Sample records for improved conceptual understanding

  1. An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.

    PubMed

    Bossert, Sabine; Strech, Daniel

    2017-10-17

    The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.

  2. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    NASA Astrophysics Data System (ADS)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  3. Teaching for Conceptual Understanding

    ERIC Educational Resources Information Center

    Kang, Nam-Hwa; Howren, Carrie

    2004-01-01

    One of the most difficult jobs of elementary school teachers is teaching science for conceptual understanding. Conceptual understanding requires students to organize facts and ideas into a meaningful concept in science. Facts and concepts form webs that can help students make connections between the concepts of science and their experiences.…

  4. Revealing Conceptual Understanding of International Business

    ERIC Educational Resources Information Center

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students' conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual understanding in higher education. Essays and concept…

  5. Improving the Conceptual Understanding in Kinematics Subject Matter with Hypertext Media Learning and Formal Thinking

    ERIC Educational Resources Information Center

    Manurung, Sondang R.; Mihardi, Satria

    2016-01-01

    The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…

  6. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  7. Understanding Co-development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    NASA Astrophysics Data System (ADS)

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-04-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.

  8. Effectiveness of Dry Cell Microscopic Simulation (DCMS) to Promote Conceptual Understanding about Battery

    NASA Astrophysics Data System (ADS)

    Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh

    2017-07-01

    Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.

  9. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    ERIC Educational Resources Information Center

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  10. Determining Students' Conceptual Understanding Level of Thermodynamics

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  11. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  12. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  13. Socioscientific Issues: A Path Towards Advanced Scientific Literacy and Improved Conceptual Understanding of Socially Controversial Scientific Theories

    NASA Astrophysics Data System (ADS)

    Pinzino, Dean William

    This thesis investigates the use of socioscientific issues (SSI) in the high school science classroom as an introduction to argumentation and socioscientific reasoning, with the goal of improving students' scientific literacy (SL). Current research is reviewed that supports the likelihood of students developing a greater conceptual understanding of scientific theories as well as a deeper understanding of the nature of science (NOS), through participation in informal and formal forms of argumentation in the context of SSI. Significant gains in such understanding may improve a student's ability to recognize the rigor, legitimacy, and veracity of scientific claims and better discern science from pseudoscience. Furthermore, students that participate in significant SSI instruction by negotiating a range of science-related social issues can make significant gains in content knowledge and develop the life-long skills of argumentation and evidence-based reasoning, goals not possible in traditional lecture-based science instruction. SSI-based instruction may therefore help students become responsible citizens. This synthesis also suggests that that the improvements in science literacy and NOS understanding that develop from sustained engagement in SSI-based instruction will better prepare students to examine and scrutinize socially controversial scientific theories (i.e., evolution, global warming, and the Big Bang).

  14. Defining Conceptual Understanding for Teaching in International Business

    ERIC Educational Resources Information Center

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2016-01-01

    The aim of this exploratory study is to develop a definition of conceptual understanding for teaching in international business. In international business, professionals face complex problems like what to produce, where to manufacture, which markets to target, and when to expand abroad. A clear definition of conceptual understanding needed to…

  15. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    NASA Astrophysics Data System (ADS)

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-08-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high school students' understandings of complex systems components and whether an agent-based simulation could improve their understandings. Pretest and posttest essays were coded for changes in six components to determine whether students showed more expert thinking about the complex system of the Chesapeake Bay watershed. Results showed significant improvement for the components Emergence ( r = .26, p = .03), Order ( r = .37, p = .002), and Tradeoffs ( r = .44, p = .001). Implications include that the experiential nature of the simulation has the potential to support conceptual change for some complex systems components, presenting a promising option for complex systems instruction.

  16. Enhancing the Conceptual Understanding of Science.

    ERIC Educational Resources Information Center

    Gabel, Dorothy

    2003-01-01

    Describes three levels of understanding science: the phenomena (macroscopic), the particle (microscopic), and the symbolic. Suggests that the objective of science instruction at all levels is conceptual understanding of scientific inquiry. Discusses effective instructional strategies, including analogy, collaborative learning, concept mapping,…

  17. Secondary School Students' Conceptual Understanding of Physical and Chemical Changes

    ERIC Educational Resources Information Center

    Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.

    2016-01-01

    In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…

  18. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    ERIC Educational Resources Information Center

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-01-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high…

  19. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    ERIC Educational Resources Information Center

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  20. Developing Physics Textbook Based on Cognitive Conflict for Deeper Conceptual Understanding and Better Characters

    NASA Astrophysics Data System (ADS)

    Linuwih, S.; Lurinda, N. W.; Fianti

    2017-04-01

    These study aims are to develop a textbook based on cognitive conflict approachment, to know theproperness of textbook, the legibility of textbook, and also the effect of using the textbook for increasing the conceptual understanding and improving the character of the students. This study was conducted by research and development method employing non-equivalent control group design to test the product. The subjects wereten-grade students of SMA N 1 Gubug in thesecond semester of 2015/2016. The properness test used properness-questionnaire, while the legibility test used themost closet. The data of conceptual understanding was taken from thepretest-postest result and the data of characters was taken from direct observation. By analysing the data, we concluded that the textbook based on cognitive conflict approachment was very proper to use with high legibility. By applied this textbook, students would be helped to get a deeper conceptual understanding and better characters.

  1. Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play

    ERIC Educational Resources Information Center

    Denham, Andre

    2012-01-01

    This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…

  2. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that measures…

  3. On Automatic Assessment and Conceptual Understanding

    ERIC Educational Resources Information Center

    Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu

    2015-01-01

    We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…

  4. Defining Conceptual Understanding in General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  5. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  6. Understanding Possibilities and Limitations of Abstract Chemical Representations for Achieving Conceptual Understanding

    ERIC Educational Resources Information Center

    Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine

    2014-01-01

    When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…

  7. Assessing Undergraduate Students' Conceptual Understanding and Confidence of Electromagnetics

    ERIC Educational Resources Information Center

    Leppavirta, Johanna

    2012-01-01

    The study examines how students' conceptual understanding changes from high confidence with incorrect conceptions to high confidence with correct conceptions when reasoning about electromagnetics. The Conceptual Survey of Electricity and Magnetism test is weighted with students' self-rated confidence on each item in order to infer how strongly…

  8. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    NASA Astrophysics Data System (ADS)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  9. Young Children's Conceptual Understanding of Triangle

    ERIC Educational Resources Information Center

    Dagli, Ümmühan Yesil; Halat, Erdogan

    2016-01-01

    This study explored 5-6 year-old children's conceptual understanding of one geometric shape, the triangle. It focused on whether children could draw a triangle from memory, and identify triangles of different types, sizes, and orientations. The data were collected from 82 children attending state preschool programs through a one-on-one interview,…

  10. Short storybooks to build conceptual understanding

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2014-11-01

    To help students build intuitive or conceptual understanding of key fluids concepts, I present short stories written in the style of childrens' books. The goal is to provide analogies with a strong visual component, in a format that allows students to return for a quick review. The content, philosophy, and initial student feedback will be discussed.

