13. Dynamic and wear study of an extremely bidisperse magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Fernández Ruiz-Morón, L.; Durán, J. D. G.; Delgado, A. V.

    2015-12-01

    In this work the friction and wear properties of five magnetorheological fluids (MRFs) with varying compositions are investigated. Considering that many of the proposed applications for these fluids involve lubricated contact between mobile metal-metal or polymer-metal parts, the relationship between MR response and wear behavior appears to be of fundamental importance. One of the fluids (MR#1) contains only the iron microparticles and base oil; the second and third ones (MR#2 and MR#3) contain an anti-wear additive as well. The fourth one (MR#4) is a well known commercial MRF. Finally, MR#5 is stabilized by dispersing the iron particles in a magnetite ferrofluid. The MR response of the latter fluid is better (higher yield stress and post-yield viscosity) than that of the others. More importantly, it remains (and even improves) after the wear test: the pressure applied in the four-ball apparatus produces a compaction of the magnetite layer around the iron microparticles. Additionally, the friction coefficient is larger, which seems paradoxical in principle, but can be explained by considering the stability of MR#5 in comparison to the other four MRs, which appear to undergo partial phase separation during the test. In fact, electron and optical microscope observations confirm a milder wear effect of MR#5, with almost complete absence of scars from the steel test spheres and homogeneous and shallow grooves on them. Comparatively, MR#2, MR#3 and, particularly, MR#1 produce a much more significant wear.

  14. Water-Solubilized, Cap-Stabilized, Helical Polyalanines: Calibration Standards for NMR and CD Analyses

    PubMed Central

    Heitmann, Björn; Job, Gabriel E.; Kennedy, Robert J.; Walker, Sharon M.; Kemp, Daniel S.

    2006-01-01

    NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer βAsp-Hel and C-capped by β-aminoalanine beta and that are studied in water at 2 °C, pH 1–8. NMR analysis yields a structural characterization of the peptide AcβAspHelAla8betaNH2 and selected members of one βAspHelAlanbeta series. At pH > 4.5 the βAspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal β-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly 13C- and 15N-labeled Ala8 and Ala12 peptides define Alan hydrogen bonding signatures as α-helical without detectable 310 character. Relative NH→ND exchange rates yield site protection factors PFi that define uniquely high fractional helicities FH for the peptide Alan regions. These Alan calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first 13C NMR chemical shifts, 3JHNHα coupling constants, and CD ellipticities [θMolar]λ,n characteristic of a fully helical alanine within an Alan context. CD data are used to assign parameters X and [θ]λ,∞, required for rigorous calculation of FH values from CD ellipticities. PMID:15701003

  15. SiGe:C Heterojunction Bipolar Transistors: From Materials Research to Chip Fabrication

    NASA Astrophysics Data System (ADS)

    Ruecker, H.; Heinemann, B.; Knoll, D.; Ehwald, K.-E.

    Incorporation of substitutional carbon ( ~10^20 cm^-3) into the SiGe region of a heterojunction bipolar transistor (HBT) strongly reduces boron diffusion during device processing. We describe the physical mechanism behind the suppression of B diffusion in C-rich Si and SiGe, and explain how the increased thermal stability of doping profiles in SiGe:C HBTs can be used to improve device performance. Manufacturability of SiGe:C HBTs with transit frequencies of 100 GHz and maximum oscillation frequencies of 130 GHz is demonstrated in a BiCMOS technology capable of fabricating integrated circuits for radio frequencies with high yield.

  16. Biomolecular hybrid material and process for preparing same and uses for same

    DOEpatents

    Kim, Jungbae [Richland, WA

    2010-11-23

    Disclosed is a composition and method for fabricating novel hybrid materials comprised of, e.g., carbon nanotubes (CNTs) and crosslinked enzyme clusters (CECs). In one method, enzyme-CNT hybrids are prepared by precipitation of enzymes which are subsequently crosslinked, yielding crosslinked enzyme clusters (CECs) on the surface of the CNTs. The CEC-enzyme-CNT hybrids exhibit high activity per unit area or mass as well as improved enzyme stability and longevity over hybrid materials known in the art. The CECs in the disclosed materials permit multilayer biocatalytic coatings to be applied to surfaces providing hybrid materials suitable for use in, e.g., biocatalytic applications and devices as described herein.

  17. Galaxy clustering and the origin of large-scale flows

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, R.; Yahil, A.

    1989-01-01

    Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.

  18. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue.

    PubMed

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-07-01

    Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS (-1), which was 27.65% (significant, α < 0.05) more than untreated vinegar residue (120.31 mL gVS (-1)). The analyses of pH, total ammonia-nitrogen, total alkalinity, and volatile fatty acids showed that steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation. © The Author(s) 2016.

  19. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.

    PubMed

    Bueso, Francisco; Moreno, Luis; Cedeño, Mathew; Manzanarez, Karla

    2015-01-01

    Extensive native Jatropha curcas L. (Jatropha) crop areas have been planted in Central America marginal lands since 2008 as a non-edible prospective feedstock alternative to high-value, edible palm oil. Jatropha biodiesel is currently exclusively produced in the region at commercial scale utilizing alkaline catalysts. Recently, a free, soluble Thermomyces lanuginosus (TL) 1,3 specific lipase has shown promise as biocatalyst, reportedly yielding up to 96 % ASTM D6751 compliant biodiesel after 24 h transesterification of soybean, canola oils and other feedstocks. Biodiesel conversion rate and quality of enzymatically catalyzed transesterification of Jatropha oil was evaluated. Two lipases: free, soluble TL and immobilized Candida antarctica (CA) catalyzed methanolic transesterification of crude Jatropha and refined palm oil. Jatropha yields were similar to palm biodiesel with NaOH as catalyst. After 24 h transesterification, Jatropha (81 %) and palm oil (86 %) biodiesel yields with TL as catalyst were significantly higher than CA (<70 %) but inferior to NaOH (>90 %). Enzymatic catalysts (TL and CA) produced Jatropha biodiesel with optimum flow properties but did not complied with ASTM D6751 stability parameters (free fatty acid content and oil stability index). Biodiesel production with filtered, degummed, low FFA Jatropha oil using a free liquid lipase (TL) as catalyst showed higher yielding potential than immobilized CA lipase as substitute of RBD palm oil with alkaline catalyst. However, Jatropha enzymatic biodiesel yield and stability were inferior to alkaline catalyzed biodiesel and not in compliance with international quality standards. Lower quality due to incomplete alcoholysis and esterification, potential added costs due to need of more than 24 h to achieve comparable biodiesel yields and extra post-transesterification refining reactions are among the remaining drawbacks for the environmentally friendlier enzymatic catalysis of crude Jatropha oil to become an economically viable alternative to chemical catalysis.

  20. Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics

    PubMed Central

    Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.

    2018-01-01

    Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994

  1. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  2. Gravity Wave Dynamics in a Mesospheric Inversion Layer: 1. Reflection, Trapping, and Instability Dynamics

    NASA Astrophysics Data System (ADS)

    Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.

    2018-01-01

    An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.

  3. Estimation of diversity and combining abilities in Helianthus annuus L. under water stress and normal conditions.

    PubMed

    Saba, M; Khan, F A; Sadaqat, H A; Rana, I A

    2016-10-24

    Sunflower cannot produce high yields under water-limiting conditions. The aim of the present study was to prevent the impediments on yield and to develop varieties with high-yield potential under water scarce conditions. For achieving this objective, it is necessary to detect parents with desirable traits that mainly depend on the action of genes controlling the trait under improvement, combining ability, and genetic makeup of the parents. Heterosis can also be used to pool the desirable genes from genetically divergent varieties and these divergent parents could be detected by molecular studies. Ten tolerant and five susceptible tester lines were selected, crossed, and tested for genetic diversity using simple sequence repeat primers. We identified two parents (A-10.8 and G-60) that showed maximum (46.7%) genetic dissimilarity. On an average 3.1 alleles per locus were detected for twenty pair of primers. Evaluation of mean values revealed that under stress conditions the mean performances of the genotypes were reduced for all traits under study. Parent A-10.8 was consistent as a good general combiner for achene yield per plant under both non-stress and stress conditions. Line A-10.8 in the hybrid A-10.8 x G-60 proved to be a good combiner as it showed negative specific combining ability (SCA) effects for plant height and internodal length and positive SCA effects for head weight, achene yield per plant, and membrane stability index. Valuable information on gene action, combining ability, and heterosis was generated, which could be used in further breeding programs.

