1. LOOKING NORTH AT THE BASIC OXYGEN STEELMAKING PLANT. THE ...
1. LOOKING NORTH AT THE BASIC OXYGEN STEELMAKING PLANT. THE FLUX HANDLING BUILDING IS ON THE RIGHT, THE MOULD CONDITIONING BUILDING IS IN THE CENTER, THE BASIC OXYGEN PROCESS (BOP) SHOP IS IN THE CENTER BACKGROUND, AND OPEN HEARTH No. 2 BUILDING IS ON THE LEFT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Development of a non-cryogenic nitrogen/oxygen supply system. [for spacecraft environments
NASA Technical Reports Server (NTRS)
1977-01-01
Modular components were refined or replaced to improve the performance of the electrolysis module in a system which generates both oxygen and hydrogen from hydrazine hydrate. Significant mechanical and electrical performance improvements were achieved in the cathode. Improvements were also made in the phase separation area but at considerable cost in time and money and to the detriment of other investigative areas. Only the pump/bubble separator failed in a manner necessitating redesign. Its failure was, however, due to its being operated above the temperature range for which it was designed. The basic electrolysis cell design was not changed.
Looking southwest toward the basic oxygen steelmaking plant from a ...
Looking southwest toward the basic oxygen steelmaking plant from a neighborhodd in Braddock by Eleventh Street. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...
15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND ...
11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
17. SOUTHEAST VIEW OF THE TAPPING SIDE OF BASIC OXYGEN ...
17. SOUTHEAST VIEW OF THE TAPPING SIDE OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Looking east at the basic oxygen furnace building with gas ...
Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA
Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Guo, Muxing; Pandelaers, Lieven; Blanpain, Bart; Huang, Shuigen
Slag valorization in added value construction applications can contribute substantially to the sustainability of steel industry. The present work aims to investigate the crystallization behavior of a typical industrial Basic Oxygen Furnace (BOF) slag (CaO-FeOx-SiO2-based slag) by varying the basicity through hot stage engineering. A sample of industry Basic Oxygen Slag (BOF) was mixed with different quantities of silica (SiO2) to modify basicity. The effect of basicity on solidification microstructure and mineralogy was studied. The results suggest that the mineralogy of the solidified slag can be manipulated to enhance its suitability as raw material for construction applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... Emissions From Basic Oxygen Furnaces (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...: NSPS for Primary and Secondary Emissions from Basic Oxygen Furnaces (Renewal). ICR Numbers: EPA ICR... Primary and Secondary Emissions from Basic Oxygen Furnaces (40 CFR part 60, subparts N and Na) were...
Oxygen regulates molecular mechanisms of cancer progression and metastasis.
Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan
2014-03-01
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Looking northwest at the teeming aisle building of the basic ...
Looking northwest at the teeming aisle building of the basic oxygen plant; furnace building is in background. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA
Kurouchi, Hiroaki; Sumita, Akinari; Otani, Yuko; Ohwada, Tomohiko
2014-07-07
We found that phenethylcarbamates that bear ortho-salicylate as an ether group (carbamoyl salicylates) dramatically accelerate OC bond dissociation in strong acid to facilitate generation of isocyanate cation (N-protonated isocyanates), which undergo subsequent intramolecular aromatic electrophilic cyclization to give dihydroisoquinolones. To generate isocyanate cations from carbamates in acidic media as electrophiles for aromatic substitution, protonation at the ether oxygen, the least basic heteroatom, is essential to promote CO bond cleavage. However, the carbonyl oxygen of carbamates, the most basic site, is protonated exclusively in strong acids. We found that the protonation site can be shifted to an alternative basic atom by linking methyl salicylate to the ether oxygen of carbamate. The methyl ester oxygen ortho to the phenolic (ether) oxygen of salicylate is as basic as the carbamate carbonyl oxygen, and we found that monoprotonation at the methyl ester oxygen in strong acid resulted in the formation of an intramolecular cationic hydrogen bond (>CO(+) H⋅⋅⋅O<) with the phenolic ether oxygen. This facilitates OC bond dissociation of phenethylcarbamates, thereby promoting isocyanate cation formation. In contrast, superacid-mediated diprotonation at the methyl ester oxygen of the salicylate and the carbonyl oxygen of the carbamate afforded a rather stable dication, which did not readily undergo CO bond dissociation. This is an unprecedented and unknown case in which the monocation has greater reactivity than the dication. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water electrolysis system refurbishment and testing
NASA Technical Reports Server (NTRS)
Greenough, B. M.
1972-01-01
The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Effect of Ladle Usage on Cleanliness of Bearing Steel
NASA Astrophysics Data System (ADS)
Chi, Yunguang; Deng, Zhiyin; Zhu, Miaoyong
2018-02-01
To investigate the effects of ladle usage on the inclusions and total oxygen contents of bearing steel, MgO refractory rods with different glazes were used to simulate different ladle usages. The results show that the effects of different ladle usages on the cleanliness of the steel differ from each other. The total oxygen content of steel increases with the decreasing glaze basicity. Ladle glaze having a lower basicity has a more negative impact on the cleanliness of steel in the subsequent production. Inclusions can be generated by the flush-off of ladle glaze, and the initial glaze is important in the evolution of inclusions in the subsequent heats. To avoid the negative effect of ladle usage and to improve the steel cleanliness as much as possible, specialized ladles were suggested for producing high-quality steel grades.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Secondary Emissions from Basic Oxygen... amended or in subpart A of this part. Basic oxygen process furnace (BOPF) means any furnace with a... or alloy additions into a vessel and by introducing a high volume of oxygen-rich gas. Open hearth...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Secondary Emissions from Basic Oxygen... amended or in subpart A of this part. Basic oxygen process furnace (BOPF) means any furnace with a... or alloy additions into a vessel and by introducing a high volume of oxygen-rich gas. Open hearth...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Secondary Emissions from Basic Oxygen... amended or in subpart A of this part. Basic oxygen process furnace (BOPF) means any furnace with a... or alloy additions into a vessel and by introducing a high volume of oxygen-rich gas. Open hearth...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Secondary Emissions from Basic Oxygen... amended or in subpart A of this part. Basic oxygen process furnace (BOPF) means any furnace with a... or alloy additions into a vessel and by introducing a high volume of oxygen-rich gas. Open hearth...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Secondary Emissions from Basic Oxygen... amended or in subpart A of this part. Basic oxygen process furnace (BOPF) means any furnace with a... or alloy additions into a vessel and by introducing a high volume of oxygen-rich gas. Open hearth...
25. LOOKING SOUTH AT THE MAIN CONTROL PANEL FOR BASIC ...
25. LOOKING SOUTH AT THE MAIN CONTROL PANEL FOR BASIC OXYGEN FURNACE No. 1 IN THE BOP SHOP'S No. 1 CONTROL ROOM ON THE OPERATING FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Duke, Trevor; Hwaihwanje, Ilomo; Kaupa, Magdalynn; Karubi, Jonah; Panauwe, Doreen; Sa'avu, Martin; Pulsan, Francis; Prasad, Peter; Maru, Freddy; Tenambo, Henry; Kwaramb, Ambrose; Neal, Eleanor; Graham, Hamish; Izadnegahdar, Rasa
2017-06-01
Pneumonia is the largest cause of child deaths in Papua New Guinea (PNG), and hypoxaemia is the major complication causing death in childhood pneumonia, and hypoxaemia is a major factor in deaths from many other common conditions, including bronchiolitis, asthma, sepsis, malaria, trauma, perinatal problems, and obstetric emergencies. A reliable source of oxygen therapy can reduce mortality from pneumonia by up to 35%. However, in low and middle income countries throughout the world, improved oxygen systems have not been implemented at large scale in remote, difficult to access health care settings, and oxygen is often unavailable at smaller rural hospitals or district health centers which serve as the first point of referral for childhood illnesses. These hospitals are hampered by lack of reliable power, staff training and other basic services. We report the methodology of a large implementation effectiveness trial involving sustainable and renewable oxygen and power systems in 36 health facilities in remote rural areas of PNG. The methodology is a before-and after evaluation involving continuous quality improvement, and a health systems approach. We describe this model of implementation as the considerations and steps involved have wider implications in health systems in other countries. The implementation steps include: defining the criteria for where such an intervention is appropriate, assessment of power supplies and power requirements, the optimal design of a solar power system, specifications for oxygen concentrators and other oxygen equipment that will function in remote environments, installation logistics in remote settings, the role of oxygen analyzers in monitoring oxygen concentrator performance, the engineering capacity required to sustain a program at scale, clinical guidelines and training on oxygen equipment and the treatment of children with severe respiratory infection and other critical illnesses, program costs, and measurement of processes and outcomes to support continuous quality improvement. This study will evaluate the feasibility and sustainability issues in improving oxygen systems and providing reliable power on a large scale in remote rural settings in PNG, and the impact of this on child mortality from pneumonia over 3 years post-intervention. Taking a continuous quality improvement approach can be transformational for remote health services.
40 CFR 60.140 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...
40 CFR 60.140 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...
40 CFR 60.140 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...
40 CFR 60.140 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...
40 CFR 60.140 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Primary Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After... which the provisions of this subpart apply is each basic oxygen process furnace. (b) Any facility under...
Komatsu, H; Rawson, J; Barriga, A; Gonzalez, N; Mendez, D; Li, J; Omori, K; Kandeel, F; Mullen, Y
2018-04-01
Subcutaneous tissue is a promising site for islet transplantation, due to its large area and accessibility, which allows minimally invasive procedures for transplantation, graft monitoring, and removal of malignancies as needed. However, relative to the conventional intrahepatic transplantation site, the subcutaneous site requires a large number of islets to achieve engraftment success and diabetes reversal, due to hypoxia and low vascularity. We report that the efficiency of subcutaneous islet transplantation in a Lewis rat model is significantly improved by treating recipients with inhaled 50% oxygen, in conjunction with prevascularization of the graft bed by agarose-basic fibroblast growth factor. Administration of 50% oxygen increased oxygen tension in the subcutaneous site to 140 mm Hg, compared to 45 mm Hg under ambient air. In vitro, islets cultured under 140 mm Hg oxygen showed reduced central necrosis and increased insulin release, compared to those maintained in 45 mm Hg oxygen. Six hundred syngeneic islets subcutaneously transplanted into the prevascularized graft bed reversed diabetes when combined with postoperative 50% oxygen inhalation for 3 days, a number comparable to that required for intrahepatic transplantation; in the absence of oxygen treatment, diabetes was not reversed. Thus, we show oxygen inhalation to be a simple and promising approach to successfully establishing subcutaneous islet transplantation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Space Shuttle Orbiter oxygen partial pressure sensing and control system improvements
NASA Technical Reports Server (NTRS)
Frampton, Robert F.; Hoy, Dennis M.; Kelly, Kevin J.; Walleshauser, James J.
1992-01-01
A program aimed at developing a new PPO2 oxygen sensor and a replacement amplifier for the Space Shuttle Orbiter is described. Experimental design methodologies used in the test and modeling process made it possible to enhance the effectiveness of the program and to reduce its cost. Significant cost savings are due to the increased lifetime of the basic sensor cell, the maximization of useful sensor life through an increased amplifier gain adjustment capability, the use of streamlined production processes for the manufacture of the assemblies, and the refurbishment capability of the replacement sensor.
Successful cardiopulmonary resuscitation following cardiopulmonary arrest in a geriatric chinchilla.
Fernandez, Christina M; Peyton, Jamie L; Miller, Mona; Johnson, Eric G; Kovacic, Jan P
2013-01-01
To describe the successful application of CPR in a geriatric chinchilla employing basic and advanced life support measures during cardiopulmonary arrest (CPA). A 13-year-old female intact chinchilla presented to a general and multispecialty referral hospital for a dental procedure. During recovery from anesthesia the patient suffered CPA and CPR was initiated. Noninvasive positive pressure mask ventilation was initiated and external chest compressions were performed. An 18-Ga needle was introduced into the medullary cavity of the right humerus as an intraosseous catheter and provided access for administration of drugs and fluids. After return of spontaneous circulation was noted mannitol was administered via the intraosseous catheter to alleviate suspected increased intracranial pressure. Clinical improvement was noted shortly after administration. Monitoring during the recovery period showed a normal sinus cardiac rhythm and a SpO₂ of 100% while on supplemental oxygen. Neurologic function continued to improve over the following hours. Oxygen therapy was provided via an oxygen cage, and administration of antimicirobials, gastrointestinal protectants, and nutritional supplementation were part of the post resuscitation care. Oxygen therapy was discontinued after 24 hours, during which time normal behaviors were observed and neurologic status was considered appropriate. The patient was discharged 48 hours after CPA. Published reports from clinical practice on the outcomes of CPR for exotic small mammals are limited. This report details the successful outcome of the use of combined basic and advanced life support measures for the provision of CPR in a chinchilla. This report also highlights the utility of an intraosseous catheter for administration of drugs and fluids novel to this species during resuscitation and recovery. To the authors' knowledge this is the first published report of successful CPR following CPA in a geriatric chinchilla. © Veterinary Emergency and Critical Care Society 2013.
Duke, Trevor; Hwaihwanje, Ilomo; Kaupa, Magdalynn; Karubi, Jonah; Panauwe, Doreen; Sa’avu, Martin; Pulsan, Francis; Prasad, Peter; Maru, Freddy; Tenambo, Henry; Kwaramb, Ambrose; Neal, Eleanor; Graham, Hamish; Izadnegahdar, Rasa
2017-01-01
Background Pneumonia is the largest cause of child deaths in Papua New Guinea (PNG), and hypoxaemia is the major complication causing death in childhood pneumonia, and hypoxaemia is a major factor in deaths from many other common conditions, including bronchiolitis, asthma, sepsis, malaria, trauma, perinatal problems, and obstetric emergencies. A reliable source of oxygen therapy can reduce mortality from pneumonia by up to 35%. However, in low and middle income countries throughout the world, improved oxygen systems have not been implemented at large scale in remote, difficult to access health care settings, and oxygen is often unavailable at smaller rural hospitals or district health centers which serve as the first point of referral for childhood illnesses. These hospitals are hampered by lack of reliable power, staff training and other basic services. Methods We report the methodology of a large implementation effectiveness trial involving sustainable and renewable oxygen and power systems in 36 health facilities in remote rural areas of PNG. The methodology is a before–and after evaluation involving continuous quality improvement, and a health systems approach. We describe this model of implementation as the considerations and steps involved have wider implications in health systems in other countries. Results The implementation steps include: defining the criteria for where such an intervention is appropriate, assessment of power supplies and power requirements, the optimal design of a solar power system, specifications for oxygen concentrators and other oxygen equipment that will function in remote environments, installation logistics in remote settings, the role of oxygen analyzers in monitoring oxygen concentrator performance, the engineering capacity required to sustain a program at scale, clinical guidelines and training on oxygen equipment and the treatment of children with severe respiratory infection and other critical illnesses, program costs, and measurement of processes and outcomes to support continuous quality improvement. Conclusions This study will evaluate the feasibility and sustainability issues in improving oxygen systems and providing reliable power on a large scale in remote rural settings in PNG, and the impact of this on child mortality from pneumonia over 3 years post–intervention. Taking a continuous quality improvement approach can be transformational for remote health services. PMID:28567280
Numerical Study of the Reduction Process in an Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng
2016-02-01
Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.
16. LOOKING WEST AT THE MOTOR DRIVE ASSEMBLY FOR THE ...
16. LOOKING WEST AT THE MOTOR DRIVE ASSEMBLY FOR THE BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong
2016-08-01
As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR ...
26. LOOKING SOUTH AT THE MOTOR CONTROL SWITCHING PANEL FOR BASIC OXYGEN FURNACE No. 2 IN THE BOP SHOP'S MOTOR CONTROL CENTER No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
Oxygen Transport: A Simple Model for Study and Examination.
ERIC Educational Resources Information Center
Gaar, Kermit A., Jr.
1985-01-01
Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…
AltitudeOmics: The Basic Biology of Human Acclimatization to High Altitude. Addendum
2014-09-01
first subject had completed the arterial/ venous catheterization and cognitive testing portion of the protocol. Then the second subject began the protocol...attenuates, but does not eliminate, the exacerbation of central fatigue associated with exercise in severe acute hypoxia. c. Fan JL, Subudhi AW, Evero...that best characterize acclimatization [1]. Most would agree that improving arterial oxygenation and exercise performance are central tenets of PLOS
Gerych, P; Yatsyshyn, R
2015-01-01
Studied oxygen independent reaction and phagocytic activity of macrophage cells of patients with chronic obstructive pulmonary disease (COPD) II-III stage when combined with coronary heart disease (CHD). The increasing oxygen independent reactions monocytes and neutrophils and a decrease of the parameters that characterize the functional state of phagocytic cells, indicating a decrease in the functional capacity of macrophage phagocytic system (MPS) in patients with acute exacerbation of COPD, which runs as its own or in combination with stable coronary heart disease angina I-II. FC. Severity immunodeficiency state in terms of cellular component of nonspecific immunity in patients with acute exacerbation of COPD II-III stage in conjunction with the accompanying CHD increases with the progression of heart failure. Inclusion of basic therapy of COPD exacerbation and standard treatment of coronary artery disease and drug combinations Roflumilastand quercetin causes normalization of phagocytic indices MFS, indicating improved immune status and improves myocardial perfusion in terms of daily ECG monitoring.
Topaz, Moris
2012-05-01
Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.
Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo
2015-08-01
[Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance.
Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo
2015-01-01
[Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance. PMID:26356048
A New Method for Extubation: Comparison between Conventional and New Methods.
Yousefshahi, Fardin; Barkhordari, Khosro; Movafegh, Ali; Tavakoli, Vida; Paknejad, Omalbanin; Bina, Payvand; Yousefshahi, Hadi; Sheikh Fathollahi, Mahmood
2012-08-01
Extubation is associated with the risk of complications such as accumulated secretion above the endotracheal tube cuff, eventual atelectasia following a reduction in pulmonary volumes because of a lack of physiological positive end expiratory pressure, and intra-tracheal suction. In order to reduce these complications, and, based on basic physiological principles, a new practical extubation method is presented in this article. The study was designed as a six-month prospective cross-sectional clinical trial. Two hundred fifty-seven patients undergoing coronary artery bypass grafting (CABG) were divided into two groups based on their scheduled surgery time. The first group underwent the conventional extubation method, while the other group was extubated according to a new described method. Arterial blood gas (ABG) analysis results before and after extubation were compared between the two groups to find the effect of the extubation method on the ABG parameters and the oxygenation profile. In all time intervals, the partial pressure of oxygen in arterial blood / fraction of inspired oxygen (PaO(2)/FiO(2)) ratio in the new method group patients was improved compared to that in the conventional method; some differences, like PaO(2)/FiO(2) four hours after extubation, were statistically significant, however (p value=0.0063). The new extubation method improved some respiratory parameters and thus attenuated oxygenation complications and amplified oxygenation after extubation.
Alternative Fuels Characterization | Transportation Research | NREL
. Research at NREL focuses on the basic properties of these fuels and what levels of oxygen can be tolerated conventional cars and on understanding the performance of flex-fuel vehicles that can operate on ethanol levels basic properties of these fuels, as well as determining what levels of oxygen can be tolerated in drop
Study on low intensity aeration oxygenation model and optimization for shallow water
NASA Astrophysics Data System (ADS)
Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi
2018-02-01
Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... unsafe condition as: In the door 2 area, the hat-racks are supplied with a basic wire harness which includes ``Oxygen Masks'' activation. In case of a monument installation, the respective non-used hat- rack... door 2 area, the hat-racks are supplied with a basic wire harness which includes ``Oxygen Masks...
The monitoring of eco-hydrological parameters within the LIFE Ljubljanica Connects project
NASA Astrophysics Data System (ADS)
Sapač, Klaudija; Šraj, Mojca; Zabret, Katarina; Brilly, Mitja; Vidmar, Andrej
2016-04-01
The main objectives of the Ljubljanica Connects project arising from the need to improve the living conditions in the Ljubljanica River for endangered fish species. The history of improving the conditions dates back more than 100 years ago with the construction of fish passages at the obstacles on the Ljubljanica River. As part of the project the fish passages were reconstructed and upgraded to improve river connectivity. But for the survival of fish and other aquatic organisms in the river also adequate living conditions are necessary which can be determined by measurements of individual parameters of water quality. Within the LIFE Ljubljanica Connects project we have established continuous eco-hydrological monitoring of water level and temperature at 17 measuring sites and concentration of dissolved oxygen at 3 measuring sites along the Ljubljanica River and its tributaries. Water level data are input data for the hydrological model of Ljubljanica River, while water temperature and concentration of dissolved oxygen are the basic indicators of the quality of the water. The purpose of this paper is to present the measuring equipment of eco-hydrological monitoring, the first feedback on the results of measured water temperature and the concentration of dissolved oxygen in the Ljubljanica River, and the advantages and importance of such monitoring.
Chen, Zongwu; Wu, Shaopeng; Pang, Ling; Xie, Jun
2016-07-04
In this paper, the effect of the size gradations of basic oxygen furnace (BOF) slag on the functional performances of stone mastic asphalt (SMA) mixture including skid and deformation resistances was investigated. The industrially produced BOF slag coarse aggregates (BSCA) with size gradations of 4.75-9.5 mm and 9.5-16 mm were used. SMA mixtures were designed according to Marshall procedure. British pendulum number (BPN), indicating the skid resistance of asphalt mixture, was measured by a British pendulum skid resistance device. Flow number (FN) and Marshall quotient (MQ), reflecting the deformation resistance of asphalt mixture, were determined, respectively, based on the results of dynamic creep test and Marshall test (stability and flow value). Showed that BSCA with a size gradation of 9.5-16 mm performed better in improving the skid and deformation resistance of SMA mixture than BSCA with a size gradation of 4.75-9.5 mm. Furthermore, BSCA with combined size gradations, namely, 4.75-16 mm, worked the best. These conclusions would benefit the future extensive utilization of BSCA in asphalt pavement.
Optimizing Survival Outcomes For Adult Patients With Nontraumatic Cardiac Arrest.
Jung, Julianna
2016-10-01
Patient survival after cardiac arrest can be improved significantly with prompt and effective resuscitative care. This systematic review analyzes the basic life support factors that improve survival outcome, including chest compression technique and rapid defibrillation of shockable rhythms. For patients who are successfully resuscitated, comprehensive postresuscitation care is essential. Targeted temperature management is recommended for all patients who remain comatose, in addition to careful monitoring of oxygenation, hemodynamics, and cardiac rhythm. Management of cardiac arrest in circumstances such as pregnancy, pulmonary embolism, opioid overdose and other toxicologic causes, hypothermia, and coronary ischemia are also reviewed.
NASA Astrophysics Data System (ADS)
Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.
2018-02-01
Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.
Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol
Steinberg, Meyer; Grohse, Edward W.
1995-01-01
A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.
3. EASTERN VIEW OF HOISTING RIG FOR OXYGEN LANCES ON ...
3. EASTERN VIEW OF HOISTING RIG FOR OXYGEN LANCES ON THE FLUX STORAGE FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...
38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
Hájos, Norbert; Ellender, Tommas J; Zemankovics, Rita; Mann, Edward O; Exley, Richard; Cragg, Stephanie J; Freund, Tamás F; Paulsen, Ole
2009-01-01
Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.
5. MOTOR/WINCH DRUM ASSEMBLY FOR OXYGEN LANCE HOISTING RIG ON ...
5. MOTOR/WINCH DRUM ASSEMBLY FOR OXYGEN LANCE HOISTING RIG ON THE WEIGHING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP LOOKING SOUTHEAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Sa'avu, Martin; Duke, Trevor; Matai, Sens
2014-05-01
In developing countries such as Papua New Guinea (PNG), district hospitals play a vital role in clinical care, training health-care workers, implementing immunization and other public health programmes and providing necessary data on disease burdens and outcomes. Pneumonia and neonatal conditions are a major cause of child admission and death in hospitals throughout PNG. Oxygen therapy is an essential component of the management of pneumonia and neonatal conditions, but facilities for oxygen and care of the sick newborn are often inadequate, especially in district hospitals. Improving this area may be a vehicle for improving overall quality of care. A qualitative study of five rural district hospitals in the highlands provinces of Papua New Guinea was undertaken. A structured survey instrument was used by a paediatrician and a biomedical technician to assess the quality of paediatric care, the case-mix and outcomes, resources for delivery of good-quality care for children with pneumonia and neonatal illnesses, existing oxygen systems and equipment, drugs and consumables, infection-control facilities and the reliability of the electricity supply to each hospital. A floor plan was drawn up for the installation of the oxygen concentrators and a plan for improving care of sick neonates, and a process of addressing other priorities was begun. In remote parts of PNG, many district hospitals are run by under-resourced non-government organizations. Most hospitals had general wards in which both adults and children were managed together. Paediatric case-loads ranged between 232 and 840 patients per year with overall case-fatality rates (CFR) of 3-6% and up to 15% among sick neonates. Pneumonia accounts for 28-37% of admissions with a CFR of up to 8%. There were no supervisory visits by paediatricians, and little or no continuing professional development of staff. Essential drugs were mostly available, but basic equipment for the care of sick neonates was often absent or incomplete. Infection control measures were inadequate in most hospitals. Cylinders were the major source of oxygen for the district hospitals, and logistical problems and large indirect costs meant that oxygen was under-utilized. There were multiple electricity interruptions, but hospitals had back-up generators to enable the use of oxygen concentrators. After 6 months in each of the five hospitals, high-dependency care areas were planned, oxygen concentrators installed, staff trained in their use, and a plan was set out for improving neonatal care. If MGD-4 targets for child health are to be met, reducing neonatal mortality and deaths from pneumonia will have to include better quality services in district hospitals. Establishing better oxygen supplies with a systems approach can be a vehicle for addressing other areas of quality and safety in district hospitals.
Evaluation of an Atmosphere Revitalization Subsystem for Deep Space Exploration Missions
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Conrad, Ruth E.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Knox, James C.; Newton, Robert L.; Parrish, Keith J.; Takada, Kevin C.;
2015-01-01
An Atmosphere Revitalization Subsystem (ARS) suitable for deployment aboard deep space exploration mission vehicles has been developed and functionally demonstrated. This modified ARS process design architecture was derived from the International Space Station's (ISS) basic ARS. Primary functions considered in the architecture include trace contaminant control, carbon dioxide removal, carbon dioxide reduction, and oxygen generation. Candidate environmental monitoring instruments were also evaluated. The process architecture rearranges unit operations and employs equipment operational changes to reduce mass, simplify, and improve the functional performance for trace contaminant control, carbon dioxide removal, and oxygen generation. Results from integrated functional demonstration are summarized and compared to the performance observed during previous testing conducted on an ISS-like subsystem architecture and a similarly evolved process architecture. Considerations for further subsystem architecture and process technology development are discussed.
Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol
Steinberg, M.; Grohse, E.W.
1995-06-27
A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.
Discrete regenerative fuel cell reduces hysteresis for sustainable cycling of water
Park, Kiwon; Lee, Jungkoo; Kim, Hyung-Man; Choi, Kap-Seung; Hwang, Gunyong
2014-01-01
The discrete regenerative fuel cell is being developed as a residential power control that synchronizes with a renewables load which fluctuates significantly with the time and weather. The power of proton exchange membrane fuel cells can be scaled-up adjustably to meet the residential power demand. As a result, scale-ups from a basic unit cell with a 25 cm2 active area create a serpentine flow-field on an active area of 100 cm2 and take into account the excessive current and the remaining power obtained by stacking single cells. Operating a fuel cell utilising oxygen produced by the electrolyser instead of air improves the electrochemical reaction and the water balance. Furthermore, the performance test results with oxygen instead of air show almost no hysteresis, which results in the very stable operation of the proton exchange membrane fuel cell as well as the sustainable cycle of water by hydrogen and oxygen mediums. PMID:24699531
Mechanism of oxygen electroreduction on gold surfaces in basic media.
Kim, Jongwon; Gewirth, Andrew A
2006-02-16
The mechanism of the electroreduction of oxygen on Au surfaces in basic media is examined using surface-enhanced Raman scattering (SERS) measurements and density functional theory (DFT) calculations. The spectroscopy reveals superoxide species as a reduction intermediate throughout the oxygen electroreduction, while no peroxide is detected. The spectroscopy also shows the presence of superoxide after the addition of hydrogen peroxide. The calculations show no effect of OH addition to the Au(100) surface with regard to O-O length. These results suggest that the four-electron reduction of O(2) on Au(100) in base arises from a disproportionation mechanism which is enhanced on Au(100) relative to the other two low Miller index faces of Au.
Analysis of liquid-propellant rocket engines designed by F. A. Tsander
NASA Technical Reports Server (NTRS)
Dushkin, L. S.; Moshkin, Y. K.
1977-01-01
The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.
Mars oxygen production system design
NASA Technical Reports Server (NTRS)
Cotton, Charles E.; Pillow, Linda K.; Perkinson, Robert C.; Brownlie, R. P.; Chwalowski, P.; Carmona, M. F.; Coopersmith, J. P.; Goff, J. C.; Harvey, L. L.; Kovacs, L. A.
1989-01-01
The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing.
Mars oxygen production system design
NASA Technical Reports Server (NTRS)
1988-01-01
This report summarizes the design and construction of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere has been assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer data acquisition and control instrumentation is continuing.
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
40 CFR 60.142 - Standard for particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... primary oxygen blow. (ii) Exit from a control device not used solely for the collection of secondary.../dscm (0.030 gr/dscf), as measured for the primary oxygen blow. (ii) Exit from a control device not used...
Hyperbaric oxygen therapy for carbon monoxide poisoning.
Weaver, Lindell K
2014-01-01
Despite established exposure limits and safety standards, and the availability of carbon monoxide (CO) alarms, each year 50,000 people in the United States visit emergency departments for CO poisoning. Carbon monoxide poisoning can occur from brief exposures to high levels of CO, or from longer exposures to lower levels. Common symptoms include headaches, nausea and vomiting, dizziness, general malaise, and altered mental status. Some patients may have chest pain, shortness of breath and myocardial ischemia, and may require mechanical ventilation and treatment of shock. Individuals poisoned by CO often go on to develop neurological problems, including cognitive sequelae, anxiety and depression, persistent headaches, dizziness, sleep problems, motor weakness, vestibular and balance problems, gaze abnormalities, peripheral neuropathies, hearing loss, tinnitus and Parkinsonian-like syndrome. While breathing oxygen hastens the removal of carboxyhemoglobin (COHb), hyperbaric oxygen (HBO2) hastens COHb elimination and favorably modulates inflammatory processes instigated by CO poisoning, an effect not observed with breathing normobaric oxygen. Hyperbaric oxygen improves mitochondrial function, inhibits lipid peroxidation transiently, impairs leukocyte adhesion to injured microvasculature, and reduces brain inflammation caused by the CO-induced adduct formation of myelin basic protein. Based upon three supportive randomized clinical trials in humans and considerable evidence from animal studies, HBO2 should be considered for all cases of acute symptomatic CO poisoning. Hyperbaric oxygen is indicated for CO poisoning complicated by cyanide poisoning, often concomitantly with smoke inhalation.