  11. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care

    PubMed Central

    Valentijn, Pim P.; Schepman, Sanneke M.; Opheij, Wilfrid; Bruijnzeels, Marc A.

    2013-01-01

    Introduction Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. Methods The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. Results The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. Discussion The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective. PMID:23687482

  12. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care.

    PubMed

    Valentijn, Pim P; Schepman, Sanneke M; Opheij, Wilfrid; Bruijnzeels, Marc A

    2013-01-01

    Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.

  13. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-04-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in science such as biotechnology. We report on an in-depth case study analysis of three undergraduate, non-science majors in a biotechnology course designed for non-biochemistry majors. We selected participants who performed above average and below average on the first in-class exam. Data from multiple sources—interviews, exams, and a concept instrument—were used to construct (a) individual profiles and (b) a cross-case analysis of our participants' conceptual development and epistemic beliefs from two different theoretical perspectives—Women's Ways of Knowing and the Reflective Judgment Model. Two independent trained researchers coded all case records independently for both theoretical perspectives, with resultant initial Cohen's kappa values above .715 (substantial agreement), and then reached consensus on the codes. Results indicate that a student with more sophisticated epistemology demonstrated greater conceptual understandings at the end of the course than a student with less sophisticated epistemology, even though the latter performed higher initially. Also a student with a less sophisticated epistemology and low initial conceptual performance does not demonstrate gains in their overall conceptual understanding. Results suggest the need for instructional interventions fostering epistemological development of learners in order to facilitate their conceptual growth.

  14. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    NASA Astrophysics Data System (ADS)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  15. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  16. Effect of problem type toward students’ conceptual understanding level on heat and temperature

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Sukarmin; Suparmi, S.

    2017-11-01

    The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.

  17. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Hanson, Ruby

    2015-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  18. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Hanson, Ruby

    2016-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  19. An overview of conceptual understanding in science education curriculum in Indonesia

    NASA Astrophysics Data System (ADS)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  20. Promoting Conceptual Understanding via Adaptive Concept Maps

    ERIC Educational Resources Information Center

    Moore, Jacob P.

    2013-01-01

    The purpose of this study is to explore the feasibility and effectiveness of a scalable concept map based navigation system for a digital textbook. A literature review has been conducted to identify possible methods to promote conceptual understanding in the context of a digital textbook, and these hypothesized solutions will be evaluated through…

  1. Evaluation of Students' Conceptual Understanding of Malaria

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-12-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students' understanding and identifying alternative conceptions with respect to malaria. Results showed that students' understanding of malaria was high for content, low for reasons, and limited and superficial for both content and reasons. The instrument revealed several common alternative conceptual understandings students' hold about malaria. The MalariaTT2 instrument developed could be used in classroom lessons for challenging alternative conceptions and enhancing conceptions of malaria.

  2. Using the Conceptual Change Instruction To Improve Learning.

    ERIC Educational Resources Information Center

    Alparslan, Cem; Tekkaya, Ceren; Geban, Omer

    2003-01-01

    Investigates the effect of conceptual change instruction on grade 11 students' understanding of respiration. The Respiration Concept Test was developed and used to test students' misconceptions. Results indicate that the conceptual change instruction that explicitly addressed students' misconceptions produced significantly greater achievement in…

  3. The effect of directive tutor guidance on students' conceptual understanding of statistics in problem-based learning.

    PubMed

    Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F

    2011-06-01

    Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.

  4. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    PubMed Central

    Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137

  5. Identification of Conceptual Understanding in Biotechnology Learning

    NASA Astrophysics Data System (ADS)

    Suryanti, E.; Fitriani, A.; Redjeki, S.; Riandi, R.

    2018-04-01

    Research on the identification of conceptual understanding in the learning of Biotechnology, especially on the concept of Genetic Engineering has been done. The lesson is carried out by means of discussion and presentation mediated-powerpoint media that contains learning materials with relevant images and videos. This research is a qualitative research with one-shot case study or one-group posttest-only design. Analysis of 44 students' answers show that only 22% of students understand the concept, 18% of students lack understanding of concepts, 57% of students have misconceptions, and 3% of students are error. It can be concluded that most students has misconceptions in learning the concept of Genetic Engineering.

  6. Facilitating Conceptual Change in Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2002-01-01

    Constructs a teaching strategy to facilitate conceptual change in freshman students' understanding of electrochemistry. Provides students with the correct response along with alternative responses (teaching experiments), producing a conflicting situation that is conducive to an equilibration of their cognitive structures. Concludes that the…

  7. Argumentation Practices in Classroom: Pre-service teachers' conceptual understanding of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru

    2013-05-01

    This study examines the impact of argumentation practices on pre-service teachers' understanding of chemical equilibrium. The sample consisted of 100 pre-service teachers in two classes of a public university. One of these classes was assigned as experimental and the other as control group, randomly. In the experimental group, the subject of chemical equilibrium was taught by using argumentative practices and the participants were encouraged to participate in the lessons actively. However, the instructor taught the same subject by using the lecturing method without engaging argumentative activities in the control group. The Chemical Equilibrium Concept Test and Written Argumentation Survey were administered to all participants to assess their conceptual understanding and the quality of their arguments, respectively. The analysis of covariance results indicate that argumentation practices significantly improved conceptual understanding of the experimental group when compared to the control group. Furthermore, the results show that the pre-service teachers exposed to argumentative practices constructed more quality arguments than those in the control group after the instruction. Based on these results, it can be concluded that the instruction based on argumentative practices is effective in concept teaching in science education. Therefore, argumentation should be explicitly taught in teacher education besides elementary and secondary education.

