Calcite-forming bacteria for compressive strength improvement in mortar.
Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl
2010-04-01
Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabain, R.T.
1994-05-16
A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less
An investigation of the compressive strength of PRD-49-3/Epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.
1973-01-01
The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.
Processing and characterization of unidirectional thermoplastic nanocomposites
NASA Astrophysics Data System (ADS)
Narasimhan, Kameshwaran
The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.
Compressive and flexural strength of high strength phase change mortar
NASA Astrophysics Data System (ADS)
Qiao, Qingyao; Fang, Changle
2018-04-01
High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.
NASA Astrophysics Data System (ADS)
Tilak B., Vidya; Dutta, Rakesh Kumar; Mohanty, Bijayananda
2015-06-01
This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite - lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio
It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.
Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun
2013-10-01
Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.
Experimental research on the mechanical properties of graphene geopolymer
NASA Astrophysics Data System (ADS)
Zhang, Guoxue; Lu, Juan
2018-06-01
This research study used metakaolin as a raw material, a mixed solution of sodium hydroxide and sodium silicate as an alkali excitant, and a graphene dispersant as an additive to manufacture a graphene geopolymer sample. The compressive strength and bending strength of the sample were tested. The results showed that the geopolymer hydration products were observed to be more compact, and the internal porosity was reduced after the addition of the graphene. The geopolymer strengths had been obviously increased, and the compressive strength and bending strength reached 46.9MPa and 6.7MPa, respectively. However, the graphene's role in improving the strength of the original geopolymer became gradually weakened when the addition amounts of the graphene were increased to a certain extent. Furthermore, the role of the graphene in improving the compressive strength of the geopolymer was determined to gradually decrease with the increase in the content of sodium hydroxide in the alkali excitant.
Strength of mortar containing rubber tire particle
NASA Astrophysics Data System (ADS)
Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.
2018-04-01
The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.
NASA Astrophysics Data System (ADS)
To-Anh Phan, Vu; Ngoc-Anh Pham, Kha
2018-04-01
This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.
Chemical treatments for improving compressive strength of linerboard at high moisture conditions
D. J. Fahey
1964-01-01
Various chemical treatments have been investigated at the Forest Products Laboratory for improving the compressive strength of linerboard exposed at high humidities and after water-soaking. Phenolic resins have been among the more promising chemicals studied, but they vary in performance. The low-condensed water-soluble phenolic resins have given some of the highest...
NASA Astrophysics Data System (ADS)
Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed
2015-07-01
Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.
NASA Astrophysics Data System (ADS)
Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.
2017-11-01
This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.
Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar.
Al-Salloum, Yousef; Abbas, H; Sheikh, Q I; Hadi, S; Alsayed, Saleh; Almusallam, Tarek
2017-02-01
Sporosarcina pasteurii , a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.
NASA Astrophysics Data System (ADS)
Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.
2017-09-01
The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.
Nagwani, Naresh Kumar; Deo, Shirish V
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.
Nagwani, Naresh Kumar; Deo, Shirish V.
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939
Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.
Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek
2015-03-18
Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.
Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete
Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek
2015-01-01
Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998
Influence of bottom ash of palm oil on compressive strength of concrete
NASA Astrophysics Data System (ADS)
Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad
2017-11-01
The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.
Using of borosilicate glass waste as a cement additive
NASA Astrophysics Data System (ADS)
Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani
2016-08-01
Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.
Wu, Xiaorong; Sun, Yi; Xie, Weili; Liu, Yanju; Song, Xueyu
2010-05-01
It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is that their deficiency in mechanical properties cannot satisfy the clinical purpose. The aim of this study is to develop novel dental nanocomposites incorporated with polyhedral oligomeric silsesquioxane (POSS). It is especially interesting to evaluate the volumetric shrinkage and mechanical properties, improve the shrinkage, working performances and service life of dental composite resins. The effect of added POSS on the composites' mechanical properties has been evaluated. The weight percentages of added POSS are 0, 2, 5, 10 and 15wt% respectively. Fourier-transform infra-red spectroscopy and X-ray diffraction were used to characterize their microstructures. Physico-mechanical properties that were investigated included volumetric shrinkage, flexural strength, flexural modulus, compressive strength, compressive modulus, Viker's hardness and fracture energy. Furthermore, the possible reinforced mechanism has been discussed. The shrinkage of novel nanocomposites decreased from 3.53% to 2.18%. The nanocomposites incorporated with POSS showed greatly improved mechanical properties, for example, with only 2wt% POSS added, the nanocompsite's flexural strength increased 15%, compressive strength increased 12%, hardness increased 15% and uncommonly, even the toughness of resins was obviously increased. With 5wt% POSS polymerized, compressive strength increased from 192MPa to 251MPa and compressive modulus increased from 3.93GPa to 6.62GPa, but flexure strength began to decline from 87MPa to 75MPa. This finding indicated that the reinforcing mechanism of flexure state maybe different from that of compressive state. The mechanical properties and volumetric shrinkage of dental composite resins polymerized with POSS can be improved significantly. In current study, the nanocomposite with 2wt% POSS incorporated is observed to achieve the best improved effects. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
Elbadawi, M; Shbeh, M
2018-01-01
The present study investigated the effects of hydroxyapatite (HA) reinforced with yttria on porous scaffolds fabricated via honeycomb ceramic extrusion. Yttria was selected as it has been demonstrated to toughen other ceramics. Moreover, yttria has been surmised to suppress dehydroxylation in HA, a characteristic that prefigures decomposition thereof during sintering into mechanically weaker phases. However, the compressive strength of yttria-reinforced hydroxyapatite (Y-HA) porous scaffolds has hitherto not been reported. Y-HA was synthesised by calcining a commercially available HA with 10wt% yttria at 1000°C. Y-HA was then fabricated into porous scaffolds using an in-house honeycomb extruder, and subsequently sintered at 1200 and 1250°C. The results were compared to the uncalcined as-received commercial powder (AR-HA) and calcined pure HA powder at 1000°C (C-HA). It was discovered that calcination alone caused marked improvements to the stoichiometry, thermal stability, porosity and compressive strength of scaffolds. The improvements were ascribed to the calcined powders with less susceptibility to both agglomeration and enhanced densification. Still, differences were observed between C-HA and Y-HA at 1250°C. The compressive strength increased from 105.9 to 127.3MPa, a larger microporosity was descried and the HA matrix in Y-HA was more stoichiometric. The latter was confirmed by XRD and EDS analyses. Therefore, it was concluded that the reinforcing of hydroxyapatite with yttria improved the compressive strength and suppressed dehydroxylation of porous HA scaffolds. In addition, the compressive strength achieved demonstrated great potential for load-bearing application. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke
2018-04-01
Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
NASA Astrophysics Data System (ADS)
Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke
2018-06-01
Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.
Blasted copper slag as fine aggregate in Portland cement concrete.
Dos Anjos, M A G; Sales, A T C; Andrade, N
2017-07-01
The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
1981-12-01
This was done to observe the effect of specimen age on strength after the curing period of 7 days in the humidity room and the remaining time in air in... fatigue resistance. Although the compressive strength is not much improved, the brittle behavior that would occur in plain concrete after peak strength...such as fracture toughness, fatigue resistance, impact resistance and flexural strength (82). The idea of fiber reinforcement applications is not new
Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng
2013-12-01
The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.
Effect of pH on compressive strength of some modification of mineral trioxide aggregate
Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh
2013-01-01
Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137
Peat soils stabilization using Effective Microorganisms (EM)
NASA Astrophysics Data System (ADS)
Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.
2018-04-01
Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.
Production and construction technology of C100 high strength concrete filled steel tube
NASA Astrophysics Data System (ADS)
Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu
2017-10-01
In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.
Admixing dredged marine clay with cement-bentonite for reduction of compressibility
NASA Astrophysics Data System (ADS)
Rahilman, Nur Nazihah Nur; Chan, Chee-Ming
2017-11-01
Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.
Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam
2017-05-05
The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-01-01
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854
Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu
2016-08-27
In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-30
Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.
NASA Astrophysics Data System (ADS)
Niitsu, G. T.; Lopes, C. M. A.
2013-08-01
The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.
Strengthening lightweight concrete
NASA Technical Reports Server (NTRS)
Auskern, A.
1972-01-01
Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.
Thermoplastic composites for veneering posterior teeth-a feasibility study.
Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R
2002-09-01
This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.
Mechanical performance of porous concrete pavement containing nano black rice husk ash
NASA Astrophysics Data System (ADS)
Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan
2018-01-01
This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.
Evaluation on Compressive Characteristics of Medical Stents Applied by Mesh Structures
NASA Astrophysics Data System (ADS)
Hirayama, Kazuki; He, Jianmei
2017-11-01
There are concerns about strength reduction and fatigue fracture due to stress concentration in currently used medical stents. To address these problems, meshed stents applied by mesh structures were interested for achieving long life and high strength perfromance of medical stents. The purpose of this study is to design basic mesh shapes to obatin three dimensional (3D) meshed stent models for mechanical property evaluation. The influence of introduced design variables on compressive characteristics of meshed stent models are evaluated through finite element analysis using ANSYS Workbench code. From the analytical results, the compressive stiffness are changed periodically with compressive directions, average results need to be introduced as the mean value of compressive stiffness of meshed stents. Secondly, compressive flexibility of meshed stents can be improved by increasing the angle proportional to the arm length of the mesh basic shape. By increasing the number of basic mesh shapes arranged in stent’s circumferential direction, compressive rigidity of meshed stent tends to be increased. Finaly reducing the mesh line width is found effective to improve compressive flexibility of meshed stents.
Shear transfer in concrete reinforced with carbon fibers
NASA Astrophysics Data System (ADS)
El-Mokadem, Khaled Mounir
2001-10-01
Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.
Research on Foam Concrete Features by Replacing Cement with Industrial Waste Residues
NASA Astrophysics Data System (ADS)
Saynbaatar; Qiqige; Ma, Gangping; Fu, Jianhua; Wang, Jinghua
The influence on the performance of foam concrete made by replacing cement with some industrial waste residues was researched in this paper. The result shows that the 7d and 28d compressive strength of foam concrete increases firstly and then decreases with the increasing amount of industrial waste residue. The proper added range is 10%-20% for steel slag, blast furnace slag and coal ash, but, 8% for desulfurized fly ash. With the proper adding ratio, the compressive strength of foam concrete always increased comparing with the pure cement foam concrete. When adding 48% of the compound industrial waste residues, the 28d compressive strength of the foam concrete reached the 2.9MPa which could match the pure cement foam concrete. The results indicates that there is a synergistic effect among the compound industrial waste residue, and this effect is benefit to improving the compressive strength of foam concrete.
Carbon Nanotube Sheet Scrolled Fiber Composite for Enhanced Interfacial Mechanical Properties
NASA Astrophysics Data System (ADS)
Kokkada Ravindranath, Pruthul
The high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0°, 45° and 90°. This is further verified by making use of the Halpin-Tsai.
NASA Astrophysics Data System (ADS)
Wen, Minru; Wang, Chong-Yu
2018-01-01
The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.
2018-01-01
Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite–gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite–gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite–gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite–gelatin composite is a promising material for BTE application. PMID:29623305
Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H
2013-06-01
Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.
Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag
Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan
2015-01-01
Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar. PMID:28787950
Compression response of thick layer composite laminates with through-the-thickness reinforcement
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Smith, Barry T.; Maiden, Janice
1992-01-01
Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
Hwang, Kyung-Yup; Kim, Jin Young; Phan, Hoang Quang Huy; Ahn, Jun-Young; Kim, Tae Yoo; Hwang, Inseong
2018-05-28
We previously described a MgO-based binder for treating fine sediment and simultaneously store CO 2 . Here, we describe a study of the physical/mechanical characteristics and carbonation reactions of the MgO-based binder used to solidify/stabilize fine sediment in atmospheres containing different CO 2 concentrations. Carbonation of the sediment treated with the MgO-based binder at the atmospheric CO 2 concentration markedly improved the compressive strength of the product. The compressive strength was 4.78 MPa after 365 days of curing, 1.3 times higher than the compressive strength of sediment treated with portland cement. This improvement was caused by the formation of carbonation products, such as hydromagnesite, nesquehonite, and lansfordite, and the constant high pH (~ 12) of the specimen, which favored the growth of hydration products such as calcium silicate hydrates and portlandite. Very low compressive strengths were found when 50 and 100% CO 2 atmospheres were used because of excessive formation of carbonation products, which occupied 78% of the specimen depth. Abundant carbonation products increased the specimen volume and decreased the pH to 10.2, slowing the growth of hydration products. The absence of brucite in specimens produced in a 100% CO 2 atmosphere indicated that MgO carbonation is favored over hydration at high CO 2 concentrations.
Gold-based electrical interconnections for microelectronic devices
Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.
2002-01-01
A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.
Studies for understanding effects of additions on the strength of cement concrete
NASA Astrophysics Data System (ADS)
Bucur, R. D.; Barbuta, M.; Konvalina, P.; Serbanoiu, A. A.; Bernas, J.
2017-09-01
The paper analyzes the effects of different types of additions introduced in concrete mix on the compressive strength. The current studies show that additions contribute to improve some characteristics of concrete and to reduce the cement dosage, so it can obtain concretes which are cheaper and friendlier with environment. In the experimental mixes were introduced: crushed natural aggregates, slag aggregates, silica fume, fly ash, chopped tire, polystyrene granule, glass fibers and metallic fibers. The experimental values of compressive strengths were compared for two concrete grades (C20/25 and C25/30). The study shown that near the well-known possibilities of improving mechanical strengths of cement concrete by increasing cement dosage and strength, by using crushed aggregates and by reducing the water/cement ratio, there are other methods in which less cement is used by replacing it with different wastes or by adding fiber.
Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G
2016-07-01
To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests may have value in selecting those patients who benefit most from compression. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating
Chen, Xiaodong; Betke, Ulf; Peters, Paul Clemens; Söffker, Gerrit Maximilian; Scheffler, Michael
2017-01-01
The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA) a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles) to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%). The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs). PMID:28773093
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2017-10-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
Hobbs, Brian; Tchoketch Kebir, Mohamed
2007-04-11
This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature.
NASA Astrophysics Data System (ADS)
Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.
2018-02-01
Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. This characteristic resulted to faster the process of building walls and required less skilled labor as the blocks are laid dry and lock into place. Recently, implementation in using bacteria as construction material improvement is vigorously used in research in order pursuit the sustainable construction works. This paper provide the results of ureolytic bacteria (UB) throughout enrichment process in soil condition to acclimatize the ICEB environment, compressive strength of 1%, 3% and 5% UB and SEM analysis of ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the optimal growth achieved based on the days and absorbance from optical density (OD) test which are in 12th days with absorbance of 0.55 whereas the results for strength shows the increment of 15.25% with 5% UB on 28th days of testing compared to control specimen. Therefore this study hopes that positive results from the UB as improving in strength of ICEB which will lead to improve others ICEB properties and others construction materials.
The effect of curing conditions on the durability of high performance concrete
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.
2017-10-01
This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.
Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P
2018-01-01
Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan
2017-09-01
This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.
Polymer concrete reinforced with recycled-tire fibers: Mechanical properties
NASA Astrophysics Data System (ADS)
Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.
2013-06-01
Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.
Effects of waste glass additions on quality of textile sludge-based bricks.
Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji
2015-01-01
This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
NASA Astrophysics Data System (ADS)
Minguet, Pierre; Llorente, Steven; Fay, Russell
1991-05-01
The results of an evaluation of DuPont Kevlar-based material systems in sandwich structure designed for rotorcraft primary airframe structure are presented in this report. The focus of this work has been to evaluate the durability and compression strength of thin-gage Kevlar sandwich panels and investigate means of improvement. It was found that sandwich panels made with Kevlar 149 fibers can be as strong as Kevlar 49 structures but have reduced compression stiffness properties at typical operating strain levels. Thermal cycling was found to affect permeability but not strength in thin facesheet sandwich structure. Any increased permeability can be prevented with the use of an interleaf or surfacing plies. The surfacing plies investigated also had a beneficial effect on sandwich strength due to their stabilizing effect on the facesheet in compression. Finally, a previously developed model was used to analyze the residual strength of a sandwich panel after impact damage.
Stress-strain response of plastic waste mixed soil.
Babu, G L Sivakumar; Chouksey, Sandeep Kumar
2011-03-01
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effects of boric acid and phosphoric acid on the compressive strength of glass-ionomer cements.
Prentice, Leon H; Tyas, Martin J; Burrow, Michael F
2006-01-01
Both boric acid (H3BO3) and phosphoric acid (H3PO4) are components of dental cements, commonly incorporated into glass (as ingredients in the melt) and occasionally added to the powder or liquid components. This study investigated the effect of boric acid addition to an experimental glass-ionomer powder and the effect of phosphoric acid addition to a glass-ionomer liquid on the 24-h compressive strength. Boric acid powder was added in various concentrations to an experimental glass-ionomer powder and, separately, phosphoric acid was added to an experimental glass-ionomer liquid. Powders and liquids were dosed into capsules at various powder:liquid ratios and cements thus formed were assessed for 24-h compressive strength. Incorporation of boric acid in glass-ionomer powder resulted in a pronounced decrease (p < 0.05 at 1% boric acid) in compressive strength. Addition of phosphoric acid produced initially stronger cements (up to 13% increase at 1% phosphoric acid) before also declining. The incorporation of less than 2% w/w phosphoric acid in glass-ionomer liquids may improve cement strengths without compromising clinical usefulness. The incorporation of boric acid in glass-ionomer cements is contraindicated.
DOT National Transportation Integrated Search
2010-07-01
UHPC is an emerging material technology in which concrete develops very high : compressive strengths and exhibits improved tensile strength and toughness. A : comprehensive literature and historical application review was completed to determine the :...
NASA Technical Reports Server (NTRS)
Kirchner, H. P.
1974-01-01
Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.
NASA Technical Reports Server (NTRS)
Dexter, H. B.; Funk, J. G.
1986-01-01
Five through-the-thickness stitch configurations are analyzed to determine the effect of impact resistance and interlaminar fracture toughness on T3000/3501-6 graphite/epoxy. The test specimens were stitched with either polyester or Kevlar yarns and with various stitch parameters. Tension and compression mechanical, impact and compression-after-impact, and double cantilever beam tests were conducted. It is observed that the stitched laminates have tension and compression strengths 20-25 percent lower than the strengths of unstitched laminates, the tension strength of stitched laminates is reduced with increasing number of stitches, and the compression strength increases as the number of stitches are increased. The impact data reveal that the Kevlar stitched laminates have less damage than unstitched laminates; the most effective configuration for suppressing impact damage and improving interlaminar fracture toughness consists of Kevlar yarns 1/4 inch apart with eight stitches per inch. The mode 1 critical strain energy release rate for the 1/4 inch Kevlar eight stitch laminate was calculated as 30 times higher than that of the unstitched.
Compressive strength of damaged and repaired composite plates
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo
1992-01-01
Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.
Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste
NASA Astrophysics Data System (ADS)
Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.
2018-03-01
This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T.
2016-04-21
Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasingmore » in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.« less
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
NASA Astrophysics Data System (ADS)
Burnham, Steven Robert
As much as 50% of ageing-related problems with concrete structures can be attributed to con-struction deficiencies at the time of placement. The most influential time affecting longevity of concrete structures is the curing phase, or commonly the initial 28 days following its placement. A novel advanced atomistic analysis of novel concrete chemistry is presented in this dissertation with the objective to improve concrete structural properties and its longevity. Based on experiments and computational models, this novel concrete chemistry is discussed in two cases: (a) concrete chemistry changes when exposed to low-dose gamma radiation in its early curing stage, thus improving its strength in a shorter period of time then curing for the conventional 28 days; (b) concrete chemistry is controlled by its atomistic components to assure strength is not reduced but that its activation due to long-term exposure to neutron flux in nuclear power plants is negligible. High dose gamma radiation is well documented as a degradation mechanism that decreases concrete's compressive strength; however, the effects of low-dose gamma radiation on the initial curing phase of concrete, having never been studied before, proved its compressive strength increases. Using a 137 Cs source, concrete samples were subjected to gamma radiation during the initial curing phase for seven, 14, and 28 days. The compressive strength after seven days is improved for gamma cured concrete by 24% and after 14 days by 76%. Concrete shows no improvement in compressive strength after 28 days of exposure to gamma radiation, showing that there is a threshold effect. Scanning Electron Microscopy is used to examine the microstructure of low-dose gamma radiation where no damage to its microstructure is found, showing no difference between gamma cured and conventionally cured concrete. Molecular dynamics modeling based on the MOPAC package is used to study how gamma radiation during the curing stage improves compressive strength of concrete. The modeling shows that when radiolysis occurs in freshly mixed concrete, the reactivity between key molecules responsible for bonding between cement and aggregate is enhanced due to improved reactivity at the molecular level. A new method is developed that successfully controls a concrete chemistry at the atomistic level by assuring its long-term exposure to neutron flux in nuclear power plants will not activate the dome wall to the level of low-level radioactive waste. This methodology is established to detect and select the level of trace elemental composition in concrete based on a low-flux neutron activation analysis (NAA). By carefully selecting aggregates that do not contain certain elements that activate to high concentrations after decades of concrete exposure to neutron flux, the end of life for concrete is improved by declassifying it as low-level radioactive waste. Directly, it improves economy of commissioning nuclear power plants to be built in near future and reducing important quantities of waste to be disposed at high costs.
Macdonald, Ben
2017-11-01
Hamstring Injuries commonly cause missed training and competition time in elite sports. Injury surveillance studies have demonstrated high injury and re-injury rates, which have not improved across sports despite screening and prevention programmes being commonplace. The most commonly suggested intervention for hamstring prevention and rehabilitation is eccentric strength assessment and training. This case study describes the management of an elite sprinter with a history of hamstring injury. A multi-variate screening process based around lumbar-pelvic dysfunction and hamstring strength assessment using the Nordbord is employed. The effect of external pelvic compression using a taping technique, on eccentric hamstring strength is evaluated. A persistent eccentric strength asymmetry of 17% was recorded as well as lumbar-pelvic control deficits. Pelvic taping appears to improve load transfer capability across the pelvis, resulting in correction of eccentric strength asymmetry. Screening strategies and interventions to prevent hamstring injury have failed to consistently improve injury rates across various sports. In this case study external pelvic compression resulted in normalising eccentric strength deficits assessed using the Nordbord. The inclusion of lumbar-pelvic motor control assessment, in relation to hamstring strength and function, as part of a multi-variate screening strategy requires further research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Chaojing; Wang, Fujun; Douglas, Graeham; Zhang, Ze; Guidoin, Robert; Wang, Lu
2017-05-01
Vascular grafts made by tissue engineering processes are prone to buckling and twisting, which can impede blood flow and lead to collapse of the vessel. These vascular conduits may suffer not only from insufficient tensile strength, but also from vulnerabilities related to compression, torsion, and pulsatile pressurization. Aiming to develop a tissue engineering-inspired blood conduit, composite vascular graft (cVG) prototypes were created by combining a flexible polylactic acid (PLA) knitted fabric with a soft polycaprolactone (PCL) matrix. The graft is to be populated in-situ with cellular migration and proliferation into the device. Comprehensive characterizations probed the relationship between structure and mechanical properties of the different cVG prototypes. The composite grafts exhibited major improvements in mechanical characteristics compared to single-material devices, with particular improvement in compression and torsional resistance. A commercial expanded polytetrafluoroethylene (ePTFE) vascular graft was used as a control against the proposed composite vascular grafts. CVG devices showed high tensile strength, high bursting strength, and improved suture retention. Compression, elastic recovery, and compliance were similar to those for the ePTFE graft. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaari, Norazean; Jumahat, Aidah
2018-06-01
The paper presents the effects of hybridization and silica nanoparticles on unhole and open hole compressive behaviours of woven Kevlar/glass fibre hybrid composite laminates. Residual compressive strength and stiffness were determined from an open hole compression (OHC) test conducted according to ASTM D6484-09, whereas the fractured surface behaviour was observed under scanning electron microscope (SEM). Silica nanoparticles were mixed into the epoxy resins using vacuum mechanical stirrer. Then, composite laminates were prepared using vacuum bagging method. Three different silica nanoparticles contents (5 wt%, 13 wt% and 25 wt%) were incorporated into the resin system with three different hybrid system (20:80, 50:50 and 80:20 of Kevlar fibres to glass fibres ratio). Results showed that the lowest compressive strength was observed in Kevlar fibre reinforced polymer. Therefore, hybridization of glass fibres with Kevlar fibres reduced the compressive strength of hybrid composites. However, the incorporation of silica nanoparticles into the epoxy resins improved the compressive properties of the hybrid composites. From the observation of the fractured surface, different fracture behaviours were observed in both Kevlar fibre and glass fibre composites. Fibre barrelling and crimping was observed in Kevlar fibres while glass fibres showed a fibre fracture with serrated and rough surfaces.