Sa’avu, Martin; Duke, Trevor; Matai, Sens
2014-01-01
Background In developing countries such as Papua New Guinea (PNG), district hospitals play a vital role in clinical care, training health-care workers, implementing immunization and other public health programmes and providing necessary data on disease burdens and outcomes. Pneumonia and neonatal conditions are a major cause of child admission and death in hospitals throughout PNG. Oxygen therapy is an essential component of the management of pneumonia and neonatal conditions, but facilities for oxygen and care of the sick newborn are often inadequate, especially in district hospitals. Improving this area may be a vehicle for improving overall quality of care. Method A qualitative study of five rural district hospitals in the highlands provinces of Papua New Guinea was undertaken. A structured survey instrument was used by a paediatrician and a biomedical technician to assess the quality of paediatric care, the case-mix and outcomes, resources for delivery of good-quality care for children with pneumonia and neonatal illnesses, existing oxygen systems and equipment, drugs and consumables, infection-control facilities and the reliability of the electricity supply to each hospital. A floor plan was drawn up for the installation of the oxygen concentrators and a plan for improving care of sick neonates, and a process of addressing other priorities was begun. Results In remote parts of PNG, many district hospitals are run by under-resourced non-government organizations. Most hospitals had general wards in which both adults and children were managed together. Paediatric case-loads ranged between 232 and 840 patients per year with overall case-fatality rates (CFR) of 3–6% and up to 15% among sick neonates. Pneumonia accounts for 28–37% of admissions with a CFR of up to 8%. There were no supervisory visits by paediatricians, and little or no continuing professional development of staff. Essential drugs were mostly available, but basic equipment for the care of sick neonates was often absent or incomplete. Infection control measures were inadequate in most hospitals. Cylinders were the major source of oxygen for the district hospitals, and logistical problems and large indirect costs meant that oxygen was under-utilized. There were multiple electricity interruptions, but hospitals had back-up generators to enable the use of oxygen concentrators. After 6 months in each of the five hospitals, high-dependency care areas were planned, oxygen concentrators installed, staff trained in their use, and a plan was set out for improving neonatal care. Interpretation If MGD-4 targets for child health are to be met, reducing neonatal mortality and deaths from pneumonia will have to include better quality services in district hospitals. Establishing better oxygen supplies with a systems approach can be a vehicle for addressing other areas of quality and safety in district hospitals. PMID:24621233
Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses
NASA Astrophysics Data System (ADS)
Kattenbelt, Carolien; Roffel, B.
2008-10-01
In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.
Endo, Gen; Iemura, Yu; Fukushima, Edwardo F; Hirose, Shigeo; Iribe, Masatsugu; Ikeda, Ryota; Onishi, Kohei; Maeda, Naoto; Takubo, Toshio; Ohira, Mineko
2013-06-01
Home oxygen therapy (HOT) is a medical treatment for the patients suffering from severe lung diseases. Although walking outdoors is recommended for the patients to maintain physical strength, the patients always have to carry a portable oxygen supplier which is not sufficiently light weight for this purpose. Our ultimate goal is to develop a mobile robot to carry an oxygen tank and follow a patient in an urban outdoor environment. We have proposed a mobile robot with a tether interface to detect the relative position of the foregoing patient. In this paper, we report the questionnaire-based evaluation about the two developed prototypes by the HOT patients. We conduct maneuvering experiments, and then obtained questionnaire-based evaluations from the 20 patients. The results show that the basic following performance is sufficient and the pulling force of the tether is sufficiently small for the patients. Moreover, the patients prefer the small-sized prototype for compactness and light weight to the middle-sized prototype which can carry larger payload. We also obtained detailed requests to improve the robots. Finally the results show the general concept of the robot is favorably received by the patients.
40 CFR 60.144 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... cycles. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall... number of primary oxygen blows. (3) Method 9 and the procedures in § 60.11 shall be used to determine...
40 CFR 60.144 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... cycles. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall... number of primary oxygen blows. (3) Method 9 and the procedures in § 60.11 shall be used to determine...
40 CFR 60.144 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... cycles. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall... number of primary oxygen blows. (3) Method 9 and the procedures in § 60.11 shall be used to determine...
40 CFR 60.144 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... cycles. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall... number of primary oxygen blows. (3) Method 9 and the procedures in § 60.11 shall be used to determine...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... Oxygen Furnaces AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is... carbon monoxide (CO) emissions from basic oxygen furnaces (BOFs) at steel mills in the State of Maryland... blast furnace and scrap metal which is heated with oxygen to produce molten metal. The molten metal is...
40 CFR 60.144 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions from Basic Oxygen Process Furnaces for Which Construction is Commenced After June 11, 1973 § 60... cycles. A cycle shall start at the beginning of either the scrap preheat or the oxygen blow and shall... number of primary oxygen blows. (3) Method 9 and the procedures in § 60.11 shall be used to determine...
NASA Astrophysics Data System (ADS)
Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.
2016-10-01
The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.
10. LOOKING SOUTH IN BOP SHOP AT FUME HOOD AND ...
10. LOOKING SOUTH IN BOP SHOP AT FUME HOOD AND SPARE OXYGEN LANCES ON THE SERVICE FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... Oxygen Furnaces AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA... basic oxygen furnaces (BOFs) at steel mills with a new CO standard for BOFs at steel mills. In the Final...
ERIC Educational Resources Information Center
Leow, Melvin Khee-Shing
2007-01-01
The oxygen dissociation curve (ODC) of hemoglobin (Hb) has been widely studied and mathematically described for nearly a century. Numerous mathematical models have been designed to predict with ever-increasing accuracy the behavior of oxygen transport by Hb in differing conditions of pH, carbon dioxide, temperature, Hb levels, and…
9. LOOKING NORTH IN BOP SHOP ON SERVICE FLOOR OF ...
9. LOOKING NORTH IN BOP SHOP ON SERVICE FLOOR OF FURNACE AISLE AT FUME HOOD SHOWING COLLAR AND ENTRANCE FOR OXYGEN LANCES. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi
2017-03-01
This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.
Kaser, Daniel J
2017-03-01
Fellows in Reproductive Endocrinology and Infertility training are expected to complete 18 months of clinical, basic, or epidemiological research. The goal of this research is not only to provide the basis for the thesis section of the oral board exam but also to spark interest in reproductive medicine research and to provide the next generation of physician-scientists with a foundational experience in research design and implementation. Incoming fellows often have varying degrees of training in research methodology and, likewise, different career goals. Ideally, selection of a thesis topic and mentor should be geared toward defining an "answerable" question and building a practical skill set for future investigation. This contribution to the JARG Young Investigator's Forum revisits the steps of the scientific method through the lens of one recently graduated fellow and his project aimed to test the hypothesis that "sequential oxygen exposure (5% from days 1 to 3, then 2% from days 3 to 5) improves blastocyst yield and quality compared to continuous exposure to 5% oxygen among human preimplantation embryos."
Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea
2017-12-01
The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg -1 year -1 and D, 2, 7 g kg -1 year -1 ) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca ++ and Mg ++ ) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Steelmaking Subcategory § 420.41 Specialized definitions. (a) The term basic oxygen furnace steelmaking means the production of steel from molten iron, steel scrap, fluxes, and various combinations thereof, in refractory lined furnaces by adding oxygen. (b...
Selected facial measurements of children for oxygen-mask design.
DOT National Transportation Integrated Search
1966-04-01
Requirements for design of oxygen masks and other equipment for effective protection of children in high-altitude flight necessitate a new facial-measurement series. A program to meet this demand was initiated to : 1.select a basic set of standard me...
NO2 disproportionation for the IR characterisation of basic zeolites.
Marie, Olivier; Malicki, Nicolas; Pommier, Catherine; Massiani, Pascale; Vos, Ann; Schoonheydt, Robert; Geerlings, Paul; Henriques, Carlos; Thibault-Starzyk, Fréderic
2005-02-28
NO2 disproportionation on alkaline zeolites is used to generate nitrosonium (NO+) and nitrate ions on the surface, and the infrared vibrations observed are very sensitive to the cation chemical hardness and to the basicity of zeolitic oxygen atoms.
Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensors for Environmental Monitoring
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Xu, Jennifer C.; Liu, Chung-Chiun
2011-01-01
An ambient temperature oxygen microsensor, based on a Nafion polymer electrolyte, has been developed and was microfabricated using thin-film technologies. A challenge in the operation of Nafion-based sensor systems is that the conductivity of Nafion film depends on the humidity in the film. Nafion film loses conductivity when the moisture content in the film is too low, which can affect sensor operation. The advancement here is the identification of a method to retain the operation of the Nafion films in lower humidity environments. Certain salts can hold water molecules in the Nafion film structure at room temperature. By mixing salts with the Nafion solution, water molecules can be homogeneously distributed in the Nafion film increasing the film s hydration to prevent Nafion film from being dried out in low-humidity environment. The presence of organics provides extra sites in the Nafion film to promote proton (H+) mobility and thus improving Nafion film conductivity and sensor performance. The fabrication of ambient temperature oxygen microsensors includes depositing basic electrodes using noble metals, and metal oxides layer on one of the electrode as a reference electrode. The use of noble metals for electrodes is due to their strong catalytic properties for oxygen reduction. A conducting polymer Nafion, doped with water-retaining components and extra sites facilitating proton movement, was used as the electrolyte material, making the design adequate for low humidity environment applications. The Nafion solution was coated on the electrodes and air-dried. The sensor operates at room temperature in potentiometric mode, which measures voltage differences between working and reference electrodes in different gases. Repeat able responses to 21-percent oxygen in nitrogen were achieved using nitrogen as a baseline gas. Detection of oxygen from 7 to 21 percent has also been demonstrated. The room-temperature oxygen micro sensor developed has extremely low power consumption (no heating for operation, no voltage applied to the sensor, only a voltmeter is needed to measure the output), is small in size, is simple to batch-fabricate, and is high in sensor yield. It is applicable in a wide humidity range, with improved operation in low humidity after the additives were added to the Nafion film. Through further improvement and development, the sensor can be used for aerospace applications such as fuel leak detection, fire detection, and environmental monitoring.
Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.
2004-02-03
A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.
Improvement of Baltic proper water quality using large-scale ecological engineering.
Stigebrandt, Anders; Gustafsson, Bo G
2007-04-01
Eutrophication of the Baltic proper has led to impaired water quality, demonstrated by, e.g., extensive blooming of cyanobacteria during the premium summer holiday season and severe oxygen deficit in the deepwater. Sustainable improvements in water quality by the reduction of phosphorus (P) supplies will take several decades before giving full effects because of large P storages both in soils in the watershed and in the water column and bottom sediments of the Baltic proper. In this article it is shown that drastically improved water quality may be obtained within a few years using large-scale ecological engineering methods. Natural variations in the Baltic proper during the last decades have demonstrated how rapid improvements may be achieved. The present article describes the basic dynamics of P, organic matter, and oxygen in the Baltic proper. It also briefly discusses the advantages and disadvantages of different classes of methods of ecological engineering aimed at restoring the Baltic proper from eutrophication effects. Preliminary computations show that the P content might be halved within a few years if about 100 kg O2 s(-1) are supplied to the upper deepwater. This would require 100 pump stations, each transporting about 100 m3 s(-1) of oxygen-rich so-called winter water from about 50 to 125 m depth where the water is released as a buoyant jet. Each pump station needs a power supply of 0.6 MW. Offshore wind power technology seems mature enough to provide the power needed by the pump stations. The cost to install 100 wind-powered pump stations, each with 0.6 MW power, at about 125-m depth is about 200 million Euros.
Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.
2001-01-01
The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.
NASA Astrophysics Data System (ADS)
Maluangnont, Tosapol; Arsa, Pornanan; Sooknoi, Tawan
2017-12-01
We report herein the basicity of the external and internal lattice oxygen (OL) in lepidocrocite titanates with respect to CO2 and palmitic acid, respectively. Several compositions have been tested with different types of the metal M aliovalently (co)substituted for Ti, K0.8[MyTi2-y]O4 (M = Li, Mg, Fe, Co, Ni, Cu, Zn, Cu/Ni and Cu/Zn). The low CO2 desorption peak temperature (70-100 °C) suggests that the external OL sites are weakly basic similar to TiO2. However, the internal OL sites are sufficiently basic to deprotonate palmitic acid, forming the intercalated potassium palmitate at the interlayer spaces. The latter serves as a two-dimensional (2D) molecular reactor for the production of liquid hydrocarbon fuels via deoxygenation under atmospheric N2. A relationship has been observed between the yield of the liquid products vs the partial charge of the lattice oxygen (δO). Since the deoxygenation pathway is highly dependent on the metal substitution, the redox-active sites might also play some roles. The co-substituted K0.8[Cu0.2Ni0.2]Ti1.6O4 produced 68.0% yield of the liquid products, with 51% saturated and 15% unsaturated C15 hydrocarbons at 350 °C.
[How did the earth's oxygen atmosphere originate?].
Schäfer, G
2004-09-01
The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.
Kudoh, Atsuo
2008-03-01
Distraction osteogenesis has been widely used even in the craniofacial region. A long fixation time during the consolidation period, however, is a major clinical disadvantage. Hyperbaric oxygen (HBO) has been used to improve healing in ischemic wounds. We have recently started applying hyperbaric oxygen to cleft palate patients after maxillary distraction, but there is little basic evidence. We hypothesized that hyperbaric oxygen would enhance the healing of distraction osteogenesis in the cleft palate model in dogs. A bony segment including a canine was transported proximally into an artificial bone defect in the left palate. Three dogs were treated with hyperbaric oxygen for 20 days just after the distraction and three other dogs underwent only the distraction process (control group). Blood flow of the canine pulp in the bone segment was monitored using a laser Doppler flowmeter throughout the experiment. All the dogs were sacrificed on day 100, and radiological analysis using peripheral quantitative CT and histomorphometric evaluations were performed. Blood flow in the HBO-treated group recovered to the original level about 30 days faster than in the control group (p<0.05). Cortical bone mineral density was significantly higher at the distraction site in the HBO-treated group than in the control group (p<0.05). The histomorphometric analysis revealed that the newly formed bone area was also larger in the HBO-treated group than in the control group (p<0.05). These results suggest that hyperbaric oxygen treatment could be useful for early removal of the distraction device in distraction osteogenesis.
Regeneration of oxygen from carbon dioxide and water.
NASA Technical Reports Server (NTRS)
Weissbart, J.; Smart, W. H.; Wydeven, T.
1972-01-01
In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.
Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke.
Hu, Sheng-Li; Feng, Hua; Xi, Guo-Hua
2016-01-01
To date, the therapeutic methods for ischemic and hemorrhagic stroke are still limited. The lack of oxygen supply is critical for brain injury following stroke. Hyperbaric oxygen (HBO), an approach through a process in which patients breathe in 100% pure oxygen at over 101 kPa, has been shown to facilitate oxygen delivery and increase oxygen supply. Hence, HBO possesses the potentials to produce beneficial effects on stroke. Actually, accumulated basic and clinical evidences have demonstrated that HBO therapy and preconditioning could induce neuroprotective functions via different mechanisms. Nevertheless, the lack of clinical translational study limits the application of HBO. More translational studies and clinical trials are needed in the future to develop effective HBO protocols.
NASA Astrophysics Data System (ADS)
Jiang, Min; Wang, Xin-Hua; Yang, Die; Lei, Shao-Long; Wang, Kun-Peng
2015-12-01
Present work was attempted to explore the possibility of preventing CaO-containing inclusions in Al-deoxidized low-oxygen special steel during basic slag refining, which were known as ASTM D-type inclusions. Based on the analysis on formation thermodynamics of CaO-containing inclusions, a series of laboratory experiments were designed and carried out in a vacuum induction furnace. During the experiments, slag/steel reaction equilibrium was intentionally suppressed with the aim to decrease the CaO contents in inclusions, which is different from ordinary concept that slag/steel reaction should be promoted for better control of inclusions. The obtained results showed that high cleanliness of steel was obtained in all the steel melts, with total oxygen contents varied between 0.0003 and 0.0010 pct. Simultaneously, formation of CaO-containing inclusions was successfully prohibited, and all the formed oxide inclusions were MgO-Al2O3 or/and Al2O3 in very small sizes of about 1 to 3 μm. And 90 pct to nearly 98 pct of them were wrapped by relative thicker MnS outer surface layers to produce dual-phased "(MgO-Al2O3) + MnS" or "Al2O3 + MnS" complex inclusions. Because of much better ductility of MnS, certain deformability of these complex inclusions can be expected which is helpful to improve fatigue resistance property of steel. Only very limited number of singular MnS inclusions were with sizes larger than 13 μm, which were formed during solidification because of. In the end, formation of oxide inclusions in steel was qualitatively evaluated and discussed.
Hu, Xingyun; Yue, Yuyan; Peng, Xianjia
2018-02-01
As part of a broader study of the environmental geochemistry behavior of vanadium (V), the release kinetics of V from the dissolution of natural vanadium titano-magnetite under environmentally relevant conditions was investigated. In both the acidic and basic domains, the V release rate was found to be proportional to fractional powers of hydrogen ion and dissolved oxygen activities. The dependence of the rate on dissolved oxygen can also be described in terms of the Langmuir adsorption model. The empirical rate equation is given by: r [Formula: see text] where, α=0.099-0.265, k'=3.2×10 -6 -1.7×10 -5 , K=2.7×10 4 -3.9×10 4 mol/L in acid solution (pH4.1), and α=-0.494-(-0.527), k'=2.0×10 4 -2.5×10 -11 , and K=4.1×10 3 -6.5×10 3 mol/L in basic solution (pH8.8) at 20°C. Based on the effect of temperature on the release rate of V, the activation energies of minerals at pH8.8 were determined to be 148-235kJ/mol, suggesting that the dissolution of vanadium titano-magnetite is a surface-controlled process. The presence of Na + , Ca 2+ , Mg 2+ , K + , NO 3 - , Cl - , SO 4 2- and CO 3 2- was found to accelerate the V release rates. This study improves the understanding of both the V pollution risk in some mine areas and the fate of V in the environment. Copyright © 2017. Published by Elsevier B.V.
Point-of-care instrument for monitoring tissue health during skin graft repair
NASA Astrophysics Data System (ADS)
Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.
2011-06-01
We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.
NASA Technical Reports Server (NTRS)
Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.
1990-01-01
The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.
Metal-loaded SBA-16-like silica - Correlation between basicity and affinity towards hydrogen
NASA Astrophysics Data System (ADS)
Ouargli-Saker, R.; Bouazizi, N.; Boukoussa, B.; Barrimo, Diana; Paola-Nunes-Beltrao, Ana-.; Azzouz, A.
2017-07-01
Nanoparticles of Cuo (CuNPs) and Feo (FeNPs) were dispersed in SBA-16-like silica, resulting metal-loaded materials (Cu-SBA-16 and Fe-SBA-16) with improved affinity towards hydrogen. Electron microscopy and X-ray diffraction showed that MNP dispersion occurs mainly inside SBA-16 channels. MNP incorporation was found to confer affinity to the silica surface, since higher CO2 retention capacity (CRC) was registered Cu/SBA-16 and Fe/SBA-16. This was accompanied by a significant improvement of the affinity towards hydrogen, as supported by hydrogen adsorption tests. This was explained in terms of strong hydrogen interaction with MNP and lattice oxygen atoms. The results reported herein open new prospects for SBA-16 as potential adsorbents for hydrogen storage.
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
NASA Technical Reports Server (NTRS)
Roder, H. M.
1974-01-01
Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.
Benner, William H.
1986-01-01
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
NASA Astrophysics Data System (ADS)
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.
2015-02-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K
2015-01-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746
How effective is aeration with vortex flow regulators? Pilot scale experiments
NASA Astrophysics Data System (ADS)
Wójtowicz, Patryk; Szlachta, Małgorzata
2017-11-01
Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.
Benner, W.H.
1984-05-08
An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.
On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.
Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María
2017-08-15
Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunaev, Andrey V.; Sidorov, Victor V.; Krupatkin, Alexander I.; Rafailov, Ilya E.; Palmer, Scott G.; Sokolovski, Sergei G.; Stewart, Neil A.; Rafailov, Edik U.
2014-02-01
Multi-functional laser non-invasive diagnostic systems, such as "LAKK-M", allow the study of a number of microcirculatory parameters, including blood microcirculatory index (Im) (by laser Doppler flowmetry, LDF) and oxygen saturation (StO2) of skin tissue (by tissue reflectance oximetry, TRO). Such systems may provide significant information relevant to physiology and clinical medicine. The aim of this research was to use such a system to study the synchronization of microvascular blood flow and oxygen saturation rhythms under normal and adaptive change conditions. Studies were conducted with 8 healthy volunteers - 3 females and 5 males of 21-49 years. Each volunteer was subjected to basic 3 minute tests. The volunteers were observed for between 1-4 months each, totalling 422 basic tests. Measurements were performed on the palmar surface of the right middle finger and the forearm medial surface. Wavelet analysis was used to study rhythmic oscillations in LDF- and TRO-data. Tissue oxygen consumption (from arterial and venal blood oxygen saturation and nutritive flux volume) was calculated for all volunteers during "adaptive changes" as (617+/-123 AU) and (102+/-38 AU) with and without arteriovenous anastomoses (AVAs) respectively. This demonstrates increased consumption compared to normal (495+/-170 AU) and (69+/-40 AU) with and without AVAs respectively. Data analysis demonstrated the emergence of resonance and synchronization of rhythms of microvascular blood flow and oxygen saturation as an adaptive change in myogenic oscillation (vasomotion) resulting from exercise and potentially from psychoemotional stress. Synchronization of myogenic rhythms during adaptive changes suggest increased oxygen consumption resulting from increased microvascular blood flow velocity.
[Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].
Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej
2010-04-01
One of the basic mechanisms of adapting to hypoxemia is a decrease in the affinity of hemoglobin for oxygen. This process occurs mainly due to the increased synthesis of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes, as well as through the Bohr effect. Hemoglobin with decreased affinity for oxygen increases the oxygenation of tissues, because it gives up oxygen more easily during microcirculation. In foetal circulation, however, at a partial oxygen pressure (pO2) of 25 mmHg in the umbilical vein, the oxygen carrier is type F hemoglobin which has a high oxygen affinity. The commonly accepted role for hemoglobin F is limited to facilitating diffusion through the placenta. Is fetal life the only moment when haemoglobin F is useful? THE AIM OF STUDY was to create a mathematical model, which would answer the question at what conditions an increase, rather than a decrease, in haemoglobin oxygen affinity is of benefit to the body. Using the kinetics of dissociation of oxygen from hemoglobin described by the Hill equation as the basis for further discussion, we created a mathematical model describing the pO2 value in the microcirculatory system and its dependence on arterial blood pO2. The calculations were performed for hemoglobin with low oxygen affinity (adult type) and high-affinity hemoglobin (fetal type). The modelling took into account both physiological and pathological ranges of acid-base equilibrium and tissue oxygen extraction parameters. It was shown that for the physiological range of acid-base equilibrium and the resting level of tissue oxygen extraction parameters, with an arterial blood pO2 of 26.8 mmHg, the higher-affinity hemoglobin becomes the more effective oxygen carrier. It was also demonstrated that the arterial blood pO2, below which the high-affinity hemoglobin becomes the more effective carrier, is dependent on blood pH and the difference between the arterial and venous oxygen saturation levels. Simulations performed for the pathological states showed that acidosis and increased tissue oxygen demand lead to a broadened arterial blood pO2 range, in which the high-affinity hemoglobin is more efficient. Contrary to the widely held view that the only response to hypoxemia is a decrease in haemoglobin oxygen affinity, it was shown that under extreme hypoxemic conditions, an increased haemoglobin oxygen affinity improves the oxygenation of tissues. It was also shown that the dominance of hemoglobin with a high oxygen affinity rapidly exceeds hemoglobin with low oxygen affinity in the case of acidosis with its accompanying high tissue oxygen extraction. In cases of extreme disruptions of the acid-base equilibrium, the dominance of high-oxygen-affinity hemoglobin spans over the entire possible range of pO2 in arterial blood.
Scales of Hydrogen-Bonding Workshop Held in London, England on 1-3 July 1987
1987-07-03
medium (a perfluorinated compound , FC-75), hoping to attain the basicity of CF3 CH2OH and (CF 3.2CHOH. The frequency shifts of the 3818 cm v(OH) band of...bond basicity for nonassoclated compounds , pro.ided that the reference acids in each case led toi*values that were almost the same - around 65". ’ 1...experimental measurements JOSE-LOUIS M. ABBOUD * The hydrogen-bonding basicity of oxygen and sulphur compounds MICHAEL H. ABRAHAM, PRISCILLA L
Controlling Oxygen Mobility in Ruddlesden–Popper Oxides
Lee, Dongkyu; Lee, Ho Nyung
2017-01-01
Discovering new energy materials is a key step toward satisfying the needs for next-generation energy conversion and storage devices. Among the various types of oxides, Ruddlesden–Popper (RP) oxides (A2BO4) are promising candidates for electrochemical energy devices, such as solid oxide fuel cells, owing to their attractive physicochemical properties, including the anisotropic nature of oxygen migration and controllable stoichiometry from oxygen excess to oxygen deficiency. Thus, understanding and controlling the kinetics of oxygen transport are essential for designing optimized materials to use in electrochemical energy devices. In this review, we first discuss the basic mechanisms of oxygen migration in RP oxides depending on oxygen nonstoichiometry. We then focus on the effect of changes in the defect concentration, crystallographic orientation, and strain on the oxygen migration in RP oxides. We also briefly review their thermal and chemical stability. Finally, we conclude with a perspective on potential research directions for future investigation to facilitate controlling oxygen ion migration in RP oxides. PMID:28772732
UHMS position statement: topical oxygen for chronic wounds.
Feldmeier, J J; Hopf, H W; Warriner, R A; Fife, C E; Gesell, L B; Bennett, M
2005-01-01
A small body of literature has been published reporting the application of topical oxygen for chronic non-healing wounds . Frequently, and erroneously, this form of oxygen administration has been referred to as "topical hyperbaric oxygen therapy" or even more erroneously "hyperbaric oxygen therapy." The advocates of topical oxygen claim several advantages over systemic hyperbaric oxygen including decreased cost, increased safety, decreased complications and putative physiologic effects including decreased free radical formation and more efficient delivery of oxygen to the wound surface. With topical oxygen an airtight chamber or polyethylene bag is sealed around a limb or the trunk by either a constriction/tourniquet device or by tape and high flow (usually 10 liters per minute) oxygen is introduced into the bag and over the wound. Pressures just over 1.0 atmospheres absolute (atm abs) (typically 1.004 to 1.013 atm abs) are recommended because higher pressures could decrease arterial/capillary inflow. The premise for topical oxygen, the diffusion of oxygen into the wound adequate to enhance healing, is attractive (though not proven) and its delivery is certainly less complex and expensive than hyperbaric oxygen. When discussing the physiology of topical oxygen, its proponents frequently reference studies of systemic hyperbaric oxygen suggesting that mechanisms are equally applicable to both topical and systemic high pressure oxygen delivery. In fact, however, the two are very different. To date, mechanisms of action whereby topical oxygen might be effective have not been defined or substantiated. Conversely, cellular toxicities due to extended courses of topical oxygen have been reported, although, again these data are not conclusive, and no mechanism for toxicity has been examined scientifically. Generally, collagen production and fibroblast proliferation are considered evidence of improved healing, and these are both enhanced by hyperbaric oxygen therapy. Paradoxically, claims of decreased collagen production and fibroblast inhibition in wounds subjected to topical oxygen have been reported in studies of topical oxygen as a benefit of topical oxygen therapy. The literature on topical oxygen is mostly small case series or small controlled but not randomized trials. Moreover, the studies generally are not aimed at specific ulcer types, but rather at "chronic wounds." This non-specific approach is recognized as a major design flaw in any study of therapies designed to improve impaired wound healing. The only randomized trial for topical oxygen in diabetic foot ulcers actually showed a tendency toward impaired wound healing in the topical oxygen group. Contentions that topical oxygen is superior to hyperbaric oxygen are not proven. There are potentially plausible mechanisms that support both possibly beneficial and detrimental effects of topical oxygen therapy, and thus well designed and executed basic science research and clinical trials are clearly needed. There is some ongoing research in regard to the role of topical oxygen at established wound laboratories. Neither CMS nor other third party payors recognize or reimburse for topical oxygen. Therefore, the policy of the Undersea and Hyperbaric Medical Society in regard to topical oxygen is stated as follows: 1. Topical oxygen should not be termed hyperbaric oxygen since doing so either intentionally or unintentionally suggests that topical oxygen treatment is equivalent or even identical to hyperbaric oxygen. Published documents reporting experience with topical oxygen should clearly state that topical oxygen not hyperbaric oxygen is being employed. 2. Mechanisms of action or clinical study results for hyperbaric oxygen cannot and should not be co-opted to support topical oxygen since hyperbaric oxygen therapy and topical oxygen have different routes and probably efficiencies of entry into the wound and their physiology and biochemistry are necessarily different. 3. The application of topical oxygen cannot be recommended outside of a clinical trial at this time based on the volume and quality of scientific supporting evidence available, nor does the Society recommend third party payor reimbursement. 4. Before topical oxygen can be recommended as therapy for non-healing wounds, its application should be subjected to the same intense scientific scrutiny to which systemic hyperbaric oxygen has been held.
Providing oxygen to children in hospitals: a realist review
Tosif, Shidan; Gray, Amy; Qazi, Shamim; Campbell, Harry; Peel, David; McPake, Barbara; Duke, Trevor
2017-01-01
Abstract Objective To identify and describe interventions to improve oxygen therapy in hospitals in low-resource settings, and to determine the factors that contribute to success and failure in different contexts. Methods Using realist review methods, we scanned the literature and contacted experts in the field to identify possible mechanistic theories of how interventions to improve oxygen therapy systems might work. Then we systematically searched online databases for evaluations of improved oxygen systems in hospitals in low- or middle-income countries. We extracted data on the effectiveness, processes and underlying theory of selected projects, and used these data to test the candidate theories and identify the features of successful projects. Findings We included 20 improved oxygen therapy projects (45 papers) from 15 countries. These used various approaches to improving oxygen therapy, and reported clinical, quality of care and technical outcomes. Four effectiveness studies demonstrated positive clinical outcomes for childhood pneumonia, with large variation between programmes and hospitals. We identified factors that help or hinder success, and proposed a practical framework depicting the key requirements for hospitals to effectively provide oxygen therapy to children. To improve clinical outcomes, oxygen improvement programmes must achieve good access to oxygen and good use of oxygen, which should be facilitated by a broad quality improvement capacity, by a strong managerial and policy support and multidisciplinary teamwork. Conclusion Our findings can inform practitioners and policy-makers about how to improve oxygen therapy in low-resource settings, and may be relevant for other interventions involving the introduction of health technologies. PMID:28479624
Graham, Hamish R; Ayede, Adejumoke I; Bakare, Ayobami A; Oyewole, Oladapo B; Peel, David; Gray, Amy; McPake, Barbara; Neal, Eleanor; Qazi, Shamim; Izadnegahdar, Rasa; Falade, Adegoke G; Duke, Trevor
2017-10-27
Oxygen is a life-saving, essential medicine that is important for the treatment of many common childhood conditions. Improved oxygen systems can reduce childhood pneumonia mortality substantially. However, providing oxygen to children is challenging, especially in small hospitals with weak infrastructure and low human resource capacity. This trial will evaluate the implementation of improved oxygen systems at secondary-level hospitals in southwest Nigeria. The improved oxygen system includes: a standardised equipment package; training of clinical and technical staff; infrastructure support (including improved power supply); and quality improvement activities such as supportive supervision. Phase 1 will involve the introduction of pulse oximetry alone; phase 2 will involve the introduction of the full, improved oxygen system package. We have based the intervention design on a theory-based analysis of previous oxygen projects, and used quality improvement principles, evidence-based teaching methods, and behaviour-change strategies. We are using a stepped-wedge cluster randomised design with participating hospitals randomised to receive an improved oxygen system at 4-month steps (three hospitals per step). Our mixed-methods evaluation will evaluate effectiveness, impact, sustainability, process and fidelity. Our primary outcome measures are childhood pneumonia case fatality rate and inpatient neonatal mortality rate. Secondary outcome measures include a range of clinical, quality of care, technical, and health systems outcomes. The planned study duration is from 2015 to 2018. Our study will provide quality evidence on the effectiveness of improved oxygen systems, and how to better implement and scale-up oxygen systems in resource-limited settings. Our results should have important implications for policy-makers, hospital administrators, and child health organisations in Africa and globally. Australian New Zealand Clinical Trials Registry: ACTRN12617000341325 . Retrospectively registered on 6 March 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, M.M.; Kelly, J.E.