  8. Enhancing Students' Understanding of Photosynthesis and Respiration in Plant through Conceptual Change Approach

    ERIC Educational Resources Information Center

    Yenilmez, Ayse; Tekkaya, Ceren

    2006-01-01

    This study investigated the effectiveness of combining conceptual change text and discussion web strategies on students' understanding of photosynthesis and respiration in plants. Students' conceptual understanding of photosynthesis and respiration in plants was measured using the two-tier diagnostic test developed by Haslam and Treagust (1987,…

  9. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    ERIC Educational Resources Information Center

    Anderson, Janice L.; Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected…

  10. Evaluating role of interactive visualization tool in improving students' conceptual understanding of chemical equilibrium

    NASA Astrophysics Data System (ADS)

    Sampath Kumar, Bharath

    The purpose of this study is to examine the role of partnering visualization tool such as simulation towards development of student's concrete conceptual understanding of chemical equilibrium. Students find chemistry concepts abstract, especially at the microscopic level. Chemical equilibrium is one such topic. While research studies have explored effectiveness of low tech instructional strategies such as analogies, jigsaw, cooperative learning, and using modeling blocks, fewer studies have explored the use of visualization tool such as simulations in the context of dynamic chemical equilibrium. Research studies have identified key reasons behind misconceptions such as lack of systematic understanding of foundational chemistry concepts, failure to recognize the system is dynamic, solving numerical problems on chemical equilibrium in an algorithmic fashion, erroneous application Le Chatelier's principle (LCP) etc. Kress et al. (2001) suggested that external representation in the form of visualization is more than a tool for learning, because it enables learners to make meanings or express their ideas which cannot be readily done so through a verbal representation alone. Mixed method study design was used towards data collection. The qualitative portion of the study is aimed towards understanding the change in student's mental model before and after the intervention. A quantitative instrument was developed based on common areas of misconceptions identified by research studies. A pilot study was conducted prior to the actual study to obtain feedback from students on the quantitative instrument and the simulation. Participants for the pilot study were sampled from a single general chemistry class. Following the pilot study, the research study was conducted with a total of 27 students (N=15 in experimental group and N=12 in control group). Prior to participating in the study, students have completed their midterm test on the topic of chemical equilibrium. Qualitative

  11. Leveraging Conceptual Frameworks to Improve Students' Mental Organization of Astronomy Understanding

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Lee, K. M.

    2006-06-01

    Many different types of schematic diagrams are useful in helping students organize and internalize their developing understanding in introductory astronomy courses. These include Venn Diagrams, Flowcharts, Concept Maps, among others, which illustrate the relationships between astronomical objects and dynamic concepts. These conceptual framework diagrams have been incorporated into the NSF-funded ClassAction project. ClassAction is a collection of electronic materials designed to enhance the metacognitive skills of college and university introductory astronomy survey students by promoting interactive engagement and providing rapid feedback in a highly visual setting. The main effort is targeted at creating dynamic think-pair-share questions supported by simulations, animations, and visualizations to be projected in the lecture classroom. The infrastructure allows instructors to recast these questions into alternative forms based on their own pedagogical preferences and feedback from the class. The recourses can be easily selected from a FLASH computer database and are accompanied by outlines, graphics, and numerous simulations which the instructor can use to provide student feedback and, when necessary, remediation. ClassAction materials are publicly available online at URL: http://astro.unl.edu and is funded by NSF Grant #0404988.

  12. Prospective Teacher Learning: Recognizing Evidence of Conceptual Understanding

    ERIC Educational Resources Information Center

    Bartell, Tonya Gau; Webel, Corey; Bowen, Brian; Dyson, Nancy

    2013-01-01

    This study examined prospective teachers' (PSTs) ability to recognize evidence of children's conceptual understanding of mathematics in three content areas before and after an instructional intervention designed to support this ability. It also investigates the role PSTs' content knowledge plays in their ability to recognize children's…

  13. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  14. Learning science in small groups: The relationship of conversation to conceptual understanding

    NASA Astrophysics Data System (ADS)

    McDonald, James Tarleton

    The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a

  15. Promoting high school students' conceptual understandings of the particulate nature of matter through multiple representations

    NASA Astrophysics Data System (ADS)

    Adadan, Emine

    This study mainly explored the efficacy of the two instructional interventions, namely Reform-Based Teaching with Multiple Representations (RBTw/MR) and Reform-Based Teaching (RBT) on stimulating change in students' conceptual understandings of the particulate nature of matter (PNM) and maintaining those scientific understandings constructed during the instruction over a three-month period. In this context, this study also examined the RBTw/MR and RBT students' types of conceptual understandings of the PNM before, immediately after and three-months after the interventions. This study was conducted in two introductory level chemistry classes of a suburban high school. The participants of the study included a total of 42 students who were enrolled in one of the two classes of the chemistry teacher who taught both of the classes. Both the RBTw/MR and the RBT group students were engaged in the same activities with the same sequence of experiences. However, the RBTw/MR instruction differed from the RBT instruction in terms of the frequency of using the multiple representations in relationship to the macroscopic phenomenon and the likely actions that occur at the submicroscopic level. A quasi-experimental control group research design with a pretest, posttest, and delayed posttest was employed by incorporating qualitative data collection and analysis methods. In order to assess students' conceptual understanding of the PNM, the open-ended questionnaire, namely Nature of Matter Diagnostic Questions, was administered to both groups just before, immediately after and three months after the instructional interventions. Fifteen of the 42 students were also interviewed following the posttest. The results of the study revealed the positive short- and long-term learning impacts on the RBTw/MR students' conceptual understandings of the PNM. Before the instruction, a majority of students in both groups (82.6%, RBTw/MR; 73.7%, RBT) held nonscientific types of conceptual

  16. A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components

    NASA Astrophysics Data System (ADS)

    Wutchana, Umporn; Emarat, Narumon

    2017-09-01

    With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.

  17. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    ERIC Educational Resources Information Center

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  18. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  19. Teaching to Promote Deep Understanding and Instigate Conceptual Change

    NASA Astrophysics Data System (ADS)

    Zirbel, Esther

    2006-12-01

    This paper focuses on how to promote deep understanding by making the students to question their inherent conceptual knowledge of how the world works, and on how to correct these views should they be different form the scientifically proven views. This paper reviews the conceptual change model and suggests additional steps. First, the student has to consciously notice and understand what the problem is; second, s/he has to assimilate more information and try to fit it into already existing neural networks; third, s/he has to critically think through all the argumentation in his/her own words and reorganize this thoughts s/he has to accommodate the knowledge and evaluate against his or her prior beliefs; forth s/he has to own the concept and has to consider it her/his personal construct; and finally, s/he has to work towards obtaining fluency in the newly acquired and understood concept so that this concept itself has then becomes a mere building block for future, more advanced concepts. The claim is that during the process of conceptual change what happens in the student’s mind is a reorganization of his or her thoughts, the creation of new neural networks, and the rewiring of old ones. This process is difficult to provoke and requires the student to work hard. Instructors can challenge the student to undergo the process of conceptual change but cannot do it for the student.