  4. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems

    NASA Astrophysics Data System (ADS)

    Almagro, María; de Vente, Joris; Boix-Fayós, Carolina; García-Franco, Noelia; Melgares de Aguilar, Javier; González, David; Solé-Benet, Albert; Martínez-Mena, María

    2015-04-01

    Little is known about the multiple impacts of sustainable land management practices on soil and water conservation, carbon sequestration, mitigation of global warming, and crop yield productivity in semiarid Mediterranean agroecosystems. We hypothesized that a shift from intensive tillage to more conservative tillage management practices (reduced tillage optionally combined with green manure) leads to an improvement in soil structure and quality and will reduce soil erosion and enhance carbon sequestration in semiarid Mediterranean rainfed agroecosystems. To test the hypothesis, we assessed the effects of different tillage treatments (conventional (CT), reduced (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil structure and soil water content, runoff and erosion control, soil CO2 emissions, crop yield and carbon sequestration in two semiarid agroecosystems with organic rainfed almond in the Murcia Region southeast Spain). It was found that reduction and suppression of tillage under almonds led to an increase in soil water content in both agroecosystems. Crop yields ranged from 775 to 1766 kg ha-1 between tillage 18 treatments, but we did not find a clear relation between soil water content and crop yield. RT and RTG treatments showed lower soil erosion rates and higher crop yields of almonds than under CT treatment. Overall, higher soil organic carbon contents and aggregate stability were observed under RTG treatment than under RT or CT treatment. It is concluded that conversion from CT to RTG is suitable to increase carbon inputs without enhancing soil CO2 emissions in semiarid Mediterranean agroecosystems.

  5. [Mechanism and promotion effect of K+ on yield of Fe(VI)].

    PubMed

    Zhang, Yan-Ping; Xu, Guo-Ren; Li, Gui-Bai

    2008-03-01

    The mechanism and promotion effects of K+ on the yield of Fe(VI) were studied during the reaction of forming ferrate. The experiment results showed that K+ is far better than Na+ for the preparation of Fe(VI) at temperatures higher than 50 degrees C. The optimal temperature for the preparation of Fe(VI) with K+ is 65 degrees C. During the reaction, the yield of ferrate increases with the concentration of K+, and the promotion effect of K+ is obviously with ferric nitrate dosage increase. The Fe(VI) concentration prepared with 4.4 mol/L KOH is 0.05 mol/L at 85 g/L ferric nitrate; and which achieves 0.15 mol/L when added 2 mol/L K+. The promotion effect of K+ on the yield of ferrate is remarkable when ferric nitrate dosage is higher than 75 g/L, reaction temperature is below 55 degrees C and ClO(-) concentration is lower than 1.16 mol/L. The K+ can substitute for partly alkalinity and reduce the concentration of OH(-) in the reaction solution. During the reaction, the K+ can enwrap around FeO4(2-) that can reduce the contact between Fe(3+) and FeO4(2-), and decrease the catalysis effect of Fe(3+) on FeO4(2-). At the same time, K+ can react with FeO4(2-) to form solid K4FeO4, whichwill lower the Fe(VI) concentration, decrease the decomposition rate of Fe(VI), enhance the stability and improve the yield of Fe(VI).

  6. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola; ...

    2018-04-30

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  7. Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?

    DOE PAGES

    Zhang, Jingjing; Shkrob, Ilya A.; Assary, Rajeev S.; ...

    2017-10-06

    We report catholyte materials are used to store positive charge in energized fluids circulating through redox flow batteries (RFBs) for electric grid and vehicle applications. Energy-rich radical cations (RCs) are being considered for use as catholyte materials, but to be practically relevant, these RCs (that are typically unstable, reactive species) need to have long lifetimes in liquid electrolytes under the ambient conditions. Only few families of such energetic RCs possess stabilities that are suitable for their use in RFBs; currently, the derivatives of 1,4- dialkoxybenzene look the most promising. In this study, we examine factors that define the chemical andmore » electrochemical stabilities for RCs in this family. To this end, we engineered rigid bis-annulated molecules that by design avoid the two main degradation pathways for such RCs, viz. their deprotonation and radical addition. The decay of the resulting RCs are due to the single remaining reaction: O-dealkylation. We establish the mechanism for this reaction and examine factors controlling its rate. In particular, we demonstrate that this reaction is initiated by the nucleophile attack of the counter anion on the RC partner. The reaction proceeds through the formation of the aroxyl radicals whose secondary reactions yield the corresponding quinones. The O-dealkylation accelerates considerably when the corresponding quinone has poor solubility in the electrolyte, and the rate depends strongly on the solvent polarity. Finally, our mechanistic insights suggest new ways of improving the RC catholytes through molecular engineering and electrolyte optimization.« less

  8. Toward Improved Catholyte Materials for Redox Flow Batteries: What Controls Chemical Stability of Persistent Radical Cations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingjing; Shkrob, Ilya A.; Assary, Rajeev S.

    We report catholyte materials are used to store positive charge in energized fluids circulating through redox flow batteries (RFBs) for electric grid and vehicle applications. Energy-rich radical cations (RCs) are being considered for use as catholyte materials, but to be practically relevant, these RCs (that are typically unstable, reactive species) need to have long lifetimes in liquid electrolytes under the ambient conditions. Only few families of such energetic RCs possess stabilities that are suitable for their use in RFBs; currently, the derivatives of 1,4- dialkoxybenzene look the most promising. In this study, we examine factors that define the chemical andmore » electrochemical stabilities for RCs in this family. To this end, we engineered rigid bis-annulated molecules that by design avoid the two main degradation pathways for such RCs, viz. their deprotonation and radical addition. The decay of the resulting RCs are due to the single remaining reaction: O-dealkylation. We establish the mechanism for this reaction and examine factors controlling its rate. In particular, we demonstrate that this reaction is initiated by the nucleophile attack of the counter anion on the RC partner. The reaction proceeds through the formation of the aroxyl radicals whose secondary reactions yield the corresponding quinones. The O-dealkylation accelerates considerably when the corresponding quinone has poor solubility in the electrolyte, and the rate depends strongly on the solvent polarity. Finally, our mechanistic insights suggest new ways of improving the RC catholytes through molecular engineering and electrolyte optimization.« less

  9. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  10. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less

  11. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  12. Towards bulk syntheses of nanomaterials: a homeostatically supersaturated synthesis of polymer-like Bi 2S 3 nanowires with nearly 100% yield and no injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bin; Iowa State Univ. of Science and Technology, Ames, IA; Brandt, Jordan Aaron

    This article reports the implementation of a one-pot strategy for the synthesis of polymer-like Bi 2S 3 nanowires from supersaturated precursors. These conditions result in (i) a homeostatically regulated supersaturation of the growing phase during most of the reaction, (ii) a nearly 100% conversion of the limiting reagent, and (iii) an improved colloidal stability and polydispersity of the product (when compared to the hot-injection product) that allows the identification of three new exciton transitions in the absorption spectrum (one of them, importantly, being a weakly absorbing ground state at 1.64 eV). Three different commercial sources of ligands do not yieldmore » significantly different conversion rates. Scalability is further improved by lack of stirring after the initial stage of reaction and a lower reaction temperature (90 °C).« less

  13. Towards bulk syntheses of nanomaterials: a homeostatically supersaturated synthesis of polymer-like Bi 2S 3 nanowires with nearly 100% yield and no injection

    DOE PAGES

    Yuan, Bin; Iowa State Univ. of Science and Technology, Ames, IA; Brandt, Jordan Aaron; ...

    2016-11-25

    This article reports the implementation of a one-pot strategy for the synthesis of polymer-like Bi 2S 3 nanowires from supersaturated precursors. These conditions result in (i) a homeostatically regulated supersaturation of the growing phase during most of the reaction, (ii) a nearly 100% conversion of the limiting reagent, and (iii) an improved colloidal stability and polydispersity of the product (when compared to the hot-injection product) that allows the identification of three new exciton transitions in the absorption spectrum (one of them, importantly, being a weakly absorbing ground state at 1.64 eV). Three different commercial sources of ligands do not yieldmore » significantly different conversion rates. Scalability is further improved by lack of stirring after the initial stage of reaction and a lower reaction temperature (90 °C).« less

  14. Anaerobic sludge digestion with a biocatalytic additive. [Lactobacillus acidophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Fedde, P.A.