In response to a confidential employee request, an investigation was begun into possible hazardous working conditions at the quick basic oxygen process (Q-BOP) shop at USS/USX Gary Works (SIC-3312), Gary, Indiana. The company was an integrated steel manufacturer where three major steel making processes were performed. Air contaminants, noise, heat stress, and ergonomic problems had been reported. Exposures to metals and sulfur-dioxide (7446095) were monitored. Confidential interviews were conducted with workers. The authors conclude that Q-BOP shop workers were potentially exposed to airborne irritants, noise, heat, and ergonomic risk factors. The authors recommend that measures be taken to reduce exposures,more » and to improve the health and safety of the workers.« less
An evaluation of oxygen systems for treatment of childhood pneumonia
2011-01-01
Background Oxygen therapy is recommended for all of the 1.5 – 2.7 million young children who consult health services with hypoxemic pneumonia each year, and the many more with other serious conditions. However, oxygen supplies are intermittent throughout the developing world. Although oxygen is well established as a treatment for hypoxemic pneumonia, quantitative evidence for its effect is lacking. This review aims to assess the utility of oxygen systems as a method for reducing childhood mortality from pneumonia. Methods Aiming to improve priority setting methods, The Child Health and Nutrition Research Initiative (CHNRI) has developed a common framework to score competing interventions into child health. That framework involves the assessment of 12 different criteria upon which interventions can be compared. This report follows the proposed framework, using a semi-systematic literature review and the results of a structured exercise gathering opinion from experts (leading basic scientists, international public health researchers, international policy makers and representatives of pharmaceutical companies), to assess and score each criterion as their “collective optimism” towards each, on a scale from 0 to 100%. Results A rough estimate from an analysis of the literature suggests that global strengthening of oxygen systems could save lives of up to 122,000 children from pneumonia annually. Following 12 CHNRI criteria, the experts expressed very high levels of optimism (over 80%) for answerability, low development cost and low product cost; high levels of optimism (60-80%) for low implementation cost, likelihood of efficacy, deliverability, acceptance to end users and health workers; and moderate levels of optimism (40-60%) for impact on equity, affordability and sustainability. The median estimate of potential effectiveness of oxygen systems to reduce the overall childhood pneumonia mortality was ~20% (interquartile range: 10-35%, min. 0%, max. 50%). However, problems with oxygen systems in terms of affordability, sustainability and impact on equity are noted in both expert opinion scores and on review. Conclusion Oxygen systems are likely to be an effective intervention in combating childhood mortality from pneumonia. However, a number of gaps in the evidence base exist that should be addressed to complete the investment case and research addressing these issues merit greater funding attention. PMID:21501446
FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraton, M.I.; Chen, X.; Gonsalves, K.E.
1997-12-31
A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.
Improved antioxidative protection in winter swimmers.
Siems, W G; Brenke, R; Sommerburg, O; Grune, T
1999-04-01
Adaptation to oxidative stress is an improved ability to resist the damaging effects of reactive oxygen species, resulting from pre-exposure to a lower dose. Changes in uric acid and glutathione levels during ice-bathing suggest that the intensive voluntary short-term cold exposure of winter swimming produces oxidative stress. We investigated whether the repeated oxidative stress in winter swimmers results in improved antioxidative adaptation. We obtained venous blood samples from winter swimmers and determined important components of the antioxidative defense system in the erythrocytes or blood plasma: reduced and oxidized glutathione (GSH and GSSG), and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat). The control group consisted of healthy people who had never participated in winter swimming. The baseline concentration of GSH and the activities of erythrocytic SOD and Cat, were higher in winter swimmers. We interpret this as an adaptative response to repeated oxidative stress, and postulate it as a new basic molecular mechanism of increased tolerance to environmental stress.
Scientific bases of biomass processing into basic component of aviation fuel
NASA Astrophysics Data System (ADS)
Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.
2016-11-01
A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.
Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A
2009-02-01
Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.
Physical fitness and physical training during Norwegian military service.
Dyrstad, Sindre M; Soltvedt, Rune; Hallén, Jostein
2006-08-01
Evaluate the physical fitness and training of Norwegian infantry soldiers during 10 months of compulsory military service. Maximal oxygen uptake (VO2max) and maximal numbers of sit-ups, push-ups, and chin-ups and 3-km running time were tested in 107 male infantry soldiers at the beginning and end of basic training (BT), and again at demobilization. The amount of physical training was registered throughout the military service. During BT, major improvements in sit-ups and push-ups were found. VO2max increased in soldiers with the lowest initial VO2max, but decreased to pre-BT level at demobilization. The amount of obligatory physical training was 8.5 hours x week(-1) during BT and 35% lower after BT, and was usually performed in uniform at low to moderate intensity. The amount of high-intensity endurance and strength training during compulsory military service is to low to improve the soldiers' endurance and muscular strength.
Regulation of Coronary Blood Flow in Health and Ischemic Heart Disease
Duncker, Dirk J.; Koller, Akos; Merkus, Daphne; Canty, John M.
2018-01-01
The major factors determining myocardial perfusion and oxygen delivery have been elucidated over the past several decades, and this knowledge has been incorporated into the management of patients with ischemic heart disease (IHD). The basic understanding of the fluid mechanical behavior of coronary stenoses has also been translated to the cardiac catheterization laboratory where measurements of coronary pressure distal to a stenosis and coronary flow are routinely obtained. However, the role of perturbations in coronary microvascular structure and function, due to myocardial hypertrophy or coronary microvascular dysfunction, in IHD is becoming increasingly recognized. Future studies should therefore be aimed at further improving our understanding of the integrated coronary microvascular mechanisms that control coronary blood flow, and of the underlying causes and mechanisms of coronary microvascular dysfunction. This knowledge will be essential to further improve the treatment of patients with IHD. PMID:25475073
NASA Astrophysics Data System (ADS)
Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian
2014-12-01
A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.
Fundamentals of Polymer Gel Dosimeters
NASA Astrophysics Data System (ADS)
McAuley, Kim B.
2006-12-01
The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.
2012-01-01
Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome Diane F. Hale, MD, Jeremy W. Cannon, MD...Kevin K. Chung, MD, San Antonio, Texas BACKGROUND: Prone positioning (PP) improves oxygenation and may provide a benefit in patients with acute... positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
Topical oxygenation therapy in wound care: are patients getting enough?
Hunt, Sharon
2017-08-10
Wound management is a major burden on today's healthcare provider, both clinically with regard to available resources and financially. Most importantly, it has a significant impact on the patient's quality of life and experience. Within the field of wound care these pressures, alongside an ageing population, multiple comorbidities, disease processes and negative lifestyle choices, increase incidences of reduced skin integrity and challenging wounds. In an attempt to meet these challenges alternative, innovative therapies are being explored to support the wound healing process. Wound care experts are now exploring the scientific, biological aspects of wound healing at a cellular level. They are taking wound care back to basics with the identification of elements that, if introduced as an 'adjunct' or as a stand-alone device alongside gold-standard regimens, can positively impact the static or problematic wounds that pose the most challenges to clinicians on a daily basis. This article explores the phenomenon of oxygen, its place in tissue formation and the effect of depletion on the wound healing process and highlights ways in which patients may receive benefit from non-invasive intervention to improve wound care outcomes.
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La 1.85Sr 0.15CuO 4
Meyer, Tricia L.; Jacobs, Ryan; Lee, Dongkyu; ...
2018-01-08
Oxygen defect control has long been considered an important route to functionalizing complex oxide films. However, the nature of oxygen defects in thin films is often not investigated beyond basic redox chemistry. One of the model examples for oxygen-defect studies is the layered Ruddlesden–Popper phase La 2-xSr x CuO 4-δ (LSCO), in which the superconducting transition temperature is highly sensitive to epitaxial strain. However, previous observations of strain-superconductivity coupling in LSCO thin films were mainly understood in terms of elastic contributions to mechanical buckling, with minimal consideration of kinetic or thermodynamic factors. Here, we report that the oxygen nonstoichiometry commonlymore » reported for strained cuprates is mediated by the strain-modified surface exchange kinetics, rather than reduced thermodynamic oxygen formation energies. Remarkably, tensile-strained LSCO shows nearly an order of magnitude faster oxygen exchange rate than a compressively strained film, providing a strategy for developing high-performance energy materials.« less
Chang, Sung Soo; Yokomise, Hiroyasu; Matsuura, Natsumi; Gotoh, Masashi; Tabata, Yasuhiko
2014-08-01
The prognosis of patients with emphysema is poor as there is no truly effective treatment. Our previous study showed that the alveolar space was smaller and the microvessel density was higher in a canine emphysema model after the intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor (bFGF-GMS). In the present study, we evaluated the functional effect of injecting bFGF-GMS via the pulmonary artery in this canine pulmonary emphysema model. Using the porcine pancreatic elastase (PPE)-induced total emphysema model, we approximated the value of lung compliance with a Power Lab System, and performed blood gas analysis in a control group, a total emphysema group, and a bFGF group in which bFGF-GMS were injected toward the whole pulmonary artery via the femoral vein. Each group comprised five dogs. Lung compliance was higher in the total emphysema group than in the control group (p = 0.031), and the bFGF group showed no significant improvement of lung compliance vs. the total emphysema group (p = 0.112). PaO2 (partial pressure of oxygen in arterial blood) was improved by administering bFGF-GMS in the total emphysema model (p = 0.027). In the canine total emphysema model, blood gas parameters were improved by the whole pulmonary arterial administration of bFGF-GMS. This method has the potential to be an effective novel therapy for pulmonary emphysema.
Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian
2018-04-01
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.
2010-11-10
1 A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral...2010 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) June 2007 - November 2010 4. TITLE AND SUBTITLE A bovine hemoglobin-based oxygen...carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low-flow in a
44. LOOKING SOUTH IN MOULD CONDITIONING BUILDING, WITH HOT TOPPING ...
44. LOOKING SOUTH IN MOULD CONDITIONING BUILDING, WITH HOT TOPPING PLATFORM ON LEFT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
31. INTERIOR VIEW OF PLATFORM ALONG WESTERN WALL OF CLEAN ...
31. INTERIOR VIEW OF PLATFORM ALONG WESTERN WALL OF CLEAN STEEL PRODUCTION BUILDING. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
49. EASTERN VIEW OF DORROLIVER VACUUM DRUM FILTER ASSEMBLY IN ...
49. EASTERN VIEW OF DORR-OLIVER VACUUM DRUM FILTER ASSEMBLY IN THE FILTER CAKE HOUSE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
Heart Attack Coronary Artery Disease
... our e-newsletter! Aging & Health A to Z Heart Attack Coronary Artery Disease, Angina Basic Facts & Information What ... and oxygen supply; this is what causes a heart attack. If the damaged area is small, however, your ...
35. VIEW OF DUAL VENTURI GAS WASHER IN THE GAS ...
35. VIEW OF DUAL VENTURI GAS WASHER IN THE GAS WASHER PUMP HOUSE LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
45. SOUTHERN INTERIOR VIEW OF MOULD CONDITIONING BUILDING SHOWING FINK ...
45. SOUTHERN INTERIOR VIEW OF MOULD CONDITIONING BUILDING SHOWING FINK TRUSSES AND CORRUGATED METAL SHEETING. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
30. LOOKING SOUTHEAST AT THE CLEAN STEEL PRODUCTION BUILDING WITH ...
30. LOOKING SOUTHEAST AT THE CLEAN STEEL PRODUCTION BUILDING WITH THE BOP SHOP IN BACKGROUND. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
29. INTERIOR VIEW OF FLUX HANDLING BUILDING, LOOKING SOUTH AT ...
29. INTERIOR VIEW OF FLUX HANDLING BUILDING, LOOKING SOUTH AT THE VIBRATING CAR SHAKER. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
28. LOOKING NORTH AT FLUX HANDLING BUILDING AND TRESTLE, WITH ...
28. LOOKING NORTH AT FLUX HANDLING BUILDING AND TRESTLE, WITH BOP SHOP IN BACKGROUND. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
BASIC Programming In Water And Wastewater Analysis
NASA Technical Reports Server (NTRS)
Dreschel, Thomas
1988-01-01
Collection of computer programs assembled for use in water-analysis laboratories. First program calculates quality-control parameters used in routine water analysis. Second calculates line of best fit for standard concentrations and absorbances entered. Third calculates specific conductance from conductivity measurement and temperature at which measurement taken. Fourth calculates any one of four types of residue measured in water. Fifth, sixth, and seventh calculate results of titrations commonly performed on water samples. Eighth converts measurements, to actual dissolved-oxygen concentration using oxygen-saturation values for fresh and salt water. Ninth and tenth perform calculations of two other common titrimetric analyses. Eleventh calculates oil and grease residue from water sample. Last two use spectro-photometric measurements of absorbance at different wavelengths and residue measurements. Programs included in collection written for Hewlett-Packard 2647F in H-P BASIC.
Microfluidic wound bandage: localized oxygen modulation of collagen maturation.
Lo, Joe F; Brennan, Martin; Merchant, Zameer; Chen, Lin; Guo, Shujuan; Eddington, David T; DiPietro, Luisa A
2013-01-01
Restoring tissue oxygenation has the potential to improve poorly healing wounds with impaired microvasculature. Compared with more established wound therapy using hyperbaric oxygen chambers, topical oxygen therapy has lower cost and better patient comfort, although topical devices have provided inconsistent results. To provide controlled topical oxygen while minimizing moisture loss, a major issue for topical oxygen, we have devised a novel wound bandage based on microfluidic diffusion delivery of oxygen. In addition to modulating oxygen from 0 to 100% in 60 seconds rise time, the microfluidic oxygen bandage provides a conformal seal around the wound. When 100% oxygen is delivered, it penetrates wound tissues as measured in agar phantom and in vivo wounds. Using this microfluidic bandage, we applied the oxygen modulation to 8 mm excisional wounds prepared on diabetic mice. Treatment with the microfluidic bandage demonstrated improved collagen maturity in the wound bed, although only marginal differences were observed in total collagen, microvasculature, and external closure rates. Our results show that proper topical oxygen can improve wound parameters underneath the surface. Because of the ease of fabrication, the oxygen bandage represents an economical yet practical method for oxygen wound research. © 2013 by the Wound Healing Society.
Small rocket research and technology
NASA Technical Reports Server (NTRS)
Schneider, Steven; Biaglow, James
1993-01-01
Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.
NASA Technical Reports Server (NTRS)
Pearce, E.; Lin, S. C.
1981-01-01
The effects of resin composition, curing conditions fillers, and flame retardant additives on the flammability of diglycidyl ether of bisphenol-A (DGEBA) as measured by the oxygen index is examined. The oxygen index of DGEBA cured with various curing agents was between 0.198 to 0.238. Fillers and flame retardant additives can increase the oxygen index dependent on the material and the amount used. Changes in the basic cured resin properties can be anticipated with the addition of noncompatible additives. High flame resistant epoxy resins with good stability and mechanical properties are investigated.
A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications
NASA Technical Reports Server (NTRS)
Sheppard, A. T.; Webber, R. G.
1983-01-01
For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.
NASA Technical Reports Server (NTRS)
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications
NASA Astrophysics Data System (ADS)
Sheppard, A. T.; Webber, R. G.
For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.
NASA Technical Reports Server (NTRS)
Laing, R. A.; Danisch, L. A.; Young, L. R.
1975-01-01
The Choroidal Eye Oximeter is an electro-optical instrument that noninvasively measures the oxygen saturation of choroidal blood in the back of the human eye by a spectrophotometric method. Since choroidal blood is characteristic of blood which is supplied to the brain, the Choroidal Eye Oximeter can be used to monitor the amount of oxygen which is supplied to the brain under varying external conditions. The instrument consists of two basic systems: the optical system and the electronic system. The optical system produces a suitable bi-chromatic beam of light, reflects this beam from the fundus of the subject's eye, and onto a low-noise photodetector. The electronic system amplifies the weak composite signal from the photodetector, computes the average oxygen saturation from the area of the fundus that was sampled, and displays the value of the computed oxygen saturation on a panel meter.
Computer program for calculation of oxygen uptake
NASA Technical Reports Server (NTRS)
Castle, B. L.; Castle, G.; Greenleaf, J. E.
1979-01-01
A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.
Multi-level modeling of total ionizing dose in a-silicon dioxide: First principles to circuits
NASA Astrophysics Data System (ADS)
Nicklaw, Christopher J.
Oxygen vacancies have long been known to be the dominant intrinsic defect in amorphous SiO2. They exist, in concentrations dependent on processing conditions, as neutral defects in thermal oxides without usually causing any significant deleterious effects, with some spatial and energy distribution. During irradiation they can capture holes and become positively charged E '-centers, contributing to device degradation. Over the years, a considerable database has been amassed on the dynamics of E' -centers in bulk SiO2 films, and near the interface under different irradiation and annealing conditions. Theoretical calculations so far have revealed the basic properties of prototype oxygen vacancies, primarily as they behave in either a crystalline quartz environment, or in small clusters that serve as a substitute for a real amorphous structure. To date at least three categories of E'-centers, existing at or above room temperature, have been observed in SiO2. The unifying feature is an unpaired electron on a threefold coordinated silicon atom, having the form O3 ≡ Si·. Feigl et al. identified the E'1 -center in crystalline quartz as a trapped hole on an oxygen vacancy, which causes an asymmetrical relaxation, resulting in a paramagnetic center. The unpaired electron in the E'1 -center is localized on the three-fold coordinated Si atoms, while the hole is localized on the other Si atom. Results from an ab initio statistical simulation examination of the behaviors of oxygen vacancies, within amorphous structures, identify a new form of the E'-center, the E'g5 and help in the understanding of the underlying physical mechanisms involved in switched-bias annealing, and electron paramagnetic resonance (EPR) studies. The results also suggest a common border trap, induced by trapped holes in SiO2, is a hole trapped at an oxygen vacancy defect, which can be compensated by an electron, as originally proposed by Lelis and co-workers at Harry Diamond Laboratories. This dissertation provides new insights into the basic mechanisms of a-SiO2 defects, and provides a link between basic mechanisms and Electronic Design Automation (EDA) tools, providing an enhanced design flow for radiation-resistant electronics.
40 CFR 63.7852 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... hot metal, usually with dry air or nitrogen, to remove sulfur. Deviation means any instance in which... capture and collection of secondary emissions from a basic oxygen process furnace. Sinter cooler means the...
40 CFR 63.7852 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... hot metal, usually with dry air or nitrogen, to remove sulfur. Deviation means any instance in which... capture and collection of secondary emissions from a basic oxygen process furnace. Sinter cooler means the...
40 CFR 63.7852 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... hot metal, usually with dry air or nitrogen, to remove sulfur. Deviation means any instance in which... capture and collection of secondary emissions from a basic oxygen process furnace. Sinter cooler means the...
40 CFR 63.7852 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... hot metal, usually with dry air or nitrogen, to remove sulfur. Deviation means any instance in which... capture and collection of secondary emissions from a basic oxygen process furnace. Sinter cooler means the...
40 CFR 63.7852 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... hot metal, usually with dry air or nitrogen, to remove sulfur. Deviation means any instance in which... capture and collection of secondary emissions from a basic oxygen process furnace. Sinter cooler means the...
34. ROUGH GAS MAIN RUNNING SOUTHEAST FROM THE BOP SHOP ...
34. ROUGH GAS MAIN RUNNING SOUTHEAST FROM THE BOP SHOP TO THE DUAL VENTURI GAS WASHERS. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
50. VIEW OF CHEMICAL FEED PUMP HOUSE AND NEUTRALIZATION TANK ...
50. VIEW OF CHEMICAL FEED PUMP HOUSE AND NEUTRALIZATION TANK FOR WASTE WATER TREATMENT LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
8. VIEW OF BATCHING HOPPER ON SERVICE FLOOR OF FURNACE ...
8. VIEW OF BATCHING HOPPER ON SERVICE FLOOR OF FURNACE AISLE IN BOP SHOP LOOKING SOUTH. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Diaz-Morales, Oscar; Kolb, Manuel
RuO2 catalysts exhibit record activities towards the oxygen evolution reaction (OER), which is crucial to enable efficient and sustainable energy storage. Here we examine the RuO2 OER kinetics on rutile (110), (100), (101), and (111) orientations, finding (100) the most active. We assess the potential involvement of lattice oxygen in the OER mechanism with online 3 electrochemical mass spectrometry, which showed no evidence of oxygen exchange on these oriented facets in acidic or basic electrolytes. Similar results were obtained for polyoriented RuO2 films and particles, in contrast to previous work, suggesting lattice oxygen is not exchanged in catalyzing OER onmore » crystalline RuO2 surfaces. This hypothesis is supported by the correlation of activity with the number of active Ru-sites calculated by DFT, where more active facets bind oxygen more weakly. This new understanding of the active sites provides a design strategy to enhance the OER activity of RuO2 nanoparticles by facet engineering.« less
Padalino, Massimo A; Tessari, Chiara; Guariento, Alvise; Frigo, Anna C; Vida, Vladimiro L; Marcolongo, Andrea; Zanella, Fabio; Harvey, Michael J; Thiagarajan, Ravi R; Stellin, Giovanni
2017-04-01
Extracorporeal membrane oxygenation (ECMO) is a lifesaving but expensive therapy in terms of financial, technical and human resources. We report our experience with a 'basic' ECMO support model, consisting of ECMO initiated and managed without the constant presence of a bedside specialist, to assess safety, clinical outcomes and financial impact on our health system. We did a retrospective single-centre study of paediatric cardiac ECMO between January 2001 and March 2014. Outcomes included postimplant complications and survival at weaning and at discharge. We used activity based costing to compare the costs of current basic ECMO with those of a 'full optional' dedicated ECMO team (hypothesis 1); ECMO with a bedside nurse and perfusionist (hypothesis 2), and ECMO with a bedside perfusionist (hypothesis 3). Basic cardiac ECMO was required for 121 patients (median age 75 days, median weight 4.4 kg). A total of 107 patients (88%) had congenital heart disease; 37 had univentricular physiology. The median duration of ECMO was 7 days (interquartile range [IQR], 4-15 days). Overall survival at weaning and at 30 days in the neonatal and paediatric age groups was 58.6% and 30.6%, respectively; these results were not significantly different from Extracorporeal Life Support Organization data. Cost analysis revealed a saving of €30 366, €22 144 and €13 837 for each patient on basic ECMO for hypotheses 1, 2 and 3, respectively. Despite reduced human, technical and economical resources, a basic ECMO model without a bedside specialist was associated with satisfactory survival and lower costs. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
[Immunoregulants improves the prognosis of infants with wheezing].
Chen, Zhuang-Gui; Ji, Jing-Zhi; Li, Ming; Chen, Yan-Feng; Chen, Fen-Hua; Chen, Hong
2007-10-01
To assess the value of immunoregulants in improving the prognosis of infants with wheezing. Forty-three infants with wheezing with given oxygen support, injection or inhalation of glucocorticosteroids or bronchodilatator to relieve the symptoms. Of these infants, 24 received immunoregulant treatment with bronchovaxom at the daily dose of 3.5 mg for 10 days every a month for a treatment course of 3 months. The other 19 infants were managed with budesonide aerosol at 200 microg once or twice daily for 3 months (basic treatment group). All the infants were followed up for 1 year to record the number of wheezing episode and infections. Ten healthy infants were also included in this study as the control group. In infants with bronchovaxom treatment, 25% reported more than 3 wheezing episodes within the 1-year follow-up, a rate significantly lower than that in the control group (63.2%, Chi(2)=6.344, P<0.05). The episodes of respiratory infection were similar between bronchovaxom group and the healthy control group (t=0.72, P>0.05), but significantly higher in the basic treatment group than in bronchovaxom and the healthy control group (t=3.11 and 3.92, respectively. P<0.05). Bronchovaxom can effectively reduce the recurrence of wheezing and respiratory infections in the infants with wheezing attack to reduce the risks of asthma development.
Morita, Akimichi; Werfel, Thomas; Stege, Helger; Ahrens, Constanze; Karmann, Karin; Grewe, Markus; Grether-Beck, Susanne; Ruzicka, Thomas; Kapp, Alexander; Klotz, Lars-Oliver; Sies, Helmut; Krutmann, Jean
1997-01-01
Ultraviolet A (UVA) irradiation is effectively used to treat patients with atopic dermatitis and other T cell mediated, inflammatory skin diseases. In the present study, successful phototherapy of atopic dermatitis was found to result from UVA radiation-induced apoptosis in skin-infiltrating T helper cells, leading to T cell depletion from eczematous skin. In vitro, UVA radiation-induced human T helper cell apoptosis was mediated through the FAS/FAS-ligand system, which was activated in irradiated T cells as a consequence of singlet oxygen generation. These studies demonstrate that singlet oxygen is a potent trigger for the induction of human T cell apoptosis. They also identify singlet oxygen generation as a fundamental mechanism of action operative in phototherapy. PMID:9362536
Putzer, Gabriel; Braun, Patrick; Martini, Judith; Niederstätter, Ines; Abram, Julia; Lindner, Andrea Katharina; Neururer, Sabrina; Mulino, Miriam; Glodny, Bernhard; Helbok, Raimund; Mair, Peter
2018-05-01
Recent studies have shown that during cardiopulmonary resuscitation (CPR) head-up position (HUP) as compared to standard supine position (SUP) decreases intracranial pressure (ICP) and increases cerebral perfusion pressure (CPP). The impact of this manoeuvre on brain oxygenation and metabolism is not clear. We therefore investigated HUP as compared to SUP during basic life support (BLS) CPR for their effect on brain oxygenation and metabolism. Twenty pigs were anaesthetized and instrumented. After 8 min of cardiac arrest (CA) pigs were randomized to either HUP or SUP and resuscitated mechanically for 20 min. Mean arterial pressure (MAP), ICP, CPP, cerebral regional oxygen saturation (rSO 2 ) and brain tissue oxygen tension (P bt O 2 ) were measured at baseline, after CA and every 5 min during CPR. Cerebral venous oxygen saturation (S cv O 2 ) was measured at baseline, after CA and after 20 min of CPR. Cerebral microdialysis parameters, e.g. lactate/pyruvate ratio (L/P ratio) were taken at baseline and the end of the experiment. ICP was significantly lower in HUP compared to SUP animals after 5 min (18.0 ± 4.5 vs. 24.1 ± 5.2 mmHg; p = 0.033) and 20 min (12.0 ± 3.4 vs. 17.8 ± 4.3 mmHg; p = 0.023) of CPR. Accordingly, CPP was significantly higher in the HUP group after 5 min (11.2 ± 9.5 vs. 1.0 ± 9.2 mmHg; p = 0.045) and 20 min (3.4 ± 6.4 vs. -3.8 ± 2.8 mmHg; p = 0.023) of CPR. However, no difference was found in rSO 2 , P bt O 2 , S cv O 2 and L/P ratio between groups after 20 min of CPR. In this animal model of BLS CPR, HUP as compared to SUP did not improve cerebral oxygenation or metabolism. Copyright © 2018. Published by Elsevier B.V.
Clinical prognostic rules for severe acute respiratory syndrome in low- and high-resource settings.
Cowling, Benjamin J; Muller, Matthew P; Wong, Irene O L; Ho, Lai-Ming; Lo, Su-Vui; Tsang, Thomas; Lam, Tai Hing; Louie, Marie; Leung, Gabriel M
2006-07-24
An accurate prognostic model for patients with severe acute respiratory syndrome (SARS) could provide a practical clinical decision aid. We developed and validated prognostic rules for both high- and low-resource settings based on data available at the time of admission. We analyzed data on all 1755 and 291 patients with SARS in Hong Kong (derivation cohort) and Toronto (validation cohort), respectively, using a multivariable logistic scoring method with internal and external validation. Scores were assigned on the basis of patient history in a basic model, and a full model additionally incorporated radiological and laboratory results. The main outcome measure was death. Predictors for mortality in the basic model included older age, male sex, and the presence of comorbid conditions. Additional predictors in the full model included haziness or infiltrates on chest radiography, less than 95% oxygen saturation on room air, high lactate dehydrogenase level, and high neutrophil and low platelet counts. The basic model had an area under the receiver operating characteristic (ROC) curve of 0.860 in the derivation cohort, which was maintained on external validation with an area under the ROC curve of 0.882. The full model improved discrimination with areas under the ROC curve of 0.877 and 0.892 in the derivation and validation cohorts, respectively. The model performs well and could be useful in assessing prognosis for patients who are infected with re-emergent SARS.
53. LOOKING EAST IN GRAVITY FILTER BUILDING AT THE DELAVAL ...
53. LOOKING EAST IN GRAVITY FILTER BUILDING AT THE DELAVAL GRAVITY FILTER (ON LEFT) AND THE BACKWASH HOLDING TANK. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE ...
23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE OF THE BOP SHOP LOOKING SOUTH. HISTORIAN FOR SCALE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
2. SOUTHEAST VIEW OF TRIPPER CAR ON THE FLUX STORAGE ...
2. SOUTHEAST VIEW OF TRIPPER CAR ON THE FLUX STORAGE FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
21. 175 TON CAPACITY TEEMING LADLES ON THE NEAR WESTERN ...
21. 175 TON CAPACITY TEEMING LADLES ON THE NEAR WESTERN TEEMING AISLE OF THE BOP SHOP LOOKING SOUTHEAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
40. LOOKING SOUTHWEST AT GAS COOLING TOWERS No. 1 AND ...
40. LOOKING SOUTHWEST AT GAS COOLING TOWERS No. 1 AND No. 2, WITH DORR-OLIVER THICKENER IN FOREGROUND. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
4. FLUX STORAGE HOPPERS ON THE WEIGHING FLOOR OF THE ...
4. FLUX STORAGE HOPPERS ON THE WEIGHING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP LOOKING SOUTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
18. LOOKING EAST AT THE HOT METAL RELADLING PIT No. ...
18. LOOKING EAST AT THE HOT METAL RELADLING PIT No. 1 ON THE CHARGING AISLE OF THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
24. SOUTHEAST VIEW OF LADLE REPAIR PIT ON THE WESTERN ...
24. SOUTHEAST VIEW OF LADLE REPAIR PIT ON THE WESTERN TEEMING AISLE OF THE BOP SHOP. LOOKING SOUTHEAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
43. NORTHEASTERN VIEW OF MOULD CONDITIONING BUILDING AND BOP SHOP, ...
43. NORTHEASTERN VIEW OF MOULD CONDITIONING BUILDING AND BOP SHOP, WITH OPEN HEARTH No. 2 BUILDING ON LEFT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Acidic leaching both of zinc and iron from basic oxygen furnace sludge.
Trung, Zuzana Hoang; Kukurugya, Frantisek; Takacova, Zita; Orac, Dusan; Laubertova, Martina; Miskufova, Andrea; Havlik, Tomas
2011-09-15
During the steel production in the basic oxygen furnace (BOF), approximately 7-15 kg of dust per tonne of produced steel is generated. This dust contains approximately 1.4-3.2% Zn and 54-70% Fe. Regarding the zinc content, the BOF dust is considered to be highly problematic, and therefore new technological processes for recycling dusts and sludge from metallurgical production are still searched for. In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressure and temperatures up to 100 °C is investigated on laboratory scale. The influence of sulphuric acid concentration, temperature, time and liquid to solid ratio (L:S) on the leaching process was studied. The main aim of this study was to determine optimal conditions when the maximum amount of zinc passes into the solution whilst iron remains in a solid residue. Copyright © 2011 Elsevier B.V. All rights reserved.