  20. Conceptual frameworks in astronomy

    NASA Astrophysics Data System (ADS)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  1. Insights into Students' Conceptual Understanding Using Textual Analysis: A Case Study in Signal Processing

    ERIC Educational Resources Information Center

    Goncher, Andrea M.; Jayalath, Dhammika; Boles, Wageeh

    2016-01-01

    Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering…

  2. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    NASA Astrophysics Data System (ADS)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking

  3. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    NASA Astrophysics Data System (ADS)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  4. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  5. Impact of Math Snacks Games on Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  6. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  7. Using conceptual maps to assess students' climate change understanding and misconceptions

    NASA Astrophysics Data System (ADS)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  8. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    NASA Astrophysics Data System (ADS)

    Peter Mazzolini, Alexander; Arthur Daniel, Scott

    2016-05-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students' conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students' conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students' understanding.

  9. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    NASA Astrophysics Data System (ADS)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  10. Addressing Barriers to Conceptual Understanding in IE Physics Classes

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.

    2009-11-01

    We report on the Thinking in Physics project, which helps students who demonstrate weak scientific reasoning skills, as measured by low preinstruction scores on the Lawson Test of Scientific Reasoning Ability. Without special help, such students are unlikely to achieve a good conceptual understanding of introductory mechanics.

  11. Mapping Conceptual Understanding of Algebraic Concepts: An Exploratory Investigation Involving Grade 8 Chinese Students

    ERIC Educational Resources Information Center

    Jin, Haiyue; Wong, Khoon Yoong

    2015-01-01

    Conceptual understanding is a major aim of mathematics education, and concept map has been used in non-mathematics research to uncover the relations among concepts held by students. This article presents the results of using concept map to assess conceptual understanding of basic algebraic concepts held by a group of 48 grade 8 Chinese students.…

  12. Graduate Employability: A Conceptual Framework for Understanding Employers' Perceptions

    ERIC Educational Resources Information Center

    Cai, Yuzhuo

    2013-01-01

    This study provides a conceptual framework for understanding what employers think about the value of graduates with similar educational credentials in the workplace (their employability), using insights from the new institutionalism. In this framework, the development of employers' beliefs about graduates' employability is broken into a number of…

  13. Improved Casting Furnace Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Tolman, David Donald

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  14. Understanding Co-Development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    ERIC Educational Resources Information Center

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-01-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…

  15. Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner

    2001-01-01

    Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…

  16. A profile of students’ conceptual understanding and selfefficacy of eleventh graders in vocational high schools

    NASA Astrophysics Data System (ADS)

    Nurhilal, P. P. D.; Siahaan, P.; Chandra, D. T.

    2018-05-01

    This study aims to explore a profile of students’ conceptual understanding and self-efficacy of eleventh graders in vocational high schools in Bandung on the concept of dynamic electricity. Data on students’ conceptual understanding and self-efficacy are needed to determine the treatment to be used in subsequent research. The sampling technique used in this research is purposive sampling. The acquisition of the conceptual understanding data through the test, while the self-efficacy through the attitude scale, both equipped with interviews. The conceptual understanding refers to the Bloom Taxonomy Revision, while self-efficacy refers to Baldwin’s instrument. The results show that the percentage of students who have had the ability to understand for the interpreting aspects of 42%, exemplifying aspect of 45%, classifying aspect of 37%, summarizing aspect of 35%, inferring aspect of 38%, comparing aspect of 43%, and explaining aspect of 40%. This shows that the ability to understand only reaches 40% (low category). While the result of the attitude scale and the interview about the students’ self-efficacy, there is uncertainty of their own ability, it shows that the students’ self-efficacy is still low.

  17. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework

    PubMed Central

    2013-01-01

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu’s organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women’s choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals. PMID:24215446

  18. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework.

    PubMed

    Behruzi, Roxana; Hatem, Marie; Goulet, Lise; Fraser, William; Misago, Chizuru

    2013-11-11

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu's organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women's choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals.

  19. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they

  20. Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and

  1. Transition Process of Procedural to Conceptual Understanding in Solving Mathematical Problems

    ERIC Educational Resources Information Center

    Fatqurhohman

    2016-01-01

    This article aims to describe the transition process from procedural understanding to conceptual understanding in solving mathematical problems. Subjects in this study were three students from 20 fifth grade students of SDN 01 Sumberberas Banyuwangi selected based on the results of the students' answers. The transition process from procedural to…

  2. Students' Attitudes toward and Conceptual Understanding of Chemical Instrumentation

    ERIC Educational Resources Information Center

    Miller, Larry S.; Nakhleh, Mary B.; Nash, John J.; Meyer, Jeanne A.

    2004-01-01

    Students' attitudes toward and conceptual understanding of chemical instrumentation is surveyed. The study shows that, in general, the students' attitudes toward using instrumentation in the lab is quite positive and they felt that using instrumentation in the lab allowed them not only to connect "chemistry" and the "real world", but also to…

  3. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    ERIC Educational Resources Information Center

    Dumais, Nancy; Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses…

  4. A Helpful Way to Conceptualize and Understand Reenactments

    PubMed Central

    Levy, Michael S.