    1982-01-01

    Aimed at improving the process operating characteristics of anaerobic digestion for sludge stabilization and SNG production, this study evaluates the effects of a lactobacillus additive under normal, variable, and overload conditions. This whey fermentation product of an acid-tolerant strain of L. acidophilus fortified with CoCO/sub 3/, (NH/sub 4/)/sub 2/HPO/sub 4/, ferrous lactate, and lactic acid provides growth factors, metabolic intermediates, and enzymes needed for substrate degradation and cellular synthesis. Data indicate that the biochemical additive increases methane yield, gas production rate, and volatile solids reduction; decreases volatile acids accumulation; enhances the digester buffer capacity; and improves the fertilizer value andmore » dewatering characteristics of the digested residue. Digester capacities could be potentially doubled when the feed is so treated. Results of field tests with six full-scale digesters confirm observations made with bench-scale digesters.« less

  15. Quantifying the timescales of Archean UHT metamorphism through U-Pb monazite and zircon petrochronology

    NASA Astrophysics Data System (ADS)

    Guevara, V.; MacLennan, S. A.; Schoene, B.; Dragovic, B.; Caddick, M. J.; Kylander-Clark, A. R.; Couëslan, C. G.

    2016-12-01

    Unraveling the timescales of metamorphism is crucial to understanding the mechanisms behind mass/heat transfer through Earth's crust. Though such mechanisms and their durations are becoming well constrained in modern (Phanerozoic) settings, the drivers of metamorphism in the ancient geologic record remain more enigmatic. The development of accessory phase petrochronology has allowed metamorphic evolution to be closely linked to isotopic dates, ultimately improving quantification of metamorphic durations. While in-situ petrochronological methods preserve textural and spatial context, they often lack the temporal resolution required to accurately quantify metamorphic duration in Archean terranes. Here we combine in-situ U-Pb monazite (mnz) and zircon (zrn) laser ablation split-stream (LASS) and high-precision ID-TIMS-TEA petrochronology of distinct grain domains to resolve the timescales of ultrahigh temperature (UHT) metamorphism in the Archean Pikwitonei granulite domain (PGD). The PGD encompasses >1.5x105 km2 of granulite-facies rocks on the NW edge of the Superior Province. Themodynamic modelling of a pelite from the western part of the PGD suggests peak P-T conditions of >8 kbar, 900-940 °C and UHT decompression to 8 kbar followed by cooling. LASS analysis of zrn inclusions in garnet (grt) yields a date of 2701 Ma, with Ti in zrn thermometry yielding T of 800-900 °C. LASS analysis of mnz yields dates of 2720-2680 Ma for low HREE domains with no to shallow negative Eu anomalies, suggestive of growth during plagioclase (plg) breakdown and grt stability. ID-TIMS analysis of a mnz fragment with a strong negative Eu anomaly, suggestive of growth during plg stability, gives a concordant 207Pb/206Pb date of 2666 Ma, consistent with LASS results of 2660-2640 Ma for chemically similar domains. ID-TIMS analyses of zrn rims yield a range of 207Pb/206Pb dates from 2671 to 2656 Ma (±<1 Ma). Ti in zrn yields 800 °C for these rims, indicating they grew at similar T. Together, these data indicate a metamorphic cycle in the PGD to/from UHT over a minimum of 35 Ma, with at least 12 Ma of slow cooling near 800 °C in the lower crust following UHT decompression. This evolution is inconsistent with punctuated thermal pulses due to focused fluid flow or magmatism, instead requiring a long-lived source of crustal heating.

  16. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs.

    PubMed

    Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego

    2016-01-01

    Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.

  17. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    PubMed Central

    2011-01-01

    Background Pretreatment is a critical step in the conversion of lignocellulose to fermentable sugars. Although many pretreatment processes are currently under investigation, none of them are entirely satisfactory in regard to effectiveness, cost, or environmental impact. The use of hydrogen peroxide at pH 11.5 (alkaline hydrogen peroxide (AHP)) was shown by Gould and coworkers to be an effective pretreatment of grass stovers and other plant materials in the context of animal nutrition and ethanol production. Our earlier experiments indicated that AHP performed well when compared against two other alkaline pretreatments. Here, we explored several key parameters to test the potential of AHP for further improvement relevant to lignocellulosic ethanol production. Results The effects of biomass loading, hydrogen peroxide loading, residence time, and pH control were tested in combination with subsequent digestion with a commercial enzyme preparation, optimized mixtures of four commercial enzymes, or optimized synthetic mixtures of pure enzymes. AHP pretreatment was performed at room temperature (23°C) and atmospheric pressure, and after AHP pretreatment the biomass was neutralized with HCl but not washed before enzyme digestion. Standard enzyme digestion conditions were 0.2% glucan loading, 15 mg protein/g glucan, and 48 h digestion at 50°C. Higher pretreatment biomass loadings (10% to 20%) gave higher monomeric glucose (Glc) and xylose (Xyl) yields than the 2% loading used in earlier studies. An H2O2 loading of 0.25 g/g biomass was almost as effective as 0.5 g/g, but 0.125 g/g was significantly less effective. Optimized mixtures of four commercial enzymes substantially increased post-AHP-pretreatment enzymatic hydrolysis yields at all H2O2 concentrations compared to any single commercial enzyme. At a pretreatment biomass loading of 10% and an H2O2 loading of 0.5 g/g biomass, an optimized commercial mixture at total protein loadings of 8 or 15 mg/g glucan gave monomeric Glc yields of 83% or 95%, respectively. Yields of Glc and Xyl after pretreatment at a low hydrogen peroxide loading (0.125 g H2O2/g biomass) could be improved by extending the pretreatment residence time to 48 h and readjusting the pH to 11.5 every 6 h during the pretreatment. A Glc yield of 77% was obtained using a pretreatment of 15% biomass loading, 0.125 g H2O2/g biomass, and 48 h with pH adjustment, followed by digestion with an optimized commercial enzyme mixture at an enzyme loading of 15 mg protein/g glucan. Conclusions Alkaline peroxide is an effective pretreatment for corn stover. Particular advantages are the use of reagents with low environmental impact and avoidance of special reaction chambers. Reasonable yields of monomeric Glc can be obtained at an H2O2 concentration one-quarter of that used in previous AHP research. Additional improvements in the AHP process, such as peroxide stabilization, peroxide recycling, and improved pH control, could lead to further improvements in AHP pretreatment. PMID:21658263

  18. DANSS Neutrino Spectrometer: Detector Calibration, Response Stability, and Light Yield

    NASA Astrophysics Data System (ADS)

    Alekseev, I. G.; Belov, V. V.; Danilov, M. V.; Zhitnikov, I. V.; Kobyakin, A. S.; Kuznetsov, A. S.; Machikhiliyan, I. V.; Medvedev, D. V.; Rusinov, V. Yu.; Svirida, D. N.; Skrobova, N. A.; Starostin, A. S.; Tarkovsky, E. I.; Fomina, M. V.; Shevchik, E. A.; Shirchenko, M. V.

    2018-05-01

    Apart from monitoring nuclear reactor parameters, the DANSS neutrino experiment is aimed at searching for sterile neutrinos through a detailed analysis of the ratio of reactor antineutrino spectra measured at different distances from the reactor core. The light collection system of the detector is dual, comprising both the vacuum photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs). In this paper, the techniques developed to calibrate the responses of these photodetectors are discussed in detail. The long-term stability of the key parameters of the detector and their dependences on the ambient temperature are investigated. The results of detector light yield measurements, performed independently with PMTs and SiPMs are reported.

  19. Cold denaturation as a tool to measure protein stability

    PubMed Central

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  20. Improved chemically defined basal medium (CMRL-1969) for primary monkey kidney and human diploid cells.

    PubMed

    Healy, G M; Teleki, S; von Seefried, A; Walton, M J; Macmorine, H G

    1971-01-01

    An improved tissue culture basal medium, CMRL-1969, supplemented with serum, has been evaluated by measuring the growth responses of primary cultures of trypsin-dispersed monkey kidney cells (PMKC) and of an established culture of a human diploid cell strain (HDCS). Medium H597, an early modification of medium 199 which has been used successfully in the preparation of poliomyelitis vaccine for 15 years, was used for comparison. In addition, parallel testing was done with Basal Medium Eagle (BME) widely used for the growth of HDCS. The improvements in basal medium CMRL-1969 are attributed to changes in amino acid concentrations, in vitamin composition, and, in particular, to enhanced buffering capacity. The latter has been achieved by the use of free-base amino acids and by increasing the dibasic sodium phosphate. The new medium has already been used to advantage for the production of polioviruses in PMKC where equivalent titers were obtained from cultures initiated with 70% of the number of cells required with earlier media. The population-doubling time was reduced in this system. Also, with small inocula of HDCS, the time required to obtain maximum cell yield was shorter with CMRL-1969 than with BME. Both media were supplemented with 10% calf serum. Maximum cell yields after repeated subcultivation in the new basal medium were greatly increased and the stability of the strain, as shown by chromosomal analysis, was not affected. Basal medium CMRL-1969 can be prepared easily in liquid or powdered form.