Crystal coating via spray drying to improve powder tabletability.
Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C
2014-11-01
A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.
Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites
NASA Astrophysics Data System (ADS)
Liu, Bing; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.
Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
NASA Astrophysics Data System (ADS)
He, Dongqing; Wu, Min; Jie, Pengyu
2017-12-01
Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Wirth, G.
1983-01-01
Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.
Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.
Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert
2015-07-01
Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adazabra, A N; Viruthagiri, G; Shanmugam, N
2017-06-01
This work studies the reuse of spent shea waste as an economic construction material in improving fired clay bricks manufacture aside providing a novel approach to ecofriendly managing its excessive generated from the shea agroindustry. For this purpose, the influence of spent shea waste addition on the chemical, mineralogical, molecular bonding and technological properties (i.e. compressive strength and water absorption) of the fired clay bricks were extensively investigated. The results indicated that the chemical, mineralogical, phase transformations, molecular bonding and thermal behavior of the produced bricks were practically unaffected by the addition of spent shea waste. However, spent shea waste addition increased the compressive strengths and water absorptions of the brick products. Potential performance benefits of reusing spent shea waste was improved fluxing agents, energy-contribution reaction, excellent porosifying effect, reduced thermal conductivity and enhanced compressive strengths of the brick products. This research has therefore provided compelling evidence that could create newfound route for the synergistic ecofriendly reuse of spent shea waste to enhance clay brick construction aside being a potential mainstream disposal option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strengthening of oxidation resistant materials for gas turbine applications
NASA Technical Reports Server (NTRS)
Platts, D. R.; Kirchner, H. P.; Gruver, R. M.
1972-01-01
Compressive surface layers were formed on hot-pressed silicon carbide and nitride. The objective of these treatments was to improve the impact resistance of these materials at 1590 K (2400 F). Quenching was used to form compressive surface layers on silicon carbide. The presence of the compressive stresses was demonstrated by slotted rod tests. Compressive stresses were retained at elevated temperatures. Improvements in impact resistance at 1590 K (2400 F) and flexural strength at room temperature were achieved using cylindrical rods 3.3 mm (0.13 in.) in diameter. Carburizing treatments were used to form the surface layers on silicon nitride. In a few cases using rectangular bars improvements in impact resistance at 1590 K (2400 F) were observed.
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd
2018-04-01
Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.
Kaisangsri, Nattapon; Kerdchoechuen, Orapin; Laohakunjit, Natta
2014-09-22
Cassava starch foam (CSF) trays blended with zein, gluten, soy protein, kraft fiber, and palm oil at various concentrations: 0, 5, 10 and 15% by weight of starch, were characterized. The addition of zein and gluten into CSF resulted in consolidated and homogeneous structural foams compared to its controls. Moreover, the flexural and compressive strength increased with increasing kraft, zein and gluten. CSF containing 15% kraft gave the highest flexural and compressive strength. However, the addition of palm oil into CSF gave the lowest flexural strength and compressive strength. The observed water absorption and water solubility index of CSFs blended with 15% zein and 15% gluten protein was lowest. Although kraft, zein and gluten could improve mechanical properties, water absorption and water solubility were greater than the expanded polystyrene foam (EPS). The CSF trays in this study might be an alternative for packing low water content foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Large-deformation and high-strength amorphous porous carbon nanospheres
NASA Astrophysics Data System (ADS)
Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing
2016-04-01
Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.
Buford, Thomas W; Fillingim, Roger B; Manini, Todd M; Sibille, Kimberly T; Vincent, Kevin R; Wu, Samuel S
2015-07-01
As the U.S. population ages, efficacious interventions are needed to manage pain and maintain physical function among older adults with osteoarthritis (OA). Skeletal muscle weakness is a primary contributory factor to pain and functional decline among persons with OA, thus interventions are needed that improve muscle strength. High-load resistance exercise is the best-known method of improving muscle strength; however high-compressive loads commonly induce significant joint pain among persons with OA. Thus interventions with low-compressive loads are needed which improve muscle strength while limiting joint stress. This study is investigating the potential of an innovative training paradigm, known as Kaatsu, for this purpose. Kaatsu involves performing low-load exercise while externally-applied compression partially restricts blood flow to the active skeletal muscle. The objective of this randomized, single-masked pilot trial is to evaluate the efficacy and feasibility of chronic Kaatsu training for improving skeletal muscle strength and physical function among older adults. Participants aged ≥ 60 years with physical limitations and symptomatic knee OA will be randomly assigned to engage in a 3-month intervention of either (1) center-based, moderate-load resistance training, or (2) Kaatsu training matched for overall workload. Study dependent outcomes include the change in 1) knee extensor strength, 2) objective measures of physical function, and 3) subjective measures of physical function and pain. This study will provide novel information regarding the therapeutic potential of Kaatsu training while also informing about the long-term clinical viability of the paradigm by evaluating participant safety, discomfort, and willingness to continually engage in the intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of Micro Silica on the properties of High Volume Fly Ash Concrete (HVFA)
NASA Astrophysics Data System (ADS)
Sripragadeesh, R.; Ramakrishnan, K.; Pugazhmani, G.; Ramasundram, S.; Muthu, D.; Venkatasubramanian, C.
2017-07-01
In the current situation, to overcome the difficulties of feasible construction, concrete made with various mixtures of Ordinary Portland Cement (OPC) and diverse mineral admixtures, is the wise choice for engineering construction. Mineral admixtures viz. Ground Granulated Blast Furnace Slag (GGBS), Meta kaolin (MK), Fly Ash (FA) and Silica Fume (SF) etc. are used as Supplementary Cementitious Materials (SCM) in binary and ternary blend cement system to enhance the mechanical and durability properties. Investigation on the effect of different replacement levels of OPC in M25 grade with FA + SF in ternary cement blend on the strength characteristics and beam behavior was studied. The OPC was partially replaced (by weight) with different combinations of SF (5%, 10%, 15%, 20% and 25%) and FA as 50% (High Volume Fly Ash - HVFA). The amount of FA addition is kept constant at 50% for all combinations. The compressive strength and tensile strength tests on cube and cylinder specimens, at 7 and 28 days were carried out. Based on the compressive strength results, optimum mix proportion was found out and flexural behaviour was studied for the optimum mix. It was found that all the mixes (FA + SF) showed improvement in compressive strength over that of the control mix and the mix with 50% FA + 10% SF has 20% increase over the control mix. The tensile strength was also increased over the control mix. Flexural behaviour also showed a significant improvement in the mix with FA and SF over the control mix.
Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew
2017-01-01
Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.
Effect of rice husk ash and fly ash on the compressive strength of high performance concrete
NASA Astrophysics Data System (ADS)
Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc
2018-03-01
The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.
Hardy, I J; Cook, W G; Melia, C D
2006-03-27
The compression and compaction properties of plasticised high molecular weight USP2208 HPMC were investigated with the aim of improving tablet formation in HPMC matrices. Experiments were conducted on binary polymer-plasticiser mixtures containing 17 wt.% plasticiser, and on a model hydrophilic matrix formulation. A selection of common plasticisers, propylene glycol (PG) glycerol (GLY), dibutyl sebacate (DBS) and triacetin (TRI), were chosen to provide a range of plasticisation efficiencies. T(g) values of binary mixtures determined by Dynamic Mechanical Thermal Analysis (DMTA) were in rank order PG>GLY>DBS>TRI>unplasticised HPMC. Mean yield pressure, strain rate sensitivity (SRS) and plastic compaction energy were measured during the compression process, and matrix properties were monitored by tensile strength and axial expansion post-compression. Compression of HPMC:PG binary mixtures resulted in a marked reduction in mean yield pressure and a significant increase in SRS, suggesting a classical plasticisation of HPMC analogous to that produced by water. The effect of PG was also reflected in matrix properties. At compression pressures below 70 MPa, compacts had greater tensile strength than those from native polymer, and over the range 35 and 70 MPa, lower plastic compaction values showed that less energy was required to produce the compacts. Axial expansion was also reduced. Above 70 MPa tensile strength was limited to 3 MPa. These results suggest a useful improvement of HPMC compaction and matrix properties by PG plasticisation, with lowering of T(g) resulting in improved deformation and internal bonding. These effects were also detectable in the model formulation containing a minimal polymer content for an HPMC matrix. Other plasticisers were largely ineffective, matrix strength was poor and axial expansion high. The hydrophobic plasticisers (DBS, TRI) reduced yield pressure substantially, but were poor plasticisers and showed compaction mechanisms that could be attributed to phase separation. The effect of different plasticisers suggests that the deformation characteristics of this HPMC in the solid state is dominated by hydroxyl mediated bonding, rather than by hydrophobic interactions between methoxyl-rich regions.
Evaluation of the impact response of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1995-01-01
An evaluation of the impact damage resistance and impact damage tolerance of stitched and unstitched uniweaves, 2-D braids, and 3-D weaves was conducted. Uniweave laminates were tested at four thicknesses to determine the sensitivity of the tests to this parameter. Several braid and weave parameters were also varied to establish their velocity (large mass) impacts and then loaded in tension or compression to measure residual strength. Experimental results indicate that stitching significantly improves the uniweaves' damage resistance. The 2-D braids and 3-D weaves offered less damage resistance than the stitched materials. Stitching also improved the compression after impact (CAI) and tension after impact (TAI) strengths of the uniweave materials.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2011-01-01
A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-07-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-03-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Effects of water during cure on the properties of a carbon/phenolic system
NASA Technical Reports Server (NTRS)
Penn, B. G.; Clemons, J. M.; Ledbetter, F. E., III; Daniels, J. G.; Thompson, L. M.
1984-01-01
The effects of prepreg water contamination on interlaminar shear strength, tranverse compressive strength, and longitudinal compressive strength were determined. Decreases in these properties due to water contamination were sugstantial: 28 percent for the interlaminar shear strength, 21 percent for the transverse compressive strength and 31 percent for the longitudinal compressive strength. Since voids were not detected by X-ray analysis, the most likely cause for these results is fiber-matrix debounding in the laminate.
Applicability of recycled aggregates in concrete piles for soft soil improvement.
Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G
2017-01-01
The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.
Strength properties of interlocking compressed earth brick units
NASA Astrophysics Data System (ADS)
Saari, S.; Bakar, B. H. Abu; Surip, N. A.
2017-10-01
This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.
NASA Astrophysics Data System (ADS)
Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian
2016-12-01
A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.
Effect of shallow angles on compressive strength of biaxial and triaxial laminates.
Jia, Hongli; Yang, Hyun-Ik
2016-01-01
Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle <45°) might be utilized for reducing mass and/or improving performance. The compressive properties of shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.
Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl
2012-03-01
The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.
Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures
NASA Astrophysics Data System (ADS)
Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.
2017-10-01
The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.
Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose
Nakai, Takahisa; Enomoto, Koichi; Uchio, Yuji; Yoshino, Katsumi
2010-01-01
Background Major disadvantages of antibiotic bone cements include limited drug release and reduced strength resulting from the addition of high doses of antibiotics. Bacterial cellulose, a three-dimensional hydrophilic mesh, may retain antibiotics and release them gradually. We hypothesized that the addition of cellulose to antibiotic bone cement would improve mechanical strength and antibiotic release. Questions/purposes We therefore examined the mechanical strength and antibiotic release of cellulose antibiotic cement. Methods A high dose of antibiotics (5 g per 40 g cement powder) was incorporated into bacterial cellulose and then mixed with bone cement. We compared the compression strength, fracture toughness, fatigue life, and elution kinetics of this formulation with those of plain cement and a traditional antibiotic cement. Results The average values for compression strength, fracture toughness, and fatigue life of the cellulose antibiotic cement were 97%, 97%, and 78% of the values obtained for plain cement, respectively. The corresponding values for the traditional antibiotic cement were 79%, 82%, and 17%, respectively. The cumulative elution over 35 days was 129% greater from the cellulose antibiotic cement than from the traditional antibiotic cement. Conclusions With a high dose of antibiotics, incorporating cellulose into the bone cement prevented compression and fracture fragility, improved fatigue life, and increased antibiotic elution. Clinical Relevance Antibiotic cements containing cellulose may have applications in clinical situations that require high levels of antibiotic release and preservation of the mechanical properties of the cement. PMID:20945120
Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad
2016-10-01
Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.
Design variables for mechanical properties of bone tissue scaffolds.
Howk, Daniel; Chu, Tien-Min G
2006-01-01
The reconstruction of segmental defect in long bone is a clinical challenge. Multiple surgeries are typically required to restore the structure and function of the affected defect site. In order to overcome this defect a biodegradable bone tissue engineering scaffold is used. This scaffold acts as a carrier of proteins and growth factors, while also supporting the load that the bone would normally sustain, until the natural bone can regenerate in its place. Work was done to optimize an existing solid free-form scaffold design. The goal of the optimization was to increase the porosity of the scaffold while maintaining the strength of a previously-tested prototype design. With this in mind, eight new designs were created. These designs were drawn using CAD software and then through the use of finite element analysis the theoretical ultimate compressive strength of each design was obtained. Each scaffold design was constructed by casting a thermal-curable poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) suspension into wax molds fabricated on inkjet printing rapid prototyping machine. The constructs were then experimentally tested by applying a uniaxial compressive load. The theoretical and experimental values of ultimate compressive strength and specific strength of each design were compared. Theoretically, the best scaffold design produced from this work improved upon the current design by increasing the porosity by 46% and also increasing the ultimate compressive strength by 27%. The experimental data was found to match the theoretical strength in four designs, but deviate from the theoretical strength in five designs. The reasons for the deviations and their relation to the rapid prototyping manufacturing technique were discussed. The results of this work show that it is possible to increase the porosity and strength of a bone tissue engineering scaffold through simple iterations in architectural design.
Coradinia, Josinéia Gresele; Kakihata, Camila Mayumi Martin; Kunz, Regina Inês; Errero, Tatiane Kamada; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor
2015-01-01
To verify the functionality through muscle grip strength in animals with obesity induced by monosodium glutamate (MSG) and in control animals, which suffered compression of the right median nerve, and treated with swimming with overload. During the first five days of life, neonatal Wistar rats received subcutaneous injections of MSG. The control group received a hypertonic saline solution. Forty-eight rats were divided into six groups: G1 (control); G2 (control + injury); G3 (control + injury + swimming); G4 (obese); G5 (obese + injury); G6 (obese + injury + swimming). The animals in groups G2, G3, G5 and G6 were submitted to compression of the median nerve and G3 and G6 groups were treated, after injury, with swimming exercise with load for three weeks. The swimming exercise had a progressive duration, according to the week, of 20, 30 and 40minutes. Muscle strength was assessed using a grip strength meter preoperatively and on the 3rd, 7th, 14th and 21st days after surgery. The results were expressed and analyzed using descriptive and inferential statistics. When the grip strength was compared among assessments regardless of group, in the second assessment the animals exhibited lower grip strength. G1 and G4 groups had greater grip strength, compared to G2, G3, G4 and G6. The swimming exercise with overload has not been effective in promoting improvement in muscle grip strength after compression injury of the right median nerve in control and in obese-MSG rats. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.
Seetharaman, Sankaranarayanan; Subramanian, Jayalakshmi; Tun, Khin Sandar; Hamouda, Abdelmagid S.; Gupta, Manoj
2013-01-01
In this study, magnesium composites with nano-size boron nitride (BN) particulates of varying contents were synthesized using the powder metallurgy (PM) technique incorporating microwave-assisted two-directional sintering followed by hot extrusion. The effect of nano-BN addition on the microstructural and the mechanical behavior of the developed Mg/BN composites were studied in comparison with pure Mg using the structure-property correlation. Microstructural characterization revealed uniform distribution of nano-BN particulates and marginal grain refinement. The coefficient of thermal expansion (CTE) value of the magnesium matrix was improved with the addition of nano-sized BN particulates. The results of XRD studies indicate basal texture weakening with an increase in nano-BN addition. The composites showed improved mechanical properties measured under micro-indentation, tension and compression loading. While the tensile yield strength improvement was marginal, a significant increase in compressive yield strength was observed. This resulted in the reduction of tension-compression yield asymmetry and can be attributed to the weakening of the strong basal texture. PMID:28809252
Exploratory Research on Bearing Characteristics of Confined Stabilized Soil
NASA Astrophysics Data System (ADS)
Wu, Shuai Shuai; Gao, Zheng Guo; Li, Shi Yang; Cui, Wen Bo; Huang, Xin
2018-06-01
The performance of a new kind of confined stabilized soil (CSS) was investigated which was constructed by filling the stabilized soil, which was made by mixing soil with a binder containing a high content of expansive component, into an engineering plastic pipe. Cube compressive strength of the stabilized soil formed with constraint and axial compression performance of stabilized soil cylinders confined with the constraint pipe were measured. The results indicated that combining the constraint pipe and the binder containing expansion component could achieve such effects: higher production of expansive hydrates could be adopted so as to fill more voids in the stabilized soil and improve its strength; at the same time compressive prestress built on the core stabilized soil, combined of which hoop constraint provided effective radial compressive force on the core stabilized soil. These effects made the CSS acquire plastic failure mode and more than twice bearing capacity of ordinary stabilized soil with the same binder content.
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk
2018-05-14
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.
NASA Astrophysics Data System (ADS)
Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.
2017-07-01
The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.
Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar
2017-01-01
Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615
Kim, Beom-Su; Yang, Sun-Sik; Park, Ho; Lee, Se-Hwan; Cho, Young-Sam; Lee, Jun
2017-09-01
Powder-based three-dimensional (3D) printing is an excellent method to fabricate complex-shaped scaffolds for tissue engineering. However, their lower mechanical strength restricts their application in bone tissue engineering. Here, we created a 3D-printed scaffold coated with a ε-polycaprolactone (PCL) polymer solution (5 and 10 w/v %) to improve the mechanical strength of the scaffold. The 3D scaffold was fabricated from calcium sulfate hemihydrate powder (CaSO 4 -1/2 H 2 O), transformed into hydroxyapatite (HAp) by treatment with a hydrothermal reaction in an NH 4 H 2 PO 4 solution. The surface properties and composition of the scaffold were evaluated using scanning electron microscopy and X-ray diffraction analysis. We demonstrated that the 3D scaffold coated with PCL had an improved mechanical modulus. Coating with 5 and 10% PCL increased the compressive strength significantly, by about 2-fold and 4-fold, respectively, compared with that of uncoated scaffolds. However, the porosity was reduced significantly by coating with 10% PCL. In vitro biological evaluation demonstrated that MG-63 cells adhered well and proliferated on the 3D scaffold coated with PCL, and the scaffold was not cytotoxic. In addition, alkaline phosphatase activity and real time polymerase chain reaction demonstrated that osteoblast differentiation also improved in the PCL-coated 3D scaffolds. These results indicated that PCL polymer coating could improve the compressive strength and biocompatibility of 3D HAp scaffolds for bone tissue engineering applications.
Experimental study on compressive strength of sediment brick masonry
NASA Astrophysics Data System (ADS)
Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif
2018-02-01
The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.
Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.
2018-05-01
In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.
NASA Astrophysics Data System (ADS)
Fu, Jun; Liu, Zhihong; Liu, Jie
2018-01-01
Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.
Importance of Tensile Strength on the Shear Behavior of Discontinuities
NASA Astrophysics Data System (ADS)
Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.
2012-05-01
In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag
Islam, Shahidul; Haque, Asadul; Bui, Ha Hong
2016-01-01
Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′) behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis. PMID:28773415
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.
Islam, Shahidul; Haque, Asadul; Bui, Ha Hong
2016-04-15
Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.
Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash
Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin
2015-01-01
Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong
2017-01-01
The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation. PMID:29072616
NASA Astrophysics Data System (ADS)
Wang, Chengxi; Jiang, Chuanhai; Zhao, Yuantao; Chen, Ming; Ji, Vincent
2017-10-01
As one of the most important surface strengthening method, shot peening is widely used to improve the fatigue and stress corrosion crack resistance of components by introducing the refined microstructure and compressive residual stress in the surface layer. However, the mechanical properties of this thin layer are different from the base metal and are difficult to be characterized by conventional techniques. In this work, a micro uniaxial tensile tester equipped with in-situ X-ray stress analyzer was employed to make it achievable on a nickel-aluminum bronze with shot peening treatment. According to the equivalent stress-strain relationship based on Von Mises stress criterion, the Young's modulus and yield strength of the peened layer were calculated. The results showed that the Young's modulus was the same as the bulk material, and the yield strength corresponding to the permanent plastic strain of 0.2% was increased by 21% after SP. But the fractographic analysis showed that the fracture feature of the surface layer was likely to transform from the dimple to the cleavage, indicating the improved strength might be attained at the expense of ductility. The monotonic and cyclic loading were also performed via the same combined set-up. In addition, the specific relaxation behavior of compressive residual stress was quantified by linear logarithm relationship between residual stress and cycle numbers. It was found that the compressive residual stress mainly relaxed in the first few cycles, and then reached steady state with further cycles. The relaxation rate and the stable value were chiefly depended on the stress amplitude and number of cycles. The retained residual stress kept in compressive under all given applied stress levels, suggesting that the shot peening could introduce a more stable surface layer of compressive residual stress other than the elevated strength of nickel-aluminum bronze alloy.
Heat-resistant agent used for control sand of steam huff and puff heavy oil well
NASA Astrophysics Data System (ADS)
Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.
2018-01-01
Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.
Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh
2017-07-01
In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO 2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO 2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO 2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO 2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.
The effect of resin on the impact damage tolerance of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Williams, J. G.; Rhodes, M. D.
1981-01-01
The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.
Mechanical properties of cement concrete composites containing nano-metakaolin
NASA Astrophysics Data System (ADS)
Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana
2017-11-01
The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.
NASA Astrophysics Data System (ADS)
Armwood, Catherine K.
In this project, 26 fiber-reinforced mortar (FRM) mixtures are evaluated for their workability and strength characteristics. The specimens tested include two control mixtures and 24 FRMs. The mixtures were made of two types of binders; Type N Portland cement lime (Type N-PCL) and Natural Hydrated Lime 5 (NHL5); and 6 fiber types (5 synthetic fibers and one organic). When tested in flexure, the results indicate that majority of the synthetic fiber mixtures enhanced the performance of the mortar and the nano-nylon and horse hair fibers were the least effective in improving the mortar's modulus of rupture, ductility, and energy absorption. Four FRMs that improved the mortar's mechanical properties most during the flexural strength test were then used to conduct additional experiments. The FRM's compressive strength, as well as flexural and shear bond strength with clay and concrete masonry units were determined. Those four mixtures included Type N-PCL as the binder and 4 synthetic fibers. They were evaluated at a standard laboratory flow rate of 110% +/- 5% and a practical field flow rate of 130% +/- 5%. Results indicate that the use of fibers decreases the compressive strength of the mortar most of the time. However, the bond strength test results were promising: 81% of the FRM mixtures increased the flexural bond strength of the prism. The mixtures at 110 +/- 5% flow rate bonded better with concrete bricks and those ate 130+/-5% flow rate bonded better with clay bricks. The results of the shear bond strength show 50% of the FRM mixtures improved the shear bond strength. The FRM mixtures at 110+/-5% flow rate bonded with clay units provided the most improvement in shear bond strength compared to control specimen results. Along with detailed discussions and derived conclusions of these experiments, this dissertation includes recommendations for the most feasible FRM for different applications.
Improving degradation resistance of sisal fiber in concrete through fiber surface treatment
NASA Astrophysics Data System (ADS)
Wei, Jianqiang; Meyer, Christian
2014-01-01
As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.
Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha
2015-01-01
Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100
Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha
2015-02-01
The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.
High-volume-fraction Cu/Al2O3-SiC hybrid interpenetrating phase composite
NASA Astrophysics Data System (ADS)
Saidi, Hesam; Roudini, Ghodratollah; Afarani, Mahdi Shafiee
2015-10-01
Metal matrix particulate interpenetrating phase composites are a class of composites materials with three-dimensional internal connections of matrix and reinforcements. This kind of microstructure affects the mechanical and physical properties of the composites. In this study, Al2O3-SiC hybrid preforms were produced by polyurethane foams removal (replica method) within mean pore size of 30 pores per inch (ppi), and sintering at 1200 °C. Subsequently, the molten copper was infiltrated into the preforms by squeeze casting method. The microstructure, density, porosity, bending strength and thermal shock resistance of the preforms were investigated. Then, the composites microstructure and compressive strength were studied. The results showed that with SiC concentration increasing, the density, flexural strength and thermal shock resistance of the preforms were improved. Also the composites compressive strengths were changed with variation of SiC concentration.