    1998-01-01

    Attempts to understand the purpose and the etiology of reenactments can lead to confusion because reenactments can occur for a variety of reasons. At times, individuals actively reenact past traumas as a way to master them. However, in other cases, reenactments occur inadvertently and result from the psychological vulnerabilities and defensive strategies characteristic of trauma survivors. This article offers a means to conceptualize and understand the many ways in which reenactments can occur. Psychotherapeutic strategies are offered to help individuals integrate past traumas and decrease their chances of becoming involved in destructive reenactments.(The Journal of Psychotherapy Practice and Research 1998; 7:227–235) PMID:9631344

  5. Interplay Between Conceptual Expectations and Movement Predictions Underlies Action Understanding.

    PubMed

    Ondobaka, Sasha; de Lange, Floris P; Wittmann, Marco; Frith, Chris D; Bekkering, Harold

    2015-09-01

    Recent accounts of understanding goal-directed action underline the importance of a hierarchical predictive architecture. However, the neural implementation of such an architecture remains elusive. In the present study, we used functional neuroimaging to quantify brain activity associated with predicting physical movements, as they were modulated by conceptual-expectations regarding the purpose of the object involved in the action. Participants observed object-related actions preceded by a cue that generated both conceptual goal expectations and movement goal predictions. In 2 tasks, observers judged whether conceptual or movement goals matched or mismatched the cue. At the conceptual level, expected goals specifically recruited the posterior cingulate cortex, irrespectively of the task and the perceived movement goal. At the movement level, neural activation of the parieto-frontal circuit, including inferior frontal gyrus and the inferior parietal lobe, reflected unpredicted movement goals. Crucially, this movement prediction error was only present when the purpose of the involved object was expected. These findings provide neural evidence that prior conceptual expectations influence processing of physical movement goals and thereby support the hierarchical predictive account of action processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.

  7. Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students' understanding of genetics

    NASA Astrophysics Data System (ADS)

    khawaldeh, Salem A. Al

    2013-07-01

    Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.

  8. The Impact of a Classroom Intervention on Grade 10 Students' Argumentation Skills, Informal Reasoning, and Conceptual Understanding of Science

    ERIC Educational Resources Information Center

    Venville, Grady J.; Dawson, Vaille M.

    2010-01-01

    The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio-scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom-based argumentation on…

  9. Subject- and Experience-Bound Differences in Teachers' Conceptual Understanding of Sustainable Development

    ERIC Educational Resources Information Center

    Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.

    2014-01-01

    This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of sustainable…

  10. Scaffolding software: How does it influence student conceptual understanding and motivation?

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.

    The purpose of this study was to determine the influence of scaffolding software on student conceptual understanding and motivation. This study also provides insight on how students use the scaffolding features found in Artemis and the extent to which features show a relationship to student conceptual understanding and motivation. A Randomized Solomon Four Group Design was used in this study. As students worked through a project based unit over photosynthesis, the students performed information seeking activities that were based on their own inquiry. For this purpose, the students in the experimental group used an example of scaffolding software called Artemis, while the students in the control group used a search engine of their choice. To measure conceptual understanding, the researcher analyzed student generated concept maps on photosynthesis using three different methods (quantitative, qualitative, hierarchical). To measure motivation, the researcher used a survey that measured motivation on five different indicators: intrinsic goal orientation, extrinsic goal orientation, task value, control of learning beliefs, self-efficacy for learning and performance. Finally, the researcher looked at the relationship and influence of the scaffolding features on two student performance scores at the end of the unit. This created a total of ten dependent variables in relationship to the treatment. Overall, the students used the collaborative features 25% of the time, the maintenance features 0.84% of the time, the organizational features 16% of the time, the saving/viewing features 7% of the time and the searching features 51% of the time. There were significant correlations between the saving/viewing features hits and the students' task value (r = .499, p < .05), the searching features hits and the students' self-efficacy for learning and performance (r = .553, p < .01), the collaborative features hits and the students' essay performance scores (r = .519, p < .05) and the

  11. How online learning modules can improve the representational fluency and conceptual understanding of university physics students

    NASA Astrophysics Data System (ADS)

    Hill, M.; Sharma, M. D.; Johnston, H.

    2015-07-01

    The use of online learning resources as core components of university science courses is increasing. Learning resources range from summaries, videos, and simulations, to question banks. Our study set out to develop, implement, and evaluate research-based online learning resources in the form of pre-lecture online learning modules (OLMs). The aim of this paper is to share our experiences with those using, or considering implementing, online learning resources. Our first task was to identify student learning issues in physics to base the learning resources on. One issue with substantial research is conceptual understanding, the other with comparatively less research is scientific representations (graphs, words, equations, and diagrams). We developed learning resources on both these issues and measured their impact. We created weekly OLMs which were delivered to first year physics students at The University of Sydney prior to their first lecture of the week. Students were randomly allocated to either a concepts stream or a representations stream of online modules. The programme was first implemented in 2013 to trial module content, gain experience and process logistical matters and repeated in 2014 with approximately 400 students. Two validated surveys, the Force and Motion Concept Evaluation (FMCE) and the Representational Fluency Survey (RFS) were used as pre-tests and post-tests to measure learning gains while surveys and interviews provided further insights. While both streams of OLMs produced similar positive learning gains on the FMCE, the representations-focussed OLMs produced higher gains on the RFS. Conclusions were triangulated with student responses which indicated that they have recognized the benefit of the OLMs for their learning of physics. Our study shows that carefully designed online resources used as pre-instruction can make a difference in students’ conceptual understanding and representational fluency in physics, as well as make them more aware

  12. Explicit Argumentation Instruction to Facilitate Conceptual Understanding and Argumentation Skills

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda

    2014-01-01

    Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the…

  13. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    ERIC Educational Resources Information Center

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-01-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in…

  14. Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Selcuk, Gamze Sezgin

    2015-01-01

    In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A…

  15. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    ERIC Educational Resources Information Center

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  16. Helping Secondary School Students Develop a Conceptual Understanding of Refraction

    ERIC Educational Resources Information Center

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-01-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students' conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and…

  17. Development of two tier test to assess conceptual understanding in heat and temperature

    NASA Astrophysics Data System (ADS)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  18. Promoting students' conceptual understanding using STEM-based e-book

    NASA Astrophysics Data System (ADS)

    Komarudin, U.; Rustaman, N. Y.; Hasanah, L.

    2017-05-01

    This study aims to examine the effect of Science, Technology, Engineering, and Mathematics (STEM) based e-book in promoting students'conceptual understanding on lever system in human body. The E-book used was the e-book published by National Ministry of Science Education. The research was conducted by a quasi experimental with pretest and posttest design. The subjects consist of two classes of 8th grade junior high school in Pangkalpinang, Indonesia, which were devided into experimental group (n=34) and control group (n=32). The students in experimental group was taught by STEM-based e-book, while the control group learned by non STEM-based e-book. The data was collected by an instrument pretest and postest. Pretest and posttest scored, thenanalyzed using descriptive statistics and independent t-test. The result of independent sample t-test shows that no significant differenceson students' pretest score between control and experimental group. However, there were significant differences on students posttest score and N-gain score between control and experimental group with sig = 0.000(p<0.005). N-gain analysis showsthe higher performance of students who were participated in experimental group (mean = 66.03) higher compared to control group (mean = 47.66) in answering conceptual understanding questions. Based on the results, it can be concluded that STEM-based e-book has positiveimpact in promoting students' understanding on lever system in human body. Therefore this learning approach is potential to be used as an alternative to triger the enhancement of students' understanding in science.