  1. Virtual Reality Telerehabilitation for Postural Instability in Parkinson's Disease: A Multicenter, Single-Blind, Randomized, Controlled Trial

    PubMed Central

    Geroin, Christian; Dimitrova, Eleonora; Boldrini, Paolo; Waldner, Andreas; Bonadiman, Silvia; Regazzo, Sara; Stirbu, Elena; Primon, Daniela; Bosello, Christian; Gravina, Aristide Roberto; Peron, Luca; Trevisan, Monica; Garcia, Alberto Carreño; Menel, Alessia; Bloccari, Laura; Valè, Nicola; Saltuari, Leopold; Tinazzi, Michele

    2017-01-01

    Introduction Telerehabilitation enables patients to access remote rehabilitation services for patient-physiotherapist videoconferencing in their own homes. Home-based virtual reality (VR) balance training has been shown to reduce postural instability in patients with Parkinson's disease (PD). The primary aim was to compare improvements in postural stability after remotely supervised in-home VR balance training and in-clinic sensory integration balance training (SIBT). Methods In this multicenter study, 76 PD patients (modified Hoehn and Yahr stages 2.5–3) were randomly assigned to receive either in-home VR telerehabilitation (n = 38) or in-clinic SIBT (n = 38) in 21 sessions of 50 minutes each, 3 days/week for 7 consecutive weeks. VR telerehabilitation consisted of graded exergames using the Nintendo Wii Fit system; SIBT included exercises to improve postural stability. Patients were evaluated before treatment, after treatment, and at 1-month follow-up. Results Analysis revealed significant between-group differences in improvement on the Berg Balance Scale for the VR telerehabilitation group (p = 0.04) and significant Time × Group interactions in the Dynamic Gait Index (p = 0.04) for the in-clinic group. Both groups showed differences in all outcome measures over time, except for fall frequency. Cost comparison yielded between-group differences in treatment and equipment costs. Conclusions VR is a feasible alternative to in-clinic SIBT for reducing postural instability in PD patients having a caregiver. PMID:29333454

  2. Root adaptations to soils with low fertility and aluminium toxicity.

    PubMed

    Rao, Idupulapati M; Miles, John W; Beebe, Stephen E; Horst, Walter J

    2016-06-01

    Plants depend on their root systems to acquire the water and nutrients necessary for their survival in nature, and for their yield and nutritional quality in agriculture. Root systems are complex and a variety of root phenes have been identified as contributors to adaptation to soils with low fertility and aluminium (Al) toxicity. Phenotypic characterization of root adaptations to infertile soils is enabling plant breeders to develop improved cultivars that not only yield more, but also contribute to yield stability and nutritional security in the face of climate variability. In this review the adaptive responses of root systems to soils with low fertility and Al toxicity are described. After a brief introduction, the purpose and focus of the review are outlined. This is followed by a description of the adaptive responses of roots to low supply of mineral nutrients [with an emphasis on low availability of nitrogen (N) and phosphorus (P) and on toxic levels of Al]. We describe progress in developing germplasm adapted to soils with low fertility or Al toxicity using selected examples from ongoing breeding programmes on food (maize, common bean) and forage/feed (Brachiaria spp.) crops. A number of root architectural, morphological, anatomical and metabolic phenes contribute to the superior performance and yield on soils with low fertility and Al toxicity. Major advances have been made in identifying root phenes in improving adaptation to low N (maize), low P (common bean) or high Al [maize, common bean, species and hybrids of brachiariagrass, bulbous canarygrass (Phalaris aquatica) and lucerne (Medicago sativa)]. Advanced root phenotyping tools will allow dissection of root responses into specific root phenes that will aid both conventional and molecular breeders to develop superior cultivars. These new cultivars will play a key role in sustainable intensification of crop-livestock systems, particularly in smallholder systems of the tropics. Development of these new cultivars adapted to soils with low fertility and Al toxicity is needed to improve global food and nutritional security and environmental sustainability. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress

    PubMed Central

    Sreenivasulu, Nese; Butardo, Vito M.; Misra, Gopal; Cuevas, Rosa Paula; Anacleto, Roslen; Kavi Kishor, Polavarpu B.

    2015-01-01

    To ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain. This review highlights the knowledge gained through gene discovery via quantitative trait locus (QTL) cloning and structural–functional genomic strategies to reduce chalk, increase head rice yield, and develop stable lines with optimum grain quality in challenging environments. The newly discovered genes and the knowledge gained on the influence of specific alleles related to stability of grain quality attributes provide a robust platform for marker-assisted selection in breeding to design heat-tolerant rice varieties with superior grain quality. Using the chalkiness trait in rice as a case study, we demonstrate here that the emerging field of systems genetics can help fast-track the identification of novel alleles and gene targets that can be pyramided for the development of environmentally robust rice varieties that possess improved grain quality. PMID:25662847

  4. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  5. Effects of early and late harvest on agronomic performance and stability of late blight resistant (R-gene free) potato genotypes

    USDA-ARS?s Scientific Manuscript database

    To assess the effectiveness of genotype resistance to potato late blight, foliar blight development, area under disease progress curves (AUDPC) and tuber blight were quantified. Late blight resistant potato genotypes (R-gene free) were assessed for yield performance and stability at early (90 days) ...

  6. Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar

    2010-01-01

    A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non-halogenated esters, film forming additives, thermal stabilizing additives, and flame retardant additives. Further optimization of these electrolyte formulations is anticipated to yield improved performance. It is also anticipated that much improved performance will be demonstrated once these electrolyte solutions are incorporated into hermetically sealed, large capacity prototype cells, especially if effort is devoted to ensure that all electrolyte components are highly pure.

  7. RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1

    PubMed Central

    Saha, Soumen; Adhikari, Sinchan; Dey, Tulsi; Ghosh, Parthadeb

    2015-01-01

    Plant regeneration through rapid in vitro clonal propagation of nodal explants of Morus alba L. variety S-1 was established along with genetic stability analysis of regenerates. Axillary shoot bud proliferation was achieved on Murashige and Skoog (MS) medium in various culture regimes. Highest number of shoots (5.62 ± 0.01), with average length 4.19 ± 0.01 cm, was initially achieved with medium containing 0.5 mg/l N6-benzyladenine (BA) and 3% sucrose. Repeated subculturing of newly formed nodal parts after each harvest up to sixth passage, yielded highest number of shoots (about 32.27) per explants was obtained after fourth passage. Rooting of shoots occurred on 1/2 MS medium supplemented with 1.0 mg/1 Indole-3-butyric acid (IBA). About 90% (89.16) of the plantlets transferred to the mixture of sand:soil:organic manure (2:2:1) in small plastic pots acclimatized successfully. Genetic stability of the discussed protocol was confirmed by two DNA-based fingerprinting techniques i.e. RAPD (random amplified polymorphic DNA) and ISSR (inter-simple sequence repeat). This protocol can be used for commercial propagation and for future genetic improvement studies. PMID:26693403

  8. Standard Methods for Bolt-Bearing Testing of Textile Composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Masters, J. E.

    1995-01-01

    The response of three 2-D braided materials to bolt bearing loading was evaluated using data generated by Boeing Defense and Space Group in Philadelphia, PA. Three test methods, stabilized single shear, unstabilized single shear, and double shear, were compared. In general, these textile composites were found to be sensitive to bolt bearing test methods. The stabilized single shear method yielded higher strengths than the unstabilized single shear method in all cases. The double shear test method always produced the highest strengths but these results may be somewhat misleading. It is therefore recommended that standard material comparisons be made using the stabilized single shear test method. The effects of two geometric parameters, W/D and e/D, were also studied. An evaluation of the effect of the specimen width (W) to hole diameter (D) ratio concluded that bolt bearing responses were consistent with open hole tension results. A W/D ratio of 6 or greater should be maintained. The proximity of the hole to the specimen edge significantly affected strength. In all cases, strength was improved by increasing the ratio of the distance from the hole center to the specimen edge (e) to the hole diameter (D) above 2. An e/D ratio of 3 or greater is recommended.

  9. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.

    PubMed

    Wu, Jinghua; Zhang, Lei; Xin, Xing; Zhang, Yang; Wang, Hui; Sun, Aihua; Cheng, Yuchuan; Chen, Xinde; Xu, Gaojie

    2018-02-21

    Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.