Simultaneous removal of 2,4,6-tribromophenol from water and bromate ion minimization by ozonation.
Gounden, Asogan N; Singh, Sooboo; Jonnalagadda, Sreekantha B
2018-06-02
The study investigates the degradation of 2,4,6-tribromophenol (2,4,6-TBP) and the influence of solution pH, alkalinity, H 2 O 2 and O 3 dosage. Debromination efficiency of 2,4,6-TBP was the highest in basic water (pH = 10.61). The extent of TOC removal compared favourably with the amount of substrate converted, suggesting favourable mineralization of oxygenated by-products (OBPs). Ozonation in basic water favoured the formation of toxicBrO 3 - , while in acidic water (pH = 2.27) BrO 3 - yield was lowest. In acidic water the presence of CO 3 2- showed negligible effect on conversion, TOC and BrO 3 - yield compared to ozonation alone. In basic water both 2,4,6-TBP conversion and TOC removal decreased with an increase in CO 3 2- , hence minimizing BrO 3 - formation. The O 3 /H 2 O 2 process showed an improvement in the debromination efficiency and TOC data revealed that total mineralization of OBP's was achieved. However, only 10% H 2 O 2 was able to effectively decrease BrO 3 - formation. Increasing the ozone concentration from 20 to 100 ppm enhanced the conversion of 2,4,6-TBP and TOC removal. At low ozone concentrations poor mineralization of OBP's occurred, while complete mineralization was achieved at higher ozone dose. The reaction pathways for ozone degradation of 2,4,6-TBP in acidic and basic waters is proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
The Role of Oxygen in Avascular Tumor Growth
Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike
2016-01-01
The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720
Improved Zirconia Oxygen-Separation Cell
NASA Technical Reports Server (NTRS)
Walsh, John V.; Zwissler, James G.
1988-01-01
Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.
[Functional magnetic resonance imaging in psychiatry and psychotherapy].
Derntl, B; Habel, U; Schneider, F
2010-01-01
technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.
High-alkali low-temperature polysulfide pulping (HALT) of Scots pine.
Paananen, Markus; Sixta, Herbert
2015-10-01
High-alkali low-temperature polysulfide pulping (HALT) was effectively utilised to prevent major polysaccharide losses while maintaining the delignification rate. A yield increase of 6.7 wt% on wood was observed for a HALT pulp compared to a conventionally produced kappa number 60 pulp with comparable viscosity. Approximately 70% of the yield increase was attributed to improved galactoglucomannan preservation and 30% to cellulose. A two-stage oxygen delignification sequence with inter-stage peroxymonosulphuric acid treatment was used to ensure delignification to a bleachable grade. In a comparison to conventional pulp, HALT pulp effectively maintained its yield advantage. Diafiltration trials indicate that purified black liquor can be directly recycled, as large lignin fractions and basically all dissolved polysaccharides were separated from the alkali-rich BL. Copyright © 2015 Elsevier Ltd. All rights reserved.
DCE-MRI: a review and applications in veterinary oncology.
Boss, M Keara; Muradyan, N; Thrall, D E
2013-06-01
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a functional imaging technique that assesses the physiology of tumour tissue by exploiting abnormal tumour microvasculature. Advances made through DCE-MRI include improvement in the diagnosis of cancer, optimization of treatment choices, assessment of treatment efficacy and non-invasive identification of prognostic information. DCE-MRI enables quantitative assessment of tissue vessel density, integrity, and permeability, and this information can be applied to study of angiogenesis, hypoxia and the evaluation of various biomarkers. Reproducibility of DCE-MRI results is important in determining the significance of observed changes in the parameters. As improvements are made towards the utility of DCE-MRI and interpreting biologic associations, the technique will be applied more frequently in the study of cancer in animals. Given the importance of tumour perfusion with respect to tumour oxygenation and drug delivery, the use of DCE-MRI is a convenient and powerful way to gain basic information about a tumour. © 2011 John Wiley & Sons Ltd.
6. FLUX WEIGH HOPPERS AND SCALES ON THE BATCHING FLOOR ...
6. FLUX WEIGH HOPPERS AND SCALES ON THE BATCHING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP LOOKING SOUTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
32. SOUTHEASTERN VIEW OF GAS CLEANING PLANT, WITH BOP SHOP ...
32. SOUTHEASTERN VIEW OF GAS CLEANING PLANT, WITH BOP SHOP IN BACKGROUND AND OPEN HEARTH STEELMAKING OFFICE BUILDING TO THE RIGHT. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
39. LOOKING SOUTH AT GAS COOLING TOWERS No. 1 (ON ...
39. LOOKING SOUTH AT GAS COOLING TOWERS No. 1 (ON RIGHT) AND No. 2, WITH DORR-OLIVER THICKENER IN FOREGROUND. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
7. NORTHWEST VIEW OF FLUX CONVEYORS FEEDING BATCH HOPPERS ON ...
7. NORTHWEST VIEW OF FLUX CONVEYORS FEEDING BATCH HOPPERS ON THE BATCHING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
20. 175 TON CAPACITY TEEMING LADLES ON THE NEAR WESTERN ...
20. 175 TON CAPACITY TEEMING LADLES ON THE NEAR WESTERN TEEMING AISLE OF THE BOP SHOP LOOKING SOUTHEAST. HISTORIAN FOR SCALE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
NASA Technical Reports Server (NTRS)
Visentine, James T.; Leger, Lubert J.
1987-01-01
To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.
Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina
2015-05-26
Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.
A method of improving sensitivity of carbon/oxygen well logging for low porosity formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Juntao; Zhang, Feng; Zhang, Quanying
Carbon/Oxygen (C/O) spectral logging technique has been widely used to determine residual oil saturation and the evaluation of water flooded layer. In order to improve the sensitivity of the technique for low – porosity formation, Gaussian and linear models are applied to fit the peaks of measured spectra to obtain the characteristic coefficients. Standard spectra of carbon and oxygen are combined to establish a new carbon /oxygen value calculation method, and the robustness of the new method is cross – validated with known mixed gamma ray spectrum. Formation models for different porosities and saturations are built using Monte Carlo method.more » The responses of carbon/oxygen which are calculated by conventional energy window method, and the new method is applied to oil saturation under low porosity conditions. The results show the new method can reduce the effects of gamma rays contaminated by the interaction between neutrons and other elements on carbon/oxygen ratio, and therefore can significantly improve the response sensitivity of carbon/oxygen well logging to oil saturation. The new method improves greatly carbon/oxygen well logging in low porosity conditions.« less
A method of improving sensitivity of carbon/oxygen well logging for low porosity formation
Liu, Juntao; Zhang, Feng; Zhang, Quanying; ...
2016-12-01
Carbon/Oxygen (C/O) spectral logging technique has been widely used to determine residual oil saturation and the evaluation of water flooded layer. In order to improve the sensitivity of the technique for low – porosity formation, Gaussian and linear models are applied to fit the peaks of measured spectra to obtain the characteristic coefficients. Standard spectra of carbon and oxygen are combined to establish a new carbon /oxygen value calculation method, and the robustness of the new method is cross – validated with known mixed gamma ray spectrum. Formation models for different porosities and saturations are built using Monte Carlo method.more » The responses of carbon/oxygen which are calculated by conventional energy window method, and the new method is applied to oil saturation under low porosity conditions. The results show the new method can reduce the effects of gamma rays contaminated by the interaction between neutrons and other elements on carbon/oxygen ratio, and therefore can significantly improve the response sensitivity of carbon/oxygen well logging to oil saturation. The new method improves greatly carbon/oxygen well logging in low porosity conditions.« less
Prediction model of dissolved oxygen in ponds based on ELM neural network
NASA Astrophysics Data System (ADS)
Li, Xinfei; Ai, Jiaoyan; Lin, Chunhuan; Guan, Haibin
2018-02-01
Dissolved oxygen in ponds is affected by many factors, and its distribution is unbalanced. In this paper, in order to improve the imbalance of dissolved oxygen distribution more effectively, the dissolved oxygen prediction model of Extreme Learning Machine (ELM) intelligent algorithm is established, based on the method of improving dissolved oxygen distribution by artificial push flow. Select the Lake Jing of Guangxi University as the experimental area. Using the model to predict the dissolved oxygen concentration of different voltage pumps, the results show that the ELM prediction accuracy is higher than the BP algorithm, and its mean square error is MSEELM=0.0394, the correlation coefficient RELM=0.9823. The prediction results of the 24V voltage pump push flow show that the discrete prediction curve can approximate the measured values well. The model can provide the basis for the artificial improvement of the dissolved oxygen distribution decision.
Availability of Life Support Equipment and its Utilization by Ambulance Drivers.
Acharya, Rija; Badhu, Angur; Shah, Tara; Shrestha, Sharmila
2017-09-08
An effective ambulance is a vital requirement for providing an emergency medical service. Well-equipped ambulances with trained paramedics can save many lives during the golden hours of trauma care. The objective was to document the availability and utilization of basic life support equipment in the ambulances and to assess knowledge on first aid among the drivers. Descriptive design was used. Total of 109 ambulances linked to B.P. Koirala Institute of Health Sciences were enrolled using purposive sampling method. Self- constructed observation checklist and semi structured interview schedule was used for data collection. More than half of the respondents had less than five years of experience and were not trained in first aid. About two-third of the respondents had adequate knowledge on first aid. About 90% of the ambulance had oxygen cylinder and adult oxygen mask which was 'usually' used equipment. More than half of ambulance had equipment less than 23% as compared to that of national guidelines. There was significant association of knowledge with the experience (p = 0.004) and training (p = 0.001). Availability of equipment was associated with training received (p = 0.007),organization (p= 0.032)and district (p = 0.023) in which the ambulance is registered. The study concludes that maximum ambulance linked to BPKIHS, Nepal did not have even one fourth of the equipment for basic life support. Equipment usually used was oxygen cylinder and oxygen mask. Majority of driver had adequate knowledge on first aid and it was associated with training and experience.
Lian, Marianne; Evans, Alina L; Bertelsen, Mads F; Fahlman, Åsa; Haga, Henning A; Ericsson, Göran; Arnemo, Jon M
2014-08-15
The effect of intranasal oxygen and/or early reversal of xylazine with atipamezole on arterial oxygenation in free-ranging moose (Alces alces) immobilized with etorphine-acepromazine-xylazine with a cross-sectional clinical study on 33 adult moose was evaluated. Before treatment the mean±SD (range) partial pressure of arterial oxygen (PaO2) was 62±17 (26-99) mmHg. Twenty-six animals had a PaO2<80 mmHg. Ten had a PaO2 of 40-60 mmHg and three animals had a PaO2<40 mmHg. Intranasal oxygen and intravenous administration of atipamezole significantly increased the mean PaO2, as did the combination of the two. In contrast, atipamezole administered intramuscularly at the evaluated dose had no significant effect on arterial oxygenation. This study shows that intranasal oxygen effectively improved arterial oxygenation in immobilized moose, and that early intravenous reversal of the sedative component, in this case xylazine, in an opioid-based immobilization drug-protocol significantly improves arterial oxygenation.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
Czajkowska-Malinowska, Małgorzata; Połtyn, Beata; Ciesielska, Anna; Kruża, Katarzyna; Jesionka, Paweł
2012-01-01
In long term oxygen therapy (LTOT) two oxygen sources are used, i.e. the stationary oxygen concentrator (OC) and portable liquid oxygen (LO). Polish NHS reimburses stationary oxygen sources only. The aim of this study was to compare the effect of change from OC into LO in patients treated using LTOT. The study involved 30 patients qualified to LTOT. The degree of dyspnoea intensity, (MRC, Borg scale), exercise tolerance (6MWT), fitness, daily use of oxygen therapy, red blood count, lung function, number of exacerbations as well as health related quality of life (SGRQ) were assessed before introduction of LTOT, after 6 months of oxygen therapy using OC and after 6 months from change into LO. During first 6 months RBC decreased from 5.4 to 5.1 (p < 0.0001), HTC from 50.1% to 47.8% (p < 0.0001), 6MWD increased from 337.7 to 378.7 m (p < 0.0001), SGRQ score improved from 72.1 points to 64.4 points (p < 0.0001). Treatment with LO resulted in further improvement in studied parameters: RBC decreased from 5.1 to 4.8 (p < 0.0001), HTC from 47.8% to 44.3% (p < 0.0001), 6MWD increased from 378.7 m to 413 m (p < 0.0001), SGRQ score improved from 64.4 points to 54.9 points (p < 0.0001). Significant increase in daily oxygen breathing hours from 13.7 to 18.9 (p < 0.0001) was also observed. Use of liquid oxygen enables oxygen therapy at home and during ambulation and increases oxygen breathing hours, thus improving red blood count, exercise capacity and health related quality of life.
Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J
2012-01-01
Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.
Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2006-01-01
An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so narrow that not enough light can propagate along them. The improved method makes it possible to form wider cones and pillars while still satisfying the average-distance and aspect-ratio requirements. In the improved method, as in the previously reported method, multiple optical fibers are first bundled together for simultaneous texturing of their distal tips. However, prior to texturing by exposure to an oxygen beam, the tips are first coated by vapor deposition of a thin, sparse layer of aluminum: The exposure to the aluminum vapor must be short enough (typically of the order of seconds) so that the aluminum nucleates into islands separated by uncoated areas. The coated tips are textured by exposure to a directed beam of hyperthermal (kinetic energy >1 eV) oxygen atoms and/or ions in a vacuum chamber, as in the previously reported method. The aluminum islands partially shield the underlying PMMA from oxidation and erosion by the beam, so that the cones or pillars remaining after texturing are wider than they would otherwise be. To some extent, the dimensions of the hills and the distances between them can be tailored through choice of the thickness of the aluminum coat and/or the oxygen-beam fluence. The figure illustrates an example of texturing of the tip of a PMMA optical fiber without and with prior aluminum coating.
Glass Blowing -- Try It, You'll Like It.
ERIC Educational Resources Information Center
Dilavore, Philip
1982-01-01
Discusses the basics of scientific glassblowing, including equipment needed, lighting a hand torch (which uses a gas and oxygen mixture), and cutting tubing. Also discusses preparation of butt joints, tee joints, and bends. Photographs illustrating various techniques are provided. (JN)
54. STEEL COMPLEX FROM CLARK AVENUE BRIDGE, LOOKING NORTHEAST. FOUNDRY ...
54. STEEL COMPLEX FROM CLARK AVENUE BRIDGE, LOOKING NORTHEAST. FOUNDRY IN FOREGROUND, INGOT MOLDS ON TRACK AT RIGHT, BASIC OXYGEN FURNACE ON TRACK AT RIGHT. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
Construction of a Simple Respirometer.
ERIC Educational Resources Information Center
Taboga, Leandro
1979-01-01
Instructions for making a simple respirometer, to measure rates of oxygen consumption of organisms, are presented. The instrument incorporates most of the basic elements of commercial respirometers but can be made inexpensively by high school students. Operating instructions and applications are given. (Author/SA)
Augmentation of oxygen transport by various hemoglobins as determined by pulsed field gradient NMR.
Budhiraja, Vikas; Hellums, J David; Post, Jan F M
2002-11-01
Diffusion of oxyhemoglobin has been shown to augment the oxygen transport inside the red blood cells. Measurement of hemoglobin diffusion coefficients by pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) technique can be used for estimating this augmentation effect. Self-diffusion coefficients of polymerized and unpolymerized bovine hemoglobin (Hb) and several other proteins were measured using this technique. The Hb diffusion coefficient was used to determine the effective permeability of oxygen and augmentation of oxygen transport through samples of Hb solutions due to diffusion of oxyhemoglobin. The values compared well with our previous diffusion cell measurements of effective diffusivity and augmentation. Our NMR studies show that even at low concentrations the augmentation of oxygen transport due to diffusion can be significant. The PFG NMR technique can thus provide an accurate and easy method for measuring augmentation of oxygen transport, especially in dilute samples of Hb. The results on polyhemoglobin and high-molecular-weight hemoglobin are of both basic interest and practical value in assessing the promise and performance of hemoglobin-based blood substitutes.
Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.
Huang, Jun; Zhang, Jianbo; Eikerling, Michael
2018-05-07
Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.
NASA Astrophysics Data System (ADS)
Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling
2017-09-01
The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.
Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Nagiah, Naveen; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F
2018-07-26
A multifunctional material based on co-electrospinning has been developed as a basic material for the development of biosensors with optical oxygen transduction. It is based on coaxial nanofibres: inner fibres containing an oxygen sensitive dye and outer fibres containing aldehyde groups to allow the formation of Schiff bases with the amino groups of the enzyme. The resulting material preserves the oxygen sensing properties of the inner optical transducer as well as exhibits a high capacity for immobilizing molecules on its surface. Uricase has been selected as model enzyme and several parameters (temperature, pH, reaction time, buffer, and enzyme concentration) have been optimised to demonstrate the versatility of this novel multifunctional material in the development of biosensors with optical oxygen transduction for determining uric acid in serum samples. It suggests that the proposed multifunctional material can provide a promising multifunctional platform for biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Impacts of chemical gradients on microbial community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...
2017-01-17
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-01-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795
Impacts of chemical gradients on microbial community structure.
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-04-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
NASA Technical Reports Server (NTRS)
Moses, Robert W.
2004-01-01
NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.
NASA Astrophysics Data System (ADS)
Lan, Mai Thi; Thuy Duong, Tran; Iitaka, Toshiaki; Van Hong, Nguyen
2017-06-01
The structural organization of CaSiO3 glass at 600 K and under pressure of 0-100 GPa is investigated by molecular dynamics simulation (MDS). Results show that the atomic structure of CaSiO3 comprises SiO n and CaO m units considered as basic structural polyhedra. At low pressure, most of the basic structural polyhedra are SiO4, CaO5, CaO6 and CaO7. At high pressure most of the basic structural polyhedra are SiO5, SiO6 and CaO9, CaO10 and CaO11. The distribution of basic structural polyhedra is not uniform resulting in formation of Ca-rich and Si-rich regions. The distribution of SiO4, SiO5 and SiO6 polyhedra is also not uniform, but it tends to form SiO4-, SiO5-, and SiO6-clusters. For the Si-O network, under compression there is a gradual transition from the tetrahedral network (SiO4) to the octahedral network (SiO6) via SiO5 polyhedra. The SiO5-clusters are the same as immediate-phase in the transformation process. The size and shape of SiO4 tetrahedra change strongly under compression. While the size of SiO5 and SiO6 has also changed significantly, but the shape is almost unchanged under compression. The SiO n polyhedra can connect to each other via one common oxygen ion (corner-sharing bond), two common oxygen ions (edge-sharing bond) or three common oxygen ions (face-sharing bond). The Si-Si bond length in corner-sharing bonds is much longer than the ones in edge-sharing and face-sharing bonds. The change of intermediate range order (IRO) structure under compression relating to edge- and face-sharing bonds amongst SiO n at high pressure is the origin of the first peak splitting of the radial distribution functions of Si-Si pair. Under compression, the number of non-bridging oxygen (NBO) decreases. This makes the Si-O network more polymerized. At low pressure, most of the Ca2+ ions incorporate into the Si-O network via NBOs. At high pressure, the amount of NBO decreases, Ca2+ ions mainly incorporate into the Si-O network via bridging oxygen (BO) that belongs to SiO5 and SiO6 with a negative charge. And this is the principle for immobilization of heavy metal as well as fissile materials in hazardous waste (nuclear waste).
Infection control in the operating room: is it more than a clean dish?
Loftus, Randy W
2016-04-01
Healthcare-associated infections (HCAIs) are driven by a complex interplay between host defenses, pathogen traits, and pathogen transmission. A better understanding of each of these factors is required to extend infection control beyond antibiotic therapy to improvements in basic preventive measures that can achieve sustained HCAI reductions. The purpose of this article is to review recent advancements in our understanding of these issues for the operating room environment. The importance and implications of intraoperative bacterial transmission have been solidified, and hyper transmissible, virulent, and antibiotic resistant bacterial strains have been characterized. As a result, a best practice for improved intraoperative infection control has been delineated. Little advancement has been made in our understanding of the efficacy of higher inspired oxygen concentrations, improved postoperative glucose control, perioperative normothermia, and prophylactic antibiotic selection, timing, and dose for HCAI prevention. Recent work has led to the development of evidence-based hand hygiene, environmental cleaning, patient decolonization, and intravascular catheter design and handling improvement strategies. Evidence suggests that a best practice for postoperative infection control is a multimodal program that utilizes these interventions to target patient, provider, and environmental reservoirs in parallel. The development of novel diagnostic tools for targeted attenuation of hyper virulent, transmissible and resistant strains/strain characteristics is indicated to improve patient decolonization efforts.
Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo
2012-12-01
It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.
NASA Astrophysics Data System (ADS)
Qian, Guoyu; Wang, Zhi; Gong, Xuzhong; Sun, Liyuan
2017-12-01
Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.
Nie, Kaiyu; Li, Pengcheng; Zeng, Xueqin; Sun, Guangfeng; Jin, Wenhu; Wei, Zairong; Wang, Bo; Qi, Jianping; Wang, Yuming; Wang, Dali
2010-06-01
To investigate the efficacy of basic fibroblast growth factor (bFGF) combined with topical oxygen therapy for deep II degree burn wounds, by comparing the effects of bFGF combined with topical oxygen therapy and bFGF with routine therapy. From February 2004 to July 2009, 85 patients with deep II degree burn wounds (117 wounds) were enrolled and divided into 4 groups randomly according to different treatments. There was no significant difference in sex, age, disease course, wound size, and wound treatment size among 4 groups (P > 0.05). In group A, 18 patients (28 wounds) were treated routinely; in group B, 23 patients (30 wounds) were treated with routine methods and topical oxygen therapy; in group C, 19 patients (25 wounds) were treated with routine methods and bFGF therapy; and in group D, 25 patients (34 wounds) were treated with routine methods and bFGF/topical oxygen therapy. Topical oxygen therapy was administered to the wound for 90 minutes per day for 3 weeks. The bFGF therapy was applied everyday (150 U/cm2) for 3 weeks. All cases were followed up 6-12 months (9 months on average). The wound healing times in groups A, B, C, and D were (27.3 +/- 6.6), (24.2 +/- 5.8), (22.2 +/- 6.8), and (18.2 +/- 4.8) days, respectively; showing significant difference between group A and group D (P < 0.05). The wound healing rates in groups A, B, C, and D were 67.8% +/- 12.1%, 85.1% +/- 7.5%, 89.2% +/- 8.3%, and 96.1% +/- 5.6%, respectively; showing significant differences between group A and groups B, C, D (P < 0.05). The therapic effective rates in groups A, B, C, and D were 75%, 90%, 92%, and 100%, respectively; showing significant difference between group A and group D (P < 0.05). The Vancouver scar scale scoring of group D 6 months after treatment was better than that of group A (P < 0.05). The bFGF combined with topical oxygen therapy can enhance deep II degree burn wound healing. Furthermore, the therapy method is simple and convenient.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1985-01-01
The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.
Introduction to Instrumental Analysis of Water Pollutants. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This course is designed for those requiring an introduction to instruments commonly used in water pollution analyses. Examples are: pH, conductivity, dissolved oxygen meters, spectrophotometers, turbidimeters, carbon analyzer, and gas chromatographs. Students should have a basic knowledge of analytical chemistry. (CO)
52. SLABBING AND BLOOMING MILLS AND FOUNDRY (IN FOREGROUND), AS ...
52. SLABBING AND BLOOMING MILLS AND FOUNDRY (IN FOREGROUND), AS SEEN FROM THE CLARK AVENUE BRIDGE. AT RIGHT, REAR, IS THE BASIC OXYGEN FURNACE. VIEW LOOKING NORTH. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.
2000-01-01
A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.
Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V
1991-01-01
Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.
Atomic oxygen effects on materials
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.; Merrow, James E.
1989-01-01
Understanding of the basic processes of atomic oxygen interaction is currently at a very elementary level. However, measurement of erosion yields, surface morphology, and optical properties for low fluences have brought about much progress in the past decade. Understanding the mechanisms and those factors that are important for proper simulation of low Earth orbit is at a much lower level of understanding. The ability to use laboratory simulations with confidence to quantifiably address the functional performance and durability of materials in low Earth orbit will be necessary to assure long-term survivability to the natural space environment.
Investigation of titanium-nitride layers for solar-cell contacts
NASA Technical Reports Server (NTRS)
Von Seefeld, H.; Cheung, N. W.; Nicolet, M.-A.; Maenpaa, M.
1980-01-01
Reactively sputtered titanium-nitride layers have been incorporated as diffusion barriers in a titanium-silver metallization scheme on silicon. Backscattering analysis (2-MeV He/+/, RBS) indicates that the integrity of the system is basically preserved during annealing at 600 C for 10 min. Electrical properties were determined for titanium-nitride layers prepared under different deposition conditions. Resistivity and Hall mobility appear to depend on the oxygen contamination of the deposited material. For the lowest oxygen concentration (less than 5 at %) a resistivity of 170 microohms/cm has been found.
Matiushichev, V B; Shamratova, V G; Krapivko, Iu K
2009-12-01
Factor analysis was used to study the pattern of relationships of a number of hematological parameters in clinically healthy young subjects and in patients with moderate anemia. The level of total hemoglobin and the concentration of red blood cells were ascertained to control blood oxygen-transporting function in not full measure and these might be referred to as basic characteristics only conventionally. To clarify the picture, these criteria should be supplemented by the information on other parameters. It is concluded that the introduction of the ratio of a number of hemoglobin derivatives, blood oxygen regimen and acid-base balance can substantially increase the validity of clinical opinions as to this blood function.
Titanium aluminide intermetallic alloys with improved wear resistance
Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.
2014-07-08
The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.
NASA Astrophysics Data System (ADS)
Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.
2014-05-01
Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.
Basic ammonothermal GaN growth in molybdenum capsules
NASA Astrophysics Data System (ADS)
Pimputkar, S.; Speck, J. S.; Nakamura, S.
2016-12-01
Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).
XPS study of the surface chemistry of UO2 (111) single crystal film
NASA Astrophysics Data System (ADS)
Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian
2018-03-01
A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.
Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo
2012-03-01
It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.
Sequential extraction of chromium, molybdenum, and vanadium in basic oxygen furnace slags.
Spanka, Marina; Mansfeldt, Tim; Bialucha, Ruth
2018-06-02
Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1-F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CH 3 COOH + HCl, F3 Na 2 EDTA + NH 2 OH·HCl, and F4 HF + HNO 3 + H 2 O 2 ), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8-107.9% and V, 112.6-87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.
Effects of topical oxygen therapy on ischemic wound healing.
Rao, Congqiang; Xiao, Liling; Liu, Hongwei; Li, Shenghong; Lu, Jinqiang; Li, Jiangxuan; Gu, Shixing
2016-01-01
[Purpose] This study evaluated the effects of topical oxygen therapy on the hind limb wounds of rats under ischemic conditions. [Subjects and Methods] Twelve injured rats were treated with topical oxygen on skin wounds located on the hind limb and compared with twelve injured control rats. Indexes including gross morphology of the wound, wound healing time, wound healing rate, and histological and immunohistochemical staining of sections of wound tissue were examined at different time points after intervention. [Results] The wound healing time was shorter in the topical oxygen therapy group than the control group. The wound healing rate and granulation tissue formation in the topical oxygen therapy group showed significant improvement on days 3, 7, and 14. Through van Gieson staining, the accumulation of collagen fiber in the topical oxygen therapy group was found to have improved when compared with the control group on day 7. Through semiquantitative immunohistochemical staining, many more new vessels were found in the topical oxygen therapy group compared with the model control group on day 7. [Conclusion] The results of the experiment showed that topical oxygen therapy improved ischemic wound healing.
Danielsson, Louise; Papoulias, Ilias; Petersson, Eva-Lisa; Carlsson, Jane; Waern, Margda
2014-10-01
While physical exercise as adjunctive treatment for major depression has received considerable attention in recent years, the evidence is conflicting. This study evaluates the effects of two different add-on treatments: exercise and basic body awareness therapy. Randomized controlled trial with two intervention groups and one control, including 62 adults on antidepressant medication, who fulfilled criteria for current major depression as determined by the Mini International Neuropsychiatric Interview. Interventions (10 weeks) were aerobic exercise or basic body awareness therapy (BBAT), compared to a single consultation with advice on physical activity. Primary outcome was depression severity, rated by a blinded assessor using the Montgomery Asberg Rating Scale (MADRS). Secondary outcomes were global function, cardiovascular fitness, self-rated depression, anxiety and body awareness. Improvements in MADRS score (mean change=-10.3, 95% CI (-13.5 to -7.1), p=0.038) and cardiovascular fitness (mean change=2.4ml oxygen/kg/min, 95% CI (1.5 to 3.3), p=0.017) were observed in the exercise group. Per-protocol analysis confirmed the effects of exercise, and indicated that BBAT has an effect on self-rated depression. The small sample size and the challenge of missing data. Participants׳ positive expectations regarding the exercise intervention need to be considered. Exercise in a physical therapy setting seems to have effect on depression severity and fitness, in major depression. Our findings suggest that physical therapy can be a viable clinical strategy to inspire and guide persons with major depression to exercise. More research is needed to clarify the effects of basic body awareness therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Thermodynamics of Oxygen Ordering in Yttrium BARIUM(2) COPPER(3) OXYGEN(6+X)
NASA Astrophysics Data System (ADS)
Schieger, Paul Richard
An apparatus has been built to study and manipulate the oxygen in high temperature superconductors. It uses the principle of cryogenically assisted volumetric titration to precisely set changes in the oxygen content of high -T_{c} samples. The apparatus has been used to study the thermodynamics of oxygen in YBa_2Cu_3O _{6 + x} in order to help determine the correct model for oxygen thermodynamics as well as to provide standard curves for materials preparation by other methods. In particular, extensive measurements have been made on the oxygen pressure isotherms as a function of x for temperatures between 450^circ C and 650^circC. The measurement technique also allows one to extract the thermodynamic response function, (partial x/ partialmu)_{T}, ( mu is the chemical potential), which is sensitive to the oxygen configuration and which can be calculated by any candidate theory of the oxygen thermodynamics. Several existing theoretical models for the oxygen ordering thermodynamics are presented and compared to the experimental results. The models considered are classed into two basic approaches: lattice gas models and defect chemical models. It is found that the lattice gas models which assume static effective pair interactions between oxygen atoms, do not fit the experimental data very well, especially in the orthorhombic phase. The defect chemical models, which incorporate additional degrees of freedom (spin and charge) due to the creation of electronic defects, fit significantly better, but make crude assumptions for the configurational entropy of oxygen atoms. Using a commonly accepted picture for the creation of mobile electron holes and unpaired spins on the copper sites, it is possible to relate these quantities in terms of short range cluster probabilities defined in mean field approximations to the 2D lattice gas models. Based upon this connection, a thermodynamical model is developed, which takes into account interactions between oxygen atoms and the additional spin and charge degrees of freedom, assuming a narrow band, high temperature limit for the motion of the charge carriers. The model, containing the nearest-neighbour oxygen interaction (0.241eV) and the single site oxygen binding energy (-0.82eV - D/2; D is the dissociation energy of an oxygen molecule) as the only adjustable parameters, is compared to experimental results for the chemical potential, kT(partial x/partialmu)_{T}, fractional site occupancies, structural phase diagram, the number of monovalent coppers, and the total number of mobile electron holes. Qualitative agreement is found for all compared quantities, and quantitative agreement is found for the chemical potential, fractional site occupancies and kT(partial x/partialmu)_ {T} in the orthorhombic phase. Improvements to the model are outlined which should result in a quantitative fit to all results, in particular the valence and hole count vs. x. In addition to illuminating what is lacking in the commonly used two dimensional lattice gas models, the theory may form the basis for accurately predicting the electron hole count of the CuO_2 plane of YBa_2Cu_3 O_{6 + x} as a function of the sample preparation conditions.