Improvement of formability of high strength steel sheets in shrink flanging
NASA Astrophysics Data System (ADS)
Hamedon, Z.; Abe, Y.; Mori, K.
2016-02-01
In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.
NASA Astrophysics Data System (ADS)
Miled, Karim; Limam, Oualid; Sab, Karam
2012-06-01
To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.
Properties of concrete containing foamed concrete block waste as fine aggregate replacement
NASA Astrophysics Data System (ADS)
Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.
2017-11-01
Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.
NASA Astrophysics Data System (ADS)
Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin
2018-06-01
This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.
Ke, Dongxu; Dernell, William; Bandyopadhyay, Amit; Bose, Susmita
2015-01-01
Tricalcium phosphate (TCP) is a bioceramic that is widely used in orthopedic and dental applications. TCP structures show excellent biocompatibility as well as biodegradability. In this study, porous β-TCP scaffolds were prepared by thermal decomposition of naphthalene. Scaffolds with 57.64 ± 3.54 % density and a maximum pore size around 100 μm were fabricated via removing 30% naphthalene at 1150°C. The compressive strength for these scaffolds was 32.85 ± 1.41 MPa. Furthermore, by mixing 1 wt % SrO and 0.5 wt % SiO2, pore interconnectivity improved, but the compressive strength decreased to 22.40 ± 2.70 MPa. However, after addition of polycaprolactone (PCL) coating layers, the compressive strength of doped scaffolds increased to 29.57 ± 3.77 MPa. Porous scaffolds were implanted in rabbit femur defects to evaluate their biological property. The addition of dopants triggered osteoinduction by enhancing osteoid formation, osteocalcin expression and bone regeneration, especially at the interface of the scaffold and host bone. This study showed processing flexibility to make interconnected porous scaffolds with different pore size and volume fraction porosity with high compressive mechanical strength and better bioactivity. Results show that SrO/SiO2 doped porous TCP scaffolds have excellent potential to be used in bone tissue engineering applications. PMID:25504889
Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S
Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.
Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S
Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known. The purpose of this study was to evaluate the compressive strength and solubility of conventional restorative glass ionomer cement following the addition of propolis. Twenty half cylindrical samples were prepared with conventional restorative glass ionomer cement formed the control group. Another twenty samples were prepared with propolis added to conventional restorative glass ionomer cement formed the experimental group. The compressive strength was assessed using universal testing machine. To assess solubility, the samples were immersed in deionised water at room temperature, for 7 days. The solubility was measured as a difference in the weight of the sample; prior to immersion and following immersion at the end of each day. The control group had a significantly higher mean compressive strength of 146.26 Mpa as compared to the experimental group (135.06 Mpa). The solubility between the groups was significant. In comparison to the control group, incorporation of propolis to conventional restorative glass ionomer cement decreased the compressive strength significantly. The solubility of the cement in the experimental group increased significantly over 7day period as compared to the control group.
Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong
2018-01-01
Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008
Utilisation of Waste Marble Dust as Fine Aggregate in Concrete
NASA Astrophysics Data System (ADS)
Vigneshpandian, G. V.; Aparna Shruthi, E.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
Concrete is the important construction material and it is used in the construction industry due to its high compressive strength and its durability. Now a day’s various studies have been conducted to make concrete with waste material with the intention of reducing cost and unavailability of conventional materials. This paper investigates the strength properties of concrete specimens cast using waste marble dust as replacement of fine aggregate. The marble pieces are finely crushed to powdered and the gradation is compared with conventional fine aggregate. Concrete specimen were cast using wmd in the laboratory with different proportion (25%, 50% and 100%) by weight of cement and from the studies it reveals that addition of waste marble dust as a replacement of fine aggregate marginally improves compressive, tensile and flexural strength in concrete.
NASA Astrophysics Data System (ADS)
Hadipramana, J.; Mokhatar, S. N.; Samad, A. A. A.; Hakim, N. F. A.
2016-11-01
Concrete is widely used in the world as building and construction material. However, the constituent materials used in concrete are high cost when associated with the global economic recession. This exploratory aspires to have an alternative source of replacing natural aggregate with plastic wastes. An investigation of the Modified Artificial Polyethylene Aggregate (MAPEA) as natural aggregate replacement in concrete through an experimental work was conducted in this study. The MAPEA was created to improve the bonding ability of Artificial Polyethylene Aggregate (APEA) with the cement paste. The concrete was mixed with 3%, 6%, 9%, and 12% of APEA and MAPEA for 14 and 28 curing days, respectively. Furthermore, the compressive strength test was conducted to find out the optimum composition of MAPEA in concrete and compared to the APEA concrete. Besides, this study observed the influence and behaviour of MAPEA in concrete. Therefore, the Scanning Electron Microscopy was applied to observe the microstructure of MAPEA and APEA concrete. The results showed the use of high composition of an artificial aggregate resulted inferior strength on the concrete and 3% MAPEA in the concrete mix was highest compressive strength than other content. The modification of APEA (MAPEA) concrete increased its strength due to its surface roughness. However, the interfacial zone cracking was still found and decreased the strength of MAPEA concrete especially when it was age 28 days.
Mechanical properties of as-cast and heat-treated ZA-27 alloy/short glass fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.C.; Girish, B.M.; Satish, B.M.
1998-02-01
This paper reports on the mechanical properties of as-cast and heat-treated ZA-27 alloy composites reinforced with glass fibers from 1 to 5 wt%. The composites were fabricated using the Compocasting method, in which short glass fibers were introduced into the vortex created in the molten alloy through an impeller rotated at 500 rpm. The molten mass was thoroughly stirred and poured into permanent molds and squeezed under pressure. The specimens were heat treated at 320 C for 1, 2, 3, and 4 h. The tests on the as-cast composites revealed that as the glass content in the composites was increased,more » the ultimate tensile strength (UTS), compressive strength, and hardness of the composite increased, while the ductility and impact strength were decreased. Heat treatment was found to improve significantly the ductility, compressive strength, and impact strength, while the hardness and UTS were reduced. This paper discusses the behavior of these composites.« less
Benefits of aggregates surface modification in concrete production
NASA Astrophysics Data System (ADS)
Junak, J.; Sicakova, A.
2017-10-01
In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.
Autoclaved Sand-Lime Products with a Polypropylene Mesh
NASA Astrophysics Data System (ADS)
Kostrzewa, Paulina; Stępień, Anna
2017-10-01
The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.
Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility.
Wang, Y; Cui, F Z; Jiao, Y P; Hu, K; Fan, D D
2008-03-01
Lecithin was blended to improve the hydrophilicity and biocompatibility of bone graft containing poly(l-lactic acid) (PLLA). Solution blending and freeze drying were used to fabricate symmetrical scaffolds containing different percentages of lecithin (lecithin: PLLA = 0, 5, 10 wt%). Scanning electron microscopy showed that the scaffolds maintained the three-dimensional porous structure. A water uptake experiment proved the significant improvement of hydrophilicity of the blend scaffold. With the addition of lecithin, the compressive strength and compressive modulus decreased. When the weight ratio of lecithin to PLLA was up to 10%, the compressive strength was still more than the lower limit of natural cancellous bone. To test the biocompatibility of the scaffolds, cell culture in vitro and subcutaneous implantation in vivo were performed. MC3T3-E1 preosteoblastic cells were cultured on the scaffolds for 7 days. Methylthiazol tetrazolium assay and laser scanning confocal microscopy were used to exhibit proliferation and morphology of the cells. The subcutaneous implantation in rats tested inflammatory response to the scaffolds. The results proved the better biocompatibility and milder inflammatory reactions of the blend scaffold (lecithin: PLLA = 5%) compared with the scaffold without lecithin. The modified scaffold containing lecithin is promising for bone tissue engineering.
NASA Astrophysics Data System (ADS)
Tomo, H. S. S.; Ujianto, O.; Rizal, R.; Pratama, Y.
2017-07-01
Composite material thermoplastic was prepared from polypropilen granule as matrix, kenaf fiber as reinforcement and grafted polypropylene copolymer maleic anhydride as coupling agent. Composite products were produced as sandwich structures using compression molding. This research aimed to observe the influence of number of ply, temperature, pressure, and compression time using factorial design. Effects of variables on tensile and flexural strength were analyzed. Experimental results showed that tensile and flexural strength were influenced by degradation, fiber compaction, and matrix - fiber interaction mechanisms. Flexural strength was significantly affected by number of ply and its interaction to another process parameters (temperature, pressure, and compression time), but no significant effect of process parameters on tensile strength. The highest tensile strength (62.0 MPa) was produced at 3 ply, 210 °C, 50 Bar, and 3 min compression time (low, high, high, low), while the highest flexural strength (80.3 MPa) was produced at 3 ply, 190 °C, 50 Bar, and 3 min compression time (low, low, high, low).
Rafeek, Reisha N
2008-05-01
This study investigated the effects of application of heat alone and heat & pressure on the compressive strength and modulus, the stress relaxation characteristics and the fluoride release of a conventional and a resin-modified glass ionomer cement. Cylindrical specimens were made from both materials and divided into 3 groups. One group was heat treated in an oven at 120 degrees C for 20 min, another group was subjected to heat & pressure at 120 degrees C for 20 min at 6-bar pressure. The third group acted as a control. The compressive strength and modulus, stress relaxation and fluoride release were tested over 56 days. The results of this investigation indicate that heat treatment had no significant effect on the conventional GIC used but significantly affected the resin modified GIC by increasing both the compressive strength and modulus and reducing the stress relaxation characteristics and the fluoride release. The use of GIC to produce inlay or onlay restorations that adhere to tooth tissue and release fluoride would be highly desirable. The results of this study indicate that it is possible to improve the strength of RMGIC with heat to a limited extent, but fluoride release may decrease.
Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste
NASA Astrophysics Data System (ADS)
Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš
2017-09-01
This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.
Long-Term Mechanical Behavior of Nano Silica Sol Grouting
Zhang, Nong; Zhang, Chenghao; Qian, Deyu; Han, Changliang; Yang, Sen
2018-01-01
The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength. PMID:29337897
He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun
2015-05-01
Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.
Long term mechanical properties of alkali activated slag
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.
2018-01-01
This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.
Xiao, Wei; Zaeem, Mohsen Asle; Bal, B Sonny; Rahaman, Mohamed N
2016-11-01
There is a clinical need for synthetic bioactive materials that can reliably repair intercalary skeletal tissue loss in load-bearing bones. Bioactive glasses have been investigated as one such material but their mechanical response has been a concern. Previously, we created bioactive silicate glass (13-93) scaffolds with a uniform grid-like microstructure which showed a compressive strength comparable to human cortical bone but a much lower flexural strength. In the present study, finite element modeling (FEM) was used to re-design the scaffold microstructure to improve its flexural strength without significantly lowering its compressive strength and ability to support bone infiltration in vivo. Then scaffolds with the requisite microstructures were created by a robotic deposition method and tested in four-point bending and compression to validate the FEM simulations. In general, the data validated the predictions of the FEM simulations. Scaffolds with a porosity gradient, composed of a less porous outer region and a more porous inner region, showed a flexural strength (34±5MPa) that was more than twice the value for the uniform grid-like microstructure (15±5MPa) and a higher compressive strength (88±20MPa) than the grid-like microstructure (72±10MPa). Upon implantation of the scaffolds for 12weeks in rat calvarial defects in vivo, the amount of new bone that infiltrated the pore space of the scaffolds with the porosity gradient (37±16%) was similar to that for the grid-like scaffolds (35±6%). These scaffolds with a porosity gradient that better mimics the microstructure of human long bone could provide more reliable implants for structural bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of surface modified basalt fiber on strength of cinder lightweight aggregate concrete
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Li, Jiheng; Liu, Qingshun
2017-12-01
In order to improve the bonding and bridging effect between volcanic slag lightweight aggregate concrete cement and basalt fiber, The basalt fiber was subjected to etching and roughening treatment by NaOH solution, and the surface of the basalt fiber was treated with a mixture of sodium silicate and micro-silica powder. The influence of modified basalt fiber on the strength of volcanic slag lightweight aggregate concrete was systematically studied. The experimental results show that the modified basalt fiber volcanic slag lightweight aggregate concrete has a flexural strength increased by 47%, the compressive strength is improved by 16% and the toughness is increased by 27% compared with that of the non-fiber.
Jaidka, Shipra; Somani, Rani; Singh, Deepti J; Shafat, Shazia
2016-04-01
To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range.
Composite impact strength improvement through a fiber/matrix interphase
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1975-01-01
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.
Strength development of pervious concrete containing engineered biomass aggregate
NASA Astrophysics Data System (ADS)
Sharif, A. A. M.; Shahidan, S.; Koh, H. B.; Kandash, A.; Zuki, S. S. Mohd
2017-11-01
Pervious concrete with high porosity has good permeability and low mechanical strengths are commonly used in controlling storm water management. It is different from normal concrete. It is only containing single size of coarse aggregate and has lower density compared with normal concrete. This study was focused on the effect of Engineered Biomass Aggregate (EBA) on the compressive strength, void ratio and water permeability of pervious concrete. EBA was prepared by coating the biomass aggregate with epoxy resin. EBA was used to replace natural coarse aggregate ranging from 0% to 25%. 150 mm cube specimens were prepared and used to study the compressive strength, void ratio and water permeability. Compressive strength was tested at 7, 14 and 28 days. Meanwhile, void ratio and permeability tests were carried out on 28 days. The experimental results showed that pervious concrete containing EBA gained lower compressive strength. The compressive strength was reduced gradually by increasing the percentage of EBA. Overall, Pervious concrete containing EBA achieved higher void ratio and permeability.
Enhancing the compressive strength of landfill soil using cement and bagasse ash
NASA Astrophysics Data System (ADS)
Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.
2017-11-01
The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.
Studies on fabrication of glass fiber reinforced composites using polymer blends
NASA Astrophysics Data System (ADS)
Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.
2018-05-01
Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.
Fiber-reinforced silicone for tracheobronchial stents: An experimental study.
Vearick, Samanta Bianchi; Demétrio, Kétner Bendo; Xavier, Rogério Gastal; Moreschi, Alexandre Heitor; Muller, André Frotta; Sanches, Paulo Roberto Stefani; Dos Santos, Luis Alberto Loureiro
2018-01-01
A trachea is a tubular structure composed of smooth muscle that is reinforced with cartilage rings. Some diseases can cause sagging in smooth muscle and cartilaginous tissue. The end result is reduction (narrowing) of the trachea diameter. A solution to this problem is the use of tracheal stents, which are small tubular devices made of silicone. One is inserted into the trachea to prevent or correct its constriction. The purpose of tracheal stent use is to maintain cartilage support that would otherwise be lost in the airway. Current tracheal stent models present limitations in terms of shape and characteristics of the silicone used in their production. One of the most important is the large thickness of the wall, which makes its placement difficult; this mainly applies to pediatric patients. The wall thickness of the stent is closely related to the mechanical properties of the material. This study aims to test the reinforcement of silicone with three kinds of fibers, and then stents that were produced using fiber with the best compressive strength characteristics. Silicone samples were reinforced with polypropylene (PP), polyamide (PA), and carbon fiber (CF) at concentrations of 2% and 4% (vol%), which then underwent tensile strength and Shore A hardness testing. Samples with fiber showed good characteristics; surface analyses were carried out and they were used to produce stents with an internal diameter of 11 or 13mm and a length of 50mm. Stents underwent compression tests for qualitative evaluation. Samples with 2% and 4% CF blends showed the best mechanical performance, and they were used to produce stents. These samples presented similar compressive strengths at low deformation, but stents with a 4% CF blend exhibited improved compressive strength at deformations greater than 30-50% of their diameter (P ≤ 0.05). The addition of 2% and 4% CF blends conferred greater mechanical strength and resistance to the silicone matrix. This is particularly true at low deformation, which is the condition where the stent is used when implanted. In the finite element compression strength tests, the stent composite showed greater compression strength with the addition of fiber, and the results were in accordance with mechanical compression tests performed on the stents. In vivo tests showed that, after 30 days of post-implantation in sheep trachea, an inflammatory process occurred in the region of the trachea in contact with the stent composite and with the stent without fiber (WF). This response is a common process during the first few days of implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, H.; Tor, S. B.; Loh, N. H.
2014-11-01
Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic actuation.
Vashisht, Rajneesh; Attri, Sampan; Sharma, Deepak; Shukla, Abhilash; Goel, Gunjan
2018-03-01
The present study reports the potential of newly isolated calcite precipitating bacteria isolated from alluvial soil to improve the strength and durability of concrete. A total of sixteen samples of alluvial soil and sewage were collected from the different locations of province Solan (India). For isolation, enrichment culture technique was used to enrich calcite precipitating strains in Urea broth. After enrichment, fourteen distinct bacterial strains were obtained on Urea agar. Based on qualitative and quantitative screening for urease activity, five isolates were obtained possessing higher calcite formation and urease activities (38-77 μmhos/cm) as compared with standard strain of Bacillus megaterium MTCC 1684 (77 μmhos/cm). An isolate I13 identified as Lysinibacillus sp. was selected for self healing property in the concrete mix of M20. An improved compressive strength of 1.5 fold was observed in concrete samples amended with Lysinibacillus sp. over the concrete amended with B. megaterium MTCC 1684 after 28 days of curing. The higher calcite precipitation activity was indicated in Lysinibacillus sp. by FE-SEM micrographs and EDX analysis. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang
2009-06-01
Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Scharber, L. L.
2017-01-01
This study measured the compression after impact strength of IM7 carbon fiber laminates made from epoxy resins with various mode I and mode II toughness values to observe the effects of these toughness values on the resistance to damage formation and subsequent residual compression strength-carrying capabilities. Both monolithic laminates and sandwich structure were evaluated. A total of seven different epoxy resin systems were used ranging in approximate GI values of 245-665 J/sq m and approximate GII values of 840-2275 J/sq m. The results for resistance to impact damage formation showed that there was a direct correlation between GII and the planar size of damage, as measured by thermography. Subsequent residual compression strength testing suggested that GI had no influence on the measured values and most of the difference in compression strength was directly related to the size of damage. Thus, delamination growth assumed as an opening type of failure mechanism does not appear to be responsible for loss of compression strength in the specimens examined in this study.
The 1200 K compressive properties of N-containing NiAl
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Noebe, R. D.; Wheeler, D. R.
1995-01-01
As part of a series of experiments to understand the role of N on the strength of NiAl, a heat of NiAl was enriched with N by melting and atomization to powder in a nitrogen atmosphere. Following consolidation of the powder by hot extrusion, 1200 K compressive properties were measured in air. Within the range of strain rates examined, 10(exp -3) to 10(exp -9) s(exp -1), the strength of the N-enriched NiAl was greater than that of a simple 15 micron grain size polycrystalline, binary NiAl alloy. For the most part the overall improvement in strength is ascribed to the fine grain size of the N-doped NiAl rather than the alloy chemistry; however, the alloy displayed a complex behavior exhibiting both weakening effects as well as strengthening ones.
Mechanical characteristics of the new BONE-LOK bi-cortical internal fixation device.
Cachia, Victor V; Shumway, Don; Culbert, Brad; Padget, Marty
2003-01-01
The purpose of this study was to evaluate the mechanical characteristics of a new and unique titanium compression anchor with BONE-LOK (Triage Medical, Inc, Irvine, CA) technology for compressive, bi-cortical internal fixation of bone. This device provides fixation through the use of a distal grasping anchor and an adjustable proximal collar that are joined by an axially movable pin and guide wire. The titanium compression anchor, in 2.0-, 2.7-, and 3.5-mm diameters, were compared with cortex screws (Synthes USA, Paoli, PA) of the same diameter and material for pullout strength in 20 lb/cu ft and 30 lb/cu ft solid rigid polyurethane foam; and for compression strength in 20 lb/cu ft foam. Retention strength of the collar was tested independently. The results showed significantly greater pullout strength of the 2.7-mm and 3.5-mm titanium compression anchor as compared with the 2.7-mm and 3.5-mm cortex screws in these test models. Pullout strength of the 2.0-mm titanium compression anchor was not statistically different in comparison with the 2.0-mm cortical screws. Compression strength of the titanium compression anchor was significantly greater than the cortical screws for all diameters tested. These differences represent a distinct advantage with the new device, which warrants further in vivo testing. Collar retention strength testing values were obtained for reference only and have no comparative significance.
Compressive residual strength of graphite/epoxy laminates after impact
NASA Technical Reports Server (NTRS)
Guy, Teresa A.; Lagace, Paul A.
1992-01-01
The issue of damage tolerance after impact, in terms of the compressive residual strength, was experimentally examined in graphite/epoxy laminates using Hercules AS4/3501-6 in a (+ or - 45/0)(sub 2S) configuration. Three different impactor masses were used at various velocities and the resultant damage measured via a number of nondestructive and destructive techniques. Specimens were then tested to failure under uniaxial compression. The results clearly show that a minimum compressive residual strength exists which is below the open hole strength for a hole of the same diameter as the impactor. Increases in velocity beyond the point of minimum strength cause a difference in the damage produced and cause a resultant increase in the compressive residual strength which asymptotes to the open hole strength value. Furthermore, the results show that this minimum compressive residual strength value is independent of the impactor mass used and is only dependent upon the damage present in the impacted specimen which is the same for the three impactor mass cases. A full 3-D representation of the damage is obtained through the various techniques. Only this 3-D representation can properly characterize the damage state that causes the resultant residual strength. Assessment of the state-of-the-art in predictive analysis capabilities shows a need to further develop techniques based on the 3-D damage state that exists. In addition, the need for damage 'metrics' is clearly indicated.
NASA Astrophysics Data System (ADS)
Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.
2017-01-01
Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.
Release Resistant Electrical Interconnections For Mems Devices
Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.
2005-02-22
A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.
NASA Astrophysics Data System (ADS)
Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta
2015-09-01
The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-03-27
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.
High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites
NASA Astrophysics Data System (ADS)
Chang, Yuan-Wei
Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100 hours. In contrast, the yield strength of the alloy without diamantanes decreases significantly after annealing due to severe grain growth. These results suggest that diamantanes are pinning the grain boundaries and inhibiting grain growth at elevated temperatures. Finally, molecular dynamics simulations and finite element analysis are used to explore the deformation mechanisms of magnesium with different grain sizes at atomic resolutions and correct tapering effect on micro-compression test, respectively. The results in the dissertation show that nanostructured Mg-Al alloy and Mg-Al-Diamantane composite are promising materials for aerospace and automobile industries.
The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.
2018-06-01
Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.
NASA Astrophysics Data System (ADS)
Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.
2017-11-01
This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.
Loading capacity of zirconia implant supported hybrid ceramic crowns.
Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens
2015-12-01
Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Self-compacting geopolymer concrete-a review
NASA Astrophysics Data System (ADS)
Ukesh Praveen, P.; Srinivasan, K.
2017-11-01
In this construction world, Geopolymer concrete is a special concrete which doesn’t requires the Ordinary Portland Cement and also reduces the emission of carbon-dioxide. The Geopolymer Concrete is made up of industrial by-products (which contains more Silica and Alumina) and activated with the help of Alkaline solution (combination of sodium hydroxide & sodium silicate or potassium hydroxide & potassium silicate). The high viscosity nature of Geopolymer Concrete had the ability to fail due to lack of compaction. In improvising the issue, Self Compacting Geopolymer Concrete has been introduced. The SCGC doesn’t require any additional compaction it will flow and compacted by its own weight. This concrete is made up of industrial by-products like Fly ash, GGBFS and Silica Fume and activated with alkaline solution. The earlier research was mostly on Fly ash based SCGC. In few research works Fly ash was partially replaced with GGBS and Silica Fume. They evaluated the compressive strength of concrete with varying molarities of NaOH; curing time and curing temperature. The flexural behaviour of the concrete also examined. The Fly ash based SCGC was got high compressive strength in heat curing as well as low compressive strength in ambient curing. The presence of GGBS improves the strength in ambient curing. For aiming the high strength in ambient curing Fly ash will be completely replace and examine with different mineral admixtures.
NASA Astrophysics Data System (ADS)
Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.
2017-07-01
In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).
An improved polymeric sponge replication method for biomedical porous titanium scaffolds.
Wang, Chunli; Chen, Hongjie; Zhu, Xiangdong; Xiao, Zhanwen; Zhang, Kai; Zhang, Xingdong
2017-01-01
Biomedical porous titanium (Ti) scaffolds were fabricated by an improved polymeric sponge replication method. The unique formulations and distinct processing techniques, i.e. a mixture of water and ethanol as solvent, multiple coatings with different viscosities of the Ti slurries and centrifugation for removing the extra slurries were used in the present study. The optimized porous Ti scaffolds had uniform porous structure and completely interconnected macropores (~365.1μm). In addition, two different sizes of micropores (~45.4 and ~6.2μm) were also formed in the skeleton of the scaffold. The addition of ethanol to the Ti slurry increased the compressive strength of the scaffold by improving the compactness of the skeleton. A compressive strength of 83.6±4.0MPa was achieved for a porous Ti scaffold with a porosity of 66.4±1.8%. Our cellular study also revealed that the scaffolds could support the growth and proliferation of mesenchymal stem cells (MSCs). Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of core geometry and size on concrete compressive strength.