  10. Damping SOFIA: passive and active damping for the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Keas, Paul J.; Glaese, Roger M.

    2001-07-01

    The Stratospheric Observatory For Infrared Astronomy, SOFIA is being developed by NASA and the German space agency, Deutschen Zentrum fur Luft- und Raumfahrt (DLR), with an international contractor team. The 2.5-meter reflecting telescope of SOFIA will be the world's largest airborne telescope. Flying in an open cavity on a modified 747 aircraft, SOFIA will perform infrared astronomy while cruising at 41,000 feet and while being buffeted by a 550- mile-per-hour slipstream. A primary system requirement of SOFIA is tracking stability of 0.2 arc-seconds, and a 3-axis pointing control model has been used to evaluate the feasibility of achieving this kind of stability. The pointing control model shows that increased levels of damping in certain elastic modes of the telescope assembly will help achieve the tracking stability goal and also expand the bandwidth of the attitude controller. This paper describes the preliminary work that has been done to approximate the reduction in image motion yielded by various structure configurations that use reaction masses to attenuate the flexible motions of the telescope structure. Three approaches are considered: passive tuned-mass dampers, active-mass dampers, and attitude control with reaction-mass actuators. Expected performance improvements for each approach, and practical advantages and disadvantages associated with each are presented.

  11. Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis

    PubMed Central

    Li, Min; Zhang, Zhi-Jun; Kong, Xu-Dong; Yu, Hui-Lei

    2017-01-01

    ABSTRACT Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter−1 day−1. These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor. IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis. PMID:28389544

  12. Generic Biocombinatorial Strategy to Select Tailor-Made Stabilizers for Sol-Gel Nanoparticle Synthesis.

    PubMed

    Hanßke, Felix; Kemnitz, Erhard; Börner, Hans G

    2015-09-09

    A generic route for the selection of nanoparticle stabilizers via biocombinatorial means of phage display peptide screening is presented, providing magnesium fluoride nanoparticle synthesis as example. Selected sequence-specific MgF2 binders are evaluated for their adsorption behavior. Peptide-polymer conjugates derived from the best binding peptide are used for the stabilization of MgF2 sol nanoparticles, yielding fully redispersable dry states and improoving processability significantly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study

    PubMed Central

    Che Maail, Che Mohd Hakiman; Ariffin, Hidayah; Hassan, Mohd Ali; Shah, Umi Kalsom Md; Shirai, Yoshihito

    2014-01-01

    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities. PMID:25057489

  14. Selection Index in the Study of Adaptability and Stability in Maize

    PubMed Central

    Lunezzo de Oliveira, Rogério; Garcia Von Pinho, Renzo; Furtado Ferreira, Daniel; Costa Melo, Wagner Mateus

    2014-01-01

    This paper proposes an alternative method for evaluating the stability and adaptability of maize hybrids using a genotype-ideotype distance index (GIDI) for selection. Data from seven variables were used, obtained through evaluation of 25 maize hybrids at six sites in southern Brazil. The GIDI was estimated by means of the generalized Mahalanobis distance for each plot of the test. We then proceeded to GGE biplot analysis in order to compare the predictive accuracy of the GGE models and the grouping of environments and to select the best five hybrids. The G × E interaction was significant for both variables assessed. The GGE model with two principal components obtained a predictive accuracy (PRECORR) of 0.8913 for the GIDI and 0.8709 for yield (t ha−1). Two groups of environments were obtained upon analyzing the GIDI, whereas all the environments remained in the same group upon analyzing yield. Coincidence occurred in only two hybrids considering evaluation of the two features. The GIDI assessment provided for selection of hybrids that combine adaptability and stability in most of the variables assessed, making its use more highly recommended than analyzing each variable separately. Not all the higher-yielding hybrids were the best in the other variables assessed. PMID:24696641

  15. Subglacial sedimentary basin characterization of Wilkes Land, East Antarctica via applied aerogeophysical inverse methods

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gooch, B. T.; Richter, T.; Young, D. A.; Blankenship, D. D.; Aitken, A.; Siegert, M. J.

    2013-12-01

    Topography, sediment distribution and heat flux are all key boundary conditions governing the stability of the East Antarctic ice sheet (EAIS). Recent scientific scrutiny has been focused on several large, deep, interior EAIS basins including the submarine basal topography characterizing the Aurora Subglacial Basin (ASB). Numerical ice sheet models require accurate deformable sediment distribution and lithologic character constraints to estimate overall flow velocities and potential instability. To date, such estimates across the ASB have been derived from low-resolution satellite data or historic aerogeophysical surveys conducted prior to the advent of GPS. These rough basal condition estimates have led to poorly-constrained ice sheet stability models for this remote 200,000 sq km expanse of the ASB. Here we present a significantly improved quantitative model characterizing the subglacial lithology and sediment in the ASB region. The product of comprehensive ICECAP (2008-2013) aerogeophysical data processing, this sedimentary basin model details the expanse and thickness of probable Wilkes Land subglacial sedimentary deposits and density contrast boundaries indicative of distinct subglacial lithologic units. As part of the process, BEDMAP2 subglacial topographic results were improved through the additional incorporation of ice-penetrating radar data collected during ICECAP field seasons 2010-2013. Detailed potential field data pre-processing was completed as well as a comprehensive evaluation of crustal density contrasts based on the gravity power spectrum, a subsequent high pass data filter was also applied to remove longer crustal wavelengths from the gravity dataset prior to inversion. Gridded BEDMAP2+ ice and bed radar surfaces were then utilized to establish bounding density models for the 3D gravity inversion process to yield probable sedimentary basin anomalies. Gravity inversion results were iteratively evaluated against radar along-track RMS deviation and gravity and magnetic depth to basement results. This geophysical data processing methodology provides a substantial improvement over prior Wilkes Land sedimentary basin estimates yielding a higher resolution model based upon iteration of several aerogeophysical datasets concurrently. This more detailed subglacial sedimentary basin model for Wilkes Land, East Antarctica will not only contribute to vast improvements on EAIS ice sheet model constraints, but will also provide significant quantifiable controls for subglacial hydrologic and geothermal flux estimates that are also sizable contributors to the cold-based, deep interior basal ice dynamics dominant in the Wilkes Land region.

  16. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein.

    PubMed

    Wang, Yunpeng; Xu, Wentao; Kou, Xiaohong; Luo, Yunbo; Zhang, Yanan; Ma, Biao; Wang, Mengsha; Huang, Kunlun

    2012-08-01

    Wheat germ cell-free protein synthesis systems have the potential to synthesize functional proteins safely and with high accuracy, but the poor energy supply and the instability of mRNA templates reduce the productivity of this system, which restricts its applications. In this report, phosphocreatine and pyruvate were added to the system to supply ATP as a secondary energy source. After comparing the protein yield, we found that phosphocreatine is more suitable for use in the wheat germ cell-free protein synthesis system. To stabilize the mRNA template, the plasmid vector, SP6 RNA polymerase, and Cu(2+) were optimized, and a wheat germ cell-free protein synthesis system with high yield and speed was established. When plasmid vector (30 ng/μl), SP6 RNA polymerase (15 U), phosphocreatine (25 mM), and Cu(2+) (5 mM) were added to the system and incubated at 26°C for 16 h, the yield of venom kallikrein increased from 0.13 to 0.74 mg/ml. The specific activity of the recombinant protein was 1.3 U/mg, which is only slightly lower than the crude venom kallikrein (1.74 U/mg) due to the lack of the sugar chain. In this study, the yield of venom kallikrein was improved by optimizing the system, and a good foundation has been laid for industrial applications and for further studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Ziyang; Merckling, Clement; Rooyackers, Rita; Franquet, Alexis; Richard, Olivier; Bender, Hugo; Vila, María; Rubio-Zuazo, Juan; Castro, Germán R.; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc

    2018-04-01

    Vertical InAs nanowires (NWs) grown on a Si substrate are promising building-blocks for next generation vertical gate-all-around transistor fabrication. We investigate the initial stage of InAs NW selective area epitaxy (SAE) on a patterned Si (111) substrate with a focus on the interfacial structures. The direct epitaxy of InAs NWs on a clean Si (111) surface is found to be challenging. The yield of vertical InAs NWs is low, as the SAE is accompanied by high proportions of empty holes, inclined NWs, and irregular blocks. In contrast, it is improved when the NW contains gallium, and the yield of vertical InxGa1-xAs NWs increased with higher Ga content. Meanwhile, unintentional Ga surface contamination on a patterned Si substrate induces high yield vertical InAs NW SAE, which is attributed to a GaAs-like seeding layer formed at the InAs/Si interface. The role of Ga played in the III-V NW nucleation on Si is further discussed. It stabilizes the B-polarity on a non-polar Si (111) surface and enhances the nucleation. Therefore, gallium incorporation on a Si surface is identified as an important enabler for vertical InAs NW growth. A new method for high yield (>99%) vertical InAs NW SAE on Si using an InGaAs nucleation layer is proposed based on this study.