Subudhi, Andrew W; Bourdillon, Nicolas; Bucher, Jenna; Davis, Christopher; Elliott, Jonathan E; Eutermoster, Morgan; Evero, Oghenero; Fan, Jui-Lin; Jameson-Van Houten, Sonja; Julian, Colleen G; Kark, Jonathan; Kark, Sherri; Kayser, Bengt; Kern, Julia P; Kim, See Eun; Lathan, Corinna; Laurie, Steven S; Lovering, Andrew T; Paterson, Ryan; Polaner, David M; Ryan, Benjamin J; Spira, James L; Tsao, Jack W; Wachsmuth, Nadine B; Roach, Robert C
2014-01-01
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.
Subudhi, Andrew W.; Bourdillon, Nicolas; Bucher, Jenna; Davis, Christopher; Elliott, Jonathan E.; Eutermoster, Morgan; Evero, Oghenero; Fan, Jui-Lin; Houten, Sonja Jameson-Van; Julian, Colleen G.; Kark, Jonathan; Kark, Sherri; Kayser, Bengt; Kern, Julia P.; Kim, See Eun; Lathan, Corinna; Laurie, Steven S.; Lovering, Andrew T.; Paterson, Ryan; Polaner, David M.; Ryan, Benjamin J.; Spira, James L.; Tsao, Jack W.; Wachsmuth, Nadine B.; Roach, Robert C.
2014-01-01
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention. PMID:24658407
Chem I Supplement: Chemistry of Steel Making.
ERIC Educational Resources Information Center
Sellers, Neal
1980-01-01
Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
12. VIEW LOOKING WEST FROM THE PARKING LOT ADJACENT TO ...
12. VIEW LOOKING WEST FROM THE PARKING LOT ADJACENT TO THE STEEL PLANT OFFICES. BAR AND BILLET MILLS AND, IN THE DISTANCE, THE BASIC OXYGEN FURNACES MAY BE SEEN. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER ...
36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER No. 1 AND TWO GAS COOLING TOWER SERVICE WATER PUMPS IN THE GAS WASHER PUMP HOUSE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Mechanical Ventilation: State of the Art.
Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S
2017-09-01
Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
The Glostavent: evolution of an anaesthetic machine for developing countries.
Beringer, R M; Eltringham, R J
2008-05-01
The sophisticated anaesthetic machines designed for use in modem hospitals are not appropriate for many parts of the developing world, as they are reliant on regular servicing by skilled engineers and an uninterrupted supply of electricity and compressed gases, which are not always available. The Glostavent has been designed specifically to meet the challenges faced by anaesthetists working in these countries. It is robust, simple to use, economical, easy to service and will continue to run during an interruption of the supply of oxygen or electricity. Feedback from widespread use throughout the developing world over the last 10 years has led to significant improvements to the original design. This article describes the basic components of the original version and the modifications which have been introduced as a result of practical experience in the developing world.
Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong
2015-11-01
The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.
1990-08-01
of the review are presented in Tables 1 and 2 by aircraft and type of component. The totals for each component are combined in Table 3. Adjusted...of Table 3 have been grouped according to basic system functions and combined percentages for each of the basic functions have been computed as shown...and the free oxygen combines with the tungsten to form 29 Fig. 2.5 Notching of lamp aged 77 hours at 28 Volts DC. 2000X. (Reference 2.1) 30 DAMAGE
Processes for converting lignocellulosics to reduced acid pyrolysis oil
Kocal, Joseph Anthony; Brandvold, Timothy A
2015-01-06
Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.
Reinventing Biostatistics Education for Basic Scientists
Weissgerber, Tracey L.; Garovic, Vesna D.; Milin-Lazovic, Jelena S.; Winham, Stacey J.; Obradovic, Zoran; Trzeciakowski, Jerome P.; Milic, Natasa M.
2016-01-01
Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students’ fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists. PMID:27058055
2014-01-01
Background The effect of intranasal oxygen and/or early reversal of xylazine with atipamezole on arterial oxygenation in free-ranging moose (Alces alces) immobilized with etorphine-acepromazine-xylazine with a cross-sectional clinical study on 33 adult moose was evaluated. Moose were darted from a helicopter with 3.37 mg etorphine, 15 mg acepromazine and 75 mg xylazine. Intranasal oxygen at a flow rate of 4 L/min and/or early reversal of xylazine with 7.5 mg atipamezole to improve oxygenation was evaluated, using four treatment regimens; intranasal oxygen (n = 10), atipamezole intramuscularly (n = 6), atipamezole intravenously (n = 10), or a combination of atipamezole intravenously and intranasal oxygen (n = 7). Arterial blood was collected 7–30 minutes (min) after darting, and again 15 min after institution of treatment and immediately analyzed using an i-STAT®1 Portable Clinical Analyzer. Results Before treatment the mean ± SD (range) partial pressure of arterial oxygen (PaO2) was 62 ± 17 (26–99) mmHg. Twenty-six animals had a PaO2 < 80 mmHg. Ten had a PaO2 of 40–60 mmHg and three animals had a PaO2 < 40 mmHg. Intranasal oxygen and intravenous administration of atipamezole significantly increased the mean PaO2, as did the combination of the two. In contrast, atipamezole administered intramuscularly at the evaluated dose had no significant effect on arterial oxygenation. Conclusions This study shows that intranasal oxygen effectively improved arterial oxygenation in immobilized moose, and that early intravenous reversal of the sedative component, in this case xylazine, in an opioid-based immobilization drug-protocol significantly improves arterial oxygenation. PMID:25124367
Gas-Phase Oxidation of Neutral Basic Residues in Polypeptide Cations by Periodate
NASA Astrophysics Data System (ADS)
Pilo, Alice L.; Bu, Jiexun; McLuckey, Scott A.
2016-12-01
The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.
Coordination for the Improvement of Basic Skills.
ERIC Educational Resources Information Center
Roberts, Jane M. E.
The Title II Basic Skills legislation, which is part of the Educational Amendments of 1978, requires coordination of basic skills improvement among related federally-supported programs. Coordination, while essential, is made difficult by the proliferation of agencies and bureaus concerned with basic skills and by the need for autonomy among…
21 CFR 177.1620 - Polyethylene, oxidized.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic...,200, as determined by high temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when...
21 CFR 177.1620 - Polyethylene, oxidized.
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic...,200, as determined by high temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when...
21 CFR 177.1620 - Polyethylene, oxidized.
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic...,200, as determined by high temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when...
21 CFR 177.1620 - Polyethylene, oxidized.
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic...,200, as determined by high temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when...
Drigny, Joffrey; Gremeaux, Vincent; Dupuy, Olivier; Gayda, Mathieu; Bherer, Louis; Juneau, Martin; Nigam, Anil
2014-11-01
To assess the effect of a 4-month high-intensity interval training programme on cognitive functioning, cerebral oxygenation, central haemodynamic and cardiometabolic parameters and aerobic capacity in obese patients. Cognitive functioning, cerebral oxygenation, central haemodynamic, cardiometabolic and exercise para-meters were measured before and after a 4-month high-intensity interval training programme in 6 obese patients (mean age 49 years (standard deviation 8), fat mass percentage 31 ± 7%). Body composition (body mass, total and trunk fat mass, waist circumference) and fasting insulin were improved after the programme (p < 0.05). V. O2 and power output at ventilatory threshold and peak power output were improved after the programme (p < 0.05). Cognitive functioning, including short-term and verbal memory, attention and processing speed, was significantly improved after training (p < 0.05). Cerebral oxygen extraction was also improved after training (p < 0.05). These preliminary results indicate that a 4-month high-intensity interval training programme in obese patients improved both cognitive functioning and cere-bral oxygen extraction, in association with improved exercise capacity and body composition.
Basic management of medical emergencies: recognizing a patient's distress.
Reed, Kenneth L
2010-05-01
Medical emergencies can happen in the dental office, possibly threatening a patient's life and hindering the delivery of dental care. Early recognition of medical emergencies begins at the first sign of symptoms. The basic algorithm for management of all medical emergencies is this: position (P), airway (A), breathing (B), circulation (C) and definitive treatment, differential diagnosis, drugs, defibrillation (D). The dentist places an unconscious patient in a supine position and comfortably positions a conscious patient. The dentist then assesses airway, breathing and circulation and, when necessary, supports the patient's vital functions. Drug therapy always is secondary to basic life support (that is, PABCD). Prompt recognition and efficient management of medical emergencies by a well-prepared dental team can increase the likelihood of a satisfactory outcome. The basic algorithm for managing medical emergencies is designed to ensure that the patient's brain receives a constant supply of blood containing oxygen.
Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry
NASA Astrophysics Data System (ADS)
Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold
2000-03-01
Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.
NASA Astrophysics Data System (ADS)
Lin, Yi; Li, Yunzhe; Sadowski, Jerzy; Dadap, Jerry; Jin, Wencan; Osgood, Richard
In this talk, we report our experimental results on the first direct observation of image potential state (IPS) in oxygen-intercalated graphene on iridium by two-photo-photoemission spectroscopy. We demonstrate how oxygen intercalation influences the IPS in Gr/Ir and decouples the interlayer interaction. We present measurements of the electronic dispersion and work function in pristine Gr/Ir, oxygen-intercalated Gr/O/Ir, and deintercalated Gr/Ir. LEED patterns are measured during the pristine, oxygen-intercalated, and deintercalated phases of the Gr/Ir sample. Based on these measurements, relative to the pristine case, the work function and the energy location of n =1 IPS relative to the Fermi level increases by 0.39 eV and 0.3 eV, respectively, due to oxygen intercalation, whereas the effective mass of n =1 IPS is hardly influenced by the intercalation process. Moreover, we achieve the quenching and restoration of the resonance from Ir Rashba states to n =1 IPS in Gr/Ir by oxygen intercalation and deintercalation. This work was supported by the DOE, Office of Basic Energy Sciences, Division of MSE under Contract No. DE-FG 02-04-ER-46157. This research used resources of the CFN, which is the U.S. DOE Office of Science User Facility, under Contract No. DE-SC0012704.
Optical basicity and polarizability for copper-zinc doped sol-gel glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, G., E-mail: gkapds@gmail.com; Pandey, O. P.; Amjotkaur,, E-mail: amjotkaur93@gmail.com
2016-05-06
CaO-SiO{sub 2}-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} glasses have been studied by varying ratios of Copper oxide and Zinc oxide. Glasses were prepared using Sol-Gel technique. Opitical Basicity and oxide ion Polarizability were calculated and discussed in relation with non bridging Oxygen ions (NBOs). Optical basicity is average electron donating capability of an oxide atom. All glasses had a little difference in optical basicity and polarizability values but CZ8 glass (20CaO-60SiO{sub 2}-5B{sub 2}O{sub 3}-5P{sub 2}O{sub 5}-2CuO-8ZnO) came out to show highest optical basicity and polarizability with value 0.5177 and 0.9798 respectively. This showed the highest electron donating tendency of CZ8 glassmore » and highest number of NBOs. These were minimum for CZ2 glass with 8CuO and 2ZnO. In aspect of optical basicity and polarizability glasses follow the series CZ2 < CZ4 < CZ6 < CZ8. Increasing concentration of ZnO and decreasing concentration of CuO lead to higher optical basicity and oxide ion polarizability.« less
Electrolysis of lunar soil to produce oxygen and metals
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.; Keller, R.
1991-01-01
The discussion of melt electrolysis consists of three sections. The implications of the chemistry and physics of fluxed and raw melts on melt electrolysis are discussed first. This includes discussion of the factor that influence melt resistivity, melt viscosity, oxygen production efficiency, and the theoretical energy required to produce oxygen. Second, the implications of phase equilibria and solubilities in silicate melts on the selection of materials for container and electrodes are discussed. The implications of proposed container and electrode materials on melt composition and how this effects expected resistivities, viscosities, as outlined in the first section are discussed. Finally, a general discussion of the basic features of both the fluxed and unfluxed melt electrolysis is given, including their advantages and disadvantages and how they compare with alternative processes.
Effect of oxidation on transport properties of zirconium-1% niobium alloy
NASA Astrophysics Data System (ADS)
Peletsky, V. E.; Musayeva, Z. A.
1995-11-01
The thermal conductivity and electrical resistivity of zirconium-1 wt% niobium samples were measured before and after the process of their oxidation in air. A special procedure was used to dissolve the gas and to smooth out its concentration in the alloy. The basic experiments were performed under high vacuum under steady-state temperature conditions. The temperature range was 300 1600 K. for the pure alloy and 300 1100 K for the samples containing oxygen. It was found that the thermal conductivity—oxygen concentration relation reverses its sign from negative at low and middle temperatures to positive at temperatures above 900 K. The relation between the electrical resistivity and the oxygen content does not show this feature. The Lorenz function was found to have an anomalous temperature dependence.
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Kuhl, Christopher A.; Templeton, Justin D.
2005-01-01
NASA's exploration goals for Mars and Beyond will require new power systems and in situ resource utilization (ISRU) technologies. Regenerative aerobraking may offer a revolutionary approach for in situ power generation and oxygen harvesting during these exploration missions. In theory, power and oxygen can be collected during aerobraking and stored for later use in orbit or on the planet. This technology would capture energy and oxygen from the plasma field that occurs naturally during hypersonic entry using well understood principles of magnetohydrodynamics and oxygen filtration. This innovative approach generates resources upon arrival at the operational site, and thus greatly differs from the traditional approach of taking everything you need with you from Earth. Fundamental analysis, computational fluid dynamics, and some testing of experimental hardware have established the basic feasibility of generating power during a Mars entry. Oxygen filtration at conditions consistent with spacecraft entry parameters at Mars has been studied to a lesser extent. Other uses of the MHD power are presented. This paper illustrates how some features of regenerative aerobraking may be applied to support human and robotic missions at Mars.
Simulation of Flow Fluid in the BOF Steelmaking Process
NASA Astrophysics Data System (ADS)
Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei
2013-12-01
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.
Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.
Chang, Andy J
2017-11-01
Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models. Copyright © 2017 the American Physiological Society.
The Rate of Oxygen Utilization by Cells
Wagner, Brett A.; Venkataraman, Sujatha; Buettner, Garry R.
2011-01-01
The discovery of oxygen is considered by some to be the most important scientific discovery of all time – from both physical-chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body -- on demand, i.e. just-in-time. Humans use oxygen to extract approximately 2550 Calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 moles of dioxygen per day, or 2.5 × 10-4 mol s-1. This is an average rate of oxygen utilization of 2.5 × 10-18 mol cell-1 s-1, i.e. 2.5 amol cell-1 s-1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from <1 to >350 amol cell-1 s-1. There is a loose positive linear correlation of the rate of oxygen consumption (OCR) by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology. PMID:21664270
Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
NASA Astrophysics Data System (ADS)
Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju
2013-08-01
Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.
Pegis, Michael L.; McKeown, Bradley A.; Kumar, Neeraj; ...
2016-10-28
Improvement of electrocatalysts for the oxygen reduction reaction (ORR) is critical for the advancement of fuel cell technologies. Herein, we report a series of eleven soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s -1 to an unprecedented 2.2 x 10 6 s -1. These TOFs correlate with the ORR overpotential, which can be changed by modulating the ancillary ligand, by varying the reaction conditions or by changing the catalyst’s protonation state. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of the highmore » overpotential. Computational studies indicate that the correlation is analogous to the volcano plot analysis developed for heterogeneous ORR materials. This unique parallel between homo- and heterogeneous ORR electrocatalysts allows a fundamental understanding of intrinsic barriers associated with the ORR, which can aid the design of new catalytic systems that operate at low overpotential. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Additional data is given in the Electronic Supporting Information.« less
PLSS 2.5 Fan Design and Development
NASA Technical Reports Server (NTRS)
Converse, David; Carra, Michael; Quinn, Gregory; Chullen, Cinda
2015-01-01
NASA is building a high fidelity prototype of an advanced portable life support system (PLSS) as part of the Advanced Exploration Systems Program. This new PLSS, designated as PLSS 2.5, will advance component technologies and systems knowledge in order to inform a future flight program. The oxygen ventilation loop of its predecessor, PLSS 2.0, is driven by a centrifugal fan developed using specifications from over five years ago. PLSS technology and system parameters have matured to the point where the existing fan will not perform adequately for the new prototype. In addition, areas of potential improvement have been identified with the existing fan that could be addressed in a new design. As a result, a new fan was designed and tested for the PLSS 2.5. The PLSS 2.5 fan is a derivative of the one used in PLSS 2.0. It uses the same basic non-metallic can around the motor, but with a larger volute and impeller to meet the higher pressure drop requirements of the PLSS 2.5 loop. This allows it to operate at rotational speeds that are matched to rolling element bearings, and which create reasonably low impeller tip speeds. Development of the fan also considered a shrouded impeller design that allows larger clearances for greater oxygen safety and better performance.
The use of simulation in teaching the basic sciences.
Eason, Martin P
2013-12-01
To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.
Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Howard, David; Abney, Morgan
2015-01-01
This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.
NASA Astrophysics Data System (ADS)
Kim, Yun Ji; Kim, Seung Mo; Heo, Sunwoo; Lee, Hyeji; In Lee, Ho; Chang, Kyoung Eun; Lee, Byoung Hun
2018-02-01
High-pressure annealing in oxygen ambient at low temperatures (∼300 °C) was effective in improving the performance of graphene field-effect transistors. The field-effect mobility was improved by 45% and 83% for holes and electrons, respectively. The improvement in the quality of Al2O3 and the reduction in oxygen-related charge generation at the Al2O3-graphene interface, are suggested as the reasons for this improvement. This process can be useful for the commercial implementation of graphene-based electronic devices.
Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment
NASA Astrophysics Data System (ADS)
Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool
2016-01-01
Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Detoxification of Acetylcholinesterase Inhibitors.
1987-02-19
IIB:HB-o Mvse three machanisms can be distinguished by appropriate labelling experiments in oxygen-18 H.O. If mechanism C is operating, hydrolysis...enzyue reveals that there is a single break at pa 6.2 relative to both Vmax and Vfax/Km. This would appear to represent the titration of the basic residue
Nonregenerative life-support systems for flights of short and moderate duration
NASA Technical Reports Server (NTRS)
Adamovich, B. A.
1975-01-01
The basic requirements for crew life support systems of flights of up to 30 days are described. Food products, drinking water, oxygen for breathing, and sanitary-technical facilities are among the factors considered. Life support systems utilized on Vostok, Voskhod, Soyuz, Gemini, Mercury, and Apollo are discussed.
Forest canopy structural properties. Chapter 14
Marie-Louise Smith; Jeanne Anderson; Matthew Fladeland
2008-01-01
The forest canopy is the interface between the land and the atmosphere, fixing atmospheric carbon into biomass and releasing oxygen and water. The arrangement of individual trees, differences in species morphology, the availability of light and soil nutrients, and many other factors determine canopy structure. Overviews of approaches for basic measurements of canopy...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
Determining Dissolved Oxygen Levels
ERIC Educational Resources Information Center
Boucher, Randy
2010-01-01
This project was used in a mathematical modeling and introduction to differential equations course for first-year college students. The students worked in two-person groups and were given three weeks to complete the project. Students were given this project three weeks into the course, after basic first order linear differential equation and…
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2014 CFR
2014-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Oxygen Therapy for Patients With COPD
Stoller, James K.; Panos, Ralph J.; Krachman, Samuel; Doherty, Dennis E.
2010-01-01
Long-term use of supplemental oxygen improves survival in patients with COPD and severe resting hypoxemia. However, the role of oxygen in symptomatic patients with COPD and more moderate hypoxemia at rest and desaturation with activity is unclear. The few long-term reports of supplemental oxygen in this group have been of small size and insufficient to demonstrate a survival benefit. Short-term trials have suggested beneficial effects other than survival in patients with COPD and moderate hypoxemia at rest. In addition, supplemental oxygen appeared to improve exercise performance in small short-term investigations of patients with COPD and moderate hypoxemia at rest and desaturation with exercise, but long-term trials evaluating patient-reported outcomes are lacking. This article reviews the evidence for long-term use of supplemental oxygen therapy and provides a rationale for the National Heart, Lung, and Blood Institute Long-term Oxygen Treatment Trial. The trial plans to enroll subjects with COPD with moderate hypoxemia at rest or desaturation with exercise and compare tailored oxygen therapy to no oxygen therapy. PMID:20605816
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.
1993-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.
Chaggu, Esnati J; Sanders, Wendy; Lettinga, Gatze
2007-11-01
The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the latrines once per month. To improve the situation, two plastic tanks (while one is in use, the other one is on stand-by) of 3000 l capacity each, named as Improved Pit-Latrines Without Urine Separation (IMPLWUS), were used as latrine pits. They received faeces+urine+wash water; basically, an accumulation system. Septic tank seed sludge was used. The dissolved chemical oxygen demand (COD(dis)) remaining when the reactor was closed after 380 days was about 8 g COD/l, volatile fatty acids were 100 mg COD/l and total ammonium nitrogen was about 2.8 g N/l, implying the possibility of methanogenesis inhibition. Stability results indicated a need for more degradation time after reactor closure. Estimated biogas production from wastewater generated by 10 people was 544 g COD-CH(4)/day, not enough for cooking purposes.
Okponyia, Obiefuna C; McGraw, Matthew D; Dysart, Marilyn M; Garlick, Rhonda B; Rioux, Jacqueline S; Murphy, Angela L; Roe, Gates B; White, Carl W; Veress, Livia A
2018-01-01
Chlorine is a highly reactive gas that can cause significant injury when inhaled. Unfortunately, its use as a chemical weapon has increased in recent years. Massive chlorine inhalation can cause death within 4 hours of exposure. Survivors usually require hospitalization after massive exposure. No countermeasures are available for massive chlorine exposure and supportive-care measures lack controlled trials. In this work, adult rats were exposed to chlorine gas (LD 58-67 ) in a whole-body exposure chamber, and given oxygen (0.8 Fi O 2 ) or air (0.21 Fi O 2 ) for 6 hours after baseline measurements were obtained. Oxygen saturation, vital signs, respiratory distress and neuromuscular scores, arterial blood gases, and hemodynamic measurements were obtained hourly. Massive chlorine inhalation caused severe acute respiratory failure, hypoxemia, decreased cardiac output, neuromuscular abnormalities (ataxia and hypotonia), and seizures resulting in early death. Oxygen improved survival to 6 hours (87% versus 42%) and prevented observed seizure-related deaths. However, oxygen administration worsened the severity of acute respiratory failure in chlorine-exposed rats compared with controls, with increased respiratory acidosis (pH 6.91 ± 0.04 versus 7.06 ± 0.01 at 2 h) and increased hypercapnia (180.0 ± 19.8 versus 103.2 ± 3.9 mm Hg at 2 h). In addition, oxygen did not improve neuromuscular abnormalities, cardiac output, or respiratory distress associated with chlorine exposure. Massive chlorine inhalation causes severe acute respiratory failure and multiorgan damage. Oxygen administration can improve short-term survival but appears to worsen respiratory failure, with no improvement in cardiac output or neuromuscular dysfunction. Oxygen should be used with caution after massive chlorine inhalation, and the need for early assisted ventilation should be assessed in victims.
Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi
2007-08-01
Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.
Coping with cyclic oxygen availability: evolutionary aspects.
Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke
2007-10-01
Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.
A novel bFGF-GH injection therapy for two patients with severe ischemic limb pain.
Ito, Naomi; Saito, Shigeru; Yamada, Makiko Hardy; Koizuka, Shiro; Obata, Hideaki; Nishikawa, Koichi; Tabata, Yasuhiko
2008-01-01
Severe ischemic pain is difficult to treat with a single therapy. Although modern angiogenic therapies have been used in patients with peripheral arterial occlusive diseases, a regimen combining novel angiogenic therapy and classic nerve blocks, including sympathectomy, has not been discussed to date. In this case report, we present two patients with peripheral arterial occlusive disease who were first treated with medication and lumbar sympathectomy, and then with a novel gelatin hydrogel drug-delivery system loaded with basic fibroblast growth factor. The gelatin hydrogel combined with recombinant basic fibroblast growth factor was injected intramuscularly into the ischemic limbs. In the first patient, with arteriosclerosis obliterans, a foot ulcer was healed, and the original score for resting pain (visual analogue scale, 5/10) was decreased to 0/10. In the second patient, with Buerger's disease, a large toe ulcer was healed, and his resting pain (visual analogue scale, 8/10) was decreased to 1/10. Some other parameters, such as skin surface temperature, transcutaneous oxygen partial pressure, and pain-free walking distance, were also improved in both patients after the combined therapy. A multimodal approach is necessary to treat severe ischemic pain. Novel angiogenic therapy combined with nerve blocks seems to be a promising option in patients with severe pain.
Miyamoto, J; Tatsuzawa, K; Inoue, Y; Imahori, Y; Mineura, K
2007-09-01
The present study revealed the changes in cerebral oxygen metabolism before and after ventriculo-peritoneal shunt (VPS) using (15)O positron emission tomography ((15)O-PET). Eight patients with idiopathic normal pressure hydrocephalus (i-NPH) underwent VPS. A (15)O-PET study was undertaken before and approximately 3 months after VPS. In five patients, the symptoms improved based on the classification by Krauss et al. [Neurosurgery 1996;39:292] (good responders) after VPS. In three patients, the symptoms improved subjectively following VPS (poor responders). The changes in oxygen metabolism before and after VPS were analyzed. The postoperative regional cerebral metabolic rate of oxygen (rCMRO(2)) of the good responders increased significantly. The postoperative regional oxygen extraction fraction (rOEF) is reduced in the poor responders. The improvement of rCMRO(2) correlated with the response to VPS. Significant changes in rOEF might predict poor response to VPS.
Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M
2018-01-01
Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.
British Thoracic Society guidelines for home oxygen use in adults.
Hardinge, Maxine; Annandale, Joe; Bourne, Simon; Cooper, Brendan; Evans, Angela; Freeman, Daryl; Green, Angela; Hippolyte, Sabrine; Knowles, Vikki; MacNee, William; McDonnell, Lynn; Pye, Kathy; Suntharalingam, Jay; Vora, Vandana; Wilkinson, Tom
2015-06-01
The British Thoracic Society (BTS) Home Oxygen Guideline provides detailed evidence-based guidance for the use of home oxygen for patients out of hospital. Although the majority of evidence comes from the use of oxygen in patients with chronic obstructive pulmonary disease, the scope of the guidance includes patients with a variety of long-term respiratory illnesses and other groups in whom oxygen is currently ordered, such as those with cardiac failure, cancer and end-stage cardiorespiratory disease, terminal illness or cluster headache. It explores the evidence base for the use of different modalities of oxygen therapy and patient-related outcomes such as mortality, symptoms and quality of life. The guideline also makes recommendations for assessment and follow-up protocols, and risk assessments, particularly in the clinically challenging area of home oxygen users who smoke. The guideline development group is aware of the potential for confusion sometimes caused by the current nomenclature for different types of home oxygen, and rather than renaming them, has adopted the approach of clarifying those definitions, and in particular emphasising what is meant by long-term oxygen therapy and palliative oxygen therapy. The home oxygen guideline provides expert consensus opinion in areas where clinical evidence is lacking, and seeks to deliver improved prescribing practice, leading to improved compliance and improved patient outcomes, with consequent increased value to the health service. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Potential Anti-Atherosclerotic Properties of Astaxanthin.
Kishimoto, Yoshimi; Yoshida, Hiroshi; Kondo, Kazuo
2016-02-05
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed.
Potential Anti-Atherosclerotic Properties of Astaxanthin
Kishimoto, Yoshimi; Yoshida, Hiroshi; Kondo, Kazuo
2016-01-01
Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed. PMID:26861359
Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J
2003-04-01
The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.
Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael
2014-01-01
For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.
Does cerebral oxygen delivery limit incremental exercise performance?
Olin, J. Tod; Dimmen, Andrew C.; Polaner, David M.; Kayser, Bengt; Roach, Robert C.
2011-01-01
Previous studies have suggested that a reduction in cerebral oxygen delivery may limit motor drive, particularly in hypoxic conditions, where oxygen transport is impaired. We hypothesized that raising end-tidal Pco2 (PetCO2) during incremental exercise would increase cerebral blood flow (CBF) and oxygen delivery, thereby improving peak power output (Wpeak). Amateur cyclists performed two ramped exercise tests (25 W/min) in a counterbalanced order to compare the normal, poikilocapnic response against a clamped condition, in which PetCO2 was held at 50 Torr throughout exercise. Tests were performed in normoxia (barometric pressure = 630 mmHg, 1,650 m) and hypoxia (barometric pressure = 425 mmHg, 4,875 m) in a hypobaric chamber. An additional trial in hypoxia investigated effects of clamping at a lower PetCO2 (40 Torr) from ∼75 to 100% Wpeak to reduce potential influences of respiratory acidosis and muscle fatigue imposed by clamping PetCO2 at 50 Torr. Metabolic gases, ventilation, middle cerebral artery CBF velocity (transcranial Doppler), forehead pulse oximetry, and cerebral (prefrontal) and muscle (vastus lateralis) hemoglobin oxygenation (near infrared spectroscopy) were monitored across trials. Clamping PetCO2 at 50 Torr in both normoxia (n = 9) and hypoxia (n = 11) elevated CBF velocity (∼40%) and improved cerebral hemoglobin oxygenation (∼15%), but decreased Wpeak (6%) and peak oxygen consumption (11%). Clamping at 40 Torr near maximal effort in hypoxia (n = 6) also improved cerebral oxygenation (∼15%), but again limited Wpeak (5%). These findings demonstrate that increasing mass cerebral oxygen delivery via CO2-mediated vasodilation does not improve incremental exercise performance, at least when accompanied by respiratory acidosis. PMID:21921244
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.
Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R
2011-11-18
The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.
Biological applications and effects of optical masers
NASA Astrophysics Data System (ADS)
Ham, William T., Jr.; Mueller, Harold A.; Guerry, R. Kennon; Guerry, Dupont, III; Cleary, Stephen F.
1989-10-01
Research was continued on basic mechanisms involving photochemical events in mammalian retina by injecting superoxide dismutase (SOD) and catalase (CAT) into vitreous of monkey eye before and after exposure to blue light. Intravitreal injection plus exposure to blue light proved toxic to the eye and no information on oxygen radicals was obtained. The argon krypton laser line at 488 nm was acoustically modulated at 1, 10, and 20 MHz for 1000s exposures of the monkey retina. Threshold radiant exposures at 20 MHz were 3 times lower than those at 1 MHz. The oxygen effect (high PO2 arterial blood-oxygen) on retinal damage was investigated at 3 wavelengths (540, 640, 840 nm). Lack of an appreciable O2 effect at 640 nm and none at 840 nm provides evidence that photochemical toxicity is confined primarily to wavelengths below 640 nm.
Singlet Delta oxygen generation for chemical oxygen-iodine lasers
NASA Astrophysics Data System (ADS)
Georges, E.; Mouthon, A.; Barraud, R.
To improve the overall efficiency of chemical oxygen-iodine lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. The water vapor content must also be as low as possible. A generator model based on gas-liquid reaction and liquid-vapor equilibrium theories is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure.
Role of oxygen on the optical properties of borate glass doped with ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com
2011-10-15
Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less
Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C
2016-06-01
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
Steel slag affects pH and Si content of container substrates
USDA-ARS?s Scientific Manuscript database
A substrate representing a typical greenhouse potting mix was prepared using 85% sphagnum peat and 15% perlite. The substrate was filled into 10 cm wide containers. A pulverized steel slag (SS) from a basic oxygen furnace, and dolomitic limestone (DL) were amended to the base substrate at a rate o...
19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. ...