DOT National Transportation Integrated Search
2016-07-01
To evaluate the in-place concrete strength for acceptance for a structural member with : potentially substandard strength, the compressive strength of cores may be required for : assessment. Depending on the geometry and size of the core specimen, th...
A reassessment of the compressive strength properties of southern yellow pine bark
Thomas L. Eberhardt
2007-01-01
Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...
NASA Astrophysics Data System (ADS)
Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie
2017-10-01
The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.
NASA Astrophysics Data System (ADS)
Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti
2017-03-01
Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.
Hugoniot equation of state and dynamic strength of boron carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less
Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojtěch, D.; Martínek, M.
2013-12-15
Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140more » MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 • Excellent thermal stability and creep resistance of the alloy WE 43 • Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.« less
Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method
2014-01-01
The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864
Mechanical properties of polymer-modified porous concrete
NASA Astrophysics Data System (ADS)
Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.
2018-04-01
In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.
Processing and characterization of epoxy composites reinforced with short human hair
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2017-02-01
Human hair is a biological fiber with well characterized microstructure. It has many unique properties like high tensile strength, thermal insulation, unique chemical composition, elastic recovery, scaly surface etc. But due to its slow decomposition, it creates many environmental problems. Although a number of utilization avenues are already in place, hair is still considered as a biological waste. In view of this, the present work makes an attempt to explore the possibility of fabricating a class of polymer composites reinforced with short human hair fibers. Epoxy composites with different proportions of hair fiber (0, 2, 4, 6 and 8 wt.%) are prepared by simple hand lay-up technique. Mechanical properties such as tensile, flexural and compressive strengths were evaluated by conducting tests as per ASTM standards. It was found out that with the increase in fiber content, the tensile and flexural strength of the composite were increasing significantly while the compressive strength improved marginally. Scanning electron microscopy was done on these samples to observe the microstructural features.
Evaluation of capping systems for high-strength concrete cylinders.
DOT National Transportation Integrated Search
2006-03-01
This study focused on the effects of capping systems on the compressive strength of high-strength concrete. The compressive strength levels ranged from 6,000 psi to 14,000 psi. The three systems investigated were ground ends, bonded caps, and unbonde...
Diametral and compressive strength of dental core materials.
Cho, G C; Kaneko, L M; Donovan, T E; White, S N
1999-09-01
Strength greatly influences the selection of core materials. Many disparate material types are now recommended for use as cores. Cores must withstand forces due to mastication and parafunction for many years. This study compared the compressive and diametral tensile strengths of 8 core materials of various material classes and formulations (light-cured hybrid composite, autocured titanium containing composite, amalgam, glass ionomer, glass ionomer cermet, resin-modified glass ionomer, and polyurethane). Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive and diametral strengths with associated standard errors were calculated for each material (n = 10). Analyses of variance were computed (P <.0001) and multiple comparisons tests discerned many differences among materials. Compressive strengths varied widely from 61.1 MPa for a polyurethane to 250 MPa for a resin composite. Diametral tensile strengths ranged widely from 18.3 MPa for a glass ionomer cermet to 55.1 MPa for a resin composite. Some resin composites had compressive and tensile strengths equal to those of amalgam. Light-cured hybrid resin composites were stronger than autocured titanium containing composites. The strengths of glass ionomer-based materials and of a polyurethane material were considerably lower than for resin composites or amalgam.
Rolling contact fatigue strengths of shot-peened and crack-healed ceramics
NASA Astrophysics Data System (ADS)
Takahashi, K.; Oki, T.
2018-06-01
The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.
Dynamic compressive strength of epoxy composites
NASA Astrophysics Data System (ADS)
Plastinin, A. V.; Sil'vestrov, V. V.
1996-11-01
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.
Boron carbide nanostructures: A prospective material as an additive in concrete
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay
2018-05-01
In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.
Kim, Jin-Hyoung; Lee, Han-Seung
2017-09-07
In the field of construction, securing the early strength of concrete (on the first and third days of aging) has been an important problem in deciding the mold release time (i.e., shortening the construction time period). Therefore, the problem of reduced compressive strength in the early aging stage caused by mixing granulated blast furnace slag (GBFS) with concrete must certainly be resolved. In this study, we conduct experiments to explore methods for generating a concrete that develops an early strength equivalent to that of 100% OPC. The objective of this study is the development of an early-strength accelerator (ESA) made from an industrial by-product, for a GBFS-mixed cement mortar. This study also analyzes the mechanism of the early-strength generation in the concrete to evaluate the influence of the burning temperature of ESA on the optimal compressive strength of the concrete. According to the results of the experiment, GBFS, whose ESA is burnt at 800 °C, shows an activation factor of 102.6-104.7% in comparison with 100% OPC on the first and third days during early aging, thereby meeting the target compressive strength. The results of the micro-analytic experiment are as follows: ESA showed a pH of strongly alkaline. In addition, it was found that the content of SO₃ was high in the chemical components, thus activating the hydration reaction of GBFS in the early age. This initial hydration reaction was thought to be due to the increase in the filling effect of the hydrate and the generation of C-S-H of the early age by the mass production of Ettringite.
Kim, Jin-Hyoung; Lee, Han-Seung
2017-01-01
In the field of construction, securing the early strength of concrete (on the first and third days of aging) has been an important problem in deciding the mold release time (i.e., shortening the construction time period). Therefore, the problem of reduced compressive strength in the early aging stage caused by mixing granulated blast furnace slag (GBFS) with concrete must certainly be resolved. In this study, we conduct experiments to explore methods for generating a concrete that develops an early strength equivalent to that of 100% OPC. The objective of this study is the development of an early-strength accelerator (ESA) made from an industrial by-product, for a GBFS-mixed cement mortar. This study also analyzes the mechanism of the early-strength generation in the concrete to evaluate the influence of the burning temperature of ESA on the optimal compressive strength of the concrete. According to the results of the experiment, GBFS, whose ESA is burnt at 800 °C, shows an activation factor of 102.6–104.7% in comparison with 100% OPC on the first and third days during early aging, thereby meeting the target compressive strength. The results of the micro-analytic experiment are as follows: ESA showed a pH of strongly alkaline. In addition, it was found that the content of SO3 was high in the chemical components, thus activating the hydration reaction of GBFS in the early age. This initial hydration reaction was thought to be due to the increase in the filling effect of the hydrate and the generation of C-S-H of the early age by the mass production of Ettringite. PMID:28880256
NASA Astrophysics Data System (ADS)
Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.
2017-09-01
Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.
de Castro, Denise Tornavoi; Lepri, César Penazzo; Valente, Mariana Lima da Costa; dos Reis, Andréa Cândido
2016-01-01
The aim of this study was to compare the compressive strength of a silorane-based composite resin (Filtek P90) to that of conventional composite resins (Charisma, Filtek Z250, Fill Magic, and NT Premium) before and after accelerated artificial aging (AAA). For each composite resin, 16 cylindrical specimens were prepared and divided into 2 groups. One group underwent analysis of compressive strength in a universal testing machine 24 hours after preparation, and the other was subjected first to 192 hours of AAA and then the compressive strength test. Data were analyzed by analysis of variance, followed by the Tukey HSD post hoc test (α = 0.05). Some statistically significant differences in compressive strength were found among the commercial brands (P < 0.001). The conventional composite resin Fill Magic presented the best performance before (P < 0.05) and after AAA (P < 0.05). Values for compressive strength of the silorane-based composite were among the lowest obtained, both before and after aging. Comparison of each material before and after AAA revealed that the aging process did not influence the compressive strength of the tested resins (P = 0.785).
Ke, Dongxu; Bose, Susmita
2017-09-01
β-tricalcium phosphate (β-TCP) is a widely used biocompatible ceramic in orthopedic and dental applications. However, its osteoinductivity and mechanical properties still require improvements. In this study, porous β-TCP and MgO/ZnO-TCP scaffolds were prepared by the thermal decomposition of sucrose. Crack-free cylindrical scaffolds could only be prepared with the addition of MgO and ZnO due to their stabilization effects. Porous MgO/ZnO-TCP scaffolds with a density of 61.39±0.66%, an estimated pore size of 200μm and a compressive strength of 24.96±3.07MPa were prepared by using 25wt% sucrose after conventional sintering at 1250°C. Microwave sintering further increased the compressive strength to 37.94±6.70MPa, but it decreased the open interconnected porosity to 8.74±1.38%. In addition, the incorporation of polycaprolactone (PCL) increased 22.36±3.22% of toughness while maintaining its compressive strength at 25.45±2.21MPa. Human osteoblast cell line was seeded on scaffolds to evaluate the effects of MgO/ZnO and PCL on the biological property of β-TCP in vitro. Both MgO/ZnO and PCL improved osteoinductivity of β-TCP. PCL also decreased osteoblastic apoptosis due to its particular surface chemistry. This novel porous MgO/ZnO-TCP scaffold with PCL shows improved mechanical and biological properties, which has great potential in bone tissue engineering applications. Copyright © 2017. Published by Elsevier B.V.
Muzíková, J; Páleník, L
2005-05-01
The paper studies the tensile strength and disintegration time of compacts from the mixed dry binder MicroceLac 100. Tensile strength and disintegration time of tablets were tested in connection with the following factors: compression force, compression rate, addition of magnesium stearate, addition of ascorbic acid, the model active principle. The compression forces employed were 5, 6, and 7 kN, compression rates, 20 and 40 mm/min, stearate concentration 0, 0.4, and 0.8%, ascorbic acid concentration, 25 and 50%. With increasing addition of the stearate, the strength of compacts from MicroceLacu 100 was decreased for both compression rates, but with a higher rate, in a concentration of 0.4%, the decrease in strength was more marked. Disintegration time was increased with compression force and the addition of the stearate, but in all cases it was very short. Increased addition of ascorbic acid further intensified the decrease in the strength of compacts and decreased the disintegration time and the effect of the stearate on it. Disintegration time of compacts with ascorbic acid in a concentration of 50% did not increase with compression force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-01-01
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011
Development of rational pay factors based on concrete compressive strength data
DOT National Transportation Integrated Search
2008-06-01
This research project addresses the opportunity to contain the escalating costs of concrete materials in construction projects. Both statistical process control and rational acceptance criteria show that quality improvement and cost savings can be ac...
He, Dongshuang; Zhuang, Chen; Xu, Sanzhong; Ke, Xiurong; Yang, Xianyan; Zhang, Lei; Yang, Guojing; Chen, Xiaoyi; Mou, Xiaozhou; Liu, An; Gou, Zhongru
2016-09-01
Mechanical strength and its long-term stability of bioceramic scaffolds is still a problem to treat the osteonecrosis of the femoral head. Considering the long-term stability of diopside (DIO) ceramic but poor mechanical strength, we developed the DIO-based porous bioceramic composites via dilute magnesium substituted wollastonite reinforcing and three-dimensional (3D) printing. The experimental results showed that the secondary phase (i.e. 10% magnesium substituting calcium silicate; CSM10) could readily improve the sintering property of the bioceramic composites (DIO/CSM10- x , x = 0-30) with increasing the CSM10 content from 0% to 30%, and the presence of the CSM10 also improved the biomimetic apatite mineralization ability in the pore struts of the scaffolds. Furthermore, the flexible strength (12.5-30 MPa) and compressive strength (14-37 MPa) of the 3D printed porous bioceramics remarkably increased with increasing CSM10 content, and the compressive strength of DIO/CSM10-30 showed a limited decay (from 37 MPa to 29 MPa) in the Tris buffer solution for a long time stage (8 weeks). These findings suggest that the new CSM10-reinforced diopside porous constructs possess excellent mechanical properties and can potentially be used to the clinic, especially for the treatment of osteonecrosis of the femoral head work as a bioceramic rod.
Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae
2009-07-15
This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.
Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate
NASA Astrophysics Data System (ADS)
Jaivignesh, B.; Sofi, A.
2017-07-01
Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.
Lu, Liulei; Ouyang, Dong
2017-07-20
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.
Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility
NASA Astrophysics Data System (ADS)
Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin
2017-07-01
Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.
Studies of fiber-matrix adhesion on compression strength
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Nairn, John A.; Boll, D. J.
1991-01-01
A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.
Svensson, B H; Frellsen, M B; Basse, P N; Bliddal, H; Caspers, J; Parby, K
1993-02-15
We followed forty women with functional deficits in the wrist and hand after sustaining a Colles' fracture. The women participated in occupational therapy three times a week for three weeks. At the initial evaluation, after three weeks, and at a three month evaluation, we measured the following: range of joint movement, grip strength, hand volume (oedema), pain and ADL. There was significant improvement in most of the parameters measured after three weeks of occupational therapy, with a less significant improvement from three weeks to three months. Seventeen of the forty women received twenty minutes of intermittent pneumatic compression before occupational therapy. These patients showed significant improvement in wrist extension, compared with the control group of twenty-three patients. Occupational therapy is recommended for patients showing a functional deficit after Colles' fracture. Intermittent pneumatic compression is recommended as a supplement to occupational therapy.
Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.
Xiang, Hengxue; Xia, Mengge; Cunningham, Alexander; Chen, Wei; Sun, Bin; Zhu, Meifang
2017-08-01
The effects of crosslinking density, polymer concentration and monomer ratio on the mechanical properties (tensile and compressive properties) of biocompatible clay/P(MEO 2 MA-co-OEGMA) nanocomposite (NC) hydrogels were investigated. These novel NC hydrogels, composed of inorganic/organic networks, were prepared via in-situ free radical polymerization. The results showed that with increasing inorganic crosslinking agent, i.e. clay concentration, an increase in the tensile strength, elongation at break and compressive strength was observed. Similarly, with increasing polymer concentration, the tensile strength and compressive strength of the NC hydrogels increased while the elongation at break decreased. Increasing the molar concentration of OEGMA in the comonomer led to an increase in the tensile strength of the NC hydrogels but a reduction in the compressive strength. Moreover, clay/P(MEO 2 MA-co-OEGMA) NC hydrogels presented good biocompatibility bolstering their application as tissue engineering scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites
NASA Astrophysics Data System (ADS)
Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.
2018-04-01
This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.
1991-05-13
Acknowledgments I would like to recognize and express my deepost appreciation to all the people who made this pI:oject possible. Prol’essor Dennis F...Hasson provided exceptional guidance, knowledge, and timely suggestions that otherwise would have made this project impcssible. Mr. Dave Boll of...project, and performed the compression after impact testing of the panels. The Office of Naval Research provided the funding that made this project
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1994-01-01
Delaminations in laminated composite materials can degrade the compressive strength of these materials. Delaminations can form as a result of impact damage or processing flaws. In order to better understand the effects of these delaminations on the compressive behavior of laminated composite plates, programs have been conducted to assess the criticality of prescribed delaminations of known size, shape, and location on the compression strength of laminated composites. A review of these programs is presented along with highlights of pertinent findings from each.
Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-03-01
The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.
Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan
2018-01-01
Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
NASA Astrophysics Data System (ADS)
Kumbhar, A. P.; Vyavahare, R. T.; Kulkarni, S. G.
2018-05-01
Aluminium alloy based metal matrix composites (AAMMC) are mainly used in sliding wear application, automobile, Aircraft and aerospace components, Marine fittings, Transport and other industry are becoming highly advantageous due to their excellent wear resistance, lighter weight, higher strength and durability. In this paper the effect of reinforcement percentage on vibration response and mechanical properties of metal matrix composite has been investigated. Composite material was prepared by varying Sic (0, 3, 6, and 9 wt. %) by stir casting method. Natural frequency, tensile strength, rockwell hardness and compressive strength were analyzed. The result shows that, addition of sic in aluminium matrix increases natural frequency, hardness, tensile strength, compressive strength and 9 wt. % showed maximum natural frequency, hardness, tensile strength, compressive strength.
Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals.
Silva, Rafael M; Pereira, Fabiano V; Mota, Felipe A P; Watanabe, Evandro; Soares, Suelleng M C S; Santos, Maria Helena
2016-01-01
The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength,modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material.
The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste
NASA Astrophysics Data System (ADS)
Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.
2017-06-01
Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.
NASA Astrophysics Data System (ADS)
Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed
2017-12-01
In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.
Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection.
Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching
2017-01-24
One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa.
Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.
2018-03-01
This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.
Effect of angle-ply orientation on compression strength of composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTeresa, S J; Hoppel, C P
1999-03-01
An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less
Investigation of low compressive strengths of concrete in paving, precast and structural concrete
DOT National Transportation Integrated Search
2000-08-01
This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...
The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.
1992-01-01
A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.
The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading
NASA Astrophysics Data System (ADS)
Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila
2017-08-01
Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.
Improved microstructure of cement-based composites through the addition of rock wool particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wei-Ting; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan; Cheng, An, E-mail: ancheng@niu.edu.tw
2013-10-15
Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reducedmore » chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.« less
[Clinical presentation of a dorsal epidural arachnoid cyst after an epidural anesthesia].
Obil-Chavarría, Claudia Alejandra; García-Ramos, Carla Lisette; Castro-Quiñonez, Sergio Alberto; Huato-Reyes, Raúl; Santillán-Chapa, Concepción Guadalupe; Reyes-Sánchez, Alejandro Antonio
Arachnoid cysts are dural diverticula with liquid content similar to cerebrospinal fluid, with 1% occurring in the spinal cord. They locate mainly in the dorsal region of the thoracic spine, and are unusual causes of spinal cord compression. The case is presented of a previously healthy 15-year-old boy, with a 20-month history of spastic paraparesis that started apparently after epidural block for ankle osteosynthesis. There was decreased sensitivity and strength of the pelvic limbs and gradually presented with anaesthesia from T12 to L4 dermatomes, L5 and S1 bilateral hypoaesthesia and 4+/5 bilateral strength, in the L2 root and 2+/5 in L3, L4, L5, S1, hyperreflexia, Babinski and clonus, but with no alteration in the sacral reflexes. In the magnetic resonance it was diagnosed as an extradural arachnoid cyst from T6 to T9. The patient underwent a T6 to T10 laminotomy, cyst resection, dural defect suture, and laminoplasty. One year after surgery, the patient had recovered sensitivity, improvement of muscle strength up to 4+/5 in L2 to S1, and normal reflexes. After the anaesthetic procedure, increased pressure and volume changes within the cyst could cause compression of the spinal cord, leading to symptoms. Despite being a long-term compression, the patient showed noticeable improvement. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
NASA Technical Reports Server (NTRS)
Haque, A.; Jeelani, S.
1992-01-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.
NASA Astrophysics Data System (ADS)
Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye
2016-07-01
This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.
NASA Astrophysics Data System (ADS)
Lashkaripour, Gholam Reza; Rastegarnia, Ahmad; Ghafoori, Mohammad
2018-02-01
The determination of brittleness and geomechanical parameters, especially uniaxial compressive strength (UCS) and Young's modulus (ES) of rocks are needed for the design of different rock engineering applications. Evaluation of these parameters are time-consuming processes, tedious, expensive and require well-prepared rock cores. Therefore, compressional wave velocity (Vp) and index parameters such as point load index and porosity are often used to predict the properties of rocks. In this paper, brittleness and other properties, physical and mechanical in type, of 56 Asmari limestones in dry and saturated conditions were analyzed. The rock samples were collected from Khersan 2 dam site. This dam with the height of 240 m is being constructed and located in the Zagros Mountain, in the southwest of Iran. The bedrock and abutments of the dam site consist of Asemari and Gachsaran Formations. In this paper, a practical relation for predicting brittleness and some relations between mechanical and index parameters of the Asmari limestone were established. The presented equation for predicting brittleness based on UCS, Brazilian tensile strength and Vp had high accuracy. Moreover, results showed that the brittleness estimation based on B3 concept (the ratio of multiply compressive strength in tensile strength divided 2) had more accuracy as compared to the B2 (the ratio of compressive strength minus tensile strength to compressive strength plus tensile strength) and B1 (the ratio of compressive strength to tensile strength) concepts.
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum
NASA Technical Reports Server (NTRS)
Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.
1977-01-01
The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.
Insights into the effects of tensile and compressive loadings on human femur bone.
Havaldar, Raviraj; Pilli, S C; Putti, B B
2014-01-01
Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
Concepts for improving the damage tolerance of composite compression panels
NASA Technical Reports Server (NTRS)
Rhodes, M. D.; Williams, J. G.
1981-01-01
The results of an experimental evaluation of graphite-epoxy composite compression panel impact damage tolerance and damage propagation arrest concepts are reported. The tests were conducted on flat plate specimens and blade-stiffened structural panels such as those used in commercial aircraft wings, and the residual strength of damaged specimens and their sensitivity to damage while subjected to in-plane compression loading were determined. Results suggest that matrix materials that fail by delamination have the lowest damage tolerance, and it is concluded that alternative matrix materials with transverse reinforcement to suppress the delamination failure mode and yield the higher-strain value transverse shear crippling mode should be developed.
Ultrastrong ductile and stable high-entropy alloys at small scales.
Zou, Yu; Ma, Huan; Spolenak, Ralph
2015-07-10
Refractory high-entropy alloys (HEAs) are a class of emerging multi-component alloys, showing superior mechanical properties at elevated temperatures and being technologically interesting. However, they are generally brittle at room temperature, fail by cracking at low compressive strains and suffer from limited formability. Here we report a strategy for the fabrication of refractory HEA thin films and small-sized pillars that consist of strongly textured, columnar and nanometre-sized grains. Such HEA pillars exhibit extraordinarily high yield strengths of ∼ 10 GPa--among the highest reported strengths in micro-/nano-pillar compression and one order of magnitude higher than that of its bulk form--and their ductility is considerably improved (compressive plastic strains over 30%). Additionally, we demonstrate that such HEA films show substantially enhanced stability for high-temperature, long-duration conditions (at 1,100 °C for 3 days). Small-scale HEAs combining these properties represent a new class of materials in small-dimension devices potentially for high-stress and high-temperature applications.
Survivability characteristics of composite compression structure
NASA Technical Reports Server (NTRS)
Avery, John G.; Allen, M. R.; Sawdy, D.; Avery, S.
1990-01-01
Test and evaluation was performed to determine the compression residual capability of graphite reinforced composite panels following perforation by high-velocity fragments representative of combat threats. Assessments were made of the size of the ballistic damage, the effect of applied compression load at impact, damage growth during cyclic loading and residual static strength. Several fiber/matrix systems were investigated including high-strain fibers, tough epoxies, and APC-2 thermoplastic. Additionally, several laminate configurations were evaluated including hard and soft laminates and the incorporation of buffer strips and stitching for improved damage resistance of tolerance. Both panels (12 x 20-inches) and full scale box-beam components were tested to assure scalability of results. The evaluation generally showed small differences in the responses of the material systems tested. The soft laminate configurations with concentrated reinforcement exhibited the highest residual strength. Ballistic damage did not grow or increase in severity as a result of cyclic loading, and the effects of applied load at impact were not significant under the conditions tested.
Compression of laminated composite beams with initial damage
NASA Technical Reports Server (NTRS)
Breivik, Nicole L.; Gurdal, Zafer; Griffin, O. H., Jr.
1993-01-01
The effect of isolated damage modes on the compressive strength and failure characteristics of laminated composite test specimens were evaluated experimentally and numerically. In addition to specimens without initial damage, specimens with three types of initial damage were considered: (1) specimens with short delaminations distributed evenly through the specimen thickness, (2) specimens with few long delaminations, and (3) specimens with local fiber damage in the surface plies under the three-point bend contact point. It was found that specimens with short multiple delamination experienced the greatest reduction in compression strength compared to the undamaged specimens. Single delaminations far from the specimen surface had little effect on the final compression strength, and moderate strength reduction was observed for specimens with localized surface ply damage.
Geopolymerisation of silt generated from construction and demolition waste washing plants.
Lampris, C; Lupo, R; Cheeseman, C R
2009-01-01
Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (<63mum) silt particles that is classified as inert waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed.
Column strength of magnesium alloy AM-57S
NASA Technical Reports Server (NTRS)
Holt, M
1942-01-01
Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.
Effect of insulating concrete forms in concrete compresive strength
NASA Astrophysics Data System (ADS)
Martinez Jerez, Silvio R.
The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.
Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-01-01
Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696
Properties of microcement mortar with nano particles
NASA Astrophysics Data System (ADS)
Alimeneti, Narasimha Reddy
Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0.008 ratio of super plasticizer. Results showed that there was a significant increase in strength initially but gradually decreased as the time increase and showed decreased strength at 28 days when compared to control samples. Flow cone results are quite satisfying as the flow is significantly increased with the addition of nanoparticles. Time of efflux of control sample is 16.22 sec whereas for specimen with CNT had a time of efflux 12.67 sec and sample with CNF showed 13.65 seconds. Setting time test was carried on 0.4 water cement ratio. Composites with nanoparticles exhibited faster setting when compared to its control sample. Bleeding was not observed with the nanoparticles in the cement mortar. Shrinkage test was conducted on sample with 0.4 water cement ratio with 0.05% of CNT and CNF. Shrinkage was very small in the samples with nanoparticles.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-29
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength.
Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi
2016-01-01
To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate replacement rates up to 60% satisfied the target void ratio and compressive strength. PMID:28787883
Li, Limei; Zuo, Yi; Zou, Qin; Yang, Boyuan; Lin, Lili; Li, Jidong; Li, Yubao
2015-10-14
To improve the mechanical properties of bone tissue and achieve the desired bone tissue regeneration for orthopedic surgery, newly designed hydroxyapatite/polyurethane (HA/PU) porous scaffolds were developed via in situ polymerization. The results showed that the molecular modification of PU soft segments by glyceride of castor oil (GCO) can increase the scaffold compressive strength by 48% and the elastic modulus by 96%. When nano-HA (n-HA) particles were incorporated into the GCO-PU matrix, the compressive strength and elastic modulus further increased by 49 and 74%, from 2.91 to 4.34 MPa and from 95 to 165.36 MPa, respectively. The n-HA particles with fine dispersity not only improved the interface bonding with the GCO-PU matrix but also provided effective bioactivity for bonding with bone tissue. The hierarchical structure and mechanical quality of the n-HA/GCO-PU composite scaffold were determined to be appropriate for the growth of cells and the regeneration of bony tissues, demonstrating promising prospects for bone repair and regeneration.
Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang
2017-05-30
In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.
Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
Alonso, Maria Jose Castro; Ortiz, Carlos Eloir Lopez; Perez, Sixto Omar Garcia; Narayanasamy, Rajeswari; Fajardo San Miguel, Gerardo Del Jesús; Hernández, Héctor Herrera; Balagurusamy, Nagamani
2017-06-07
In recent years, biomineralization process is being employed in development of bioconcrete, which is emerging as a sustainable method to enhance the durability of concrete by way of increasing compressive strength and reducing the chloride permeability. In this study, different bacterial strains isolated from the soils of the Laguna Region of Mexico were selected for further study. ACRN5 strain demonstrated higher urease activity than other strains, and the optimum substrate concentration, pH, and temperature were 120 mM, pH 8, and 25 °C, respectively. Further, Km and Vmax of urease activity of ACRN5 were 21.38 mM and 0.212 mM min -1 , respectively. It was observed that addition of ACRN5 at 10 5 cells ml -1 to cement-water mixture significantly increased (14.94%) in compressive strength after 36 days of curing and reduced chloride penetration. Deposition of calcite in bio-mortars was observed in scanning electron microscopy and energy dispersive X-ray diffraction spectrometry analyses. Results of this study demonstrated the role of microbially induced calcium carbonate precipitation in improving the physico-mechanical properties of bio-mortars.
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.
NASA Astrophysics Data System (ADS)
Chen, Yunsheng; Lu, Xinghua
2018-05-01
The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
Pore geometry as a control on rock strength
NASA Astrophysics Data System (ADS)
Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.
2017-01-01
The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
Mohseni, Ehsan; Tang, Waiching; Cui, Hongzhi
2017-01-01
In this paper, the properties of concrete containing zeolite and tuff as partial replacements of cement and sand were studied. The compressive strength, water absorption, chloride ion diffusion and resistance to acid environments of concretes made with zeolite at proportions of 10% and 15% of binder and tuff at ratios of 5%, 10% and 15% of fine aggregate were investigated. The results showed that the compressive strength of samples with zeolite and tuff increased considerably. In general, the concrete strength increased with increasing tuff content, and the strength was further improved when cement was replaced by zeolite. According to the water absorption results, specimens with zeolite showed the lowest water absorption values. With the incorporation of tuff and zeolite, the chloride resistance of specimens was enhanced significantly. In terms of the water absorption and chloride diffusion results, the most favorable replacement of cement and sand was 10% zeolite and 15% tuff, respectively. However, the resistance to acid attack reduced due to the absorbing characteristic and calcareous nature of the tuff. PMID:28772737
Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes
Jang, Sung-Hwan; Kawashima, Shiho; Yin, Huiming
2016-01-01
Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without surfactant were characterized. MWCNT clustering was assessed qualitatively in an aqueous solution through visual observation, and quantitatively in cement matrices using a scanning electron microscopy technique. Additionally, the corresponding 28-day compressive strength, tensile strength, and electrical conductivity were measured. Results showed that the use of surfactant led to a downward shift in the MWCNT clustering size distribution in the matrices of MWCNT/cement paste, indicating improved dispersion of MWCNTs. The compressive strength, tensile strength, and electrical conductivity of the composites with surfactant increased with MWCNT concentration and were higher than those without surfactant at all concentrations. PMID:28773348
Effect of nylon fiber on mechanical properties of cement based mortar
NASA Astrophysics Data System (ADS)
Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.
2017-11-01
An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.
High-strength bioresorbable Fe-Ag nanocomposite scaffolds: Processing and properties
NASA Astrophysics Data System (ADS)
Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y.; Gotman, Irena
2015-10-01
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na2SO4 and K2CO3 salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy's law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18-22 MPa), compressive strength of 8-12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6-6 cm2) is close to the range of trabecular bone.
Electrostimulation's enhancement of recovery during a rugby preseason.
Beaven, C Martyn; Cook, Christian; Gray, David; Downes, Paul; Murphy, Ian; Drawer, Scott; Ingram, John R; Kilduff, Liam P; Gill, Nicholas
2013-01-01
Rugby preseason training involves high-volume strength and conditioning training, necessitating effective management of the recovery-stress state to avoid overtraining and maximize adaptive gains. Compression garments and an electrostimulation device have been proposed to improve recovery by increasing venous blood flow. These devices were assessed using salivary testosterone and cortisol, plasma creatine kinase, and player questionnaires to determine sleep quality, energy level, mood, and enthusiasm. Twenty-five professional rugby players were assigned to 1 of 2 treatments (compression garment or a concurrent combination of electrostimulation and compression) in a crossover design over 2 × 2-wk training blocks. Substantial benefits were observed in self-assessed energy levels (effect size [ES] 0.86), and enthusiasm (ES 0.80) as a result of the combined treatment when compared with compression-garment use. The combination treatment had no discernable effect on salivary hormones, with no treatment effect observed. The electrostimulation device did tend to accelerate the return of creatine kinase to baseline levels after 2 preseason rugby games when compared with the compression-garment intervention (ES 0.61; P = .08). Electrostimulation elicited psychometric and physiological benefits reflective of an improved recovery-stress state in professional male rugby players when combined with a lower-body compression garment.
Variations in Compressive Strength of Geopolymer due to the CaO Added Fly Ash
NASA Astrophysics Data System (ADS)
Zhao, Yuqing; Koumoto, Tatsuya; Kondo, Fumiyoshi
Recently, geopolymer has been a noteworthy material which can be used as a replacement for portland cement. The mechanical characteristics and consistency of the geopolymer are strongly affected by its chemical components of fly ash. The variations in compressive strength of geopolymer due to the CaO added fly ash were investigated in this paper. The compressive strengths of geopolymer were increased with an increase in the curing period, and the characteristics changed from the one of plastic soil material to brittle material such as concrete, regardless of CaO content. Also, the results of compressive strength and modulus of deformation showed their maximum value in the case of 8-10% CaO content. From this result, the maximum characteristics of the strengths were assumed to be exerted in case which the water draining process of geopolymer was balanced with the water absorbing process of additional CaO.
Comparison of physical and mechanical properties of river sand concrete with quarry dust concrete
NASA Astrophysics Data System (ADS)
Opara, Hyginus E.; Eziefula, Uchechi G.; Eziefula, Bennett I.
2018-03-01
This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.
Strength and texture of Pt compressed to 63 GPa
NASA Astrophysics Data System (ADS)
Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.
2015-02-01
Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.
Kupaei, Ramin Hosseini; Alengaram, U Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Jeelani, S.
1992-02-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less
Isolation and identification of bacteria to improve the strength of concrete.
Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj
2015-05-01
The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.
Zou, Yun; Zhang, Lehao; Li, Yang; ...
2017-12-06
Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.
NASA Astrophysics Data System (ADS)
Khan, Z. M.; Adams, D. O.; Anas, S.
2016-01-01
As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Furrow, Keith W.
1993-01-01
Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.
Application of natural seaweed modified mortar for sustainable concrete production
NASA Astrophysics Data System (ADS)
Siddique, M. N. I.; Zularisam, A. W.
2018-04-01
The effect of seaweed such as Eucheuma Cottonii (gel) and Gracilaria Sp. modified mortar on the properties of sustainable concrete was investigated. Pre-experiment and main-experiment was conducted to carry out this study. Pre-experiment was conducted to study the compressive strength of the sustainable concrete. The main-experiment studied the compressive and splitting strength. Results showed that seaweed modified mortar yielded satisfactory compressive and splitting strength of 30 MPa and 5 MPa at 28 days.
Dataset on predictive compressive strength model for self-compacting concrete.
Ofuyatan, O M; Edeki, S O
2018-04-01
The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.
2011-01-01
The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609
The increase of compressive strength of natural polymer modified concrete with Moringa oleifera
NASA Astrophysics Data System (ADS)
Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga
2017-03-01
Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens
Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei
2014-01-01
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279
Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei
2014-12-08
In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.
Cachia, Victor V; Culbert, Brad; Warren, Chris; Oka, Richard; Mahar, Andrew
2003-01-01
The purpose of this study was to evaluate the structural and mechanical characteristics of a new and unique titanium cortical-cancellous helical compression anchor with BONE-LOK (Triage Medical, Inc., Irvine, CA) technology for compressive internal fixation of fractures and osteotomies. This device provides fixation through the use of a distal helical anchor and a proximal retentive collar that are united by an axially movable pin (U.S. and international patents issued and pending). The helical compression anchor (2.7-mm diameter) was compared with 3.0-mm diameter titanium cancellous screws (Synthes, Paoli, PA) for pullout strength and compression in 7# and 12# synthetic rigid polyurethane foam (simulated bone matrix), and for 3-point bending stiffness. The following results (mean +/- standard deviation) were obtained: foam block pullout strength in 12# foam: 2.7-mm helical compression anchor 70 +/- 2.0 N and 3.0-mm titanium cancellous screws 37 +/- 11 N; in 7# foam: 2.7-mm helical compression anchor 33 +/- 3 N and 3.0-mm titanium cancellous screws 31 +/- 12 N. Three-point bending stiffness, 2.7-mm helical compression anchor 988 +/- 68 N/mm and 3.0-mm titanium cancellous screws 845 +/- 88 N/mm. Compression strength testing in 12# foam: 2.7-mm helical compression anchor 70.8 +/- 4.8 N and 3.0-mm titanium cancellous screws 23.0 +/- 3.1 N, in 7# foam: 2.7-mm helical compression anchor 42.6 +/- 3.2 N and 3.0-mm titanium cancellous screws 10.4 +/- 0.9 N. Results showed greater pullout strength, 3-point bending stiffness, and compression strength for the 2.7-mm helical compression anchor as compared with the 3.0-mm titanium cancellous screws in these testing models. This difference represents a distinct advantage in the new device that warrants further in vivo testing.
[A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].
Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin
2006-06-01
In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.
Effect of Autoclaved Aerated Concrete Modification with High-Impact Polystyrene on Sound Insulation
NASA Astrophysics Data System (ADS)
Brelak, Sylwia; Dachowski, Ryszard
2017-10-01
Autoclaved aerated concrete is one of the most commonly used building materials. Its advantages include low density, high thermal insulation capacity and high fire resistance. It has a relatively high compressive strength, though not high enough to be able to compete with other building materials in this respect. One of the directions leading to the improvement of physical and mechanical properties of autoclaved aerated concrete is the modification of its composition. A noticeable effect of pulverized high-impact polystyrene (improved compressive strength and water absorption) was relevant for the decision to continue the study of its effects. This paper discusses the effect of high-impact polystyrene on sound insulation in AAC products. The tests demonstrated a positive influence of the modifier on AAC sound insulation enhancement. Results from the tests performed on HIPS-modified AAC products were showed and compared with the properties of conventional products. The effect of the polymer on the microstructure of the products obtained was described briefly.
NASA Astrophysics Data System (ADS)
Ramadhoni, Benni; Ujianto, Onny; Nadapdap, Maxwell
2018-03-01
Rigid polyurethane (PU) nanocomposites were fabricated via solution mixing of PU, nanoclay and multiwalled carbon nanotubes (MWCNT) according to full factorial DoE. The nanoclay and MWCNT concentration as well as mixing speed were varied. The effects of controlled variables on reduced compressive strength, fire retardancy, hardness and morphological properties were analized. In general, the results showed that incorporation of nanofillers into PU matrix successfully elevated nanocomposites performance. The properties changed from -12% to 45% for reduced compressive strength, 9% to 30% for reduced fire retardancy and -32% to 101% for reduced hardness. The results suggested that the improvements were affected by nanoclay dispersion that acted as nucleating agent which resulted in smaller close cells of PU structures.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.
2018-03-01
Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.
Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets
Ouyang, Dong
2017-01-01
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study. PMID:28726750
Carbon nanotubes on carbon fibers: Synthesis, structures and properties
NASA Astrophysics Data System (ADS)
Zhang, Qiuhong
The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed localized transverse compression at low loads (muN to mN) and small displacements (nm to a few mum). Force, strain, stiffness, and electrical resistance were monitored simultaneously during compression experiments. The results showed that CNT/CF possess a high sensing capability between force and resistance. Hysteresis in both force-displacement and resistance-displacement curves was observed with CNT/CF, but was more evident as maximum strain increased and did not depend on strain rate. Force was higher and resistance was lower during compression as compared to decompression. A model is proposed to explain hysteresis where van der Waals forces between deformed and entangled nanotubes hinder decompression of some of the compressed tubes that are in contact with each other. This study provides a new understanding of the mechanical and electrical behavior of CNT/CF that will facilitate usage as stress and strain sensors in both stand-alone and composite materials applications. A novel method for in situ observation of nano-micro scale CNT/CF mechanical behavior by SEM has been developed in this study. The results indicated that deformation of vertical aligned CNT (VACNT) forest followed a column-like bending mechanism under localized radial (axial) compression. No fracture was observed even at very high compression strain on a VACNT forest. In order to fully understand CNT forest properties, the viscous creep behavior of VACNT arrays grown on flat Si substrate has also been characterized using a nanoindentation method. Resulting creep response was observed to consist of a short transient stage and a steady state stage in which the rate of displacement was constant. The strain rate sensitivity depended on the density of the nanotube arrays, but it was independent of the ramping (compression) rate of the indenter.
Solidification/stabilization of dredged marine sediments for road construction.
Wang, Dong Xing; Abriak, Nor Edine; Zentar, Rachid; Xu, WeiYa
2012-01-01
Cement/lime-based solidification is an environmentally sound solution for the management of dredged marine sediments, instead of traditional solutions such as immersion. Based on the mineralogical composition and physical characteristics of Dunkirk sediments, the effects of cement and lime are assessed through Atterberg limits, modified Proctor compaction, unconfined compressive strength and indirect tensile strength tests. The variation of Atterberg limits and the improvement in strength are discussed at different binder contents. The potential of sediments solidified with cement or lime for road construction is evaluated through a proposed methodology from two aspects: I-CBR value and material classification. The test results show the feasibility of solidified dredged sediments for beneficial use as a material in road construction. Cement is superior to lime in terms of strength improvement, and adding 6% cement is an economic and reasonable method to stabilize fine sediments.
NASA Astrophysics Data System (ADS)
Kalita, Samar Jyoti
Tissue engineering has made a significant contribution in developing new biomaterials that can restore the structural features and physiological functions of natural tissues. Various materials, such as metals, ceramics, polymers and composites have been developed for their use in hard tissue engineering applications. Part A of this thesis describes my research on HAp ceramics. HAp, a bioactive ceramic, is known for its osteoconductivity, but shows poor mechanical performance. This program aimed at improving mechanical performance of synthetic HAp by introducing small quantities of various sintering additives. A range of oxide-based sintering additives were selected and prepared. Dense compacts were prepared using a uniaxial press with an average green density of 1.6 g/cc. Results showed that some of these sintering additives improved densification, hardness and compression strength of synthetic HAp compared to the pure composition. A maximum bulk density of 3.06 g/cc was achieved for 2.5 wt% addition of MgO. A Microhardness of 4.9 GPa (505 HV) was measured for 2.5 wt% addition of BaO, and the highest compression strength (220MPa) was reported for 2.5 wt% addition of CaO. Cytotoxicity and cell proliferation studies with a modified human osteoblast (HOB) cell-line (OPC1) proved most of these materials non-toxic and biocompatible. Microscopic observation revealed that bone cells were attached and grew well on most of these ceramic matrices. Part B describes my work on development of controlled porosity polypropylene-tricalcium phosphate composite scaffolds via the fused deposition modeling (FDM) process. Hg-porosimetry was performed to determine pore size and their distribution. Uniaxial compression testing performed on samples with 36 vol% porosity and pore size of 160 mum showed the best compressive strength of 12.7 MPa. Part C includes my research on development of "3-D honeycomb" porous calcium aluminate structures via the indirect FDM process. Samples of 29% and 44% VFP (designed) with average pore size of 300 mum showed compressive strength between 2 and 24 MPa. Cell proliferation studies conducted with OPC1 cells on polymer-ceramic composite scaffolds and porous calcium aluminate structures showed good cell attachment and a steady cell growth behavior during the first three weeks of in vitro analyses.
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr
2017-10-01
This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.
Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-10-01
The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.
Marek, Ivo; Vojtěch, Dalibor; Michalcová, Alena; Kubatík, Tomáš František
2016-01-01
In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a combination of high-energy ball milling and subsequent spark plasma sintering. The average grain sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 μm, respectively. Mechanical properties such as the compressive yield strength, the ultimate compressive strength, the maximum compressive deformation and the Vickers hardness were studied and compared with those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect to the preparation technique and a structural investigation. PMID:28773514
Mechanical behaviour of fibre reinforced concrete using soft - drink can
NASA Astrophysics Data System (ADS)
Ilya, J.; Cheow Chea, C.
2017-11-01
This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.
Yoosathaporn, S; Tiangburanatham, P; Bovonsombut, S; Chaipanich, A; Pathom-Aree, W
2016-01-01
Application of carbonate precipitation induced by Bacillus pasteurii for improving some properties of cement has been reported. However, it is not yet successful in commercial scale due to the high cost of cultivation medium. This is the first report on the application of effluent from chicken manure bio-gas plant, a high protein content agricultural waste, as an alternative growth medium for carbonate precipitation by B. pasteurii KCTC3558. Urease activity of B. pasteurii KCTC3558 cultured in chicken manure effluent medium and other three standard media were examined using phenate method. The highest urease production was achieved in chicken manure effluent medium (16.756Umg(-1) protein). Cost per liter of chicken manure effluent medium is up to 88.2% lower than other standard media. The most effective cultivation media was selected for carbonate precipitation study in cement cubes. Water absorption, voids, apparent density and compressive strength of cement cubes were measured according to the ASTM standard. The correlation between the increasing density and compressive strength of bacterial added cement cube was evident. The density of bacterial cement cube is 5.1% higher than control while the compressive strength of cement mixed with bacterial cells in chicken manure effluent medium increases up to 30.2% compared with control. SEM and XRD analysis also found the crystalline phase of calcium carbonate within bacterial cement which confirmed that the increasing density and compressive strength were resulted from bacterial carbonate precipitation. This study indicated that the effluent from chicken manure bio-gas plant could be used as an alternative cost effective culture medium for cultivation and biocalcification of B. pasteurii KCTC3558 in cement. Copyright © 2016. Published by Elsevier GmbH.
Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang
2017-09-01
Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2 = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2 = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2 = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.
Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping
2009-05-01
The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.
2016-03-01
Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yun; Zhang, Lehao; Li, Yang
Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.
Versatile composite resins simplifying the practice of restorative dentistry.
Margeas, Robert
2014-01-01
After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.
A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression
NASA Technical Reports Server (NTRS)
Johnson, Aldie E , Jr; Semonian, Joseph W
1956-01-01
Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.
NASA Astrophysics Data System (ADS)
Nurzal; Nursyuhada, Aries
2017-12-01
This research aims based on SNI 03-0691-1996 to investigate the effect of coloring and compacting pressure with the addition of 5 wt.% fly ash (Fa) on compressive strength. Fa derived from waste material coal-fired Sijantang Sawahlunto thermal power plant. The growing production of Fa caused negative environmental impact. So, one of the solutions to overcome that effects is to use the Fa as a raw material for paving block mixture that can reduce the cost of raw material and increase its strength. Paving blocks are gray and red with 0 wt.%, 5 wt.% Fa + Pb composition. Compaction pressure variations 55, 65, 75, 85 and 95 Kg/cm2. The drying time for 35 days. Specimens were produced in the form of rectangular bar (length, L = 20 cm, width, B = 10 cm, thickness, W = 6 cm). The test results showed that the addition of 5 wt% FA has a compressive strength value higher than 0 wt%. The red color has a compressive strength lower than the gray color paving block caused the red color (Iron Oxide) is less binding at the time of mixing the material. Gray and red Paving blocks both increase in each additional compaction pressure, because the higher the compaction pressure will increase the bond between the particles so porosity is reduced increased compressive strength. The overall data, the gray paving block with the composition of 5 wt% FA at compaction pressure 95 kg/cm2 with the optimal compressive strength value of 36.1 MPa and the lowest value is found in the red color paving block at 0 wt% FA at a pressure of 55 kg/cm2 with a value of 6.5 MPa. Gray and red Color paving blocks has a compressive strength quality based on SNI 03-0691-1996.
Carrión, Francisco; Montalbán, Laura; Real, Julia I.
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213
Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.
Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae
2010-05-01
A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.
Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.
Effect of compressibility on the hypervelocity penetration
NASA Astrophysics Data System (ADS)
Song, W. J.; Chen, X. W.; Chen, P.
2018-02-01
We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.
Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun; Kodama, Masao
2016-01-21
The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime wasmore » determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.« less
The threshold strength of laminar ceramics utilizing molar volume changes and porosity
NASA Astrophysics Data System (ADS)
Pontin, Michael Gene
It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.
Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Capadona, Lynn A.; Hurwitz, Frances; Vivod, Stephanie L.; Lake, Max
2010-01-01
Research has shown that including up to 5 percent w/w carbon nanofibers in a silica backbone of polymer crosslinked aerogels improves its strength, tripling compressive modulus and increasing tensile stress-at-break five-fold with no increase in density or decrease in porosity. In addition, the initial silica hydrogels, which are produced as a first step in manufacturing the aerogels, can be quite fragile and difficult to handle before cross-linking. The addition of the carbon nanofiber also improves the strength of the initial hydrogels before cross-linking, improving the manufacturing process. This can also be extended to other oxide aerogels, such as alumina or aluminosilicates, and other nanofiber types, such as silicon carbide.
Collisional disruption of porous weak sintered targets at low impact velocity
NASA Astrophysics Data System (ADS)
Setoh, M.; Nakamura, A. M.; Hirata, N.; Hiraoka, K.; Arakawa, M.
Porous structure is common in asteroids and satellites of outer planets In order to study the relation between structure of the small bodies and their thermal and collisional evolution we prepared porous sintered targets measured the compressive strength and determined their impact strength Previous studies showed using sintered glass beads Love et al 1993 the targets with higher compressive strength have higher impact strength and the targets with higher porosity have higher impact strength However in these experiments the porosity of the targets were changed according to the compressive strength Therefore we fixed the porosity while the compressive strength was varied Our experiments were performed with low impact velocity condition because low impact velocities are common among icy bodies far from the Earth We sintered soda lime glass beads of 50 micron diameter and 2 5g cm -3 nominal density at various temperatures and durations to produce targets with similar porosity sim 40 and different compressive strength 0 2 sim 7 8MPa We performed impact disruption experiments using a low velocity light-gas gun at Kobe University sim 100m s We used cylindrical polycarbonate projectiles 1 5 cm in height and 1 0 cm in diameter We determined the specific energy J kg of projectile kinetic energy per kilo gram initial target mass for the condition that the largest fragment mass being the half of the initial target mass is the threshold energy for collisional disruption Q Fujiwara et al 1989 Holsapple et al
Improvements of nano-SiO2 on sludge/fly ash mortar.
Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q
2008-01-01
Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.
Development of Vegetation-Pervious Concrete in Grid Beam System for Soil Slope Protection
Bao, Xiaohua; Liao, Wenyu; Dong, Zhijun; Wang, Shanyong; Tang, Waiching
2017-01-01
One of the most efficient and environmentally friendly methods for preventing a landslide on a slope is to vegetate it. Vegetation-pervious concretes have a promising potential for soil protection. In this study, the vegetation-pervious concrete with low alkalinity was developed and studied. Combined with a grid beam structure system, the stability and strength between the vegetation-pervious concrete and base soil are believed to be enhanced effectively. For improving plant adaptability, the alkalinity of concrete can be decreased innovatively by adding a self-designed admixture into the cement paste. The effects of the admixture content on alkalinity and compressive strength of the hardened pervious concrete were investigated using X-ray diffraction (XRD) and compression test, respectively. Meanwhile, the permeability of the vegetation-pervious concrete was studied as well. Through comparing with ordinary pervious concrete, the effect of low alkaline pervious concrete on vegetation growth was investigated in a small-scale field for ten weeks. The test results indicated that the alkalinity of the cement samples decreased with the increase of admixture content, and the vegetation grew successfully on previous concrete. By increasing the admixture content to approximately 3.6%, the compressive strength of pervious concrete was more than 25 MPa. PMID:28772454
Processing, thermal and mechanical behaviour of PEI/MWCNT/carbon fiber nanostructured laminate
NASA Astrophysics Data System (ADS)
Santos, L. F. P.; Ribeiro, B.; Hein, L. R. O.; Botelho, E. C.; Costa, M. L.
2017-11-01
In this work, nanostructured composites of polyetherimide (PEI) with addition of functionalized multiwall carbon nanotube (MWCNT) were processed via solution mixing. After processing, these nanocomposites were evaluated by thermogravimetry (TGA), dynamic-mechanical analysis (DMA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Subsequently, the nanocomposite was processed with carbon fibers by using hot compression molding. In order to evaluate interlaminar fracture strength, the processed laminates were mechanically evaluated by interlaminar shear strength (ILSS) and compression shear test (CST). Also, the Weibull distribution was employed to help in the statistical treatment of the data obtained from the mechanical tests. With regards to the fracture of the specimens, optical microscopy was used for the evaluation of the material. The addition of 1 wt% of MWCNT in the polymer matrix increased both thermal stability and viscoelastic behavior of the material. These improvements positively impacted the mechanical properties, generating a 16% and 58% increase in the short-beam strength and apparent interlaminar shear, respectively. In addition, it can be verified from morphological analysis of the fracture a change in the failure mode of the laminate by the incorporation of MWCNT. This behavior can be proven from CST test where there was no presence of the shear force by compression.
Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V
2015-06-01
The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.
Dong, Xiaoying; Zhuo, Xiao; Wei, Jie; Zhang, Gang; Li, Yongfeng
2017-03-15
Solid wood materials and wood-plastic composites as two kinds of lightweight materials are attracting great interest from academia and industry due to their green and recycling nature. However, the relatively lower specific strength limits their wider applications. In particular, solid wood is vulnerable to moisture and decay fungi in nature, resulting in its poor durability for effectively long-term utilization. Inspired from the porous structure of wood, we propose a new design to build a wood-based nanocomposite with higher specific strength and satisfactory durability by in situ generation of organic-inorganic hybrid polymer within wood via a sol-gel method. The derived composite has 50-1200% improvement of impact toughness, 56-192% improvement of tensile strength, and 110-291% improvement of flexural strength over those of typical wood-plastic composites, respectively; and even 34% improvement of specific tensile strength than that of 36A steel; 208% enhancement of hardness; and 156% enhancement of compression strength than those of compared solid wood, respectively; as well as significantly improved dimensional stability and decay resistance over those of untreated natural wood. Such materials could be potentially utilized as lightweight and high-strength materials for applications in construction and automotive industries. This method could be extended to constitute other inorganic nanomaterials for novel organic-inorganic hybrid polymer within wood.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-04-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-12-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
A study of the properties of tablets made of directly compressible maltose.
Muzíková, J; Balhárková, J
2008-01-01
The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.
The influence of the compression interface on the failure behavior and size effect of concrete
NASA Astrophysics Data System (ADS)
Kampmann, Raphael
The failure behavior of concrete materials is not completely understood because conventional test methods fail to assess the material response independent of the sample size and shape. To study the influence of strength and strain affecting test conditions, four typical concrete sample types were experimentally evaluated in uniaxial compression and analyzed for strength, deformational behavior, crack initiation/propagation, and fracture patterns under varying boundary conditions. Both low friction and conventional compression interfaces were assessed. High-speed video technology was used to monitor macrocracking. Inferential data analysis proved reliably lower strength results for reduced surface friction at the compression interfaces, regardless of sample shape. Reciprocal comparisons revealed statistically significant strength differences between most sample shapes. Crack initiation and propagation was found to differ for dissimilar compression interfaces. The principal stress and strain distributions were analyzed, and the strain domain was found to resemble the experimental results, whereas the stress analysis failed to explain failure for reduced end confinement. Neither stresses nor strains indicated strength reductions due to reduced friction, and therefore, buckling effects were considered. The high-speed video analysis revealed localize buckling phenomena, regardless of end confinement. Slender elements were the result of low friction, and stocky fragments developed under conventional confinement. The critical buckling load increased accordingly. The research showed that current test methods do not reflect the "true'' compressive strength and that concrete failure is strain driven. Ultimate collapse results from buckling preceded by unstable cracking.
Column compression strength of tubular packaging forms made from paper
Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson
2006-01-01
Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...
Modelling the effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2017-01-01
Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.
Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling
NASA Astrophysics Data System (ADS)
Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip
2016-06-01
Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.
Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis
NASA Astrophysics Data System (ADS)
Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil
2016-05-01
This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-01-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-11
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
NASA Astrophysics Data System (ADS)
Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang
2015-06-01
Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.
Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R
2016-08-01
Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Stent longitudinal integrity bench insights into a clinical problem.
Ormiston, John A; Webber, Bruce; Webster, Mark W I
2011-12-01
Standardized bench-top compression and elongation testing was undertaken to assess the longitudinal strength of contemporary stents. Insights gained may improve clinical stent choice and deployment techniques, and facilitate future stent design improvements. The hoops of coronary stents provide radial support, and connectors hold hoops together. Strut material, shape, and thickness, along with connector number and configuration, provide the balance between stent flexibility and longitudinal integrity. Longitudinal distortion manifests as length change, strut overlap, strut separation, malapposition, and luminal obstruction. These may predispose to restenosis and stent thrombosis, obstruct passage of devices, be misinterpreted as strut fracture, and require additional stenting. The force required to compress and to elongate 7 contemporary stents was measured with an Instron universal testing machine (Norwood, Massachusetts). Stents deployed in a silicone phantom damaged by a balloon or guide catheter were imaged by microcomputed tomography to understand better the appearances and effects of longitudinal distortion. Stents with 2 connectors (Boston Scientific [Natick, Massachusetts] Omega and Medtronic [Santa Rosa, California] Driver) required significantly less force to be compressed up to 5 mm and elongated by 1 mm than designs with more connectors. The 6-connector Cypher Select required significantly more force to be elongated 5 mm than other designs. Stents with 2 connectors between hoops have less longitudinal strength when exposed to compressing or elongating forces than those with more connectors. This independent, standardized study may assist stent selection in clinical situations where longitudinal integrity is important, and may aid future design improvements. Stent longitudinal strength, the resistance to shortening or elongation, appears related to the number of connectors between hoops. Using a standardized testing protocol, designs with 2 connectors were more likely to shorten or elongate than those with more connectors. Distortion may be recognized clinically as bunching or separation of struts, and may be confused with strut fracture. Without post-dilation or further stent deployment, the patient may be at increased risk for adverse clinical events. A stent design change ensuring 3 connectors, especially at the proximal end of a stent, should increase longitudinal integrity, but perhaps at the expense of stent flexibility. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
High Tensile Strength Amalgams for In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2006-01-01
Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.
NASA Astrophysics Data System (ADS)
Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.
Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.
The influences of calcia silica contents to the compressive strength of the Al-7000 aluminium foam
NASA Astrophysics Data System (ADS)
Sutarno; Soepriyanto, S.; Korda, A. A.; Dirgantara, T.
2016-08-01
This experiment evaluated the effect of calcia alumina and alumina silica that formed as side products involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) is desired to improve the viscosity and to strengthen of cell wall of aluminium foam. However, Al-7000 aluminium foam showed a decrease tendency of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture. In this case, the silica that thermally combines with alumina compound may degrade the metal mixture of aluminium foam structure.
Parameter studies of sediments in the Storegga Slide region
NASA Astrophysics Data System (ADS)
Yang, S. L.; Kvalstad, T.; Solheim, A.; Forsberg, C. F.
2006-09-01
Based on classification tests, oedometer tests, fall-cone tests and triaxial tests, physical and mechanical properties of sediments in the Storegga Slide region were analysed to assess parameter interrelationships. The data show good relationships between a number of physical and mechanical parameters. Goodness of fit between compression index and various physical parameters can be improved by multiple regression analysis. The interclay void ratio and liquidity index correlate well with the undrained shear strength of clay. Sediments with higher water content, liquid limit, activity, interclay void ratio, plasticity index and liquidity index showed higher compression index and/or lower undrained shear strength. Some relationships between parameters were tested by using data from two other sites south of the Storegga Slide. A better understanding of properties of sediments in regions such as that of the Storegga Slide can be obtained through this approach.
Development of stitching reinforcement for transport wing panels
NASA Technical Reports Server (NTRS)
Palmer, Raymond J.; Dow, Marvin B.; Smith, Donald L.
1991-01-01
The NASA Advanced Composites Technology (ACT) program has the objective of providing the technology required to obtain the full benefit of weight savings and performance improvements offered by composite primary aircraft structures. Achieving the objective is dependent upon developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers are investigating stitching reinforcement combined with resin transfer molding to produce materials meeting the ACT program objective. Research is aimed at materials, processes, and structural concepts for application in both transport wings and fuselages, but the emphasis to date has been on wing panels. Empirical guidelines are being established for stitching reinforcement in structures designed for heavy loads. Results are presented from evaluation tests investigating stitching types, threads, and density (penetrations per square inch). Tension strength, compression strength, and compression after impact data are reported.
NASA Technical Reports Server (NTRS)
Naughton, J. W.; Cattafesta, L. N.; Settles, G. S.
1993-01-01
The effect of streamwise vorticity on compressible axisymmetric mixing layers is examined using vortex strength assessment and seed particle dynamics analysis. Experimental results indicate that the particles faithfully represent the dynamics of the turbulent swirling flow. A comparison of the previously determined mixing layer growth rates with the present vortex strength data reveals that the increase of turbulent mixing up to 60 percent scales with the degree of swirl. The mixing enhancement appears to be independent of the compressibility level of the mixing layer.
Soni, V; Senkov, O N; Gwalani, B; Miracle, D B; Banerjee, R
2018-06-11
Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an "inverted" BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.
Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites
NASA Technical Reports Server (NTRS)
Grande, D. H.; Mandell, J. F.; Hong, K. C. C.
1988-01-01
An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.
Testing compression strength of wood logs by drilling resistance
NASA Astrophysics Data System (ADS)
Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter
2017-04-01
Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.
NASA Astrophysics Data System (ADS)
Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.
2017-12-01
Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.
NASA Astrophysics Data System (ADS)
Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.
2017-04-01
This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.
Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.
Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru
2017-08-01
Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.
Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process
Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru
2017-01-01
Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027
Strength of the cervical spine in compression and bending.
Przybyla, Andrzej S; Skrzypiec, Daniel; Pollintine, Phillip; Dolan, Patricia; Adams, Michael A
2007-07-01
Cadaveric motion segment experiment. To compare the strength in bending and compression of the human cervical spine and to investigate which structures resist bending the most. The strength of the cervical spine when subjected to physiologically reasonable complex loading is unknown, as is the role of individual structures in resisting bending. A total of 22 human cervical motion segments, 64 to 89 years of age, were subjected to complex loading in bending and compression. Resistance to flexion and to extension was measured in consecutive tests. Sagittal-plane movements were recorded at 50 Hz using an optical two-dimensional "MacReflex" system. Experiments were repeated 1) after surgical removal of the spinous process, 2) after removal of both apophyseal joints, and 3) after the disc-vertebral body unit had been compressed to failure. Results were analyzed using t tests, analysis of variance, and linear regression. Results were compared with published data for the lumbar spine. The elastic limit in flexion was reached at 8.5 degrees (SD, 1.7 degrees ) with a bending moment of 6.7 Nm (SD, 1.7 Nm). In extension, values were 9.5 degrees (SD, 1.6 degrees ) and 8.4 Nm (3.5 Nm), respectively. Spinous processes (and associated ligaments) provided 48% (SD, 17%) of the resistance to flexion. Apophyseal joints provided 47% (SD, 16%) of the resistance to extension. In compression, the disc-vertebral body units reached the elastic limit at 1.23 kN (SD, 0.46 Nm) and their ultimate compressive strength was 2.40 kN (SD, 0.96 kN). Strength was greater in male specimens, depended on spinal level and tended to decrease with age. The cervical spine has approximately 20% of the bending strength of the lumbar spine but 45% of its compressive strength. This suggests that the neck is relatively vulnerable in bending.
Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering
NASA Astrophysics Data System (ADS)
Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan
2018-01-01
To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.
Thomas J. Urbanik; Edmond P. Saliklis
2002-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...
Song, Weimin; Yin, Jian
2016-01-01
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824
Song, Weimin; Yin, Jian
2016-08-18
Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhenhua; Falzone, Gabriel; Das, Sumanta
The addition of phase change materials (PCMs) has been proposed as a way to mitigate thermal cracking in cementitious materials. However, the addition of PCMs, i.e., soft inclusions, degrades the compressive strength of cementitious composites. From a strength-of-materials viewpoint, such reductions in strength are suspected to increase the tendency of cementitious materials containing PCMs to crack under load (e.g., volume instability-induced stresses resulting from thermal and/or hygral deformations). Based on detailed assessments of free and restrained shrinkage, elastic modulus, and tensile strength, this study shows that the addition of PCMs does not alter the cracking sensitivity of the material. Inmore » fact, the addition of PCMs (or other soft inclusions) enhances the cracking resistance as compared to a plain cement paste or composites containing equivalent dosages of (stiff) quartz inclusions. This is because composites containing soft inclusions demonstrate benefits resulting from crack blunting and deflection, and improved stress relaxation. As a result, although the tensile stress at failure remains similar, the time to failure (i.e., macroscopic cracking) of PCM-containing composites is considerably extended. More generally, the outcomes indicate that dosages of soft(er) inclusions, and the resulting decrease in compressive strength does not amplify the cracking risk of cementitious composites.« less
Soil-cement design study : interim report No. 1.
DOT National Transportation Integrated Search
1971-05-01
Soil-cement base course materials design in Louisiana is based upon durability and compressive strength criteria, with the compressive strength requirements being the controlling factor in 95 percent of the designs. The findings to data have provided...
Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete.
Shi, X S; Collins, F G; Zhao, X L; Wang, Q Y
2012-10-30
Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH)(2)) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel. Copyright © 2012 Elsevier B.V. All rights reserved.
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid–ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids. PMID:25755991
Evaluation of the Properties Magnesium Phosphate Cement with Emulsified Asphalt
NASA Astrophysics Data System (ADS)
Du, Jia-Chong; Shen, Ruei-Siang; Zhou, Yu-Zhun
2017-10-01
Three type mixtures of magnesium phosphate cement with emulsified asphalt for evaluation their properties. The mixtures of the samples were fabricated and allowed them 2 hours, seven and twenty eight days curing before tested by compressive strength, Marshall stability and indirect tensile strength to probe into their engineering properties. The test results show that all tests have the greatest values at the 28 days curing and too much asphalt emulsion may cause too soft as result of low stability. The compressive strength of Type-III mixture has the greatest value, no matter what curing time is. The Marshall stability test and indirect tensile strength of the Type-III mixture are qualified by the specification required for fast maintenance. The more asphalt emulsion added, the less compressive strength has.
An investigation of the compressive strength of Kevlar 49/epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.
1975-01-01
Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.
Parametric study on the compressive strength geopolymer paving block
NASA Astrophysics Data System (ADS)
Aman; Awaluddin, A.; Ahmad, A.; Olivia, M.
2018-04-01
This paper reported about the investigated of sodium hidroxida concentration, effect of ratio liquid to solid (L/S), temperature and time on the compressive strength of geopolymer paving block using fly ash and fine aggregate as base material and combination of sodium hidroxida and sodium silicate as alkaline activator and the ratio of Na2SiO3/NaOH was 2 and fly ash to aggregate of 1: 3. The experiments were conducted with variation of the sodium hidroxida concentration of (10-16 M) liquid to solid (L/S) 0.1- 0.7 ratio, curing temperature 30-100 °C and curing time (7-28 day). The main evaluation techniques in this experimental were Compressive strength, X-ray diffraction (XRD),and Scaning Electron Microscope (SEM). The result showed that the compressive strength of Geopolymer Paving block has increased with an increasing of concentration, liquid to solid ratio, curing temperature and curing time.
NASA Astrophysics Data System (ADS)
Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd
2018-04-01
The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.
2015-05-01
This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.
NASA Astrophysics Data System (ADS)
Albab, Muh Fadhil; Giovani, Nicholas; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska; Whulanza, Yudan
2018-02-01
Biomaterials composite of hydroxyapatite/chitosan is a preeminent material for medical applications including bone scaffold. To improve its mechanical properties, the chitosan as the matrix needs to be modified with particular chemical agents. One of the methods is phosphorylation of chitosan by using orthophosphoric acid prior to the biomaterials fabrication. In the current study, biomaterials with the weight composition of 70% hydroxyapatite (HA) and 30% phosphorylated chitosan have been fabricated using thermally induced phase separation (TIPS) method with freezing temperature variation of -20, -30, -40 and -80°C prior to three day-freeze drying. The results obtained by this work showed that the highest compression modulus of 376.9 kPa, highest compressive strength of 38.4 kPa and biggest pore size of 48.24 µm were achieved in the freezing temperature of -20°C. In comparison to non-phosphorylated chitosan/hydroxyapatite, the modification of chitosan using orthophosphoric acid in this work has been found to increase the compressive strength of composite up to 5.5 times.
NASA Astrophysics Data System (ADS)
Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd
2017-08-01
Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.
NASA Astrophysics Data System (ADS)
Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya
2017-11-01
Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS
NASA Astrophysics Data System (ADS)
Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura
2018-04-01
This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar
Hanford's Simulated Low Activity Waste Cast Stone Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young
2013-08-20
Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.
1991-01-01
Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.
Enhancement of properties of recycled coarse aggregate concrete using bacteria
NASA Astrophysics Data System (ADS)
Sahoo; Arakha; Sarkar; P; Jha
2016-01-01
Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.
Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties
NASA Astrophysics Data System (ADS)
Shi, Ling-Ling; Xu, Jian; Ma, Evan
2008-05-01
In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.
Immobilization in cement mortar of chromium removed from water using titania nanoparticles.
Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad
2016-05-01
Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati
2018-03-01
This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.
Oxidation Behavior of Matrix Graphite and Its Effect on Compressive Strength
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi; ...
2017-01-01
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo
2017-01-01
The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
NASA Astrophysics Data System (ADS)
Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.
2015-12-01
The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.
NASA Technical Reports Server (NTRS)
McGowan, David M.; Ambur, Damodar R.
1998-01-01
The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.
Howard, Leah; Weng, Yiming; Xie, Dong
2014-06-01
The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping
2017-03-01
Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang
2016-04-01
To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.
Study on the strength characteristics of High strength concrete with Micro steel fibers
NASA Astrophysics Data System (ADS)
Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.
2017-07-01
The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.
Compressive Failure of Fiber Composites under Multi-Axial Loading
NASA Technical Reports Server (NTRS)
Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.
2006-01-01
This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.
Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar
NASA Astrophysics Data System (ADS)
Nan, Qin; Hongwei, Wang; Yongyan, Wang
2018-03-01
Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.
Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring
Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.; ...
2016-06-01
Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.
Improved mechanical properties of thermoelectric (Bi 0.2Sb 0.8) 2Te 3 by nanostructuring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentev, M. G.; Osvenskii, V. B.; Parkhomenko, Yu. N.
Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.
The effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2015-06-01
Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.
NASA Astrophysics Data System (ADS)
Tarigan, Johannes; Meka, Randi; Nursyamsi
2018-03-01
Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharipova, Aliya; Skolkovo Institute of Science and Technology, Skolkovo, 143025; Psakhie, Sergey G.
2015-10-27
High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50%more » and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.« less
Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.
Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo
2017-08-07
Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.
Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors
Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo
2017-01-01
Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128
Objectively measured physical activity and bone strength in 9-year-old boys and girls.
Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf
2008-09-01
The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any relationship between physical activity and lumbar spine strength. Femoral neck strength is higher in boys than girls. Vigorous intensity emerged as the main physical activity predictor of femoral neck strength but did not explain gender differences. Daily vigorous physical activity for at least approximately 25 minutes seems to improve femoral neck bone health in children.
Jurowski, Krystian; Grzeszczyk, Stefania
2018-01-01
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830
Jurowski, Krystian; Grzeszczyk, Stefania
2018-03-22
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.
NASA Astrophysics Data System (ADS)
Sutarno, Nugraha, Bagja; Kusharjanto
2017-01-01
One of the most important characteristic of aluminum foam is compressive strength, which is reflected by its impact energy and Young's modulus. In the present research, optimization of calcium carbonate (CaCO3) content in the synthesized aluminum foam in order to obtain the highest compressive strength was carried out. The results of this study will be used to determine the CaCO3 content synthesis process parameter in pilot plant scale production of an aluminum foam. The experiment was performed by varying the concentration of calcium carbonate content, which was used as foaming agent, at constant alumina concentration (1.5 wt%), which was added as stabilizer, and temperature (725°C). It was found that 4 wt% CaCO3 gave the lowest relative density, which was 0.15, and the highest porosity, which was 85.29%, and compressive strength of as high as 0.26 Mpa. The pore morphology of the obtained aluminum foam at such condition was as follow: the average pore diameter was 4.42 mm, the wall thickness minimum of the pore was 83.24 µm, roundness of the pore was 0.91. Based on the fractal porosity, the compressive strength was inversely proportional to the porosity and huddled on a power law value of 2.91.
Osei-Yeboah, Frederick; Chang, Shao-Yu; Sun, Changquan Calvin
2016-05-01
Although the bonding area (BA) and bonding strength (BS) interplay is used to explain complex tableting behaviors, it has never been experimentally proven. The purpose of this study is to unambiguously establish the distinct contributions of each by decoupling the contributions from BA and BS. To modulate BA, a Soluplus® powder was compressed into tablets at different temperatures and then broken following equilibration at 25°C. To modulate BS, tablets were equilibrated at different temperatures. To simultaneously modulate BA and BS, both powder compression and tablet breaking test were carried out at different temperatures. Lower tablet tensile strength is observed when the powder is compressed at a lower temperature but broken at 25°C. This is consistent with the increased resistance to polymer deformation at lower temperatures. When equilibrated at different temperatures, the tensile strength of tablets prepared under identical conditions increases with decreasing storage temperature, indicating that BS is higher at a lower temperature. When powder compression and tablet breaking are carried out at the same temperature, the profile with a maximum tensile strength at 4°C is observed due to the BA-BS interplay. By systematically varying temperature during tablet compression and breaking, we have experimentally demonstrated the phenomenon of BA-BS interplay in tableting.
Formulation of portland composite cement using waste glass as a supplementary cementitious material
NASA Astrophysics Data System (ADS)
Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina
2017-09-01
Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.
Elastic and Plastic Behavior of an Ultrafine-Grained Mg Reinforced with BN Nanoparticles
NASA Astrophysics Data System (ADS)
Trojanová, Zuzanka; Dash, Khushbu; Máthis, Kristián; Lukáč, Pavel; Kasakewitsch, Alla
2018-04-01
Pure microcrystalline magnesium (µMg) was reinforced with hexagonal boron nitride (hBN) nanoparticles and was fabricated by powder metallurgy process followed by hot extrusion. For comparison pure magnesium powder was consolidated by hot extrusion too. Both materials exhibited a significant fiber texture. Mg-hBN nanocomposites (nc) and pure Mg specimens were deformed between room temperature and 300 °C under tension and compression mode. The yield strength and ultimate tensile and compression strength as well as characteristic stresses were evaluated and reported. The tensile and compressive strengths of Mg-hBN nc are quiet superior in values compared to monolithic counterpart as well as Mg alloys. The compressive yield strength of µMg was recorded as 90 MPa, whereas the Mg-hBN nancomposite shows 125 MPa at 200 °C. The tensile yield strength of µMg was computed as 67 MPa which is quite lower as compared to Mg-hBN nanocomposite's value which was recorded as 157 MPa at 200 °C. Under tensile stress the true stress-strain curves are flat in nature, whereas the stress-strain curves observed in compression at temperatures up to 100 °C exhibited small local maxima at the onset of deformation followed by a significant work hardening.