  18. Stabilization of chevron bunionectomy with a capsuloperiosteal flap.

    PubMed

    Guclu, Berk; Kaya, Alper; Akan, Burak; Koken, Murat; Kemal Us, Ali

    2011-04-01

    Distal chevron osteotomy (DCO) for mild to moderate hallux valgus deformity is inherently more stable than the other forms of distal metatarsal osteotomy, but complications such as loss of correction, infection, joint stiffness, delayed union, malunion and nonunion can occur. In this study, we evaluated the use of a capsuloperiosteal flap for stabilization of DCO in the treatment of hallux valgus. A retrospective study was conducted on 59 patients (88 feet) that underwent distal Chevron osteotomy stabilized only with a capsuloperiosteal flap for mild and moderate hallux valgus deformity with a mean followup of 11.3 years. Clinical evaluation was calculated using the hallux score of the American Orthopaedic Foot and Ankle Society (AOFAS). The score improved from a preoperative mean of 52 to a mean of 91.5 points at last followup. Average hallux valgus angle changed from 30.3 degrees preoperatively to 14.2 degrees postoperatively at the last followup. Intermetatarsal angle 1-2 changed from 13.6 degrees preoperatively to 10.2 degrees postoperatively. The correction proved to be consistent with only an average of 3.4-degree correction loss and 4.9-degree loss in the range of motion. Eighty-six feet (97.7%) were pain free. Discomfort with shoewear was absent in 84 feet (95.5%) postoperatively and 24 of 25 (96%) patients were satisfied cosmetically. Capsuloperiosteal flap stabilization of distal chevron osteotomy for mild-moderate hallux valgus yielded excellent clinical results at long-term followup.

  19. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are knownmore » to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic products: condensable vapors, non-condensable gases, and liquid aerosols. Traditionally these are recovered by a spray quencher or a conventional shell and tube condenser. The spray quencher or condenser is typically followed by an electrostatic precipitator to yield 1 or 2 distinct fractions of bio-oil. The pyrolyzer system developed at Iowa State University incorporates a proprietary fractionating condenser train. The system collects the bio-oil into five unique fractions. For conditions typical of fluidized bed pyrolyzers, stage fractions have been collected that are carbohydrate-rich (anhydrosugars), lignin-rich, and an aqueous solution of carboxylic acids and aldehydes. One important feature is that most of the water normally found in bio-oil appears in the last stage fraction along with several water-soluble components that are thought to be responsible for bio-oil aging (low molecular weight carboxylic acids and aldehydes). Research work on laser diagnostics for hot-vapor filtration and bio-oil recovery centered on development of analytical techniques for in situ measurements during fast pyrolysis, hot-vapor filtration, and fractionation relative to bio-oil stabilization. The methods developed in this work include laser-induced breakdown spectroscopy (LIBS), laser-induced incandescence (LII), and laser scattering for elemental analysis (N, O, H, C), detection of particulates, and detection of aerosols, respectively. These techniques were utilized in simulated pyrolysis environments and applied to a small-scale pyrolysis unit. Stability of Bio-oils is adversely affected by the presence of particulates that are formed as a consequence of thermal pyrolysis, improving the CFD simulations of moving bed granular filter (MBGF) is useful for improving the design of MBGF for bio-oil production. The current work uses fully resolved direct numerical simulation (where the flow past each granule is accurately represented) to calculate the filter efficiency that is used in the CFD model at all flow speeds. This study shows that fully-resolved direct numerical simulation (DNS) is successful in calculating the filter efficiency at all speeds. Aldehydes and acids are thought to play key roles in the stability of bio-oils, so the catalytic stabilization of bio-oils was focused on whether a reaction approach could be employed that simultaneously addressed these two types of molecules in bio-oil. Our approach to post treatment was simultaneous hydrogenation and esterification using bifunctional metal/acidic heterogeneous catalyst in which reactive aldehydes were reduced to alcohols, creating a high enough alcohol concentration so that the carboxylic acids could be esterified.« less

  20. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  1. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications

    NASA Astrophysics Data System (ADS)

    Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang

    2013-02-01

    Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c

  2. How much vertical displacement of the symphysis indicates instability after pelvic injury?

    PubMed

    Golden, Robert D; Kim, Hyunchul; Watson, Jeffrey D; Oliphant, Bryant W; Doro, Christopher; Hsieh, Adam H; Osgood, Greg M; O'Toole, Robert V

    2013-02-01

    Measures of pubic symphyseal widening are used by at least two classification systems as determinants of injury grade. Recent work has challenged the commonly used parameter of 2.5 cm of pubic symphysis as an accurate marker of pelvic injury grade and has suggested a role of rotation in the flexion-extension plane as a determinant of pelvic stability. We investigated pelvic stability in the flexion-extension plane to determine a threshold of rotational displacement of the hemipelvis above which the potential for instability exists. Cadaveric specimens were mounted onto a servohydraulic biaxial testing machine and subjected to a vertically directed flexion moment. Position of hemipelvis was recorded using a three-dimensional motion capture system and video recording. Displacement of the pubic symphysis and changes in length and position of the sacrospinous and sacrotuberous ligaments were recorded. Amount of force applied was measured and recorded. A yield point was determined as the first point at which the force plot exhibited a decrease in force and was correlated to the corresponding displacement. The mean vertical displacement of the pubic symphysis at the yield point was 16 mm (95% confidence interval, 11-22 mm). Mean sacrospinous ligament strain at yield point was 4% (range, 1.0-9.5%). Pelves with vertical rotational symphyseal displacement of less than 11 mm can reasonably be expected to have rotational stability in the flexion-extension plane. Those with displacement of greater than 22 mm can be expected to have lost some integrity regarding resistance to pelvic flexion. These values may allow clinicians to infer pelvic stability from amount of vertical symphyseal displacement.

  3. Benefits of seasonal forecasts of crop yields

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  4. Are federal sustained yield units equitable? A case study of the Grays Harbor unit.

    Treesearch

    Con H Schallau; Wilbur R. Maki

    1986-01-01

    The Grays Harbor Federal Sustained Yield Unit (U.S. Department of Agriculture, Forest Service) was established in 1949 to enhance the economic stability of the forest products industry and dependent communities in Grays Harbor County, Washington. Provisions of the unit's charter require that all logs harvested from the Quinault Ranger District of the Olympic...

  5. Technical feasibility of structual flakeboard made from mixed hardwoods and cypress from northern florida

    Treesearch

    Todd F. Shupe; Chung-Yun Hse; Eddie W. Price

    2001-01-01

    Homogeneous and 3-layer flakeboard panels were fabricated from mixed hardwood species and baldcypress grown in northern Florida. All panels yielded adequate bending strength and stiffness and dimensional stability. For the homogeneous panels, the study indicates that only one panel condition, i.e., 5.5 percent resin content (RC) and 45 pcf, yielded internal bond (IB)...

  6. Dynamic strain aging and plastic instabilities

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    1995-05-01

    A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.

  7. Labeling of DOTA-conjugated HPMA-based polymers with trivalent metallic radionuclides for molecular imaging.

    PubMed

    Eppard, Elisabeth; de la Fuente, Ana; Mohr, Nicole; Allmeroth, Mareli; Zentel, Rudolf; Miederer, Matthias; Pektor, Stefanie; Rösch, Frank

    2018-02-27

    In this work, the in vitro and in vivo stabilities and the pharmacology of HPMA-made homopolymers were studied by means of radiometal-labeled derivatives. Aiming to identify the fewer amount and the optimal DOTA-linker structure that provides quantitative labeling yields, diverse DOTA-linker systems were conjugated in different amounts to HPMA homopolymers to coordinate trivalent radiometals Me(III)* = gallium-68, scandium-44, and lutetium-177. Short linkers and as low as 1.6% DOTA were enough to obtain labeling yields > 90%. Alkoxy linkers generally exhibited lower labeling yields than alkane analogues despite of similar chain length and DOTA incorporation rate. High stability of the radiolabel in all examined solutions was observed for all conjugates. Labeling with scandium-44 allowed for in vivo PET imaging and ex vivo measurements of organ distribution for up to 24 h. This study confirms the principle applicability of DOTA-HPMA conjugates for labeling with different trivalent metallic radionuclides allowing for diagnosis and therapy.