19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. 1. THE IRON WILL BE TRANSPORTED BY RAIL TO THE OPEN HEARTH OR BASIC OXYGEN FURNACES, WHERE IT IS A MAJOR COMPONENT IN THE PRODUCTION OF STEEL. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
Rectal temperature changes and oxygen toxicity in dogs treated in a monoplace chamber.
Shmalberg, Justin; Davies, Wendy; Lopez, Stacy; Shmalberg, Danielle; Zilberschtein, Jose
2015-01-01
Hyperbaric oxygen treatments are increasingly administered to pet dogs, using veterinary-specific monoplace chambers. The basic physiologic responses, chamber performance and oxygen toxicity rates have not yet been evaluated in dogs in a clinical setting. As a result, a series of consecutive 45-minute, 2-atmospheres absolute (atm abs) hyperbaric treatments with 100% oxygen were evaluated in a veterinary rehabilitation center (n = 285). 65 dogs with a mean body weight of 21 ± 15 kg (1.4-71 kg) were treated with an average of four sessions each. The mean rectal temperature of canine patients decreased 0.07 degrees C (0.1 degrees F) during treatments (p = 0.04). Intra-chamber temperature and humidity both increased: +1.0 degrees C (1.7 degrees F, p < 0.0001) and +5.7% (p < 0.0001), respectively. The mean maximal oxygen concentration measured before depressurization of the veterinary-specific commercial chamber was 98.0 ± 0.9%. No strong correlations (r > 0.75) were identified between body weights, body condition scores, maximal oxygen concentrations, starting or ending rectal temperature, chamber humidity and chamber temperature. Oxygen toxicity was not observed during the observational period. Patients were most commonly treated for intervertebral disc disease (n = 16 dogs) and extensive traumatic wounds (n = 10 dogs), which represented a large number of the total study sessions (19% and 16%, respectively).
Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng
2012-01-01
Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste). Copyright © 2011 Elsevier Ltd. All rights reserved.
[Application of activated carbon from waste tea in desulfurization and denitrification].
Song, Lei; Zhang, Bin; Deng, Wen
2014-10-01
The effects of pore structure, graphite and surface structure of waste tea activated carbon on its desulfurization and denitrification performance were investigated. The adsorption kinetics and adsorption process were also studied. The results showed that less graphitization, lower micropore size and more nitrogenous basic group of adsorbent enhanced its desulfurization ability. When well- developed mesopores were present in adsorbent, the NO removal efficiency was decreased, while more nitrogenous basic groups promoted the removal rate of NO. When SO2 and NO were removed together, competing adsorption occurred. After oxygen and steam were introduced to the flue gas, the removal efficiencies of SO2 and NO were increased. The adsorption of SO2 and NO onto waste tea activated carbon was physical adsorption without O2 and H2O, while the vapor promoted chemical adsorption of SO2 in the presence of water and oxygen. The adsorption process of the material can be well described by Bangham's kinetic equation, and the value of R2 was no less than 0.989. O2 and water vapor slowed the adsorption rates of SO2 and NO.
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Diode Laser Diagnostics of High Speed Flows (Postprint)
2006-10-01
Tests were conducted in the Research Cell 18 direct connect wind tunnel facility at WPAFB. TDLAS was used to detect water and oxygen at...the measurements and provide, in essence, an internal standard for the development of the oxygen sensor . American Institute of Aeronautics and...definitely improves SNR if fast flow noise dominates as in this case. The improved optical and electronic TDLAS system detected water and oxygen at
Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.
Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S
2013-03-01
Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.
Oxygen supersaturated fluid using fine micro/nanobubbles
Matsuki, Noriaki; Ishikawa, Takuji; Ichiba, Shingo; Shiba, Naoki; Ujike, Yoshihito; Yamaguchi, Takami
2014-01-01
Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues. However, there have been no reports of comparative investigations into adding fluids containing oxygen fine micro/nanobubbles (OFM-NBs) to common infusion solutions in daily medical care. In this study, it was demonstrated that OFMNBs can generate oxygen-supersaturated fluids, and they may be sufficiently small to infuse safely into blood vessels. It was found that normal saline solution is preferable for generating an oxygen-rich infusion fluid, which is best administered as a 30-minute intravenous infusion. It was also concluded that dextran solution is suitable for drug delivery substances packing oxygen gas over a 1-hour intravenous infusion. In addition, normal saline solution containing OFMNBs was effective for improving blood oxygenation. Thus, the use of OFMNB-containing fluids is a potentially effective novel method for improving blood oxygenation in cases involving hypoxia, ischemic diseases, infection control, and anticancer chemoradiation therapies. PMID:25285003
Oxygen supersaturated fluid using fine micro/nanobubbles.
Matsuki, Noriaki; Ishikawa, Takuji; Ichiba, Shingo; Shiba, Naoki; Ujike, Yoshihito; Yamaguchi, Takami
2014-01-01
Microbubbles show peculiar properties, such as shrinking collapse, long lifetime, high gas solubility, negative electric charge, and free radical production. Fluids supersaturated with various gases can be easily generated using microbubbles. Oxygen microbubble fluid can be very useful for oxygen delivery to hypoxic tissues. However, there have been no reports of comparative investigations into adding fluids containing oxygen fine micro/nanobubbles (OFM-NBs) to common infusion solutions in daily medical care. In this study, it was demonstrated that OFMNBs can generate oxygen-supersaturated fluids, and they may be sufficiently small to infuse safely into blood vessels. It was found that normal saline solution is preferable for generating an oxygen-rich infusion fluid, which is best administered as a 30-minute intravenous infusion. It was also concluded that dextran solution is suitable for drug delivery substances packing oxygen gas over a 1-hour intravenous infusion. In addition, normal saline solution containing OFMNBs was effective for improving blood oxygenation. Thus, the use of OFMNB-containing fluids is a potentially effective novel method for improving blood oxygenation in cases involving hypoxia, ischemic diseases, infection control, and anticancer chemoradiation therapies.
Recreational technical diving part 1: an introduction to technical diving methods and activities.
Mitchell, Simon J; Doolette, David J
2013-06-01
Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.
ERIC Educational Resources Information Center
Bacchus, Kazim; And Others
The theme of the 1990 meeting of the Ministers of Education of the Commonwealth of Nations was improving the quality of basic education. Basic education was defined as "the activities of primary and junior secondary schools, and of programmes of out-of-school education at an equivalent level, both for children and for adults." This…
ERIC Educational Resources Information Center
Craig, Patricia; Kane, Michael
The Basic Education and Policy Support Activity (BEPS), a new five-year initiative sponsored by United States Agency for International Development's (USAID) Center for Human Capacity Development, is designed to improve the quality, effectiveness, and access to formal and nonformal basic education. BEPS operates through both core funds and buy-ins…
Mosing, M; German, A J; Holden, S L; MacFarlane, P; Biourge, V; Morris, P J; Iff, I
2013-11-01
This prospective clinical study examined the effect of obesity and subsequent weight loss on oxygenation and ventilation during deep sedation in pet dogs. Data from nine dogs completing a formalised weight loss programme were evaluated. Dual-energy X-ray absorptiometry (DEXA) was used to quantify body fat mass prior to and after weight loss. Dogs were deeply sedated and positioned in dorsal recumbency. Sedation was scored using a semi-objective scheme. As part of the monitoring of sedation, arterial oxygen partial pressure (PaO2) and arterial carbon dioxide partial pressure (PaCO2) were measured after 10 min in dorsal recumbency. Oxygen saturation of haemoglobin (SpO2) was monitored continuously using pulse oximetry, starting oxygen supplementation where indicated (SpO2<90%) via a face mask. Morphometric measurements were taken from DEXA images and compared before and after weight loss. Several oxygen indices were calculated and correlated with body fat variables evaluated by DEXA. All body fat variables improved significantly after weight loss. PaO2 increased from 27.9±19.2 kPa to 34.8±24.4 kPa, while FiO2 decreased from 0.74±0.31 to 0.66±0.35. Morphometric measurements improved significantly after weight loss. PaO2/FiO2 (inspired oxygen fraction) and Pa/AO2 (ratio of PaO2 to alveolar PO2) also improved significantly, but there was no change in f-shunt and PaCO2 after weight loss. On multiple linear regression analysis, all oxygen indices were negatively associated with thoracic fat percentage. In conclusion, obesity decreases oxygenation in dogs during deep sedation. Oxygenation status improves with successful weight loss, but ventilation is not influenced by obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Basic nursing care: The most provided, the least evidence based - A discussion paper.
Zwakhalen, Sandra M G; Hamers, Jan P H; Metzelthin, Silke F; Ettema, Roelof; Heinen, Maud; de Man-Van Ginkel, Janneke M; Vermeulen, Hester; Huisman-de Waal, Getty; Schuurmans, Marieke J
2018-06-01
To describe and discuss the "Basic Care Revisited" (BCR) research programme, a collaborative initiative that contributes to evidence-based basic nursing care and raises awareness about the importance of basic nursing care activities. While basic nursing care serves nearly all people at some point in their lifetime, it is poorly informed by evidence. There is a need to prioritise and evaluate basic nursing care activities to improve patient outcomes and improve the quality of care. Discussion paper METHOD: The discussion presented in this paper is based on nursing literature and theory and supported by the authors' clinical and research experiences. We present the developmental process and content of a research programme called "Basic Care Revisited" (BCR) as a solution to move forward and improve basic nursing care. To prioritise basic nursing care, we propose a research programme entitled "Basic Care Revisited" that aims to create awareness and expand knowledge on evidence-based basic nursing care by addressing four basic nursing care themes (bathing and dressing, communication, mobility, and nutrition) in different settings. The paper discusses a pathway to create a sustainable and productive research collaborative on basic nursing care and addresses issues to build research capacity. Revaluation of these important nursing activities will not only positively influence patient outcomes, but also have an impact on staff outcomes and organisational outcomes. © 2018 John Wiley & Sons Ltd.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Rizvi, Asim; Alam, Md Maroof; Parveen, Saltanat; Saleemuddin, M; Abidi, S M A
2012-04-01
The dramatic and spontaneous exodus of live Clinostomum complanatum progenetic metacercaria from the gill slits of the dying intermediate host, Trichogaster fasciatus is reported. Basic water parameter tests for dissolved oxygen, pH and temperature revealed slightly lower level of dissolved oxygen in tank water used for water change. To the best of our knowledge, it is the first report of a digenean metacercariae, en mass leaving their intermediate host, upon its death in search of an alternative host to support their survival and help in continuing their life cycle.
Bassingthwaighte, James B; Raymond, Gary M; Dash, Ranjan K; Beard, Daniel A; Nolan, Margaret
2016-01-01
The 'Pathway for Oxygen' is captured in a set of models describing quantitative relationships between fluxes and driving forces for the flux of oxygen from the external air source to the mitochondrial sink at cytochrome oxidase. The intervening processes involve convection, membrane permeation, diffusion of free and heme-bound O2 and enzymatic reactions. While this system's basic elements are simple: ventilation, alveolar gas exchange with blood, circulation of the blood, perfusion of an organ, uptake by tissue, and consumption by chemical reaction, integration of these pieces quickly becomes complex. This complexity led us to construct a tutorial on the ideas and principles; these first PathwayO2 models are simple but quantitative and cover: (1) a 'one-alveolus lung' with airway resistance, lung volume compliance, (2) bidirectional transport of solute gasses like O2 and CO2, (3) gas exchange between alveolar air and lung capillary blood, (4) gas solubility in blood, and circulation of blood through the capillary syncytium and back to the lung, and (5) blood-tissue gas exchange in capillaries. These open-source models are at Physiome.org and provide background for the many respiratory models there.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee
1995-01-01
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.
Solar-powered oxygen delivery: proof of concept.
Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M
2016-05-01
A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.
Baratz-Goldstein, Renana; Toussia-Cohen, Shlomi; Elpaz, Aviya; Rubovitch, Vardit; Pick, Chaim G
2017-09-01
Traumatic brain injury is the most common cause of death or chronic disability among people under-35-years-old. There is no effective pharmacological treatment currently existing for TBI. Hyperbaric oxygen therapy (HBOT) is defined as the inhalation of pure oxygen in a hyperbaric chamber that is pressurized higher than 1atm. HBOT offers physiological and mechanical effects by inducing a state of increased pressure and hyperoxia. HBOT has been proposed as an effective treatment for moderate traumatic brain injury (mTBI), yet the exact therapeutic window and mechanism that underlies this effect is not completely understood. HBOT was administrated for 4 consecutive days, post a mouse closed head weight drop moderate TBI (mTBI) in 2 different time lines: immediate treatment - initiated 3h post-injury and delayed treatment - initiated 7days post-injury. Behavioral cognitive tests and biochemical changes were assessed. The results were similar for both the immediate and the delayed treatments. mTBI mice exhibited impairment in learning abilities, whereas mTBI mice treated with HBO displayed significant improvement compared with the mTBI group, performing similar to the sham groups. mTBI mice had a decline in myelin basic protein, an increase in neuronal loss (NeuN staining), and an increase in the number of reactive astrocytes (GFAP). The HBO treated mice in both groups did not exhibit these changes and remained similar to the sham group. The delayed HBOT has a potential to serve as a neuroprotective treatment for mTBI with a long therapeutic window. Further research is needed for fully understanding the cellular changes. Copyright © 2017 Elsevier Inc. All rights reserved.
Early hyperbaric oxygen treatment for nonarteritic central retinal artery obstruction.
Menzel-Severing, Johannes; Siekmann, Ullrich; Weinberger, Andreas; Roessler, Gernot; Walter, Peter; Mazinani, Babac
2012-03-01
To compare hyperbaric oxygen treatment combined with hemodilution with hemodilution only in central retinal artery obstruction. Retrospective, nonrandomized case series. We reviewed records of all our patients diagnosed with central retinal artery obstruction between 1997 and 2010. In these patients, hyperbaric oxygen and hemodilution therapy had been administered routinely (oxygen group). Where hyperbaric oxygenation could not be performed, patients were underwent hemodilution only (control group). Patients with presenting visual acuity (VA) of up to 20/200 within 12 hours of onset were included in our analysis. Exclusion criteria included cilioretinal vessels or arteritic occlusion. The oxygen group comprised 51 patients, and the control group comprised 29 patients. Mean baseline VA was counting fingers (oxygen group) and 20/1000 (control group; P = .1). Most other potential confounders, including duration of symptoms, also did not differ significantly at baseline. In the oxygen group, mean VA improvement was 3 lines (P < .0001). This was sustained over a follow-up of 3 months (P = .01). In the control group, mean improvement was 1 line (P = .23 at discharge, P = .17 at follow-up). Differences between both groups were not significant (P = .07 at discharge, P = .26 at follow-up). The number of patients gaining 3 lines or more was 38.0% versus 17.9% at discharge (P = .06) and 35.7% versus 30.8% at follow-up (P = .76). We saw significant VA improvement after the combined treatment, but not when using hemodilution only. Confirming superiority of the combination treatment requires a randomized, prospective trial. A high number of nonresponders highlights the need to improve our understanding and treatment of hypoxia-related metabolic insults after central retinal artery obstruction. Copyright © 2012 Elsevier Inc. All rights reserved.
Oxygen--a limiting factor for brain recovery.
Hadanny, Amir; Efrati, Shai
2015-09-01
Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.
New technique for servo-control of arterial oxygen tension in preterm infants.
Beddis, I R; Collins, P; Levy, N M; Godfrey, S; Silverman, M
1979-01-01
Equipment has been developed for the servo-control of arterial oxygen tension in sick, newborn babies. Using an indwelling umbilical arterial oxygen electrode as sensor, the equipment successfully regulated the administration of oxygen to 12 newborn babies with respiratory distress syndrome, significantly improving the stability of arterial oxygen tension and lessening the duration of episodes of hypoxia and hyperoxia. PMID:453911
Mentzelopoulos, Spyros D; Zakynthinos, Spyros G; Roussos, Charris; Tzoufi, Maria J; Michalopoulos, Argyris S
2003-06-01
Pronation might favorably affect respiratory system (rs) mechanics and function in volume-controlled, mode-ventilated chronic obstructive pulmonary disease (COPD) patients. We studied 10 COPD patients, initially positioned supine (baseline supine [supine(BAS)]) and then randomly and consecutively changed to protocol supine (supine(PROT)), semirecumbent, and prone positions. Rs mechanics and inspiratory work (W(I)) were assessed at baseline (0.6 L) (all postures) and sigh (1.2 L) (supine(BAS) excluded) tidal volume (V(T)) with rapid airway occlusion during constant-flow inflation. Hemodynamics and gas exchange were assessed in all postures. There were no complications. Prone positioning resulted in (a) increased dynamic-static chest wall (cw) elastance (at both V(Ts)) and improved oxygenation versus supine(BAS), supine(PROT), and semirecumbent, (b) decreased additional lung (L) resistance-elastance versus supine(PROT) and semirecumbent at sigh V(T), (c) decreased L-static elastance (at both V(Ts)) and improved CO(2) elimination versus supine(BAS) and supine(PROT), and (d) improved oxygenation versus all other postures. Semirecumbent positioning increased mainly additional cw-resistance versus supine(BAS) and supine(PROT) at baseline. V(T) W(I)-sub-component changes were consistent with changes in rs, cw, and L mechanical properties. Total rs-W(I) and hemodynamics were unaffected by posture change. After pronation, five patients were repositioned supine (supine(POSTPRO)). In supine(POSTPRO), static rs-L elastance were lower, and oxygenation was still improved versus supine(BAS). Pronation of mechanically ventilated COPD patients exhibits applicability and effectiveness and improves oxygenation and sigh-L mechanics versus semirecumbent ("gold standard") positioning. By assessing respiratory mechanics, inspiratory work, hemodynamics, and gas exchange, we showed that prone positioning of mechanically ventilated chronic obstructed pulmonary disease patients improves oxygenation and lung mechanics during sigh versus semirecumbent positioning. Furthermore, certain pronation-related benefits versus preprone-supine positioning (reduced lung elastance and improved oxygenation) are maintained in the postprone supine position.
Ion implantation method for preparing polymers having oxygen erosion resistant surfaces
Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.
1995-04-18
Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.
Chen, Dongqin; Xu, Gang; Tang, Weijiang; Jing, Yanjun; Ji, Qiang; Fei, Zhangjun; Lin, Rongcheng
2013-01-01
The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments. PMID:23645630
Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance.
Rhodes, Justin; Hetzenauer, Harald; Frassl, Marieke A; Rothhaupt, Karl-Otto; Rinke, Karsten
2017-09-01
This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake's trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.
Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model
Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz
2014-01-01
Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915
Photoelectrochemical water splitting in separate oxygen and hydrogen cells
NASA Astrophysics Data System (ADS)
Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner
2017-06-01
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.
Junge, Wolfgang; Nelson, Nathan
2015-01-01
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.
[Issues in the use of medical oxygen generator with molecular sieve].
Xu, Junfeng; Yang, Xiaoling; Zhao, Xiaolei; Bai, Jiefang; Wang, Chaojie
2014-07-01
There are some existing problems in controlling the quality of oxygen. In order to improve quality, efficiency and safety in the use of oxygen, we presented some factors which may give rise to variations in concentration of oxygen and proposed some suggestions based on the investigation and analysis of such problems.
Razazi, Keyvan; Thille, Arnaud W; Carteaux, Guillaume; Beji, Olfa; Brun-Buisson, Christian; Brochard, Laurent; Mekontso Dessap, Armand
2014-09-01
In mechanically ventilated patients, the effect of draining pleural effusion on oxygenation is controversial. We investigated the effect of large pleural effusion drainage on oxygenation, respiratory function (including lung volumes), and hemodynamics in mechanically ventilated patients after ultrasound-guided drainage. Arterial blood gases, respiratory mechanics (airway, pleural and transpulmonary pressures, end-expiratory lung volume, respiratory system compliance and resistance), and hemodynamics (blood pressure, heart rate, and cardiac output) were recorded before and at 3 and 24 hours (H24) after pleural drainage. The respiratory settings were kept identical during the study period. The mean volume of effusion drained was 1,579 ± 684 ml at H24. Uncomplicated pneumothorax occurred in two patients. Respiratory mechanics significantly improved after drainage, with a decrease in plateau pressure and a large increase in end-expiratory transpulmonary pressure. Respiratory system compliance, end-expiratory lung volume, and PaO2/FiO2 ratio all improved. Hemodynamics were not influenced by drainage. Improvement in the PaO2/FiO2 ratio from baseline to H24 was positively correlated with the increase in end-expiratory lung volume during the same time frame (r = 0.52, P = 0.033), but not with drained volume. A high value of pleural pressure or a highly negative transpulmonary pressure at baseline predicted limited lung expansion following effusion drainage. A lesser improvement in oxygenation occurred in patients with ARDS. Drainage of large (≥500 ml) pleural effusion in mechanically ventilated patients improves oxygenation and end-expiratory lung volume. Oxygenation improvement correlated with an increase in lung volume and a decrease in transpulmonary pressure, but was less so in patients with ARDS.
Koehler, U; Hildebrandt, O; Jerrentrup, L; Koehler, K-I; Kianinejad, P; Sohrabi, K; Schäfer, H; Kenn, K
2014-03-01
Long-term oxygen treatment (LTOT) has been demonstrated to improve prognosis in patients with chronic respiratory insufficiency. In terms of pathogenesis, improved oxygenation, reduction of pulmonary artery pressure as well as reduction of respiratory work are important. Since there are considerable differences between the LTOT systems, individually tailored therapy is needed. In particular, the mobility aspects of the patients must be taken into consideration. It is important to distinguish between stationary/mobile devices with a liquid oxygen system and stationary/mobile devices with oxygen concentrator. Oxygen titration should be performed in relation to rest and activity phases (e. g. 6 minute walk test) as well as in relation to the sleep phase. Employing devices with demand-controlled valves should be critically examined. This can be undertaken only under physician orders and requires continuous monitoring. © Georg Thieme Verlag KG Stuttgart · New York.
Singlet delta oxygen generation for Chemical Oxygen-Iodine Lasers
NASA Astrophysics Data System (ADS)
Georges, E.; Mouthon, A.; Barraud, R.
1991-10-01
The development of Chemical Oxygen-Iodine Lasers is based on the generation of singlet delta oxygen. To improve the overall efficiency of these lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. Furthermore, the water vapor content must be as low as possible. A generator model, based on gas-liquid reaction and liquid-vapor equilibrium theories associated with thermophysical evaluations is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure. A theoretical analysis of these experimental results and their consequences for both subsonic and supersonic lasers are presented.
Ether oxygenate additives in gasoline reduce toxicity of exhausts.
Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J
2010-02-09
Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Recent developments in persufflation for organ preservation.
Min, Catherine G; Papas, Klearchos K
2018-06-01
To summarize current literature and recent findings on the potential of humidified oxygenated gas perfusion (persufflation) as an alternative method for improved organ preservation. Although there are some conflicting data, the majority of the evidence suggests that persufflation, by enhancing oxygenation, can improve preservation and even rescue organs, including organs with prior exposure to warm ischemia. In some cases, persufflation produced better results than hypothermic machine perfusion. The timing of persufflation is of importance; benefits of persufflation appear to increase as the timing of its administration postprocurement decreases. This may be particularly true for tissues that are more sensitive to ischemia, such as the pancreas prior to islet isolation. Combining oxygen persufflation with nitric oxide and addition of pulsatile flow may provide further benefits and amplify its effects on improving transplant outcomes. Persufflation is a promising, relatively simple, preservation technique that enables improved oxygenation, which provides protection and improvement in the graft condition during preservation and prior to transplantation. More detailed studies are needed to optimize persufflation and evaluate its short and long-term effects in vivo.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any... Production 327310 Portland cement manufacturing plants. CO2 Enhanced Oil and Gas Recovery 211 Oil and gas... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
..., blast furnaces, basic oxygen process furnace shops. Lead Production 331419 Primary lead smelting and.... Chapter 5, generally provides that rules may not take effect earlier than 30 days after they are published... behavior and prepare before the final rule takes effect. Because this final rule defers a reporting...
49 CFR Appendix A to Part 178 - Specifications for Steel
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 [Open-hearth, basic oxygen, or electric steel of uniform... limit for manganese on ladle analysis may be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no...
49 CFR Appendix A to Part 178 - Specifications for Steel
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 [Open-hearth, basic oxygen, or electric steel of uniform... limit for manganese on ladle analysis may be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no...
49 CFR Appendix A to Part 178 - Specifications for Steel
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Specifications for Steel A Appendix A to Part 178... to Part 178—Specifications for Steel Table 1 [Open-hearth, basic oxygen, or electric steel of uniform... limit for manganese on ladle analysis may be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no...
ERIC Educational Resources Information Center
Haught, Laurie; Kunce, Christine; Pratt, Phyllis; Werneske, Roberta; Zemel, Susan
This report describes the intervention programs used to improve student proficiency in learning, recalling, and retaining basic mathematics facts. The targeted population consisted of first, second, third, and fifth grades in four suburban midwestern schools. The problems of recalling basic mathematics facts is documented through teacher surveys,…
Studies with the USF/NASA toxicity screening test method - Exercise wheels and oxygen replenishment
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Cumming, H. J.
1977-01-01
Continuing efforts to improve the University of San Francisco/NASA toxicity screening test method have included the addition of exercise wheels to provide a different measure of incapacitation, and oxygen replenishment to offset any effect of oxygen depletion by the test animals. The addition of exercise wheels limited the number of animals in each test and doubled the required number of tests without any significant improvement in reproducibility. Oxygen replenishment appears to have an effect on survival in the last 5 minutes of the 30-minute test, but the effect is expected to be similar for most materials.
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-01-01
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206
Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.
Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang
2016-06-08
A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.
Using Oxygen “Microbubbles” To Improve Radiation Therapy
Oxygen-carrying “microbubbles” could potentially improve the effectiveness of radiation therapy in the treatment of breast cancer, findings from a study in mice suggest. Using the bubbles along with radiation slowed tumor growth more than radiation alone, as this NCI Cancer Currents post reports.
NASA Astrophysics Data System (ADS)
Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian
2012-04-01
Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.
Polarizability, optical basicity and optical properties of SiO2B2O3Bi2O3TeO2 glass system
NASA Astrophysics Data System (ADS)
Kashif, I.; Ratep, A.; Adel, Gh.
2018-07-01
Glasses having a composition xSiO2 xB2O3 (95-2 x) Bi2O35TeO2 where x = (5, 10, 15, 20, 25) prepared by the melt-quenching technique. Thermal stability, density, optical transmittance, and the refractive index of these glasses investigated. Glass samples were transparent in the visible to near-infrared (NIR) region and had a high refractive index. A number of glass samples have high glass-forming ability. This indicates that the quarterly glasses are suitable for optical applications in the visible to the NIR region. Bi2O3 substituted by B2O3 and SiO2 on optical properties discussed. It suggested that the substitution of Bi2O3 increased the density, molar volume, the molar polarizability, optical basicity and refractive index in addition to, the oxygen packing density, the optical energy gap, and metallization decrease. These results are helpful for designing new optical glasses controlled to have a higher refractive index. All studied glass presented high nonlinearities, and the addition of network modifiers made a little contribution. Results clarified the bandgap energy reduction, which associated with the growth within the non-bridging oxygen content with the addition of the network modifier. An increase in the refractive index nonlinearity explained by the optical basicity and the high electronic polarizability of the modifier ions.
Survey of the capacity for essential surgery and anaesthesia services in Papua New Guinea
Martin, Janet; Tau, Goa; Cherian, Meena Nathan; Vergel de Dios, Jennifer; Mills, David; Fitzpatrick, Jane; Adu-Krow, William; Cheng, Davy
2015-01-01
Objective To assess capacity to provide essential surgical services including emergency, obstetric and anaesthesia care in Papua New Guinea (PNG) in order to support planning for relevant post-2015 sustainable development goals for PNG. Design Cross-sectional survey. Setting Hospitals and health facilities in PNG. Participants 21 facilities including 3 national/provincial hospitals, 11 district/rural hospitals, and 7 health centres. Outcome measures The WHO Situational Analysis Tool to Assess Emergency and Essential Surgical Care (WHO-SAT) was used to measure each participating facility's capacity to deliver essential surgery and anaesthesia services, including 108 items related to relevant infrastructure, human resources, interventions and equipment. Results While major surgical procedures were provided at each hospital, fewer than 30% had uninterrupted access to oxygen, and 57% had uninterrupted access to resuscitation bag and mask. Most hospitals reported capacity to provide general anaesthesia, though few hospitals reported having at least one certified surgeon, obstetrician and anaesthesiologist. Access to anaesthetic machines, pulse oximetry and blood bank was severely limited. Many non-hospital health centres providing basic surgical procedures, but almost none had uninterrupted access to electricity, running water, oxygen and basic supplies for resuscitation, airway management and obstetric services. Conclusions Capacity for essential surgery and anaesthesia services is severely limited in PNG due to shortfalls in physical infrastructure, human resources, and basic equipment and supplies. Achieving post-2015 sustainable development goals, including universal healthcare, will require significant investment in surgery and anaesthesia capacity in PNG. PMID:26674504
Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J
2017-05-01
Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.
Li, Yilin; Shi, Weiming; Wang, Xingxiang
2014-01-01
The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition. PMID:25291182
Ambient effect on thermal stability of amorphous InGaZnO thin film transistors
NASA Astrophysics Data System (ADS)
Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan
2016-12-01
The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.
Russell, W J; James, M F
2000-12-01
Theoretically, if the cardiac output were increased in the presence of a given intrapulmonary shunt, the arterial haemoglobin oxygen saturation (SaO2) should improve as the venous oxygen extraction per ml of blood decreases. To test this hypothesis, eight pigs were subjected to one-lung ventilation and adrenaline and isoprenaline infusions used to increase the cardiac output. The mixed venous oxygen, shunt fraction and oxygen consumption were measured. With both adrenaline and isoprenaline, although there was a small rise in mixed venous oxygen content, there was a fall in SaO2. With adrenaline, the mean shunt rose from 48% to 65%, the mean oxygen consumption rose from 126 ml/min to 134 ml/min and the mean SaO2 fell from 86.9% to 82.5%. With isoprenaline, the mean shunt rose from 45% to 59%, the mean oxygen consumption rose from 121 ml/min to 137 ml/min and the mean SaO2 fell from 89.5% to 84.7%. It is concluded that potential improvement in SaO2, which might occur from a catecholamine-induced increase in mixed venous oxygen content during one-lung ventilation, is more than offset by increased shunting and oxygen consumption which reduce SaO2.
Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya
2017-09-14
Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.
Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions
NASA Astrophysics Data System (ADS)
Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo
2015-04-01
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).
Oxygen Compatibility Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Watkins, Casey N.
2006-01-01
Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Perry, Jay L.
2016-01-01
Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.
Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.
Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C
2016-01-01
Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.
Electrical resistance behavior of oxyfluorinated graphene under oxidizing and reducing gas exposure.
Im, Ji Sun; Bae, Tae-Sung; Shin, Eunjeong; Lee, Young-Seak
2014-03-01
The electrical resistance behavior of graphene was studied under oxidizing and reducing gas exposure. The graphene surface was modified via oxyfluorination to obtain a specific surface area and oxygen functional groups. Fluorine radicals provided improved pore structure and introduction of an oxygen functional group. A high-performance gas sensor was obtained based on enlarged target gas adsorption sites and an enhanced electron charge transfer between the target gas and carbon surface via improved pore structure and the introduction of oxygen functional groups, respectively.
NASA Astrophysics Data System (ADS)
Kaggie, Joshua D.