  19. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    ERIC Educational Resources Information Center

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  20. A New Conceptual Model for Understanding International Students' College Needs

    ERIC Educational Resources Information Center

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  1. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    PubMed Central

    Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings. PMID:25185222

  2. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  3. A Conceptual Framework for Understanding Unintended Prolonged Opioid Use.

    PubMed

    Hooten, W Michael; Brummett, Chad M; Sullivan, Mark D; Goesling, Jenna; Tilburt, Jon C; Merlin, Jessica S; St Sauver, Jennifer L; Wasan, Ajay D; Clauw, Daniel J; Warner, David O

    2017-12-01

    An urgent need exists to better understand the transition from short-term opioid use to unintended prolonged opioid use (UPOU). The purpose of this work is to propose a conceptual framework for understanding UPOU that posits the influence of 3 principal domains that include the characteristics of (1) individual patients, (2) the practice environment, and (3) opioid prescribers. Although no standardized method exists for developing a conceptual framework, the process often involves identifying corroborative evidence, leveraging expert opinion to identify factors for inclusion in the framework, and developing a graphic depiction of the relationships between the various factors and the clinical problem of interest. Key patient characteristics potentially associated with UPOU include (1) medical and mental health conditions; (2) pain etiology; (3) individual affective, behavioral, and neurophysiologic reactions to pain and opioids; and (4) sociodemographic factors. Also, UPOU could be influenced by structural and health care policy factors: (1) the practice environment, including the roles of prescribing clinicians, adoption of relevant practice guidelines, and clinician incentives or disincentives, and (2) the regulatory environment. Finally, characteristics inherent to clinicians that could influence prescribing practices include (1) training in pain management and opioid use; (2) personal attitudes, knowledge, and beliefs regarding the risks and benefits of opioids; and (3) professionalism. As the gatekeeper to opioid access, the behavior of prescribing clinicians directly mediates UPOU, with the 3 domains interacting to determine this behavior. This proposed conceptual framework could guide future research on the topic and allow plausible hypothesis-based interventions to reduce UPOU. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  4. From Human Activity to Conceptual Understanding of the Chain Rule

    ERIC Educational Resources Information Center

    Jojo, Zingiswa Mybert Monica; Maharaj, Aneshkumar; Brijlall, Deonarain

    2013-01-01

    This article reports on a study which investigated first year university engineering students' construction of the definition of the concept of the chain rule in differential calculus at a University of Technology in South Africa. An APOS (Action-Process-Objects-Schema) approach was used to explore conceptual understanding displayed by students in…

  5. South African Learners' Conceptual Understanding about Image Formation by Lenses

    ERIC Educational Resources Information Center

    John, Merlin; Molepo, Jacob Maisha; Chirwa, Max

    2017-01-01

    The purpose of this research was to explore South African Grade 11 learners' conceptual understanding of "image formation by lenses". The participants for this study were 70 Grade 11 learners from a selected senior secondary school in Mthatha, Eastern Cape Province, South Africa. The qualitative approach employed in the study made use of…

  6. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  7. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein.

    PubMed

    Schoneberger, T

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event.

  8. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A multiple comparative case study

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Colette Oliver, Mary; Venville, Grady Jane

    2012-04-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high, medium and low socio-economic status in Hunan Province, central south China (n = 135) and three schools of similar socio-economic status in Western Australia (n = 120). The students' understanding was assessed by a science quiz, developed from past Trends in Mathematics and Science Study science released items for primary children. In-depth interviews were carried out to further explore children's conceptual understanding of living things, the Earth and floating and sinking. The results revealed that Year 3 children from schools of similar socio-economic status in the two countries had similar conceptual understandings of life science, earth science and physical science. Further, in both countries, the higher the socio-economic status of the school, the better the students performed on the science quiz and in interviews. Some idiosyncratic strengths and weaknesses were observed, for example, Chinese Year 3 children showed relative strength in classification of living things, and Australian Year 3 children demonstrated better understanding of floating and sinking, but children in both countries were weak in applying and reasoning with complex concepts in the domain of earth science. The results raise questions about the value of providing a science curriculum in early childhood if it does not make any difference to students' conceptual understanding of science.

  9. Arguments, contradictions, resistances, and conceptual change in students' understanding of atomic structure

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo

    2002-07-01

    Most general chemistry courses and textbooks emphasize experimental details and lack a history and philosophy of science perspective. The objective of this study is to facilitate freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. It is hypothesized that classroom discussions based on arguments/counterarguments of the heuristic principles, on which these scientists based their atomic models, can facilitate students' conceptual understanding. This study is based on 160 freshman students enrolled in six sections of General Chemistry I (three sections formed part of the experimental group). All three models (Thomson, Rutherford, and Bohr) were presented to the experimental and control group students in the traditional manner, as found in most textbooks. After this, the three sections of the experimental group participated in the discussion of six items with alternative responses. Students were first asked to select a response and then participate in classroom discussions leading to arguments in favor or against the selected response and finally select a new response. Three weeks after having discussed the six items, both the experimental and control groups presented a monthly exam (based on the three models) and after another 3 weeks a semester exam. Results obtained show that given the opportunity to argue and discuss, students' understanding can go beyond the simple regurgitation of experimental details. Performance of the experimental group showed contradictions, resistances, and progressive conceptual change with considerable and consistent improvement in the last item. It is concluded that if we want our students to understand scientific progress and practice, then it is important that we include the experimental details not as a rhetoric of conclusions (Schwab, 1962, The teaching of science as enquiry, Cambridge, MA, Harward University Press; Schwab, 1974, Conflicting conceptions of

  10. Mathematical vs. conceptual understanding: Where do we draw the line?

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra; Aguilera, Nicholas

    2013-01-01

    This research involved high school physics students and how they learn to understand Newton's laws as they relate to falling bodies and projectile motion. Students in introductory, algebra-based, high school physics classes were evaluated based on their prior knowledge through a pretest, designed to assess their initial comprehension of the motion of falling bodies and projectiles. Groups were divided and taught separately with an emphasis on either mathematical derivation of equations, followed by brief conceptual discussions, or on thorough conceptual analysis, followed by a brief mathematical verification. After a posttest was given, an evaluation of the responses and explanations of each group of students was used to determine which method of instruction was more effective. Results indicate that after the conceptual group and math groups achieved similar scores on the pretest, the conceptual group obtained a slightly higher normalized gain of 25% on the posttest, compared to the mathematical group's normalized gain of 16% (unpaired two-tailed t-test P value for posttest results was 0.1037) and, while within standard deviations, also achieved higher overall scores on all posttest questions and higher normalized gains on all but one posttest question. Further, most students, even thoes in the mathematically-instructed group, were more inclined to give conceptually-based responses on postest questions than mathematically-based ones. In the context of this topic, the dominating difficulty for both groups was in analyzing two-dimensional projectile motion and, more specifically, the behavior of each onedimensional component of such motion.