  8. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli

    PubMed Central

    Ihssen, Julian; Reiss, Renate; Luchsinger, Ronny; Thöny-Meyer, Linda; Richter, Michael

    2015-01-01

    Laccases are multi-copper oxidases that oxidize a broad range of substrates at the expense of molecular oxygen, without any need for co-factor regeneration. These enzymes bear high potential for the sustainable synthesis of fine chemicals and the modification of (bio)polymers. Here we describe cloning and expression of five novel bacterial laccase-like multi copper oxidases (LMCOs) of diverse origin which were identified by homology searches in online databases. Activity yields under different expression conditions and temperature stabilities were compared to three previously described enzymes from Bacillus subtilis, Bacillus pumilus and Bacillus clausii. In almost all cases, a switch to oxygen-limited growth conditions after induction increased volumetric activity considerably. For proteins with predicted signal peptides for secretion, recombinant expression with and without signal sequence was investigated. Bacillus CotA-type LMCOs outperformed enzymes from Streptomyces and Gram-negative bacteria with respect to activity yields in Escherichia coli and application relevant biochemical properties. The novel Bacillus coagulans LMCO combined high activity yields in E. coli with unprecedented activity at strong alkaline pH and high storage stability, making it a promising candidate for further development. PMID:26068013

  9. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc).

    PubMed

    Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa

    2012-07-01

    Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  11. Hybrid Control for Multi-Agent Systems in Complex Sensing Environments

    DTIC Science & Technology

    2012-02-28

    controllers , the overall closed-loop system is time -varying but can potentially exhibit better stability and performance... system is time -varying and yet, once 4 feedback-interconnected with a suitable controller , it can potentially yield better stability and performance...resolution Sensing, Control and Switched Systems 13 4 Metric-Based Receding Horizon Control 14 5 Decentralized Control and Finite Wordlength Channels 15

  12. Improvement of transport-corrected scattering stability and performance using a Jacobi inscatter algorithm for 2D-MOC

    DOE PAGES

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2017-03-10

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi iteration are substantially improved compared to the Gauss-Seidel iteration, it does yield a roughly 8$-$10% increase in the overall memory requirement.« less

  13. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut.

    PubMed

    Yang, Huiyi; Dobbie, Steven; Ramirez-Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann-Kristin; Fan, Tingting; Ghosh, Sat

    2016-11-28

    Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.

  14. Curved-flow, rolling-flow, and oscillatory pure-yawing wind-tunnel test methods for determination of dynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.; Lutze, F. H.

    1981-01-01

    Dynamic stability derivatives are evaluated on the basis of rolling-flow, curved-flow and snaking tests. Attention is given to the hardware associated with curved-flow, rolling-flow and oscillatory pure-yawing wind-tunnel tests. It is found that the snaking technique, when combined with linear- and forced-oscillation methods, yields an important method for evaluating beta derivatives for current configurations at high angles of attack. Since the rolling flow model is fixed during testing, forced oscillations may be imparted to the model, permitting the measurement of damping and cross-derivatives. These results, when coupled with basic rolling-flow or rotary-balance data, yield a highly accurate mathematical model for studies of incipient spin and spin entry.

  15. Basidiospore and Protoplast Regeneration from Raised Fruiting Bodies of Pathogenic Ganoderma boninense.

    PubMed

    Govender, Nisha T; Mahmood, Maziah; Seman, Idris A; Mui-Yun, Wong

    2016-08-26

    Ganoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described. Matured basidiocarp raised under the glasshouse conditions yielded a total of 8.3 × 104 basidiospores/ml using the low speed centrifugation technique. Mycelium aged 3-day-old treated under an incubation period of 3 h in lysing enzyme from Trichoderma harzianum (10 mg/ml) suspended in osmotic stabilizer (0.6 M potassium chloride and 20 mM dipotassium phosphate buffer) yielded the highest number of viable protoplasts (8.9 × 106 single colonies) among all possible combinations tested (regeneration media, age of mycelium, osmotic stabilizer, digestive enzyme and incubation period).

  16. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut

    PubMed Central

    Dobbie, Steven; Ramirez‐Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J.; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann‐Kristin; Fan, Tingting; Ghosh, Sat

    2016-01-01

    Abstract Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased. PMID:28190903

  17. Influence of Bridgehead Substitution and Ring Annelation on the Photophysical Properties of Polycyclic DBO-Type Azoalkanes.

    PubMed

    Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen

    1999-05-14

    The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.

  18. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut

    NASA Astrophysics Data System (ADS)

    Yang, Huiyi; Dobbie, Steven; Ramirez-Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J.; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann-Kristin; Fan, Tingting; Ghosh, Sat

    2016-11-01

    Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.

  19. Comparative analysis of maize (Zea mays) crop performance: natural variation, incremental improvements and economic impacts.

    PubMed

    Leibman, Mark; Shryock, Jereme J; Clements, Michael J; Hall, Michael A; Loida, Paul J; McClerren, Amanda L; McKiness, Zoe P; Phillips, Jonathan R; Rice, Elena A; Stark, Steven B

    2014-09-01

    Grain yield from maize hybrids continues to improve through advances in breeding and biotechnology. Despite genetic improvements to hybrid maize, grain yield from distinct maize hybrids is expected to vary across growing locations due to numerous environmental factors. In this study, we examine across-location variation in grain yield among maize hybrids in three case studies. The three case studies examine hybrid improvement through breeding, introduction of an insect protection trait or introduction of a transcription factor trait associated with increased yield. In all cases, grain yield from each hybrid population had a Gaussian distribution. Across-location distributions of grain yield from each hybrid partially overlapped. The hybrid with a higher mean grain yield typically outperformed its comparator at most, but not all, of the growing locations (a 'win rate'). These results suggest that a broad set of environmental factors similarly impacts grain yields from both conventional- and biotechnology-derived maize hybrids and that grain yields among two or more hybrids should be compared with consideration given to both mean yield performance and the frequency of locations at which each hybrid 'wins' against its comparators. From an economic standpoint, growers recognize the value of genetically improved maize hybrids that outperform comparators in the majority of locations. Grower adoption of improved maize hybrids drives increases in average U.S. maize grain yields and contributes significant value to the economy. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.

  1. Frozen storage stability of beef patties incorporated with extracts from ulam raja leaves (Cosmos caudatus).

    PubMed

    Reihani, S F S; Tan, Thuan-Chew; Huda, Nurul; Easa, Azhar Mat

    2014-07-15

    In Malaysia, fresh ulam raja leaves (Cosmos caudatus) are eaten raw with rice. In this study, beef patties incorporated with extracts of ulam raja (UREX) and commercial green tea extract (GTE) added individually at 200 and 500 mg/kg were stored at -18°C for up to 10 weeks. Lipid oxidation, cooking yield, physicochemical properties, textural properties, proximate composition and sensory characteristics of the beef patties were compared between those incorporated with UREX, GTE and the control (pure beef patty). Incorporation of UREX or GTE at 500 mg/kg into beef patties reduced the extent of lipid oxidation significantly (P<0.05). UREX showed a strong lipid oxidation inhibitory effect, comparable with GTE. In addition, a significant improvement (P<0.05) in cooking yield and textural properties was also recorded. However, incorporation of UREX and GTE into beef patties showed no significant influence (P>0.05) on the colour, pH, proximate composition and overall sensory acceptability of the patties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhanced expression and purification of camelid single domain VHH antibodies from classical inclusion bodies.

    PubMed

    Maggi, Maristella; Scotti, Claudia

    2017-08-01

    Single domain antibodies (sdAbs) are small antigen-binding domains derived from naturally occurring, heavy chain-only immunoglobulins isolated from camelid and sharks. They maintain the same binding capability of full-length IgGs but with improved thermal stability and permeability, which justifies their scientific, medical and industrial interest. Several described recombinant forms of sdAbs have been produced in different hosts and with different strategies. Here we present an optimized method for a time-saving, high yield production and extraction of a poly-histidine-tagged sdAb from Escherichia coli classical inclusion bodies. Protein expression and extraction were attempted using 4 different methods (e.g. autoinducing or IPTG-induced soluble expression, non-classical and classical inclusion bodies). The best method resulted to be expression in classical inclusion bodies and urea-mediated protein extraction which yielded 60-70 mg/l bacterial culture. The method we here describe can be of general interest for an enhanced and efficient heterologous expression of sdAbs for research and industrial purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.

    PubMed

    Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak

    2017-04-28

    Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.