In Chapter 1, an introduction to basic principles or MRI is given, including the physical principles, basic pulse sequences, and basic hardware. Following the introduction, five different published and yet unpublished papers for improving the utility of MRI are shown. Chapter 2 discusses a small rodent imaging system that was developed for a clinical 3 T MRI scanner. The system integrated specialized radiofrequency (RF) coils with an insertable gradient, enabling 100 microm isotropic resolution imaging of the guinea pig cochlea in vivo, doubling the body gradient strength, slew rate, and contrast-to-noise ratio, and resulting in twice the signal-to-noise (SNR) when compared to the smallest conforming birdcage. Chapter 3 discusses a system using BOLD MRI to measure T2* and invasive fiberoptic probes to measure renal oxygenation (pO2). The significance of this experiment is that it demonstrated previously unknown physiological effects on pO2, such as breath-holds that had an immediate (<1 sec) pO2 decrease (˜6 mmHg), and bladder pressure that had pO2 increases (˜6 mmHg). Chapter 4 determined the correlation between indicators of renal health and renal fat content. The R2 correlation between renal fat content and eGFR, serum cystatin C, urine protein, and BMI was less than 0.03, with a sample size of ˜100 subjects, suggesting that renal fat content will not be a useful indicator of renal health. Chapter 5 is a hardware and pulse sequence technique for acquiring multinuclear 1H and 23Na data within the same pulse sequence. Our system demonstrated a very simple, inexpensive solution to SMI and acquired both nuclei on two 23Na channels using external modifications, and is the first demonstration of radially acquired SMI. Chapter 6 discusses a composite sodium and proton breast array that demonstrated a 2-5x improvement in sodium SNR and similar proton SNR when compared to a large coil with a linear sodium and linear proton channel. This coil is unique in that sodium receive loops are typically built with at least twice the diameter so that they do not have similar SNR increases. The final chapter summarizes the previous chapters.
Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M
2016-12-01
Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.
Costs and benefits of lunar oxygen: Engineering, operations, and economics
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Woodcock, Gordon R.
Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.
Costs and benefits of lunar oxygen: Engineering, operations, and economics
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Woodcock, Gordon R.
1991-01-01
Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.
2016-09-27
A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.
NASA Astrophysics Data System (ADS)
Rahayu, D. V.; Kusumah, Y. S.; Darhim
2018-05-01
This study examined to see the improvement of prospective teachers’ basic skills of teaching mathematics through search-solve-create-share learning strategy based on overall and Mathematical Prior Knowledge (MPK) and interaction of both. Quasi experiments with the design of this experimental-non-equivalent control group design involved 67 students at the mathematics program of STKIP Garut. The instrument used in this study included pre-test and post-test. The result of this study showed that: (1) The improvement and achievement of the basic skills of teaching mathematics of the prospective teachers who get the learning of search-solve-create-share strategy is better than the improvement and achievement of the prospective teachers who get the conventional learning as a whole and based on MPK; (2) There is no interaction between the learning used and MPK on improving and achieving basic skills of teaching mathematics.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This guide provides information and guidelines intended to assist vocational administrators in developing and evaluating programs to improve the basic skills of vocational-technical students. Part one provides background information about basic skills and examines their role in vocational education. Discussed next are various program types,…
Renocardiac syndromes: physiopathology and treatment stratagems.
Kingma, J G; Simard, D; Rouleau, J R
2015-01-01
Bidirectional inter-organ interactions are essential for normal functioning of the human body; however, they may also promote adverse conditions in remote organs. This review provides a narrative summary of the epidemiology, physiopathological mechanisms and clinical management of patients with combined renal and cardiac disease (recently classified as type 3 and 4 cardiorenal syndrome). Findings are also discussed within the context of basic research in animal models with similar comorbidities. Pertinent published articles were identified by literature search of PubMed, MEDLINE and Google Scholar. Additional data from studies in the author's laboratory were also consulted. The prevalence of renocardiac syndrome throughout the world is increasing in part due to an aging population and to other risk factors including hypertension, diabetes and dyslipidemia. Pathogenesis of this disorder involves multiple bidirectional interactions between the kidneys and heart; however, participation of other organs cannot be excluded. Our own work supports the hypothesis that the uremic milieu, caused by kidney dysfunction, produces major alterations in vasoregulatory control particularly at the level of the microvasculature that results in impaired oxygen delivery and blood perfusion. Recent clinical literature is replete with articles discussing the necessity to clearly define or characterize what constitutes cardiorenal syndrome in order to improve clinical management of affected patients. Patients are treated after onset of symptoms with limited available information regarding etiology. While understanding of mechanisms involved in pathogenesis of inter-organ crosstalk remains a challenging objective, basic research data remains limited partly because of the lack of animal models. Preservation of microvascular integrity may be the most critical factor to limit progression of multi-organ disorders including renocardiac syndrome. More fundamental studies are needed to help elucidate physiopathological mechanisms and for development of treatments to improve clinical outcomes.
Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A
2013-09-01
Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2 provided good signal-to-noise ratio (SNR), greater than the Rose criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60% O2 mixture. Compared with 100/140 Sn kVp, 80/140 Sn kVp (Sn = tin filtered) provided improved SNR in a swine with an equivalent thoracic transverse density to a human subject with a body mass index of 33 kg/m. Airways were brighter in the 80/140 Sn kVp scan (80/140 Sn, 31.6%; 100/140 Sn, 25.1%) with considerably lower noise (80/140 Sn, coefficient of variation of 0.140; 100/140 Sn, coefficient of variation of 0.216). To provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations need to be better understood and quantified. It is critically important to understand the fundamentals of new techniques to allow for proper implementation and interpretation of their results before widespread usage. With the use of an in-house derived xenon calibration curve for 3-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture, we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation.
Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation
Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.
2013-01-01
Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe/40%He/20%O2 provided good signal-to-noise, greater than the Rose Criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60%O2 mixture. 80/140-kVp (tin-filtered) provided improved SNR compared with 100/140-kVp in a swine with an equivalent thoracic transverse density to a human subject with body mass index of 33. Airways were brighter in the 80/140 kVp scan (80/140Sn, 31.6%; 100/140Sn, 25.1%) with considerably lower noise (80/140Sn, CV of 0.140; 100/140Sn, CV of 0.216). Conclusion In order to provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations needed to be better understood and quantified. It is critically important to understand the fundamentals of new techniques in order to allow for proper implementation and interpretation of their results prior to wide spread usage. With the use of an in house derived xenon calibration curve for three-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation. PMID:23571834
Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.
Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo
2018-01-16
To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
Scofield, Megan E; Liu, Haiqing; Wong, Stanislaus S
2015-08-21
The rising interest in fuel cell vehicle technology (FCV) has engendered a growing need and realization to develop rational chemical strategies to create highly efficient, durable, and cost-effective fuel cells. Specifically, technical limitations associated with the major constituent components of the basic proton exchange membrane fuel cell (PEMFC), namely the cathode catalyst and the proton exchange membrane (PEM), have proven to be particularly demanding to overcome. Therefore, research trends within the community in recent years have focused on (i) accelerating the sluggish kinetics of the catalyst at the cathode and (ii) minimizing overall Pt content, while simultaneously (a) maximizing activity and durability as well as (b) increasing membrane proton conductivity without causing any concomitant loss in either stability or as a result of damage due to flooding. In this light, as an example, high temperature PEMFCs offer a promising avenue to improve the overall efficiency and marketability of fuel cell technology. In this Critical Review, recent advances in optimizing both cathode materials and PEMs as well as the future and peculiar challenges associated with each of these systems will be discussed.
Tan, Guoqiang; Chong, Lina; Amine, Rachid; ...
2017-04-12
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
For the promotion of lithium oxygen batteries available for :practical applications, the development of advanced cathode catalysts with low-high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@grapbene Multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium oxygen cells. 'The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore the colander-like porousmore » electrode facilitates the oxygen diffusion, catalytic reaction,and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Chong, Lina; Amine, Rachid
To promote lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport, and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electro-active zones possible; furthermore, the colander-like porous electrode facilitates themore » oxygen diffusion, catalytic reaction, and stable deposition of discharge products. Finally, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.« less
Tan, Guoqiang; Chong, Lina; Amine, Rachid; Lu, Jun; Liu, Cong; Yuan, Yifei; Wen, Jianguo; He, Kun; Bi, Xuanxuan; Guo, Yuanyuan; Wang, Hsien-Hau; Shahbazian-Yassar, Reza; Al Hallaj, Said; Miller, Dean J; Liu, Dijia; Amine, Khalil
2017-05-10
For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.
Stogner, S W; Payne, D K
1992-12-01
The objective of this article is to provide an overview of the biochemistry of oxygen metabolism, including the formation of free radicals and the role of endogenous antioxidants. Pathophysiologic correlates underlying the clinical manifestations of oxygen toxicity are reviewed and management strategies are outlined. References from basic science and clinical journals were selected from the authors' files and from a search of a computerized database of the biomedical literature. Articles selected for review included both historical and current literature concerning the biochemistry and pathophysiology of oxygen toxicity in animals and humans. The benefits of oxygen therapy have been known for many years; however, its potential toxicity has not been recognized until the last two decades. The lungs, the eyes, and, under certain conditions, the central nervous system are the organs most affected by prolonged exposure to hyperoxic environments. Free radical formation during cellular metabolism under hyperoxic conditions is recognized as the biochemical basis of oxygen injury to cells and organs. Endogenous antioxidants are a primary means of detoxifying reactive oxygen species and preventing hyperoxia-induced cellular damage. When this defense fails or is overwhelmed by the excessive production of hyperoxia-induced free-radical species, distinctive morphologic changes occur at the cellular level. The amount of hyperoxia required to cause cellular damage and the time course of these changes vary from species to species and from individual to individual within the same species. Age, nutritional status, presence of underlying diseases, and certain drugs may influence the development of oxygen toxicity. There is currently no reliably effective drug for preventing or delaying the development of oxygen toxicity in humans. Use of the lowest effective oxygen concentration, the avoidance of certain drugs, and attention to nutritional and metabolic factors remain the best means currently available to avoid or minimize oxygen toxicity. Research is continuing into more effective ways to prevent, diagnose, and treat this disorder.
An improved method for determining the efficiency of crew and passenger oxygen masks.
DOT National Transportation Integrated Search
1962-11-01
A method for determining oxygen mask leakage as developed under contract FA-885 between the Federal Aviation Agency and the Pioneer-Central Division of the Bendix Corporation was evaluated. Measurement of nitrogen concentration within an oxygen mask ...
Technical Note: Some Issues Related to the Selection of Polymers for Aerospace Oxygen Systems
NASA Technical Reports Server (NTRS)
Hirsch, David; Beeson, Harold
2004-01-01
Materials intended for use in aerospace oxygen systems are commonly screened for oxygen compatibility following NASA STD 6001. This standard allows qualification of materials based on results provided by only one test method. Potential issues related to this practice are reviewed and recommendations are proposed that would lead to improved aerospace oxygen systems safety.
Wan, Hao; Mao, Ya; Liu, Zixuan; Bai, Qingyou; Peng, Zhe; Bao, Jingjing; Wu, Gang; Liu, Yang; Wang, Deyu; Xie, Jingying
2017-04-10
As the first step during discharge, the mass transfer of oxygen should play a crucial role in Li-air batteries to tailor the growth of discharge products, however, not enough attention has been paid to this issue. Herein, we introduce an oxygen-enriching cosolvent, 1,2-(1,1,2,2-tetrafluoroethoxy) ethane (FE1), into the electrolyte, and investigate its influence on the discharge performance. The incorporation of this novel cosolvent consistently enhances the oxygen solubility of the electrolyte, and improves the oxygen diffusivity following a volcano-shape trend peaking at 50 % FE1. It is interesting that the discharge capacities obtained with the investigated electrolytes share the similar volcano trends as the oxygen transport under 50 mA g carbon -1 and higher current densities. The improved oxygen diffusion could benefit the volumetric utilization of the air cathode, especially at the separator side, probably owing to the fast oxygen transport to moderate its concentration gradient. Our results demonstrate the importance of oxygen provision, which easily becomes the capacity-determining factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device
NASA Astrophysics Data System (ADS)
Zhang, Jiahua; Chen, Da; Huang, Shihua
2017-12-01
The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
Moroni, A; Abbondanno, U; Agodi, C; Alba, R; Ballarini, F; Bellia, G; Biaggi, M; Bruno, M; Casini, G; Cavallaro, S; Cherubini, R; Chiari, M; Colonna, N; Coniglione, R; D'Agostino, M; Del Zoppo, A; Giussani, A; Gramegna, F; Maiolino, C; Margagliotti, G V; Mastinu, P F; Migneco, E; Milazzo, P M; Nannini, A; Ordine, A; Ottolenghi, A; Piattelli, P; Santonocito, D; Sapienza, P; Vannini, G; Vannucci, L; Vardaci, E
2001-01-01
The use of existing detecting systems developed for nuclear physics studies allows collecting data on particle and ion production cross-sections in reactions induced by Oxygen and Carbon beams, of interest for hadrontherapy and heavy-ion risk assessment. The MULTICS and GARFIELD apparatus, together with the foreseen experiments, are reviewed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead Production 331419 Primary... Act (APA), 5 U.S.C. Chapter 5, generally provides that rules may not take effect earlier than 30 days... adjust their behavior and prepare before the final rule takes effect. To employ the 5 U.S.C. 553(d)(3...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead... data or data that are less expensive to collect such as process data or material consumption data. For...)(1) Only annual anode consumption (No CEMS). F 98.66(f)(1) Only annual paste consumption (No CEMS). F...
Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.
Rivera-Utrilla, J; Sánchez-Polo, M
2003-08-01
The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.
Wang, Hao; Hong, Xiaoyu; Li, Shuiming; Wang, Yong
2017-10-01
Protein synthesis has been reported to be impaired in early-stage Alzheimer's disease (AD). Previously, we found that oxygen supplementation improved cognitive function and reduced mitochondrial damage in AD model mice. In the present study, we examined the effects of supplemental oxygen treatment on protein synthesis and oxidative damage. The synthesis of numerous proteins involved in mRNA splicing, transcription regulation, and translation was found to be significantly upregulated in cortex tissues of AD model mice given a supplemental oxygen treatment (OT group), relative to those of non-treated control AD model mice (Ctrl group), suggesting that impairment in protein synthesis may be alleviated by increased oxygen inhalation. Methionine oxidation and oxidation levels in general were similar between the OT and Ctrl groups, indicating that the oxygen supplementation treatment did not cause increases in peptide oxidation levels. On the contrary, the OT group exhibited upregulation of several proteins associated with antioxidant defense. These results support further exploration into the development of supplementary oxygen treatment as a potential therapy for AD.
Low Earth Orbital Atomic Oxygen Interactions With Materials
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.
2004-01-01
Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhehao; Gao, Feng
2015-05-01
In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less
Bedra, L; Rutigliano, M; Balat-Pichelin, M; Cacciatore, M
2006-08-15
A joint experimental and theoretical approach has been developed to study oxygen atom recombination on a beta-quartz surface. The experimental MESOX setup has been applied for the direct measurement of the atomic oxygen recombination coefficient gamma at T(S) = 1000 K. The time evolution of the relative atomic oxygen concentration in the cell is described by the diffusion equation because the mean free path of the atoms is less than the characteristic dimension of the reactor. The recombination coefficient gamma is then calculated from the concentration profile obtained by visible spectroscopy. We get an experimental value of gamma = 0.008, which is a factor of about 3 less than the gamma value reported for O recombination over beta-cristobalite. The experimental results are discussed and compared with the semiclassical collision dynamics calculations performed on the same catalytic system aimed at determining the basic features of the surface catalytic activity. Agreement, both qualitative and quantitative, between the experimental and the theoretical recombination coefficients has been found that supports the Eley-Rideal recombination mechanism and gives more evidence of the impact that surface crystallographic variation has on catalytic activity. Also, several interesting aspects concerning the energetics and the mechanism of the surface processes involving the oxygen atoms are pointed out and discussed.
Murase, Kimihiko; Ono, Koh; Yoneda, Tomoya; Iguchi, Moritake; Yokomatsu, Takafumi; Mizoguchi, Tetsu; Izumi, Toshiaki; Akao, Masaharu; Miki, Shinji; Nohara, Ryuji; Ueshima, Kenji; Mishima, Michiaki; Kimura, Takeshi; White, David P; Chin, Kazuo
2016-01-01
Background Both adaptive servoventilation (ASV) and nocturnal oxygen therapy improve sleep disordered breathing (SDB), but their effects on cardiac parameters have not been compared systematically. Methods and results 43 patients with chronic heart failure (CHF; left ventricular ejection fraction (LVEF) ≤50%) with SDB were randomly assigned to undergo ASV (n=19, apnoea hypopnoea index (AHI)=34.2±12.1/h) or oxygen therapy (n=24, 36.9±9.9/h) for 3 months. More than 70% of SDB events in both groups were central apnoeas or hypopnoeas. Although nightly adherence was less for the ASV group than for the oxygen group (4.4±2.0 vs 6.2±1.8 h/day, p<0.01), the improvement in AHI was larger in the ASV group than in the oxygen group (−27.0±11.5 vs −16.5±10.2/h, p<0.01). The N-terminal pro-brain natriuretic peptide (NT-proBNP) level in the ASV group improved significantly after titration (1535±2224 to 1251±2003 pg/mL, p=0.01), but increased slightly at follow-up and this improvement was not sustained (1311±1592 pg/mL, p=0.08). Meanwhile, the level of plasma NT-proBNP in the oxygen group did not show a significant change throughout the study (baseline 1071±1887, titration 980±1913, follow-up 1101±1888 pg/mL, p=0.19). The significant difference in the changes in the NT-proBNP level throughout the study between the 2 groups was not found (p=0.30). Neither group showed significant changes in echocardiographic parameters. Conclusions Although ASV produced better resolution of SDB in patients with CHF as compared with oxygen therapy, neither treatment produced a significant improvement in cardiac function in the short term. Although we could not draw a definite conclusion because of the small number of participants, our data do not seem to support the routine use of ASV or oxygen therapy to improve cardiac function in patients with CHF with SDB. Trial registration number NCT01187823 (http://www.clinicaltrials.gov). PMID:27099761
Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin
2017-12-27
In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.
Furlanetto, Karina Couto; Pitta, Fabio
2017-02-01
Patients with hypoxemia and chronic respiratory failure may need to use oxygen therapy to correct hypoxemia and to use ventilatory support to augment alveolar ventilation, reverse abnormalities in blood gases (in particular hypercapnia) and reduce the work of breathing. Areas covered: This narrative review provides an overview on the use of oxygen therapy devices or portable ventilators for improved physical activity in daily life (PADL) as well as discusses the issue of lower mobility in daily life among stable patients with chronic respiratory disease who present indication for long-term oxygen therapy (LTOT) or home-based noninvasive ventilation (NIV). A literature review of these concepts was performed by using all related search terms. Expert commentary: Technological advances led to the development of light and small oxygen therapy devices and portable ventilators which aim to facilitate patients' mobility and ambulation. However, the day-by-day dependence of a device may reduce mobility and partially impair patients' PADL. Nocturnal NIV implementation in hypercapnic patients seems promising to improve PADL. The magnitude of their equipment-related physical inactivity is underexplored up to this moment and more long-term randomized clinical trials and meta-analysis examining the effects of ambulatory oxygen and NIV on PADL are required.
Metal ferrite oxygen carriers for chemical looping combustion of solid fuels
Siriwardane, Ranjani V.; Fan, Yueying
2017-01-31
The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.
Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy
Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter
2015-01-01
Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809
Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis 1
Bialek, Krystyna; Cohen, Jerry D.
1989-01-01
Gas chromatography-selected ion monitoring-mass spectral analysis using [13C6]indole-3-acetic acid (IAA) as an internal standard provides an effective means for quantitation of IAA liberated during direct strong basic hydrolysis of bean (Phaseolus vulgaris L.) seed powder, provided that extra precautions are undertaken to exclude oxygen from the reaction vial. Direct seed powder hydrolysis revealed that the major portion of amide IAA conjugates in bean seeds are not extractable by aqueous acetone, the solvent used commonly for IAA conjugate extraction from seeds and other plant tissues. Strong basic hydrolysis of plant tissue can be used to provide new information on IAA content. Images Figure 1 PMID:16666783
Making a Difference in Ghana's Classrooms: Educators and Communities as Partners.
ERIC Educational Resources Information Center
O'Grady, Barbara
This report describes how partnerships between educators and the community are helping improve education in Ghana. Though the basic education program, Improving Learning through Partnerships (ILP), Ghana is strengthening its educational foundation by using master teachers to help improve basic skills instruction and by involving parents and other…
Qu, Lan; Ye, Yong; Li, Chunfeng; Gao, Guangkai
2015-01-01
The goal of hyperbaric oxygen therapy (HBOT) is to increase the oxygen (O₂) supply to the body significantly. Because of the toxic side effects and complications of hyperbaric oxygen (HBO₂), the environmental pressure and treatment time must be restricted. The research team hypothesized that other therapies administered during HBOT could safely improve the value of the arterial oxygen partial pressure (PaO₂) during HBOT and improve its therapeutic effect. The study intended to investigate whether electroacupuncture (EA) while receiving HBOT had a greater effect for healthy individuals than HBOT or EA alone or EA combined with normobaric pure oxygen (pure O₂). The research team designed a randomized, controlled trial. The study was performed in the Department of Hyperbaric Medicine at the No. 401 Hospital of the People's Liberation Army in Qingdao, China. A total of 81 volunteers were recruited. After thorough physical examination and laboratory testing, 21 volunteers were excluded from the study. Participants included 60 healthy volunteers. Participants were randomly assigned to 1 of 4 groups of 15 participants each: (1) an HBOT group, (2) an EA group, (3) an EA During HBOT group, and (4) an EA Combined With Pure O₂group. Because at the current technology level a blood gas analyzer cannot test PaO₂during HBOT, transcutaneous oxygen partial pressure (PtcO₂) of the participants was tested instead. Before, during, and after EA, variations in PtcO₂were monitored in each group. For the EA During HBOT group, (1) the increase in PtcO₂during EA was significantly greater than that observed for the other 3 groups (P > .05). The EA During HBOT method provided improvements in the efficacy, safety, and tolerability of HBOT, and the study's results partially demonstrated the accuracy of the research team's hypothesis that EA therapy applied during HBOT could safely improve the value of PtcO₂(PaO₂) during HBOT and produce a greater therapeutic effect.
Role of Anemia in Home Oxygen Therapy in Chronic Obstructive Pulmonary Disease Patients.
Copur, Ahmet Sinan; Fulambarker, Ashok; Molnar, Janos; Nadeem, Rashid; McCormack, Charles; Ganesh, Aarthi; Kheir, Fayez; Hamon, Sara
2015-01-01
Anemia is a known comorbidity found in chronic obstructive pulmonary disease (COPD) patients. Hypoxemia is common and basically due to ventilation/perfusion (V/Q) mismatch in COPD. Anemia, by decreasing arterial oxygen content, may be a contributing factor for decreased delivery of oxygen to tissues. The objective of this study is to determine if anemia is a factor in qualifying COPD patients for home oxygen therapy. The study was designed as a retrospective, cross-sectional, observational chart review. Patients who were referred for home oxygen therapy evaluation were selected from the computerized patient record system. Demographic data, oxygen saturation at rest and during exercise, pulmonary function test results, hemoglobin level, medications, reason for anemia, comorbid diseases, and smoking status were recorded. The χ tests, independent sample t tests, and logistic regression were used for statistical analysis. Only 356 of total 478 patient referrals had a diagnosis of COPD over a 2-year period. Although 39 of them were excluded, 317 patients were included in the study. The overall rate of anemia was 38% in all COPD patients. Anemia was found significantly more frequent in COPD patients on home oxygen therapy (46%) than those not on home oxygen therapy (18.5%) (P < 0.0001). Mean saturation of peripheral oxygen values were significantly lower in anemic COPD patients both at rest and during exercise (P < 0.0001). Also, in COPD patients, age, Global Initiative for Chronic Obstructive Lung Disease class, smoking status, hemoglobin level, hematocrit, percent of forced expiratory volume in first second, forced expiratory volume in first second/forced vital capacity, residual volume/total lung volume, percent of carbon monoxide diffusion capacity were significantly different between home oxygen therapy and those not on home oxygen therapy (P < 0.05). Multivariate logistic regression showed that anemia remained a strong predictor for long-term oxygen therapy use in COPD patients after adjusting for other significant parameters. Anemic COPD patients are more hypoxic especially during exercise than those who are not anemic. We conclude that anemia is a contributing factor in qualifying COPD patients for home oxygen therapy.
Heshmat, Mojgan; Privalov, Timofei
2017-07-06
By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)
MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...
Abutarboush, Rania; Mullah, Saad H; Saha, Biswajit K; Haque, Ashraful; Walker, Peter B; Aligbe, Chioma; Pappas, Georgina; Tran Ho, Lam Thuy Vi; Arnaud, Francoise G; Auker, Charles R; McCarron, Richard M; Scultetus, Anke H; Moon-Massat, Paula
2018-04-01
The aim of this study was to assess, in two experiments, the safety and efficacy of the PFC emulsion Oxycyte as an oxygen therapeutic for TBI to test the hypothesis that early administration of this oxygen-carrying fluid post-TBI would improve brain tissue oxygenation (P bt O 2 ). The first experiment assessed the effects of Oxycyte on cerebral vasoactivity in healthy, uninjured rats using intravital microscopy. The second experiment investigated the effect of Oxycyte on cerebral P bt O 2 using the PQM in TBI model. Animals in the Oxycyte group received a single injection of Oxycyte (6 mL/kg) shortly after TBI, while NON animals received no treatment. Oxycyte did not cause vasoconstriction in small- (<50 μm) or medium- (50-100 μm) sized pial arterioles nor did it cause a significant change in blood pressure. Treatment with Oxycyte while breathing 100% O 2 did not improve P bt O 2 . However, in rats ventilated with ~40% O 2 , P bt O 2 improved to near pre-TBI values within 105 minutes after Oxycyte injection. Although Oxycyte did not cause cerebral vasoconstriction, its use at the dose tested while breathing 100% O 2 did not improve P bt O 2 following TBI. However, Oxycyte treatment while breathing a lower enriched oxygen concentration may improve P bt O 2 after TBI. © 2018 John Wiley & Sons Ltd.
Improving basic life support training for medical students.
Lami, Mariam; Nair, Pooja; Gadhvi, Karishma
2016-01-01
Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.
Oxygen production System Models for Lunar ISRU
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo
2007-01-01
In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.
Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard
2009-01-01
The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.
Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao
2012-01-15
Sea urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of sea urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or air at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or air packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or air packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for sea urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or air packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or air packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.
Spielmanns, Marc; Fuchs-Bergsma, Chantal; Winkler, Aurelia; Fox, Gabriele; Krüger, Stefan; Baum, Klaus
2015-04-01
It is well established that physical training enhances functionality and quality of life in patients with COPD. However, little data exist concerning the effects of the usefulness of oxygen supply during exercise training for > 3 months in patients with COPD who are normoxemic at rest and during exercise. We hypothesized that oxygen supply during training sessions enables higher training intensity and thus optimizes training results in patients with COPD. In this blinded randomized controlled study, we carried out a 24-week training program with progressively increasing loads involving large muscle groups. In addition, we compared the influences of oxygen supplementation. Thirty-six subjects with moderate-to-severe COPD who were not dependent on long-term oxygen therapy trained under supervision for 24 weeks (3 times/week at 30 min/session). Subjects were randomized into 2 groups: oxygen supply via nasal cannula at a flow of 4 L/min and compressed air at the same flow throughout the training program. Lung function tests at rest (inspiratory vital capacity, FEV1, Tiffeneau index), cycle spiroergometry (peak ventilation, peak oxygen uptake, peak respiratory exchange rate, submaximal and peak lactic acid concentrations), 6-min walk tests, and quality-of-life assessments (Medical Outcomes Study 36-Item Short Form questionnaire) were conducted before and after 12 and 24 weeks. Independent of oxygen supplementation, statistically significant improvements occurred in quality of life, maximal tolerated load during cycling, peak oxygen uptake, and 6-min walk test after 12 weeks of training. Notably, there were no further improvements from 12 to 24 weeks despite progressively increased training loads. Endurance training 3 times/week resulted in significant improvements in quality of life and exercise capacity in subjects with moderate-to-severe COPD within the initial 12 weeks, followed by a stable period over the following 12 weeks with no further benefits of supplemental oxygen. Copyright © 2015 by Daedalus Enterprises.
Surface interaction of polyimide with oxygen ECR plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.
2004-07-01
Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.
2014-01-01
Introduction We describe hyperbaric oxygen therapy for the treatment of central retinal artery occlusion in a young adult with sickle cell disease. Case presentation A 25-year-old Turkish man with a history of sickle cell disease developed sudden painless loss of vision in the left eye and was hospitalized for diagnosis and treatment. Central retinal artery occlusion was diagnosed with retinal whitening, cherry red spot, and delayed arteriovenous transit on fluorescein angiography. He underwent exchange transfusion and hyperbaric oxygen therapy. In the following three months, his visual acuity improved to 20/30. Conclusions In this present case with sickle cell disease, the visual acuity improved with hyperbaric oxygen therapy in addition to systemic therapy. The result of our case suggests that hyperbaric oxygen therapy may be beneficial in the treatment of central retinal artery occlusion. PMID:25399776
Canan, Handan; Ulas, Burak; Altan-Yaycioglu, Rana
2014-11-17
We describe hyperbaric oxygen therapy for the treatment of central retinal artery occlusion in a young adult with sickle cell disease. A 25-year-old Turkish man with a history of sickle cell disease developed sudden painless loss of vision in the left eye and was hospitalized for diagnosis and treatment. Central retinal artery occlusion was diagnosed with retinal whitening, cherry red spot, and delayed arteriovenous transit on fluorescein angiography. He underwent exchange transfusion and hyperbaric oxygen therapy. In the following three months, his visual acuity improved to 20/30. In this present case with sickle cell disease, the visual acuity improved with hyperbaric oxygen therapy in addition to systemic therapy. The result of our case suggests that hyperbaric oxygen therapy may be beneficial in the treatment of central retinal artery occlusion.
Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo
2012-01-01
Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527
Supra-plasma expanders: the future of treating blood loss and anemia without red cell transfusions?
Tsai, Amy G; Vázquez, Beatriz Y Salazar; Hofmann, Axel; Acharya, Seetharama A; Intaglietta, Marcos
2015-01-01
Oxygen delivery capacity during profoundly anemic conditions depends on blood's oxygen-carrying capacity and cardiac output. Oxygen-carrying blood substitutes and blood transfusion augment oxygen-carrying capacity, but both have given rise to safety concerns, and their efficacy remains unresolved. Anemia decreases oxygen-carrying capacity and blood viscosity. Present studies show that correcting the decrease of blood viscosity by increasing plasma viscosity with newly developed plasma expanders significantly improves tissue perfusion. These new plasma expanders promote tissue perfusion, increasing oxygen delivery capacity without increasing blood oxygen-carrying capacity, thus treating the effects of anemia while avoiding the transfusion of blood.
Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3
NASA Technical Reports Server (NTRS)
Atwater, James E.; Akse, James R.
2006-01-01
Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.
Ignition and combustion of bulk metals in a microgravity environment
NASA Technical Reports Server (NTRS)
Branch, Melvyn C.; Daily, J. W.; Abbud-Madrid, Angel
1994-01-01
Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This report summarizes research under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal gravity combustion data on ten different pure metals. Metal specimens were ignited using a xenon short-arc lamp and measurements were made of the radiant energy flux, surface temperature history, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity was provided by the University of Colorado Geotechnical Centrifuge.
Status of nickel-hydrogen cell technology
NASA Technical Reports Server (NTRS)
Warnock, D. R.
1980-01-01
Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.
[EFFICACY OF CYTOFLAVIN IN COMPLEX TREATMENT OF DIABETIC FOOT SYNDROME].