  11. The ability to understand and use conceptual change pedagogy as a function of prior content learning experience

    NASA Astrophysics Data System (ADS)

    Stofflett, René T.; Stoddart, Trish

    This research examined the relationship between content instruction and the development of elementary teacher candidates' understanding of conceptual change pedagogy. Undergraduate students (n = 27) enrolled in two sections of a science methods course received content instruction through either traditional or conceptual change methods, followed by instruction about conceptual change pedagogy. Candidates were interviewed pre- and postinstruction about their content and pedagogical knowledge and also wrote conceptual change lessons. Twelve of the 27 subjects were videotaped teaching in the field. Results indicate that prior to instruction, most candidates had weak content knowledge and held traditional pedagogical conceptions. After instruction, students in the conceptual change group had significantly larger gains in their content knowledge than those in the traditional group, gave qualitatively stronger pedagogical responses, and used conceptual change strategies more consistently in practice. These results indicate that personal experience of learning science content through conceptual change methods facilitated the development of understanding and use of conceptual change pedagogy in teaching practice. Thus if conceptual change methods are to be incorporated into teacher candidates' repertoire, science content courses that students take prior to teacher education should be taught using conceptual change pedagogy. In addition, courses in science education should use pedagogy more in line with that taught in methods courses.

  12. Understanding healing: a conceptual analysis.

    PubMed

    Wendler, M C

    1996-10-01

    The practice of the healing arts has been a part of human history since ancient times. Despite the development of related scholarly concepts in nursing such as caring, healing remains an enigma. Using conceptual analysis a clear definition of healing within a Rogerian/Newmanian framework is explicated. Case development assists in the understanding of healing as a concept, and questions arising from this definition provide focus for further scholarly work. A result of this process of concept analysis was the development of a definition of healing which is clear and which fits the theoretical underpinnings of the unitary-transformative paradigm. Healing, as a core variable of interest in the study of health, provides important parameters for study. The definition of healing which arose from the concept analysis is: Healing is an experiential, energy-requiring process in which space is created through a caring relationship in a process of expanding consciousness and results in a sense of wholeness, integration, balance and transformation and which can never be fully known.

  13. Analyzing student conceptual understanding of resistor networks using binary, descriptive, and computational questions

    NASA Astrophysics Data System (ADS)

    Mujtaba, Abid H.

    2018-02-01

    This paper presents a case study assessing and analyzing student engagement with and responses to binary, descriptive, and computational questions testing the concepts underlying resistor networks (series and parallel combinations). The participants of the study were undergraduate students enrolled in a university in Pakistan. The majority of students struggled with the descriptive question, and while successfully answering the binary and computational ones, they failed to build an expectation for the answer, and betrayed significant lack of conceptual understanding in the process. The data collected was also used to analyze the relative efficacy of the three questions as a means of assessing conceptual understanding. The three questions were revealed to be uncorrelated and unlikely to be testing the same construct. The ability to answer the binary or computational question was observed to be divorced from a deeper understanding of the concepts involved.

  14. A study of primary school teachers’ conceptual understanding on states of matter and their changes based on their job locations (case study at Ambon island in Moluccas-Indonesia)

    NASA Astrophysics Data System (ADS)

    Banawi, A.; Sopandi, W.; Kadarohman, A.; Solehuddin, M.

    2018-05-01

    The research aims to describe primary school teachers’ conceptual understandings about states of matter and their changes. The method was descriptive which involved 15 primary school teachers from three different school locations. They were from urban school (CS1), sub-urban school (CS2), and rular school (CS3) at Ambon Island on 2016/2017 academic year. The research instrument was a multiple-choice test combined with both essay and confidence level of their answers. The test was used to measure teachers’ understanding levels about states of matter and their changes. They were macroscopic, sub-microscopic and symbolic levels. Teachers’ understanding levels were classified into following categorization, they were understand, partly understand, misconception, and do not understand. The results show that primary school teachers’ conceptual understanding is varied based on their job locations and primary school teachers’ level understanding. Generally, primary school teachers’ conceptual understandings at sub-urban location (CS2) are better than those of both of urban (CS1) and rular locations (CS3). The results suggest that teachers need improvement to make better primary school teachers’ conceptual understanding. It can be on the job training and in service training activities. We also need a further research in order to investigate the program effectiveness.

  15. A Conceptual Change Teaching Strategy To Facilitate High School Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Chacon, Eleazar

    2003-01-01

    Describes a study that used a teaching strategy based on two teaching experiments which could facilitate students' conceptual understanding of electrochemistry. Involves two sections (n=29 and n=28) of 10th grade high school students in Venezuela. Concludes that the teaching experiments facilitated student understanding of electrochemistry.…

  16. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein

    PubMed Central

    Schoneberger, Ted

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event. PMID:22477637

  17. Navigating a Literacy Landscape: Teaching Conceptual Understanding with Multiple Text Types

    ERIC Educational Resources Information Center

    Boyd, Fenice B.; Ikpeze, Chinwe H.