  4. Discovery of HIV Type 1 Aspartic Protease Hit Compounds through Combined Computational Approaches.

    PubMed

    Xanthopoulos, Dimitrios; Kritsi, Eftichia; Supuran, Claudiu T; Papadopoulos, Manthos G; Leonis, Georgios; Zoumpoulakis, Panagiotis

    2016-08-05

    A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.

    PubMed

    Sandoval, Celeste M; Ayson, Marites; Moss, Nathan; Lieu, Bonny; Jackson, Peter; Gaucher, Sara P; Horning, Tizita; Dahl, Robert H; Denery, Judith R; Abbott, Derek A; Meadows, Adam L

    2014-09-01

    We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, β-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a "metabolic switch" for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Excimers from stable and persistent supramolecular radical-pairs in red/NIR-emitting organic nanoparticles and polymeric films.

    PubMed

    Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume

    2017-03-29

    In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.

  7. Electronic structural studies on the improved thermal stability of Li(Ni0.8Co0.15Al0.05)O2 by ZrO2 coating for lithium ion batteries

    DOE PAGES

    Kim, Ji-Young; Kim, Sang Hoon; Kim, Dong Hyun; ...

    2017-03-21

    The electronic structures of bare and ZrO 2-coated Li(Ni 0.8Co 0.15Al 0.05)O 2 electrode systems were investigated using a combination of time-resolved X-ray diffraction and soft X-ray absorption spectroscopy (XAS) techniques. The ZrO 2 coating on the surface of Li(Ni 0.8Co 0.15Al 0.05)O 2 was effective in elevating the onset temperature of the dissociation of charged Li 0.33(Ni 0.8Co 0.15Al 0.05)O 2, which will enhance the safety of Li-ion cells. Lastly, soft XAS spectra of the Ni LII,III-edge in the partial electron yield mode were obtained, which showed that the enhanced electrochemical properties and thermal stability of the cathode materialsmore » by ZrO 2 coating can be attributed to the suppression of unwanted Ni oxidation state changes at the surface.« less

  8. Ecological engineering helps maximize function in algal oil production.

    PubMed

    Jackrel, Sara L; Narwani, Anita; Bentlage, Bastian; Levine, Robert B; Hietala, David C; Savage, Phillip E; Oakley, Todd H; Denef, Vincent J; Cardinale, Bradley J

    2018-05-18

    Algal biofuels have the potential to curb emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality, lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here we show that species consortia of algae can improve the production of bio-oil, which benefits from both high biomass yield and high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures, and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes, and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve production of bio-oil. Importance section: Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation - the biomass of the crop produced and quality of the biomass that is produced. We find that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multi-species crops of microalgae may improve the production of high-quality biomass for bio-oil. Copyright © 2018 American Society for Microbiology.

  9. “Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes

    PubMed Central

    2015-01-01

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2–11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues. PMID:25534273

  10. Shuttle entry guidance revisited

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-01-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  11. [Progress in expression and molecular modification of microbial transglutaminase].

    PubMed

    Liu, Song; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2011-12-01

    Microbial transglutaminase, which could catalyze the cross-linking of many proteins or non-protein materials, has been widely used in food, pharmaceutical and textile industry. To enhance the yield of the enzyme and establish corresponding platform for molecular modification, the researchers of Japanese Ajinomoto began to construct the recombinant strain producing transglutaminase in the 1990s. So far, the enzyme has been successfully expressed in different expression systems. Some of the recombinant strains are more productive than wild strains. Recently, progress has been made in the molecular modification of microbial transglutaminase, and the activity, thermo-stability and specificity of the enzyme are improved. This review briefly summarized and analyzed the strategies involved in these studies, and noted its trends.

  12. Two-dimensional assembly structure of graphene and TiO2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Hao, Rong; Guo, Shien; Wang, Xiuwen; Feng, Tong; Feng, Qingmao; Li, Mingxia; Jiang, Baojiang

    2016-06-01

    The titanic acid sheets were prepared by one-step hydrazine hydrate-assisted hydrothermal process. Then the reduced graphite oxide (rGO)@TiO2 nanosheet composites were finally obtained through ultrasonic exfoliation and following calcination treatment process. rGO@TiO2 nanosheet composites show excellent hydrogen production performance under AM1.5 light source. The highest hydrogen evolution yield (923.23 μmol) is nearly two times higher than that of pure TiO2, mainly due to the special electron structure and more active sites for TiO2 nanosheet. The introduction of graphene could improve the TiO2 nanosheet stability and extend visible-light absorption range.

  13. Mutational optimization of the coelenterazine-dependent luciferase from Renilla.

    PubMed

    Woo, Jongchan; von Arnim, Albrecht G

    2008-09-30

    Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor.

  14. Mutational optimization of the coelenterazine-dependent luciferase from Renilla

    PubMed Central

    Woo, Jongchan; von Arnim, Albrecht G

    2008-01-01

    Renilla luciferase (RLUC) is a popular reporter enzyme for gene expression and biosensor applications, but it is an unstable enzyme whose catalytic mechanism remains to be elucidated. We titrated that one RLUC molecule can turn over about one hundred molecules of coelenterazine substrate. Mutagenesis of active site residue Pro220 extended the half-life of photon emission, yielding brighter luminescence in E. coli. Random mutagenesis uncovered two new mutations that stabilized and increased photon emission in vivo and in vitro, while ameliorating substrate inhibition. Further amended with a previously identified mutation, a new triple mutant showed a threefold improved kcat, as well as elevated luminescence in Arabidopsis. This advances the utility of RLUC as a reporter protein, biosensor, or resonance energy donor. PMID:18826616

  15. The Self-Assembly of DNA Nanostructures for use as Organizing Templates

    NASA Astrophysics Data System (ADS)

    Samec, Timothy; Cholewinski, Mitchell; Reamer, Nickalas; Reardon, Michael; Ford, Arlene

    There is growing interest in the self-assembling capabilities of DNA to create functional nanodevices for use in cancer detection and treatment. One important reason for this interest is that DNA nanostructures are highly programmable molecules. This means that these structures allow for increased stability and control when designing biomacromolecules via adhesion of plasmonic nanoparticles and other similar materials. Our current work reports on the procedure and construction of hexagonal two-dimensional DNA lattice structures using three specific DNA single strands. We also reflect on several barriers that were presented during fabrication as well as the adaptations made to overcome the aforementioned barriers by improving the quality, reproducibility, and yield of the hexagonal two-dimensional DNA lattice as organizing templates.

  16. Using the Richtmyer-Meshkov flow to infer the strength of LY-12 aluminum at extreme conditions

    NASA Astrophysics Data System (ADS)

    Yin, Jianwei; Pan, Hao; Peng, Jiangxiang; Wu, Zihui; Yu, Yuying; Hu, Xiaomian

    2017-06-01

    An improved analytical model of the Richtmyer-Meshkov (RM) flow in the elastoplastic materials is presented in this paper. This model describes the stabilization by yield strength (Y) effect on the RM flow in solids and linear relationships between initial configurations of perturbation and the growth. Then we make use of the model to analysis the explosion driven RM flow experiments with solid LY12 and test our model by comparing the predicted Y of existing strength models. Finally, we perform a plate impact experiment with solid LY12 aluminium alloy to validate our model and infer Y is about 1.23 GPa for a 28 GPa shock and a strain rate of 7.5 ×106 .

  17. "Turn-on" protein fluorescence: in situ formation of cyanine dyes.

    PubMed

    Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; Nosrati, Meisam; Jia, Xiaofei; Vasileiou, Chrysoula; Wang, Wenjing; Santos, Elizabeth M; Geiger, James H; Borhan, Babak

    2015-01-28

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2-11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observed spectroscopic behavior that results from single mutation of key residues.

  18. A thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A.

    1982-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composities). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  19. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  20. “Turn-On” Protein Fluorescence: In Situ Formation of Cyanine Dyes

    DOE PAGES

    Yapici, Ipek; Lee, Kin Sing Stephen; Berbasova, Tetyana; ...

    2014-12-22

    Protein reengineering of cellular retinoic acid binding protein II (CRABPII) has yielded a genetically addressable system, capable of binding a profluorophoric chromophore that results in fluorescent protein/chromophore complexes. These complexes exhibit far-red emission, with high quantum efficiencies and brightness and also exhibit excellent pH stability spanning the range of 2$-$11. In the course of this study, it became evident that single mutations of L121E and R59W were most effective in improving the fluorescent characteristics of CRABPII mutants as well as the kinetics of complex formation. The readily crystallizable nature of these proteins was invaluable to provide clues for the observedmore » spectroscopic behavior that results from single mutation of key residues.« less

Top