Skrypko, V; Kovalenko, A; Zaplutanov, V; Kharitonova, T; Myhaloyko, I
2017-04-01
The study involved 97 patients with severe diabetic foot syndrome (DFS) subcompensated type 2 diabetes. All patients were available mediacalcification foot and lower leg arteries of different severity. Depending on the treatment, all patients were divided into 2 groups by stratified randomization. The І group received standard therapy, which is indicated for the DFS. A ІІ group of patients additionally received basic therapy drug Cytoflavin 10 ml 0,9% NaCl 200 ml for 10 days, followed by transfer to tablet form Cytoflavin 2 tablets 2 times per day orally for one month. We noted a positive trend of treatment of patients who, in addition to standard therapy received the drug Cytoflavin. Thus, the use of complex surgical treatment of patients with mixed form of DFS Cytoflavin reduces the severity of distal polyneuropathy, improves oxygenation of tissues and restores the enzyme activity of antioxidant system, that manifested neuroprotective, antioxidant and anti-hypoxic effects of drugs, which substantiates the indications for its use in the this pathology.
Survey of the capacity for essential surgery and anaesthesia services in Papua New Guinea.
Martin, Janet; Tau, Goa; Cherian, Meena Nathan; Vergel de Dios, Jennifer; Mills, David; Fitzpatrick, Jane; Adu-Krow, William; Cheng, Davy
2015-12-16
To assess capacity to provide essential surgical services including emergency, obstetric and anaesthesia care in Papua New Guinea (PNG) in order to support planning for relevant post-2015 sustainable development goals for PNG. Cross-sectional survey. Hospitals and health facilities in PNG. 21 facilities including 3 national/provincial hospitals, 11 district/rural hospitals, and 7 health centres. The WHO Situational Analysis Tool to Assess Emergency and Essential Surgical Care (WHO-SAT) was used to measure each participating facility's capacity to deliver essential surgery and anaesthesia services, including 108 items related to relevant infrastructure, human resources, interventions and equipment. While major surgical procedures were provided at each hospital, fewer than 30% had uninterrupted access to oxygen, and 57% had uninterrupted access to resuscitation bag and mask. Most hospitals reported capacity to provide general anaesthesia, though few hospitals reported having at least one certified surgeon, obstetrician and anaesthesiologist. Access to anaesthetic machines, pulse oximetry and blood bank was severely limited. Many non-hospital health centres providing basic surgical procedures, but almost none had uninterrupted access to electricity, running water, oxygen and basic supplies for resuscitation, airway management and obstetric services. Capacity for essential surgery and anaesthesia services is severely limited in PNG due to shortfalls in physical infrastructure, human resources, and basic equipment and supplies. Achieving post-2015 sustainable development goals, including universal healthcare, will require significant investment in surgery and anaesthesia capacity in PNG. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
HYDRAULIC FRACTURING TO IMPROVE NUTRIENT AND OXYGEN DELIVERY FOR IN SITU BIORECLAMATION
The in situ delivery of nutrients and oxygen in soil is a serious problem in implementing in situ biodegradation. Current technology requires ideal site conditions to provide the remediating organisms with the nutrients and oxygen required for their metabolism, but...
Improving College Faculty Instruction in the Basic and Allied Health Sciences.
ERIC Educational Resources Information Center
Washton, Nathan S.
A project to improve college instruction in the basic and allied health sciences at New York Chiropractic College and the New York Institute of Technology is described. Attention was directed to: the kinds of resources colleges and professional schools provide to improve instruction; motivation of faculty to explore innovative or strategic…
Effects of noninvasive ventilation on sleep outcomes in amyotrophic lateral sclerosis.
Katzberg, Hans D; Selegiman, Adam; Guion, Lee; Yuan, Nancy; Cho, Sungho C; Katz, Jonathan S; Miller, Robert G; So, Yuen T
2013-04-15
The objective was to study the effects on noninvasive ventilation on sleep outcomes in patient with ALS, specifically oxygenation and overall sleep quality. Patients with ALS who met criteria for initiation of NIV were studied with a series of 2 home PSG studies, one without NIV and a follow-up study while using NIV. Primary outcome was a change in the maximum overnight oxygen saturation; secondary outcomes included change in mean overnight oxygen saturation, apnea and hypopnea indexes, sleep latency, sleep efficiency, sleep arousals, and sleep architecture. A total of 94 patients with ALS were screened for eligibility; 15 were enrolled; and 12 completed study procedures. Maximum overnight oxygen saturation improved by 7.0% (p = 0.01) and by 6.7% during REM sleep (p = 0.02) with NIV. Time spent below 90% oxygen saturation was also significant-ly better with NIV (30% vs 19%, p < 0.01), and there was trend for improvement in mean overnight saturation (1.5%, p = 0.06). Apnea index (3.7 to 0.7), hypopnea index (6.2 to 5.7), and apnea hypopnea index (9.8 to 6.3) did not significantly improve after introducing NIV. NIV had no effect on sleep efficiency (mean change 10%), arousal index (7 to 12), or sleep stage distribution (Friedman chi-squared = 0.40). NIV improved oxygenation but showed no significant effects on sleep efficiency, sleep arousals, restful sleep, or sleep architecture. The net impact of these changes for patients deserves further study in a larger group of ALS patients.
NASA Technical Reports Server (NTRS)
Najjar, Raymond G.; Keeling, Ralph F.; Erickson, David J., III
1995-01-01
Two years of work has been completed towards the development of a model of atmospheric oxygen variations on seasonal to decadal timescales. During the first year we (1) constructed a preliminary monthly-mean climatology of surface ocean oxygen anomalies, (2) began modeling studies to assess the importance of short term variability on the monthly-mean oxygen flux, and (3) conducted preliminary simulations of the annual mean cycle of oxygen in the atmosphere. Most of the second year was devoted to improving the monthly mean climatology of oxygen in the surface ocean.
NASA Technical Reports Server (NTRS)
Ross, Amy
2011-01-01
A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.
Summary of LO2/Ethanol OMS/RCS Technology and Advanced Development 99-2744
NASA Technical Reports Server (NTRS)
Curtis, Leslie A.; Hurlbert, Eric A.
1999-01-01
NASA is pursuing non-toxic propellant technologies applicable to RLV and Space Shuttle orbital maneuvering system (OMS) and reaction control system (RCS). The primary objectives of making advancements in an OMS/RCS system are improved safety, reliability, and reduced operations and maintenance cost, while meeting basic operational and performance requirements. An OMS/RCS has a high degree of direct interaction with the vehicle and crew and requires subsystem and components that are compatible with integration into the vehicle with regard to external mold-line, power, and thermal control. In July 1997, a Phase I effort for the technology and advanced development of an upgrade of the space shuttle was conducted to define the system architecture, propellant tank, feed system, RCS thrusters, and OMS engine. Phase I of the project ran from July 1997 to October 1998. Phase II is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000. The choice of pressure-fed liquid oxygen (LO2) and ethanol is the result of numerous trade studies conducted from 1980 to 1996. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The key to this pressure-fed system is the use of subcooled liquid oxygen at 350 psia. In this approach, there is 80 degrees R of subcooling, which means that boil-off will not occur until the temperature has risen 80 R. The sub-cooling results naturally from loading propellants at 163 R, which is the saturation temperature at 14.7 psia, and then pressurizing to 350 psia on the launch pad. Thermal insulation and conditioning techniques are then used to limit the LO2 temperature to 185 R maximum, and maintain the sub-cooling. The other key is the wide temperature range of ethanol, -173 F to +300 F, which can provide heat to gasify liquid oxygen or provide a good coolant.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.
2017-10-03
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
Unrean, Pornkamol; Nguyen, Nhung H A
2012-06-01
Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.
NASA Astrophysics Data System (ADS)
Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei
2017-03-01
Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Q.L.; Xiao, R.; Deng, Z.Y.
2008-12-15
Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. Themore » sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.« less
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Astrophysics Data System (ADS)
Marsik, S. J.; Morea, S. F.
1985-03-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Water quality in the Sugar Creek basin, Bloomington and Normal, Illinois
Prugh, Byron J.
1978-01-01
Urban runoff and overflows from combined sewers affect water quantity and quality in Sugar Creek within the twin cities of Bloomington and Normal, Illinois. Water-quality data from five primary and eight secondary locations showed three basic types of responses to climatic and hydrologic stresses. Stream temperatures and concentrations of dissolved oxygen, ammonia nitrogen, total phosphorus, biochemical oxygen demand, and fecal bacteria showed seasonal variations. Specific conductivity, pH, chloride, and suspended solids concentrations varied more closely with stream discharges. Total organic carbon, total nitrogen, total phosphorus, biochemical oxygen demand, and fecal coliform and fecal streptococcal bacteria concentrations exhibited variations indicative of intial flushing action during storm runoff. Selected analyses for herbicides, insecticides, and other complex organic compounds in solution and in bed material showed that these constituents were coming from sources other than the municipal sanitary treatment plant effluent. Analyses for 10 common metals: arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, and zinc showed changes in concentrations below the municipal sanitary plant outfall. (Woodard-USGS)
Oximeter for reliable clinical determination of blood oxygen saturation in a fetus
Robinson, Mark R.; Haaland, David M.; Ward, Kenneth J.
1996-01-01
With the crude instrumentation now in use to continuously monitor the status of the fetus at delivery, the obstetrician and labor room staff not only over-recognize the possibility of fetal distress with the resultant rise in operative deliveries, but at times do not identify fetal distress which may result in preventable fetal neurological harm. The invention, which addresses these two basic problems, comprises a method and apparatus for non-invasive determination of blood oxygen saturation in the fetus. The apparatus includes a multiple frequency light source which is coupled to an optical fiber. The output of the fiber is used to illuminate blood containing tissue of the fetus. In the preferred embodiment, the reflected light is transmitted back to the apparatus where the light intensities are simultaneously detected at multiple frequencies. The resulting spectrum is then analyzed for determination of oxygen saturation. The analysis method uses multivariate calibration techniques that compensate for nonlinear spectral response, model interfering spectral responses and detect outlier data with high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedman, P.O.; Smoot, L.D.; Smith, P.J.
1987-10-15
The general purpose of this research program was to develop a basic understanding of the physical and chemical processes in entrained coal gasification and to use the results to improve and evaluate an entrained gasification computer model. The first task included the collection and analysis of in-situ gasifier data at elevated pressures with three coal types (North Dakota lignite, Wyoming subbituminous and Illinois bituminous), the design, construction, and testing of new coal/oxygen/steam injectors with a fourth coal type (Utah bituminous), the collection of supporting turbulent fluid dynamic (LDV) data from cold-flow studies, and the investigation of the feasibility of usingmore » laser-based (CARS) daignostic instruments to make measurements in coal flames. The second task included improvements to the two-dimensional gasifier submodels, tabulation and evaluation of new coal devolatilization and char oxidation data for predictions, fundamental studies of turbulent particle dispersion, the development of improved numerical methods, and validation of the comprehensive model through comparison of predictions with experimental results. The third task was to transfer technical advances to industry and to METC through technical seminars, production of a detailed data book, code placement, and publication of results. Research results for these three tasks are summarized briefly here and presented in detail in the body of the report and in supporting references. 202 refs., 73 figs., 23 tabs.« less
NASA Astrophysics Data System (ADS)
Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun; Zhang, Yong; Shao-Horn, Yang; Belcher, Angela M.
2013-11-01
Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g-1c (7,340 mAh g-1c+catalyst) of specific capacity at 0.4 A g-1c and a stable cycle life up to 50 cycles (4,000 mAh g-1c, 400 mAh g-1c+catalyst) at 1 A g-1c.
Reddy, Mettu S; Carter, Noel; Cunningham, Anne; Shaw, James; Talbot, David
2014-06-01
Success of clinical pancreatic islet transplantation depends on the mass of viable islets transplanted and the proportion of transplanted islets that survive early ischaemia reperfusion injury. Novel pancreas preservation techniques to improve islet preservation and viability can increase the utilization of donation after cardiac death donor pancreases for islet transplantation. Rat pancreases were retrieved after 30 min of warm ischaemia and preserved by static cold storage, hypothermic machine perfusion or retrograde portal venous oxygen persufflation for 6 h. They underwent collagenase digestion and density gradient separation to isolate islets. The yield, viability, morphology were compared. In vitro function of isolated islets was compared using glucose stimulated insulin secretion test. Portal venous oxygen persufflation improved the islet yield, viability and morphology as compared to static cold storage. The percentage of pancreases with good in vitro function (stimulation index > 1.0) was also higher after oxygen persufflation as compared to static cold storage. Retrograde portal venous oxygen persufflation of donation after cardiac death donor rat pancreases has the potential to improve islet yield. © 2014 Steunstichting ESOT.
Investigation of Redox Metal Oxides for Carbonaceous Fuel Conversion and CO2 Capture
NASA Astrophysics Data System (ADS)
Galinsky, Nathan Lee
The chemical looping combustion (CLC) process uses metal oxides, also referred to as oxygen carriers, in a redox scheme for conversion of carbonaceous fuels into a concentrated stream of CO2 and steam while also producing heat and electricity. The unique redox scheme of CLC allows CO2 capture with minimal energy penalty. The CLC process performance greatly depends on the oxygen carrier that is chosen. To date, more than 1000 oxygen carriers have been developed for chemical-looping processes using metal oxides containing first-row transition metals. Oxygen carriers are typically mixed with an inert ceramic support to improve their overall mechanical stability and recyclability. This study focuses on design of (i) iron oxide oxygen carriers for conversion of gaseous carbonaceous fuels and (ii) development of perovskite CaMnO 3-d with improved stability and redox properties for conversion of solid fuels. Iron oxide is cheap and environmentally benign. However, it suffers from low activity with carbonaceous fuels due partially to the low ionic conductivity of iron oxides. In order to address the low activity of iron-oxide-based oxygen carriers, support addition has been shown to lower the energy barrier of oxygen anion transport within the oxygen carrier. This work adds a mixed-ionic-and-electronic-conductor (MIEC) support to iron oxide to help facilitate O2- transport inside the lattice of iron oxide. The MIEC-supported iron oxide is compared to commonly used supports including TiO2 and Al2O 3 and the pure ionic conductor support yttria-stabilized zirconia (YSZ) for conversion of different carbonaceous fuels and hydrogen. Results show that the MIEC-supported iron oxide exhibits up to 70 times higher activity than non-MIEC-supported iron oxides for methane conversion. The MIEC supported iron oxide also shows good recyclability with only minor agglomeration and carbon formation observed. The effect of support-iron oxide synergies is further investigated to understand other physical and chemical properties that lead to highly active and recyclable oxygen carriers. Perovskite and fluorite-structured MIEC supports are tested for conversion of methane. The perovskite supported iron oxides exhibit higher activity and stability resulting from the high mixed conductivity of the support. Fluorite-structured CeO2 oxygen carriers deactivated by 75% after 10 redox cycles. This deactivation was attributed to agglomeration of iron oxide. The agglomeration was determined to occur due to Fe x+ transport during the oxidation step leading to high content of Fe on the surface of the oxygen carrier. Besides the MIEC supports, inert MgAl2O4 supported iron oxide is observed to activate in methane. The activation is attributed to carbon formation causing physical degradation of the oxygen carrier and leading to higher surface area and porosity. To achieve high activity with solid fuels, chemical looping with oxygen uncoupling (CLOU) is commonly used. This process uses oxygen carriers with high PO2 that allows the oxygen carrier to release a portion of their lattice oxygen as gaseous oxygen. In turn, the gaseous oxygen can react with solid fuel particles at a higher rate than the lattice oxygen. CaMnO 3 perovskite oxygen carriers offer high potential for CLOU. However, pure CaMnO3 suffers from long-term recyclability and sulfur poisoning. Addition of A-site (Ba and Sr) and B-site (Fe, Ni, Co, Al, and V) dopants are used to improve the performance of the base CaMnO3 oxygen carrier. Sr (A-site) and Fe (B-site) exhibit high compatibility with the base perovskite structure. Both dopants observe oxygen uncoupling properties up to 200°C below that of pure CaMnO3. Additionally, the doped structures also exhibit higher stability at high temperatures (>1000°C) and during redox cycles. The doped oxygen carriers also demonstrate significantly improved activity for coal char conversion.
Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard
2003-11-01
Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.
Reaction kinetics of a kHz-driven atmospheric pressure plasma with humid air impurities
NASA Astrophysics Data System (ADS)
Murakami, T.; Algwari, Q. Th.; Niemi, K.; Gans, T.; O'Connell, D.; Graham, W. G.
2013-09-01
Atmospheric-pressure plasma jets (APPJs) have been gaining attention because of their great potential in bio-plasma applications. It is important to know the complex chemical kinetics of the reactive multi-species plasma. This is a study starting to address this by using a 0D time-dependent global simulation (comprising 1050 elementary reactions among 59 specie) of kHz-driven (20 kHz) APPJ with a helium-based oxygen-mixture (0.5%) with ambient humid air impurity. The present model is initiated from time dependent measurements and estimates of the basic plasma properties. The dominant neutral reactive species are reactive oxygen species and atomic hydrogen. The positive and negative oxygen ions and electrons are the most pronounced charged species. While most of the neutral reactive species are only weakly modulated at the driving frequency, the atomic oxygen metastables and atomic nitrogen metastables are strongly modulated. So are also the electrons and most of the positive and negative ions, but some are not, as will be discussed. This work was supported by KAKENHI (MEXT 24110704) and (JSPS 24561054),and UK EPSRC through a Career Acceleration Fellowship (EP/H003797/1) and Science and Innovation Award (EP/D06337X/1).
Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy
NASA Astrophysics Data System (ADS)
Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen
Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.
Molecular controls of the oxygenation and redox reactions of hemoglobin.
Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L
2013-06-10
The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.
Development of advanced generator of singlet oxygen for a COIL
NASA Astrophysics Data System (ADS)
Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav; Hrubý, Jan
2006-05-01
The generator of singlet oxygen (SOG) remains still a challenge for a chemical oxygen-iodine laser (COIL). Hitherto, only chemical generators based on the gas-liquid reaction system (chlorine-basic hydrogen peroxide) can supply singlet oxygen, O II(1Δ), in enough high yields and at pressures to maintain operation of the high power supersonic COIL facilities. Employing conventional generators of jet-type or rotating disc-type makes often problems resulting mainly from liquid droplets entrained by an O II (1Δ) stream into the laser cavity, and a limited scalability of these generators. Advanced generator concepts investigated currently are based on two different approaches: (i)O II(1Δ) generation by the electrical discharge in various configurations, eliminating thus a liquid chemistry, and (ii) O II(1Δ) generation by the conventional chemistry in novel configurations offering the SOG efficiency increase and eliminating drawbacks of existing devices. One of the advanced concepts of chemical generator - a spray SOG with centrifugal separation of gasliquid phases - has been proposed and investigated in our laboratory. In this paper we present a description of the generator principle, some essential results of theoretical estimations, and interim experimental results obtained with the spray SOG.
Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min
2017-08-01
In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.
A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics
NASA Astrophysics Data System (ADS)
Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.
2007-06-01
The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.
Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan
2016-12-28
The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.
Diaz, Deanna; Boonsiri, Metavee; Okawa, Joyce; Dekranes, Denise
2017-01-01
Background: Oxygenation of the skin has been shown to improve cell growth and cell biosynthesis, which can subsequently improve the skin’s appearance.1,2 However, the majority of skin oxygenation techniques are invasive.3,4 A noninvasive skin oxygenation treatment, also known as a carboxytherapy facial, with TriPollar® radiofrequency device has emerged called OxyGeneo™, which is provided by the geneO+™ skin care platform (Pollogen Ltd., Tel Aviv, Israel). Objective: This study addresses the clinical effectiveness of the aforementioned noninvasive skin oxygenation treatment on skin texture, fine lines/wrinkles, and skin pigmentation over an eight-week time period. Methods and materials: Ten patients with fine lines, wrinkles, hyperpigmentation, and rough skin texture received six weekly treatments over a two-month period. Five patients received NeoRevive™ and five received NeoBright™ topical infusions, with the selection made according to each individual’s skin conditions and type. These patients were evaluated using the VISIA complexion analysis system (Canfield Scientific, Inc., Parsippany, New Jersey) and patient and evaluator assessments and satisfaction surveys. Results: Each individual measurement varied by patient, but the change in value of each category that was assessed prior to treatment and post-treatment indicated an improvement. All patients in the study stated an improvement in overall skin appearance, skin texture, brightness, and shininess. Nine out of the 10 patients reported that their skin was softer and had a more youthful appearance after the treatments, and seven out of the 10 patients saw a minor improvement in fine lines and wrinkles. Lastly, five out of the 10 patients noticed an improvement in skin pigmentation. Conclusion: The results indicated the combination of the three-in-one OxyGeneo treatment of exfoliation, infusion and oxygenation using TriPolar radiofrequency prompted an improvement in skin texture and tone. This is an optimal procedure that can be implemented in patients looking for noninvasive, safe, and effective rejuvenation treatments with no associated downtime post-procedure. PMID:29399257
Bouquin, V; L'Her, E; Moriconi, M; Jobic, Y; Maheu, B; Guillo, P; Paris, A; Pennec, P Y; Boles, J M; Blanc, J J
1998-10-01
New equipment facilitating the use of spontaneous ventilation with positive expiratory pressure (PEP) has become available in France since January 1996. This technique was applied in 38 patients with severe cardiogenic pulmonary oedema and persistent respiratory distress despite high flow classical oxygen therapy and standard treatment. After 1 hour of ventilation with a flow of 220 l/min of 100% oxygen with an average PEP of 7.7 cm H20, a significant improvement of clinical (heart and respiratory rate) and biological parameters (arterial gases) was observed. There were no side effects. Four patients died during the hospital period and only 1 was intubated. Spontaneous ventilation with PEP is a simple technique for coronary care units and, compared with conventional oxygen therapy, it rapidly improves arterial oxygenation, reduces respiratory work and improves conditions of cardiac load. Acute severe cardiogenic pulmonary oedema seems to be an indication of choice, especially in the elderly, where it may help avoid an often controversial intubation.
Management of foetal asphyxia by intrauterine foetal resuscitation
Velayudhareddy, S.; Kirankumar, H
2010-01-01
Management of foetal distress is a subject of gynaecological interest, but an anaesthesiologist should know about resuscitation, because he should be able to treat the patient, whenever he is directly involved in managing the parturient patient during labour analgesia and before an emergency operative delivery. Progressive asphyxia is known as foetal distress; the foetus does not breathe directly from the atmosphere, but depends on maternal circulation for its oxygen requirement. The oxygen delivery to the foetus depends on the placental (maternal side), placental transfer and foetal circulation. Oxygen transport to the foetus is reduced physiologically during uterine contractions in labour. Significant impairment of oxygen transport to the foetus, either temporary or permanent may cause foetal distress, resulting in progressive hypoxia and acidosis. Intrauterine foetal resuscitation comprises of applying measures to a mother in active labour, with the intention of improving oxygen delivery to the distressed foetus to the base line, if the placenta is functioning normally. These measures include left lateral recumbent position, high flow oxygen administration, tocolysis to reduce uterine contractions, rapid intravenous fluid administration, vasopressors for correction of maternal hypotension and amnioinfusion for improving uterine blood flow. Intrauterine Foetal Resuscitation measures are easy to perform and do not require extensive resources, but the results are encouraging in improving the foetal well-being. The anaesthesiologist plays a major role in the application of intrauterine foetal resuscitation measures. PMID:21189876
Pettersson, Henrik; Faager, Gun; Westerdahl, Elisabeth
2015-09-01
Breathing exercises after cardiac surgery are often performed in a sitting position. It is unknown whether oxygenation would be better in the standing position. The aim of this study was to evaluate oxygenation and subjective breathing ability during sitting vs standing performance of deep breathing exercises on the second day after cardiac surgery. Patients undergoing coronary artery bypass grafting (n = 189) were randomized to sitting (controls) or standing. Both groups performed 3 × 10 deep breaths with a positive expiratory pressure device. Peripheral oxygen saturation was measured before, directly after, and 15 min after the intervention. Subjective breathing ability, blood pressure, heart rate, and pain were assessed. Oxygenation improved significantly in the standing group compared with controls directly after the breathing exercises (p < 0.001) and after 15 min rest (p = 0.027). The standing group reported better deep breathing ability compared with controls (p = 0.004). A slightly increased heart rate was found in the standing group (p = 0.047). After cardiac surgery, breathing exercises with positive expiratory pressure, performed in a standing position, significantly improved oxygenation and subjective breathing ability compared with sitting performance. Performance of breathing exercises in the standing position is feasible and could be a valuable treatment for patients with postoperative hypoxaemia.
Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Wenby, Rosalinda; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert
2013-02-01
Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vasoocclusion, including percent hemoglobin (Hb)S, reticulocyte count, and circulating cell-free Hb, it increases blood viscosity, which reduces microvascular flow. The hematocrit-to-viscosity ratio (HVR) is an index of red blood cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately before transfusion and again 12 to 120 hours after transfusion. Comparable changes in Hb, hematocrit (Hct), reticulocyte count, and HbS with transfusion were observed in all subjects. Viscosity, Hct, and high-shear HVR increased with transfusion while low-shear HVR decreased significantly. Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by CTT and others may be made worse. © 2012 American Association of Blood Banks.
Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart
2017-01-01
Background Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. Methods We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6–8 cmH2O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). Results The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5–2.7) (median [interquartile range]) and 1.8 (1.4–3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Conclusion Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients. PMID:28434271
Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart
2017-06-01
Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6-8 cmH 2 O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5-2.7) (median [interquartile range]) and 1.8 (1.4-3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.
1988-01-01
The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.
Isocapnic hyperpnea training improves performance in competitive male runners.
Leddy, John J; Limprasertkul, Atcharaporn; Patel, Snehal; Modlich, Frank; Buyea, Cathy; Pendergast, David R; Lundgren, Claes E G
2007-04-01
The effects of voluntary isocapnic hyperpnea (VIH) training (10 h over 4 weeks, 30 min/day) on ventilatory system and running performance were studied in 15 male competitive runners, 8 of whom trained twice weekly for 3 more months. Control subjects (n = 7) performed sham-VIH. Vital capacity (VC), FEV1, maximum voluntary ventilation (MVV), maximal inspiratory and expiratory mouth pressures, VO2max, 4-mile run time, treadmill run time to exhaustion at 80% VO2max, serum lactate, total ventilation (V(E)), oxygen consumption (VO2) oxygen saturation and cardiac output were measured before and after 4 weeks of VIH. Respiratory parameters and 4-mile run time were measured monthly during the 3-month maintenance period. There were no significant changes in post-VIH VC and FEV1 but MVV improved significantly (+10%). Maximal inspiratory and expiratory mouth pressures, arterial oxygen saturation and cardiac output did not change post-VIH. Respiratory and running performances were better 7- versus 1 day after VIH. Seven days post-VIH, respiratory endurance (+208%) and treadmill run time (+50%) increased significantly accompanied by significant reductions in respiratory frequency (-6%), V(E) (-7%), VO2 (-6%) and lactate (-18%) during the treadmill run. Post-VIH 4-mile run time did not improve in the control group whereas it improved in the experimental group (-4%) and remained improved over a 3 month period of reduced VIH frequency. The improvements cannot be ascribed to improved blood oxygen delivery to muscle or to psychological factors.
Hyperbaric intensive care technology and equipment.
Millar, Ian L
2015-03-01
In an emergency, life support can be provided during recompression or hyperbaric oxygen therapy using very basic equipment, provided the equipment is hyperbaric-compatible and the clinicians have appropriate experience. For hyperbaric critical care to be provided safely on a routine basis, however, a great deal of preparation and specific equipment is needed, and relatively few facilities have optimal capabilities at present. The type, size and location of the chamber are very influential factors. Although monoplace chamber critical care is possible, it involves special adaptations and inherent limitations that make it inappropriate for all but specifically experienced teams. A large, purpose-designed chamber co-located with an intensive care unit is ideal. Keeping the critically ill patient on their normal bed significantly improves quality of care where this is possible. The latest hyperbaric ventilators have resolved many of the issues normally associated with hyperbaric ventilation, but at significant cost. Multi-parameter monitoring is relatively simple with advanced portable monitors, or preferably installed units that are of the same type as used elsewhere in the hospital. Whilst end-tidal CO₂ readings are changed by pressure and require interpretation, most other parameters display normally. All normal infusions can be continued, with several examples of syringe drivers and infusion pumps shown to function essentially normally at pressure. Techniques exist for continuous suction drainage and most other aspects of standard critical care. At present, the most complex life support technologies such as haemofiltration, cardiac assist devices and extra-corporeal membrane oxygenation remain incompatible with the hyperbaric environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter
Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2} approaches normal tissue levels, the therapeutic effect is improved so that the normal tissue absorbed doses can be decreased by more than 95%, while retaining TCP, in the most favorable scenario and by up to about 80% with oxygen levels previously achieved in vivo, when the least favourable oxygenation case is used as starting point. The major difference occurs in poorly oxygenated cells. This is also where the pO{sub 2}-dependence of the oxygen enhancement ratio is maximal. Conclusions: Improved tumor oxygenation together with increased radionuclide uptake show great potential for optimising treatment strategies, leaving room for successive treatments, or lowering absorbed dose to normal tissues, due to increased tumor response. Further studies of the concomitant use of antiangiogenic drugs and radionuclide therapy therefore appear merited.« less
Stacking Oxygen-Separation Cells
NASA Technical Reports Server (NTRS)
Schroeder, James E.
1991-01-01
Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).
Russo, Thomas N.; McQuivey, Raul S.
1975-01-01
A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li
2011-02-01
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.
ERIC Educational Resources Information Center
Al-Odwan, Yaser
2016-01-01
This research aims to get acquainted with the effectiveness of the active learning strategy in improving the acoustic awareness skills and understanding what is heard by the basic stage students in Jordan by answering the two following questions: This research has been applied to a sample of 60 students from the basic third grade in Al-Ahnaf Ben…
Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.
Joynt, Chloë; Bigam, David L; Charrois, Gregory; Jewell, Laurence D; Korbutt, Gregory; Cheung, Po-Yin
2010-06-01
After resuscitation, asphyxiated neonates often develop poor cardiac function with hypotension, pulmonary hypertension and multiorgan ischemia. In a swine model of neonatal hypoxia-reoxygenation, effects of epinephrine, dobutamine and milrinone on systemic, pulmonary and regional hemodynamics and oxygen transport were compared. Controlled, block-randomized study. University research laboratory. Mixed breed piglets (1-3 days, 1.5-2.3 kg). In acutely instrumented piglets, normocapnic alveolar hypoxia (10-15% oxygen) was induced for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). At 2 h of reoxygenation, after volume loading (Ringer's lactate 10 ml/kg), either saline (placebo), epinephrine (0.5 microg/kg/min), dobutamine (20 microg/kg/min) or milrinone (0.75 microg/kg/min) were infused for 2 h in a blinded, block-randomized fashion (n = 6/group). All medications similarly improved cardiac output, stroke volume and systemic oxygen delivery (vs. placebo-controls, p < 0.05). Epinephrine and dobutamine significantly increased, while milrinone maintained, mean arterial pressure over pretreatment values while placebo-treated piglets developed hypotension and shock. The mean arterial to pulmonary arterial pressures ratio was not different among groups. All medications significantly increased carotid and intestinal, but not renal, arterial blood flows and oxygen delivery, whereas milrinone caused lower renal vascular resistance than epinephrine and dobutamine-treated groups. Plasma troponin I, plasma and myocardial lactate levels, and histologic ischemic features were not different among groups. In newborn piglets with hypoxia-reoxygenation, epinephrine, dobutamine and milrinone are effective inotropes to improve cardiac output, carotid and intestinal perfusion, without aggravating pulmonary hypertension. Milrinone may also improve renal perfusion.