Compressive strength and hydration processes of concrete with recycled aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koenders, Eduardus A.B., E-mail: e.a.b.koenders@coc.ufrj.br; Microlab, Delft University of Technology; Pepe, Marco, E-mail: mapepe@unisa.it
2014-02-15
This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heatmore » flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.« less
Mechanical properties of woven glass fiber-reinforced composites.
Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji
2006-06-01
The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.
Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network
NASA Astrophysics Data System (ADS)
MolaAbasi, H.; Shooshpasha, I.
2016-04-01
The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.
Enhancing overall tensile and compressive response of pure Mg using nano-TiB{sub 2} particulates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenashisundaram, Ganesh Kumar; Seetharaman, Sankaranarayanan; Gupta, Manoj, E-mail: mpegm@nus.edu.sg
2014-08-15
A novel attempt is made to synthesize and study the isolated effects of less than two volume fraction TiB{sub 2} nanoparticulates (60 nm) on pure magnesium. New light weight Mg–TiB{sub 2} nanocomposites with superior mechanical properties compared to pure magnesium are synthesized using disintegrated melt deposition technique followed by hot extrusion. The microstructural characterization studies revealed that the samples exhibited fairly uniform distribution of TiB{sub 2} nanoparticulates with minimal porosity and good interfacial integrity between Mg matrix and TiB{sub 2} particulates. The coefficient of thermal expansion results indicates that the addition of 0.58, 0.97, and 1.98 vol.% TiB{sub 2} nanoparticulatesmore » marginally improves the dimensional stability of pure magnesium. A significant improvement in the room temperature tensile properties of pure magnesium was observed with the addition of less than two volume fraction TiB{sub 2} nanoparticulates. The synthesized Mg 1.98 vol.% TiB{sub 2} nanocomposite revealed the best room temperature tensile properties with a significant increase in the 0.2% tensile yield strength by ∼ 54%, ultimate tensile strength by ∼ 15% and fracture strain by ∼ 79% when compared to pure Mg. The X-ray diffraction studies indicated changes in the basal plane orientation of pure Mg with the addition of nano-TiB{sub 2} particulates. A maximum tensile fracture strain of ∼ 16% is achieved with the addition of 0.97 vol.% TiB{sub 2}. The room temperature compressive properties of the nanocomposites reveal that the addition of 1.98 TiB{sub 2} increases the 0.2% compressive yield strength of Mg by ∼ 47% and ultimate compressive strength by ∼ 10% with a marginal increase in the fracture strain (∼ 11%). Reduction in tensile–compression yield asymmetry was observed for Mg 0.58 and 0.97 vol.% TiB{sub 2} nanocomposites which can be attributed to the weakening of the strong basal texture of pure Mg. - Highlights: • First attempt is made to synthesize and characterize Mg-TiB{sub 2} nanocomposites. • XRD studies indicate nano TiB{sub 2} addition modifies the basal texture of pure Mg. • Maximum tensile fracture strain of ∼ 16 % in Mg 0.97 vol.% TiB{sub 2} nanocomposite. • Hardness values of Mg-TiB{sub 2} composites indicate superior tribological properties.« less
Experimental study on the performance of pervious concrete
NASA Astrophysics Data System (ADS)
Liu, Haojie; Liu, Rentai; Yang, Honglu; Ma, Chenyang; Zhou, Heng
2018-02-01
With the construction of sponge city, the pervious concrete material has been developed rapidly. A high-performance pervious concrete is developed by using cement, silica fume (SF) and superplasticizer (SP). The effects of SF, SP, aggregate size, water-cement ration and aggregate-cement ratio on the permeability coefficient, compressive strength and flexural strength are studied by controlling variables, and exploring the corrosion resistance and abrasion resistance of pervious concrete. The results show that using 0.5% SP, 5% SF and small aggregate can greatly improve the strength. There is an optimum value for water-cement ratio to make the strength and permeability coefficient maximum. Compared to ordinary pervious concrete, the corrosion resistance and abrasion resistance of this pervious concrete are very good.
NASA Astrophysics Data System (ADS)
Saito, S.; Lin, W.
2014-12-01
Core-log integration has been applied for rock mechanics studies in scientific ocean drilling since 2007 in plate subduction margins such as Nankai Trough, Costa Rica margin, and Japan Trench. State of stress in subduction wedge is essential for controlling dynamics of plate boundary fault. One of the common methods to estimate stress state is analysis of borehole breakouts (drilling induced borehole wall compressive failures) recorded in borehole image logs to determine the maximum horizontal principal stress orientation. Borehole breakouts can also yield possible range of stress magnitude based on a rock compressive strength criterion. In this study, we constrained the stress magnitudes based on two different rock failure criteria, the Mohr-Coulomb (MC) criteria and the modified Wiebols-Cook (mWC) criteria. As the MC criterion is the same as that under unconfined compression state, only one rock parameter, unconfined compressive strength (UCS) is needed to constrain stress magnitudes. The mWC criterion needs the UCS, Poisson's ratio and internal frictional coefficient determined by triaxial compression experiments to take the intermediate principal stress effects on rock strength into consideration. We conducted various strength experiments on samples taken during IODP Expeditions 334/344 (Costa Rica Seismogenesis Project) to evaluate reliable method to estimate stress magnitudes. Our results show that the effects of the intermediate principal stress on the rock compressive failure occurred on a borehole wall is not negligible.
Characterization of Mechanical Damage Mechanisms in Ceramic and Polymeric Matrix Composite Materials
1991-11-01
microplasticity is a vital factor in the compressive failure of even these very hard materials under essentially all conditions (temperature, strain rate...OF CONTENTS Pag= The Compressive Strength of Strong Ceramics: Microplasticity Versus 1 Microfracture Abstract 1 1. Introduction 2 2. Hardness 3 3...Acknowledgements 51 References 51 COATVANOORD1 24-91CDXC 11. LIST OF FIGURES Figure Page The Compressive Strength of Strong Ceramics: Microplasticity Versus
Improving Powder Tableting Performance through Materials Engineering
NASA Astrophysics Data System (ADS)
Osei-Yeboah, Frederick
Adequate mechanical strength is a critical requirement to the successful development of a tablet product. Before tablet compression, powders are often engineered by various processes including wet granulation and surface coating, which may improve or adversely affect the powder tableting performance. Such effects, commonly, result from a change in either particle mechanical properties or particulate (size, shape) properties. In this work, tableting performance is interpreted based on the qualitative bonding-area and bonding-strength (BABS) model. The tabletability of the microcrystalline cellulose (MCC) granules deteriorates rapidly with increasing amount of granulating water and eventually leads to over-granulation at high water level. Granule surface smoothing, size enlargement, granule densification and shape rounding are the dominant factors leading to the tabletability reduction of plastic MCC. Incorporation of increasing amounts of brittle excipients, such as lactose or dibasic calcium phosphate reduces the rate of tabletability reduction by promoting more granule fragmentation, introducing more surface area available for bonding. When a sufficient amount of brittle excipients is used, the over-granulation phenomenon can be eliminated. Surface coating of incompressible MCC pellets with highly bonding polymer leads to sufficient surface deformation and adhesion to enable direct compression of the pellets into tablets of adequate mechanical strength. This improvement is enhanced by the presence of moisture, which plasticizes the polymer to allow the development of a larger bonding area between coated pellets. The relationship between mechanical properties and tableting behavior is systematically investigated in polymeric composites using celecoxib-polyvinylpyrrolidone vinyl acetate solid dispersions. Mechanical properties such as indentation hardness of the solid dispersions were measured using nanoindentation. Incorporation of celecoxib up to 60% by weight hardens the polymers, which reduces bonding area but increases bonding strength. On the other hand, moisture softens the solid dispersions and facilitates deformation under pressure to improve tablet mechanical strength. In summary, insights into the deteriorated tabletability of wet granulated powders have been developed and strategies for improving tabletability have been demonstrated. Also, the relationship between particle mechanical properties and tableting performance has been examined using solid dispersions. The BABS model has been further developed to enable its widespread application in interpreting complex tableting behavior.
Effect of jute yarn on the mechanical behavior of concrete composites.
Zakaria, Mohammad; Ahmed, Mashud; Hoque, Md Mozammel; Hannan, Abdul
2015-01-01
The objective of the study is to investigate the effect of introducing jute yarn on the mechanical properties of concrete. Jute fibre is produced abundantly in Bangladesh and hence, very cheap. The investigation on the enhancement of mechanical properties of concrete with jute yarn as reinforcement, if enhanced, will not only explore a way to improve the properties of concrete, it will also explore the use of jute and restrict the utilization of polymer which is environmentally detrimental. To accomplish the objective, an experimental investigation of the compressive, flexural and tensile strengths of Jute Yarn Reinforced Concrete composites (JYRCC) has been conducted. Cylinders, prisms and cubes of standard dimensions have been made to introducing jute yarn varying the mix ratio of the ingredients in concrete, water cement ratio, length and volume of yarn to know the effect of parameters as mentioned. Compressive, flexural and tensile strength tests had been conducted on the prepared samples by appropriate testing apparatus following Standards of tests. Mechanical properties of JYRCC were observed to be enhanced for a particular range of lengths of cut (10, 15, 20 and 25 mm) and volume content of jute yarn (0.1, 0.25, 0.5 and 0.75 %). The maximum increment of compressive, flexural and tensile strengths observed in the investigation are 33, 23 and 38 %, respectively with respect to concrete without jute yarn.
Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo
2008-06-15
Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.
Effect of silica fume on the characterization of the geopolymer materials
NASA Astrophysics Data System (ADS)
Khater, Hisham M.
2013-12-01
The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.
Short-fibre reinforcement of calcium phosphate bone cement.
Buchanan, F; Gallagher, L; Jack, V; Dunne, N
2007-02-01
Calcium phosphate cement (CPC) sets to form hydroxyapatite, a major component of mineral bone, and is gaining increasing interest in bone repair applications. However, concerns regarding its brittleness and tendency to fragment have limited its widespread use. In the present study, short-fibre reinforcement of an apatitic calcium phosphate has been investigated to improve the fracture behaviour. The fibres used were polypropylene (PP) fibres, 50 microm in diameter and reduced in length by cryogenic grinding. The compressive strength and fracture behaviour were examined. Fibre addition of up to 10 wt % had a significant effect on composite properties, with the energy absorbed during failure being significantly increased, although this tended to be accompanied with a slight drop in compressive strength. The fibre reinforcement mechanisms appeared to be crack bridging and fibre pull-out. The setting time of the CPC with fibre reinforcement was also investigated and was found to increase with fibre volume fraction.
A designed experiment in stitched/RTM composites
NASA Technical Reports Server (NTRS)
Dickinson, Larry C.
1993-01-01
The damage tolerance of composite laminates can be significantly improved by the addition of through-the-thickness fibrous reinforcement such as stitching. However, there are numerous stitching parameters which can be independently varied, and their separate and combined effects on mechanical properties need to be determined. A statistically designed experiment (a 2(sup 5-1) fractional factorial, also known as a Taguchi L16 test matrix) used to evaluate five important parameters is described. The effects and interactions of stitch thread material, stitch thread strength, stitch row spacing and stitch pitch are examined for both thick (48 ply) and thin (16 ply) carbon/epoxy (AS4/E905L) composites. Tension, compression and compression after impact tests are described. Preliminary results of completed tension testing are discussed. Larger threads decreased tensile strength. Panel thickness was found not to be an important stitching parameter for tensile properties. Tensile modulus was unaffected by stitching.
Development of lightweight concrete mixes for construction industry at the state of Arkansas
NASA Astrophysics Data System (ADS)
Almansouri, Mohammed Abdulwahab
As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.
NASA Astrophysics Data System (ADS)
Kaszynska, Maria; Skibicki, Szymon
2017-12-01
High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.
Formulation and characterization of date palm fibers mortar by addition of silica fume
NASA Astrophysics Data System (ADS)
Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.
2018-05-01
This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.
Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines
Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen
2015-01-01
Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVMs model is more accurate than the statistical regression model. PMID:28793627
Biocalcification using B. pasteurii for strengthening brick masonry civil engineering structures.
Raut, Supriya H; Sarode, D D; Lele, S S
2014-01-01
Microbiologically induced calcite precipitation in bricks by bacterium Bacillus pasteurii (NCIM 2477) using a media especially optimized for urease production (OptU) was demonstrated in this study. Effect of biocalcification activity on compressive strength and water absorption capacity of bricks was investigated. Various other parameters such as pH, growth profile, urease activity, urea breakdown and calcite precipitated were monitored during the 28 days curing period. Efficiency of B. pasteurii to form microbial aided calcite precipitate in OptU media resulted into 83.9% increase in strength of the bricks as compared to only 24.9% with standard media, nutrient broth (NB). In addition to significant increase in the compressive strength, bricks treated with B. pasteurii grown in OptU media resulted in 48.9 % reduction in water absorption capacity as compared to control bricks immersed in tap water. Thus it was successfully demonstrated that microbial calcification in optimized media by Bacillus pasteurii has good potential for commercial application to improve the life span of structures constructed with bricks, particularly structures of heritage importance.
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
Controlling the Mechanical Properties of Bulk Metallic Glasses by Superficial Dealloyed Layer
Wang, Chaoyang; Li, Man; Zhu, Mo; Wang, Han; Qin, Chunling; Zhao, Weimin
2017-01-01
Cu50Zr45Al5 bulk metallic glass (BMG) presents high fracture strength. For improving its plasticity and controlling its mechanical properties, superficial dealloying of the BMG was performed. A composite structure containing an inner rod-shaped Cu-Zr-Al amorphous core with high strength and an outer dealloyed nanoporous layer with high energy absorption capacity was obtained. The microstructures and mechanical properties of the composites were studied in detail. It was found, for the first time, that the mechanical properties of Cu50Zr45Al5 BMG can be controlled by adjusting the width of the buffer deformation zone in the dealloyed layer, which can be easily manipulated with different dealloying times. As a result, the compressive strength, compressive strain, and energy absorption capacity of the BMGs can be effectively modulated from 0.9 to 1.5 GPa, from 2.9% to 4.7%, and from 29.1 to 40.2 MJ/m3, respectively. The paper may open a door for developing important engineering materials with regulable and comprehensive performances. PMID:29077072
Kwon, Yang-Hee; Kang, Sung-Hoon; Hong, Sung-Gul; Moon, Juhyuk
2017-02-24
Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted. These tests show that this new fly ash-based mortar has a compressive strength of 15 MPa at 91 days without any silica fume addition or initial thermal treatment. The strength increased to over 50 MPa based on the acceleration of the intensified pozzolanic reaction from the silica fume addition and initial thermal treatment. This is explained by a significant synergistic effect induced by the silica fume. It intensifies the pozzolanic reaction under thermal treatment and provides a space filling effect. This improved material performance can open a new pathway to utilize the industrial by-product of fly ash in cementless construction materials.
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Wei, Jinguang; Chen, Yufei; Liu, Hongzhi; Du, Chungui; Yu, Huilong; Zhou, Zhongxi
2016-08-20
In this study, TEMPO-oxidized bamboo cellulose nanofibers (TO-CNF) with anionic carboxylate groups on the surfaces were in-situ incorporated into poly(N-isopropylacrylamide) (PNIPAm) matrix to improve its thermo-responsive and mechanical properties during the polymerization. The microstructure, swelling behaviors, and compressive strength of resultant PNIPAm composite hydrogels with varying contents of TO-CNFs (0-10wt%) were then examined, respectively. Modified hydrogels exhibited the similar light transparency to pure PNIPAm one due to the formation of semi-IPN structure between PNIPAm and TO-CNF. FT-IR spectra demonstrated that the presence of TO-CNF did not alter the position of characteristic peaks associated with PNIPAm. SEM observation suggested that the pore size of PNIPAm hydrogels was markedly increased after the incorporation of TO-CNF. Also, the composite hydrogels showed superior swelling behavior and much improved compression properties with respect to pure PNIPAm one. Thus, TO-CNF appeared to be a "green" nanofiller that can simultaneously improve swelling and mechanical properties of PNIPAm hydrogel. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mužíková, Jitka; Kubíčková, Alena
2016-09-01
The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.
Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance
NASA Astrophysics Data System (ADS)
Xiao, Li-guang; Li, Gen-zhuang
2018-03-01
In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi
The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing themore » core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.« less
NASA Astrophysics Data System (ADS)
Nazri, Fadzli Mohamed; Shahidan, Shahiron; Khaida Baharuddin, Nur; Beddu, Salmia; Hisyam Abu Bakar, Badorul
2017-11-01
This study investigates the effects of high temperature with five different heating durations on residual properties of 30 MPa normal concrete. Concrete cubes were being heated up to 600°C for 30, 60, 90, 120 and 150 minutes. The temperature will keep constant for 30, 60, 90, 120 and 150 minutes. The standard temperature-time curve ISO 834 is referred to. After heating the specimen were left to cool in the furnace and removed. After cooling down to ambient temperature, the residual mass and residual compressive strength were observed. The obtained result shows that, the compressive strength of concrete decrease as the heating duration increases. This heating duration influence, might affects the loss of free water present and decomposition of hydration products in concrete. As the heating duration increases, the amount of water evaporated also increases led to loss in concrete mass. Conclusively, the percentage of mass and compressive strength loss increased as the heating duration increased.
NASA Astrophysics Data System (ADS)
Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.
2017-11-01
One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.
Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale
NASA Astrophysics Data System (ADS)
Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak
2016-09-01
Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020
NASA Astrophysics Data System (ADS)
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
Compressive Strength of Cometary Surfaces Derived from Radar Observations
NASA Astrophysics Data System (ADS)
ElShafie, A.; Heggy, E.
2014-12-01
Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.
Probabilistic simulation of uncertainties in composite uniaxial strengths
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Stock, T. A.
1990-01-01
Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.
Comparative study of mechanical properties of direct core build-up materials
Kumar, Girish; Shivrayan, Amit
2015-01-01
Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905
Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.
Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671
The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste
NASA Astrophysics Data System (ADS)
Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.
2017-11-01
This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.
Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker
2008-04-01
Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.
Grote, Simon; Kleinebudde, Peter
2018-05-29
The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.
Physical and mechanical properties of sand stabilized by cement and natural zeolite
NASA Astrophysics Data System (ADS)
Salamatpoor, Sina; Jafarian, Yaser; Hajiannia, Alborz
2018-05-01
Loose sands are prone to lose their shear strength when being subjected to static or cyclic loads. To this end, there exist several methods to improve the mechanical properties of sands, but the most crucial and viable approach is the one with the lowest harmful environmental impact both in production and recycling processes. In this regard, zeolite as a natural pozzolanic additive offers an eco-friendly improvement in strength parameters of cemented sandy soils. Thereby, in this study, a series of unconfined compressive strength (UCS) tests are conducted to evaluate the mechanical parameters of the zeolite-cemented sand. The results demonstrate a meaningful increase in the UCS of the treated sand samples for replacement of cement by zeolite at an optimum proportion of 40% in specimens with 14 and 28 days curing time. The effectiveness of the improvement process is demonstrated by the strength improvement ratio which was up to be 128% to 209% for the samples with 14 and 28 days curing time, respectively. With regard to the above results, zeolite can be introduced as a promising cement substitute in stabilization of sandy ground including backfills, roadbed, embankments, and other structural filling systems.
Effect of resistance training with vibration and compression on the formation of muscle and bone.
Zinner, Christoph; Baessler, Bettina; Weiss, Kilian; Ruf, Jasmine; Michels, Guido; Holmberg, Hans-Christer; Sperlich, Billy
2017-12-01
In this study we investigated the effects of resistance training with vibration in combination with leg compression to restrict blood flow on strength, muscle oxygenation, muscle mass, and bone formation. Twelve participants were tested before and after 12 weeks of resistance training with application of vibration (VIBRA; 1-2 mm, 30 Hz) to both legs and compression (∼35 mm Hg, VIBRA+COMP) to only 1 leg. VIBRA+COMP and VIBRA improved 1 repetition maximum (1-RM), increased the number of repetitions preceding muscle exhaustion, enhanced cortical bone mass, and lowered the mass and fat fraction in the thigh, with no changes in total muscle mass. The mass of cancellous bone decreased to a similar extent after VIBRA and VIBRA+COMP. Resistance training with VIBRA+COMP and VIBRA improved 1-RM, increased the number of repetitions preceding muscular exhaustion, and enhanced formation of cortical bone, with no alteration of muscle mass. Muscle Nerve 56: 1137-1142, 2017. © 2017 Wiley Periodicals, Inc.
Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures
NASA Technical Reports Server (NTRS)
Heimerl, George J; Hughes, Philip J
1953-01-01
Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.
Mechanical characterization of Al-2024 reinforced with fly ash and E-glass by stir casting method
NASA Astrophysics Data System (ADS)
Ramesh, B. T.; Swamy, R. P.; Vinayak, Koppad
2018-04-01
The properties of MMCs enhance their handling in automotive and various applications for the reason that of encouraging properties of high stiffness and high strength, low density, high electrical and thermal conductivity, corrosion resistance, improved wear resistance etc. Metal Matrix Composites are a vital family of materials designed at achieving an improved combination of properties. Our paper deals through to fabricate Hybrid Composite by heating Al 2024 in furnace at a temperature of around 4000 C. E-Glass fiber & Fly ash will be added to the molten metal with changing weight fractions and stirred strongly. Then the ensuing composition will poured into the mould to obtain hybrid composite casting. Aluminium alloy (2024) is the matrix metal used in the present investigation. Fly ash and e-glass are used as the reinforced materials to produce the composite by stir casting. Fly ash is selected because of it is less expensive and low density reinforcement available in great quantities as solid disposal from thermal power plants. The Test specimen is prepared as per ASTM standards size by machining operations to conduct Tensile, Compression, Hardness, and wear test. The test specimens are furnished for tensile, compression strength and wear as per ASTM standard E8, E9 and G99 respectively using Universal Testing Machine and pin on disk machine. It is seen that the fabricated MMC obtained has got enhanced mechanical strength.
Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends
Siddam, Haritha; Kotla, Niranjan G.; Maddiboyina, Balaji; Singh, Sima; Sunnapu, Omprakash; Kumar, Anil; Sharma, Dinesh
2016-01-01
Introduction: Oral sustained release gastro retentive dosage forms offer several advantages for drugs having absorption from the upper gastrointestinal tract to improve the bioavailability of medications which have narrow absorption window. The aim of the study was to develop a floating bioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong the residence in the stomach using atenolol as a model drug. Methods: Prior to compression, polymeric blend(s) were evaluated for flow properties. The tablets were prepared by direct compression method using bioadhesive polymer like Carbopol 934P and hydrophilic polymers like HPMC K4M, HPMC K15M, and HPMC K100M. The prepared tablets were evaluated for physical characteristics, bioadhesive strength, buoyancy lag time, swelling index and in vitro drug release studies. Results: The mean bioadhesive strength was found to be in the range of 16.2 to 52.1 gm. The optimized blend (F11) showed 92.3% drug releases after 24 hrs. Whilst, increase in concentration of carbopol 934P, bioadhesive strength and swelling index was increased with slow release. The n values of optimized formulations were found in the range of 0.631-0.719 indicating non-fickian anomalous type transport mechanism. Conclusion: The study aided in developing an ideal once-a-day gastro retentive floating drug delivery system with improved floating, swelling and bioadhesive characteristics with better bioavailability. PMID:27051631
The Effects of Compressive Preloads on the Compression-After-Impact Strength of Carbon/Epoxy
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
1994-01-01
A fixture to apply compressive loads to composite specimens during an impact event was used to assess the effect of prestresses on the compression-after-impact (CAI) strength of 16 ply quasi-isotropic carbon/epoxy test coupons. Advanced design of experiments techniques were used to evaluate a range of prestresses and impact energies on two material systems, T300/934 and IM7/8551-7. An instrumented drop tower supplied impact energies between 1 and 9 Joules for the T300/934 material and between 4 and 16 Joules for the IM7/8551-7 material. The prestress values varied between a low of 5.7 Wa and a high of 287 NDa. Results showed some change in CAI strength that could be attributed to the prestresses on the specimens.
Compression and flexural strength of bone cement mixed with blood.
Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W
2016-08-01
To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.
The deformation of gum metal under nanoindentation and sub-micron pillar compression
NASA Astrophysics Data System (ADS)
Withey, Elizabeth Ann
Reaching ideal strength has proven to be difficult in most materials. Dislocation slip, phase transformations, twinning, and fracture all tend to occur at stresses well below the ideal strength of a material. Only on very small scales has it been possible to approach ideal strength. Thus, it was of great interest when a set of beta-Ti alloys, Gum Metal, were found to have a bulk yield strength close to half of its ideal strength. However, some recent studies have questioned the reliability of this claim. Several studies have suggested Gum Metal deforms by dislocation slip. Others have suggested the possibility of transformation-induced plasticity. The present study was undertaken in order to help clarify if and how Gum Metal can reach ideal strength. Two different experiments, ex situ nanoindentation and quantitative in situ nanopillar compression in a transmission electron microscope to correlate real-time deformation behavior, were performed on a single composition of Gum Metal, Ti-23Nb-0.7Ta-2Zr-1.20 at. %, obtained from Toyota Central R&D Laboratories. Nanoindented specimens were thinned from the bottom surface until the pits of multiple indentations became electron-transparent allowing for qualitative analysis of the deformation microstructure in both fully cold-worked and solution-treated specimens. Real-time load-displacement behavior from the nanopillar compression tests was correlated with real-time video recorded during each compression to determine both the compressive strength of each pillar and the timing and strengths of different deformation behaviors observed. Combining the results from both experiments provided several important conclusions. First, Gum Metal approaches and can attain ideal strength in nanopillars regardless of processing condition. While dislocations exist in Gum Metal, they can be tightly pinned by obstacles with spacing less than ˜20 nm, which should inhibit their motion at strengths below the ideal shear strength. The plastic deformation of Gum Metal is not controlled by giant faults or by stress-induced phase transformations. Both of these phenomena, while active, are not the source of plasticity in Gum Metal.
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
Optimum mix for fly ash geopolymer binder based on workability and compressive strength
NASA Astrophysics Data System (ADS)
Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.
2018-04-01
The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.
The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles
Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali
2016-01-01
This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073
A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite
2011-03-01
95 8. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791-796. 9...Letters 45, 615-616. 59. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791
Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de
2016-01-01
Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391
NASA Astrophysics Data System (ADS)
Memon, Fareed Ahmed; Nuruddin, Muhd Fadhil; Shafiq, Nasir
2013-02-01
The effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete (SCGC) was investigated in this paper. The work focused on the concrete mixes with a fixed water-to-geopolymer solid (W/Gs) ratio of 0.33 by mass and a constant total binder content of 400 kg/m3. The mass fractions of silica fume that replaced fly ash in this research were 0wt%, 5wt%, 10wt%, and 15wt%. The workability-related fresh properties of SCGC were assessed through slump flow, V-funnel, and L-box test methods. Hardened concrete tests were limited to compressive, splitting tensile and flexural strengths, all of which were measured at the age of 1, 7, and 28 d after 48-h oven curing. The results indicate that the addition of silica fume as a partial replacement of fly ash results in the loss of workability; nevertheless, the mechanical properties of hardened SCGC are significantly improved by incorporating silica fume, especially up to 10wt%. Applying this percentage of silica fume results in 4.3% reduction in the slump flow; however, it increases the compressive strength by 6.9%, tensile strength by 12.8% and flexural strength by 11.5%.
A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.
Weng, Y; Howard, L; Xie, D
2014-07-01
We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.
Dissipative processes under the shock compression of glass
NASA Astrophysics Data System (ADS)
Savinykh, A. S.; Kanel, G. I.; Cherepanov, I. A.; Razorenov, S. V.
2016-03-01
New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, P.A.
1995-10-17
An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.
Method for testing the strength and structural integrity of nuclear fuel particles
Lessing, Paul A.
1995-01-01
An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.
[Compressive and bend strength of experimental admixed high copper alloys].
Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G
1988-01-01
Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.
Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness
NASA Technical Reports Server (NTRS)
Chapman, Andrew J.
1984-01-01
Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.
Fabric controls on the brittle failure of folded gneiss and schist
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.
2014-12-01
We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.
Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water
NASA Astrophysics Data System (ADS)
Fillery, Scott Pierson
2007-06-01
The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array spacing. ZnO films grown on III-nitride LED devices for use as transparent conducting layers showed intrinsic n-type doping, high transparency and adequate electrical contact resistance, resulting in linear light output with forward bias current and improved light extraction.
NASA Astrophysics Data System (ADS)
Husin, Wan Norsariza Wan; Johari, Izwan
2017-09-01
The addition of supplementary cementitious materials may change the physical and mechanical properties of concrete. Mineral additions which are also known as mineral admixtures have been used with cement for many years. However, this research did not use Ordinary Portland Cement (OPC) but using the Portland Cement Composite (PCC). The aim of this study is to determine the effect of partial substitution of PCC by silica fume (SF) on the physicomechanical properties especially the compressive strength of the hardened PCC-SF composite concrete. Silica fume was used to replace PCC at dosage levels of 5%, 10%, 15% and 20% by weight of cement in concrete. The results show that on 7 days the PCC concrete exhibited lower early age strength but PCC-SF concrete improved and gain strength up to grade 30 in 7 days. The utilisation of SF resulted in significant improvement of Portland composite concrete admixture.
Uhumwangho, M U; Okor, R S
2006-04-01
Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability, compressibility, and disintegration data, carnuba wax proved most promising in the melt granulation of the test drug for sustained release applications.
Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression
NASA Technical Reports Server (NTRS)
McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.
2001-01-01
Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.
Compression of thick laminated composite beams with initial impact-like damage
NASA Technical Reports Server (NTRS)
Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.
1992-01-01
While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Pei; Wei, Pingpin; Li, Pengjian
Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20more » wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.« less
Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed
2012-01-01
In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength. PMID:22605981
Arefi, Mohammad Reza; Rezaei-Zarchi, Saeed
2012-01-01
In the present study, the mechanical properties of self-compacting concrete were investigated after the addition of different amounts of ZnO nanoparticles. The zinc oxide nanoparticles, with an average particle size of about 30 nm, were synthesized and their properties studied with the help of a scanning electron microscope (SEM) and X-ray diffraction. The prepared nanoparticles were partially added to self-compacting concrete at different concentrations (0.05, 0.1, 0.2, 0.5 and 1.0%), and the mechanical (flexural and split tensile) strength of the specimens measured after 7, 14, 21 and 28 days, respectively. The present results have shown that the ZnO nanoparticles were able to improve the flexural strength of self-compacting concrete. The increased ZnO content of more than 0.2% could increase the flexural strength, and the maximum flexural and split tensile strength was observed after the addition of 0.5% nanoparticles. Finally, ZnO nanoparticles could improve the pore structure of the self-compacted concrete and shift the distributed pores to harmless and less-harmful pores, while increasing mechanical strength.
Prediction of reinforced concrete strength by ultrasonic velocities
NASA Astrophysics Data System (ADS)
Sabbağ, Nevbahar; Uyanık, Osman
2017-06-01
This study was aimed to determine the strength of the reinforced concrete and to reveal the reinforcement effect on the concrete strength by Ultrasonic P and S wave velocities. Studies were conducted with prepared 9 different concrete designs of showing low, medium and high strength features. 4 kinds of cubic samples which unreinforced and including 10, 14 or 20 mm diameter reinforcement were prepared for these designs. Studies were carried out on total 324 samples including 9 samples for each design of these 4 kinds. The prepared samples of these designs were subjected to water curing. On some days of the 90-day period, P and S wave measurements were repeated to reveal the changes in seismic velocities of samples depending on whether reinforced or unreinforced of samples and diameter of reinforcement. Besides, comparisons were done by performing uniaxial compressive strength test with crushing of 3 samples on 7th, 28th and 90th days. As a result of studies and evaluations, it was seen that values of seismic velocities and uniaxial compressive strength increased depending on reinforcement and diameter of reinforcement in low strength concretes. However, while the seismic velocities were not markedly affected from reinforcement or reinforcement diameter in high strength concrete, uniaxial compressive strength values were negatively affected.
The influence of lay-up and thickness on composite impact damage and compression strength
NASA Technical Reports Server (NTRS)
Guynn, E. G.; Obrien, T. K.
1985-01-01
The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1993-01-01
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jong-Pil, E-mail: jpwon@konkuk.ac.kr; Hwang, Un-Jong; Lee, Su-Jin
This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyzemore » long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.« less
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2012 CFR
2012-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.
Code of Federal Regulations, 2014 CFR
2014-07-01
... standard test method of field-cured samples, either 75 percent of the intended minimum compressive design... the basis of an appropriate ASTM standard test method of field-cured samples, either 75 percent of the intended minimum compressive design strength or sufficient strength to support the loads imposed during...
Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S
2017-08-01
In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.
A review of nanoclay applications in the pervious concrete pavement
NASA Astrophysics Data System (ADS)
Shakrani, Shahrul Azwan; Ayob, Afizah; Rahim, Mohd Asri Ab
2017-09-01
In recent years, the use of nanoclay has received various interests in order to enhance the properties of construction materials which can also be eligible for pavement technology and engineering application. This review paper summarizes the effect of nanoclay as cement replacement and additive to the performance of pervious concrete pavement. The addition of nanoclay to pervious concrete has demonstrated improvements in strength properties such as compressive and flexural strength, durability such as freeze-thaw and chloride penetration resistance, shrinkage, and denser microstructure but at the same time reduced the porosity, permeability and water absorption properties. This enhancement is due to the roles of nanoclay as nanoreinforcements, nanofillers, nucleation site, and reactive pozzolans in order to promote hydration and improve material properties.
Study of novel concepts of power transmission gears
NASA Technical Reports Server (NTRS)
Rivin, Eugene I.
1991-01-01
Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.
De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos
2013-03-01
Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.
NASA Technical Reports Server (NTRS)
Ko, William L.
1998-01-01
Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.
Chen, Song; Gururaj, Satwik; Xia, Wei; Engqvist, Håkan
2016-11-01
Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F - and Ag + ) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F - . Concentration of Ag + was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Jackson, J. R.
2009-01-01
The derivation of design values for compression after impact strength for two types of honeycomb sandwich structures are presented. The sandwich structures in this study had an aluminum core and composite laminate facesheets of either 16-ply quasi or 18-ply directional lay-ups. The results show that a simple power law curve fit to the data can be used to create A- and B-basis residual strength curves.
Hydrogen effects on materials for CNG/H2 blends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farese, David; Keller, Jay O.; Somerday, Brian P.
2010-09-01
No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.
Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials
Yang, Keun-Hyeok; Jeon, Yong-Su
2014-01-01
The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (R SCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to R SCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at R SCM of 0.9. Hence, it is recommended that R SCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete. PMID:25162049
Estimation of static parameters based on dynamical and physical properties in limestone rocks
NASA Astrophysics Data System (ADS)
Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza
2018-01-01
Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.
Experimental Study on Cementitious Composites Embedded with Organic Microcapsules
Wang, Xianfeng; Xing, Feng; Zhang, Ming; Han, Ningxu; Qian, Zhiwei
2013-01-01
The recovery behavior for strength and impermeability of cementitious composites embedded with organic microcapsules was investigated in this study. Mortar specimens were formed by mixing the organic microcapsules and a catalyst with cement and sand. The mechanical behaviors of flexural and compression strength were tested. The results showed that strength could increase by up to nine percent with the addition of a small amount of microcapsules and then decrease with an increasing amount of microcapsules. An orthogonal test for investigating the strength recovery rate was designed and implemented for bending and compression using the factors of water/cement ratio, amount of microcapsules, and preloading rate. It is shown that the amount of microcapsules plays a key role in the strength recovery rate. Chloride ion permeability tests were also carried out to investigate the recovery rate and healing effect. The initial damage was obtained by subjecting the specimens to compression. Both the recovery rate and the healing effect were nearly proportional to the amount of microcapsules. The obtained cementitious composites can be seen as self-healing owing to their recovery behavior for both strength and permeability. PMID:28788318
Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.
Kockal, Niyazi Ugur; Ozturan, Turan
2010-07-15
Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. 2010 Elsevier B.V. All rights reserved.
Previous concrete as one of the technology to overcome the puddle
NASA Astrophysics Data System (ADS)
Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar
2018-03-01
Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer
The Influence of Addition of Plastiment-VZ to Concrete Characteristics in Riau Province
NASA Astrophysics Data System (ADS)
Wahyuni Megasari, Shanti; Winayati
2017-12-01
Riau Province has an area of 8,702,000 ha consisting of 7,121.344,00 ha of forest and 3,867,000 ha in the form of peatlands. Peat structures are soft and have pores that make it easy to hold water. Peat water has a high color intensity, low pH, high organic content and has an acidic properties So it does not qualify as a mixture of concrete. To meet the needs of water in the concrete mix then water should be obtained from another place but it will require a greater cost and time. To resolve the issue, the advancement of concrete technology has resulted in admixture that can help in maintaining the quality of concrete. Plastiment-VZ is a plasticizer material that can increase workability of concrete without adding water. However, for the use in the field, the selection of admixture must be adjusted to the planned concrete situation and condition. Excessive use of admixture will also result in uneconomical concrete. The design of the job mix using the Department of Environment (DOE) method with compressive strength concrete plan fc ' = 25 MPa. The percentage of Plastiment-VZ addition is 0%, 0,05%; 0,10%; 0,15% and 0,20% to the weight of cement. The reduction of the amount of water in this study is 10% of the total amount of water. Specimens in each variation were made using cylinder mold with 15 cm in diameter and 30 cm high. After specimens are created and maintained, testing of compressive strength concrete held in 28 days. The test results show that the trend of average compressive strength has increased along with the addition of Plastiment-VZ percentage. The equation resulting from the average compressive strength is y = -362,7x2 + 133,3x + 28,10 with value R2 = 0,969. The highest average compressive strength value was obtained in the addition of 0,20% Plastiment-VZ at 40,76 MPa. Statistical testing with Analysis of Variance - ANOVA states that there is a very real interaction or treatment between the compressive strength of the concrete with the addition of Plastiment-VZ. So it can be concluded that the reduction of the amount of water with the addition of Plastiment-VZ has an effect on the increasing of concrete compressive strength characteristics.
Johnson, Earl E; Light, Keri C
2015-09-01
To evaluate sound quality preferences of participants wearing hearing aids with different strengths of nonlinear frequency compression (NFC) processing versus no NFC processing. Two analysis methods, one without and one with a qualifier as to the magnitude of preferences, were compared for their percent agreement to differentiate a small difference in perceived sound quality as a result of applied NFC processing. A single-blind design was used with participants unaware of the presence or strength of NFC processing (independent variable). The National Acoustic Laboratories-Nonlinear 2 (NAL-NL2) prescription of amplification was chosen because audibility is intentionally not prescribed in the presence of larger sensorineural hearing loss thresholds. A lack of prescribed audibility, when present, was deemed an objective qualifier for NFC. NFC is known to improve the input bandwidth available to listeners when high-frequency audibility is not otherwise available and increasing strengths of NFC were examined. Experimental condition 3 (EC3) was stronger than the manufacturer default (EC2). More aggressive strengths (e.g., EC4 and EC5), however, were expected to include excessive distortion and even reduce the output bandwidth that had been prescribed as audible by NAL-NL2 (EC1). A total of 14 male Veterans with severe high-frequency sensorineural hearing loss. Participant sound quality preference ratings (dependent variable) without a qualifier as to the magnitude of preference were analyzed based on binomial probability theory, as is traditional with paired comparison data. The ratings with a qualifier as to the magnitude of preference were analyzed based on the nonparametric statistic of the Wilcoxon signed rank test. The binomial probability analysis method identified a sound quality preference as well as the nonparametric probability test method. As the strength of NFC increased, more participants preferred the EC with less NFC. Fourteen of 14 participants showed equal preference between EC1 and EC2 perhaps, in part, because EC2 showed no objective improvement in audibility for six of the 14 participants (42%). Thirteen of the 14 participants showed no preference between NAL-NL2 and EC3, but all participants had an objective improvement in audibility. With more NFC than EC3, more and more participants preferred the other EC with less NFC in the paired comparison. By referencing the recommended sensation levels of amplitude compression (e.g., NAL-NL2) in the ear canal of hearing aid wearers, the targeting of NFC parameters can likely be optimized with respect to improvements in effective audibility that may contribute to speech recognition without adversely impacting sound quality. After targeting of NFC parameters, providers can facilitate decisions about the use of NFC parameters (strengths of processing) via sound quality preference judgments using paired comparisons. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
Patermann, Simone; Altstädt, Volker
2015-05-01
Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylene-diene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different crosslinking systems was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The same improvement is only reachable with twice the concentration of phenolic resin. Only the peroxide cross-linked blends show smaller dispersed EPDM particles with increasing peroxide concentration. With a peroxide concentration between 0.2 and 0.5 wt. %, a maximum in tensile strength and elongation at break was found. For the phenolic resin cross-linked blends, the tensile strength stays almost constant with increasing phenolic resin concentration and the elongation at break shows best results at 0.5 wt. % phenolic resin. Compared to batch processes, the results show different values, but comparable trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin
2010-05-17
Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffnessmore » and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While ‘dry’ panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.« less
Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G
2015-01-01
The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.
Concrete probe-strength study : final report.
DOT National Transportation Integrated Search
1969-12-01
The Windsor probe - test system was evaluated for determining compressive strength of concrete by comparing probe strengths against cylinder and core strengths from both laboratory and field-poured concrete. Advantages and disadvantages of this syste...
He, Guo; Liu, Ping; Tan, Qingbiao; Jiang, Guofeng
2013-12-01
The entangled titanium materials with various porosities have been investigated in terms of the flexural and compressive mechanical properties and the deformation and failure modes. The effect of the sintering parameters on the mechanical properties and the porosity reduction has been comprehensively studied. The results indicate that both the flexural and compressive mechanical properties increase significantly as the porosity decreases. In the porosity range investigated the flexural elastic modulus is in the range of 0.05-6.33GPa, the flexural strength is in the range of 9.8-324.9MPa, the compressive elastic modulus is in the range of 0.03-2.25GPa, and the compressive plateau stress is in the range of 2.3-147.8MPa. The mechanical properties of the entangled titanium materials can be significantly improved by sintering, which increase remarkably as the sintering temperature and/or the sintering time increases. But on other hand, the sintering process can induce the porosity reduction due to the oxidation on the titanium wire surface. © 2013 Elsevier Ltd. All rights reserved.
Effect of Silica Fume on two-stage Concrete Strength
NASA Astrophysics Data System (ADS)
Abdelgader, H. S.; El-Baden, A. S.
2015-11-01
Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.
Characterization, reproduction and optimization of traditional adobe bricks
NASA Astrophysics Data System (ADS)
Ioannou, Ioannis; Eftychiou, Marina; Costi de Castrillo, Maria; Illampas, Rogiros
2013-04-01
Adobe bricks were first introduced 10-12,000 years ago. Extensive use of the material throughout the centuries has led to strong local traditions of building with earth and has established adobe masonry as an important feature of the international architectural heritage. Today, despite no longer being a prevalent building material, adobes are still in use, since a number of earthen structures survive worldwide. Furthermore, the simplicity, low cost and almost negligible embodied energy associated with the production of adobes, as well as their good thermal and acoustic properties, render them an attractive option for use in contemporary sustainable construction. Therefore, several ongoing research projects internationally investigate the physicochemical and mechanical properties of traditional adobe bricks and the design/production of optimized adobes, with improved characteristics, for use in contemporary architecture. Here, we present ongoing research on adobe bricks carried out in the framework of the project E& IXEIPH EI / POION/0609/41, which is co-funded by the European Regional Development Fund and the Republic of Cyprus, through the Cyprus Research Promotion Foundation. Our work focuses on the characterization of traditional adobes, their reproduction and optimization in the laboratory to produce materials with improved physicomechanical properties. Results up-to-date show that traditional adobes are mostly composed of random quantities of silt and clay. Calcite is also predominant in relevant X-ray diffraction analyses. The average capillary water absorption coefficient (measured against a saturated sponge surface) of samples collected from market suppliers rarely exceeds 1 mm/min1 -2, while their thermal conductivity is around 0.55 W/mK. The response of traditional adobes to compression is characterized by intense deformability. The average compressive strength recorded depends on the form of test specimen (cube, cylinder, prism). Samples with aspect ratio 1:1 produce results ranging from 1-2 MPa, whereas prisms with height-to-width ratios < 1 give values from 2.5-9 MPa. Differences are noted among the properties of: (a) adobes produced by different manufactures; (b) adobes made by the same manufacturer but originating from different production batches and (c) specimens originating from the same brick. When subjected to three-point bending, the behaviour of adobes is influenced by the presence of discontinuities within their mass. Hence, flexural strength is rather variable and weakly correlated to compressive strength. This abnormal mechanical behaviour is attributed to the inherent inhomogeneity and natural randomness of adobes which is "enhanced" by the adoption of empirical non-industrialized production methods. Discrepancy in the outcomes of laboratory tests is further affected by the lack of standardized testing methods and formal failure criteria. Laboratory designed and produced adobes show improved mechanical properties and lower thermal conductivities. The addition of wood dust in the mixture, at quantities up to 60% by volume, seems particularly beneficial, as it raises the compressive strength of the material over 6 MPa, while at the same time it reduces its capillary water absorption coefficient to about 0.35 mm/min1 -2. The latter is further reduced by the use of commercially available water repellents in the mixture. Wood dust also reduces the thermal conductivity of adobes. Among the stabilizing additives used, gypsum proved to be the most beneficial. In general, simple modifications to the procedure followed during the laboratory production of adobes, such as in the filling of moulds, lead to higher density and compressive strength of the end-product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiangwen; Contescu, Cristian I.; Zhao, Xi
Mmore » atrix graphite (G) with incompletely graphitized binder used in high-temperature gas-cooled reactors (HTGRs) is commonly suspected to exhibit lower oxidation resistance in air. In order to reveal the oxidation performance, the oxidation behavior of newly developed A3-3 G at the temperature range from 500 to 950°C in air was studied and the effect of oxidation on the compressive strength of oxidized G specimens was characterized. Results show that temperature has a significant influence on the oxidation behavior of G. The transition temperature between Regimes I and II is ~700°C and the activation energy ( E a ) in Regime I is around 185 kJ/mol, a little lower than that of nuclear graphite, which indicates G is more vulnerable to oxidation. Oxidation at 550°C causes more damage to compressive strength of G than oxidation at 900°C. Comparing with the strength of pristine G specimens, the rate of compressive strength loss is 77.3% after oxidation at 550°C and only 12.5% for oxidation at 900°C. icrostructure images of SE and porosity measurement by ercury Porosimetry indicate that the significant compressive strength loss of G oxidized at 550°C may be attributed to both the uniform pore formation throughout the bulk and the preferential oxidation of the binder.« less
NASA Astrophysics Data System (ADS)
Prahara, E.; Meilani
2014-03-01
Pervious concrete was introduced in America in 2003, popularized by Dan Brown and used as a rigid pavement in the open parking lot. Rigid pavement using pervious concrete can absorb water in the surface to go straight through the concrete to the ground below.This water flow is one of the benefit of using the pervious concrete. Using of wastes such as broken roof and ceramics tiles are not commonly used in Indonesia. Utilization these kind of wastes is predicted lower the compressive strength of pervious concrete as they are used as a substitute for coarse aggregate.In this research, pervious concrete is made using a mixture of the fragment of ceramics and roof tiles.This research using broken ceramics and roof tiles with a grain size that loose from 38 mm sieve, retained on 19 mm sieve and the coarse aggregate from crushed stone that loose 12.5 mm sieve, retained on 9.5 mm sieve. The water cement ratio is 0.3 and to assist the mixing process, the addition of addictive in pervious concrete is used.The size of coarse aggregate used in the mixture affects the strength of pervious concrete. The larger the size of aggregate, the obtained compressive strength becomes smaller. It also affects the density of pervious concrete. The using of mixture of ceramics and roof tiles only reduce 2 MPa of pervious concrete compressive strength so this mixture can be used as a substitute for coarse aggregate with a maximum portion of 30 %. The high porosity of the specimens causes the reduction of pervious concrete density that affect the compressive strength. This high level of porosity can be seen from the high level of water absorption that exceed the required limit of water infiltration.
NASA Astrophysics Data System (ADS)
Zhang, Zuhua; Wang, Hao
2016-08-01
The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Jayabalan, M.
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus. PMID:20126578
Mužíková, Jitka; Srbová, Alena; Svačinová, Petra
2017-12-01
This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.
Jayabalan, M
2009-01-01
The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.
Bonded-cell model for particle fracture.
Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang
2015-02-01
Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.