    2007-01-01

    The authors draw on Cognitive Flexibility Theory (Spiro, Coulson, Feltovich, & Anderson, 2004) as a lens to examine one seventh-grade English language arts teacher's pedagogical approach to using multiple text types to develop students' conceptual understandings about the 1957 integration of Little Rock's Central High School. Multiple text types…

  18. Towards a Novel Conceptual Framework for Understanding Mergers in Higher Education

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Pinheiro, Rómulo; Geschwind, Lars; Aarrevaara, Timo

    2016-01-01

    This paper tries to develop a conceptual framework for a comprehensive understanding of the merger process, which is regarded as a matter of institutionalization of organizational innovation. In the framework, a number of factors affecting merger process or institutionalization of merger are identified, such as those related to environmental…

  19. Conceptualizing and assessing improvement capability: a review

    PubMed Central

    Boaden, Ruth; Walshe, Kieran

    2017-01-01

    Abstract Purpose The literature is reviewed to examine how ‘improvement capability’ is conceptualized and assessed and to identify future areas for research. Data sources An iterative and systematic search of the literature was carried out across all sectors including healthcare. The search was limited to literature written in English. Data extraction The study identifies and analyses 70 instruments and frameworks for assessing or measuring improvement capability. Information about the source of the instruments, the sectors in which they were developed or used, the measurement constructs or domains they employ, and how they were tested was extracted. Results of data synthesis The instruments and framework constructs are very heterogeneous, demonstrating the ambiguity of improvement capability as a concept, and the difficulties involved in its operationalisation. Two-thirds of the instruments and frameworks have been subject to tests of reliability and half to tests of validity. Many instruments have little apparent theoretical basis and do not seem to have been used widely. Conclusion The assessment and development of improvement capability needs clearer and more consistent conceptual and terminological definition, used consistently across disciplines and sectors. There is scope to learn from existing instruments and frameworks, and this study proposes a synthetic framework of eight dimensions of improvement capability. Future instruments need robust testing for reliability and validity. This study contributes to practice and research by presenting the first review of the literature on improvement capability across all sectors including healthcare. PMID:28992146

  20. Understanding terminological systems. II: Experience with conceptual and formal representation of structure.

    PubMed

    de Keizer, N F; Abu-Hanna, A

    2000-03-01

    This article describes the application of two popular conceptual and formal representation formalisms, as part of a framework for understanding terminological systems. A precise understanding of the structure of a terminological system is essential to assess existing terminological systems, to recognize patterns in various systems and to build new terminological systems. Our experience with the application of this framework to five well-known terminological systems is described.

  1. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    ERIC Educational Resources Information Center

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices were…

  2. Developing Conceptual Understanding of Fractions with Year Five and Six Students

    ERIC Educational Resources Information Center

    Mills, Judith

    2016-01-01

    This paper presents findings from classroom observations of one teacher (Beth). It focusses on the development of conceptual understanding of fractions with her students, articulated in Kieren's sub-constructs (Kieren, 1980,1988), and Hansen's progressions (Hansen, 2005). The study covers three lessons within a six week unit. Findings from this…

  3. Development of a Measurement Instrument to Assess Students' Electrolyte Conceptual Understanding

    ERIC Educational Resources Information Center

    Lu, Shanshan; Bi, Hualin

    2016-01-01

    To assess students' conceptual understanding levels and diagnose alternative frameworks of the electrolyte concept, a measurement instrument was developed using the Rasch model. This paper reports the use of the measurement instrument to assess 559 students from grade 10 to grade 12 in two cities. The results provided both diagnostic and summative…

  4. Investigating and improving introductory physics students’ understanding of electric flux

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2018-07-01

    A solid grasp of the concept of electric flux is an important pre-requisite for appropriate use of Gauss’s law in solving electrostatics problems. As part of a broader investigation focusing on improving understanding of electrostatics concepts, we investigated the conceptual difficulties of college students in a traditionally taught calculus-based introductory physics course with the concept of electric flux and then the research on student difficulties was used as a guide in the development and evaluation of a research-validated tutorial which strives to help students learn this concept better. During the investigation of difficulties and the design and validation of the guided inquiry-based tutorial, college students in a calculus-based introductory physics course were given written questions to probe the common conceptual difficulties with the electric flux related concepts, and we also interviewed a subset of those students to get an in-depth account of the reasons behind the conceptual difficulties. The guided inquiry-based learning sequences in the tutorial were also iterated several times with instructors who regularly teach these courses. Here we discuss the common student difficulties with the electric flux found in our investigations, and the development and validation of a tutorial that strives to improve student understanding. We analyse how students performed on the pre-test (administered before the electric flux tutorial but after traditional instruction in the electric flux concepts) and on the post-test (administered after students in the tutorial group had engaged with the electric flux related tutorial). The performance of students in all sections of the course was comparable on the pre-test regardless of who taught that section. However, on the post-test, the performance of those in the sections of the course in which students engaged with the tutorial is significantly better that the section in which the tutorial was not used.

  5. Chinese and Australian children's understandings of the Earth: a cross cultural study of conceptual development

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-06-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.

  6. Enhancing Pre-Service Elementary School Teachers' Understanding of Essential Science Concepts through a Reflective Conceptual Change Model

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Brown, Clara Lee

    2010-01-01

    This study explored the impact of a reflective teaching method on pre-service elementary teachers' conceptual understanding of the lunar phases, reasons for seasons, and simple electric circuits. Data were collected from 40 pre-service elementary teachers about their conceptual understanding of the lunar phases, reasons for seasons and day…

  7. Improving conceptual models of water and carbon transfer through peat

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Siegel, Donald I.; Rosenberry, Donald O.; Baird, Andrew J.; Belyea, Lisa R.; Comas, Xavier; Reeve, A.S.; Slater, Lee D.

    2009-01-01

    Northern peatlands store 500 × 1015 g of organic carbon and are very sensitive to climate change. There is a strong conceptual model of sources, sinks, and pathways of carbon within peatlands, but challenges remain both in understanding the hydrogeology and the linkages between carbon cycling and peat pore water flow. In this chapter, research findings from the glacial Lake Agassiz peatlands are used to develop a conceptual framework for peatland hydrogeology and identify four challenges related to northern peatlands yet to be addressed: (1) develop a better understanding of the extent and net impact of climate-driven groundwater flushing in peatlands; (2) quantify the complexities of heterogeneity on pore water flow and, in particular, reconcile contradictions between peatland hydrogeologic interpretations and isotopic data; (3) understand the hydrogeologic implications of free-phase methane production, entrapment, and release in peatlands; and (4) quantify the impact of arctic and subarctic warming on peatland hydrogeology and its linkage to carbon cycling.

  8. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    NASA Astrophysics Data System (ADS)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific

  9. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    ERIC Educational Resources Information Center

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  10. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  11. Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Hondrich, A. Lena; Büttner, Gerhard; Hertel, Silke; Klieme, Eckhard; Kunter, Mareike; Lühken, Arnim; Adl-Amini, Katja; Djakovic, Sanna-K.; Mannel, Susanne; Naumann, Alexander; Hardy, Ilonca

    2015-01-01

    A cognitive and a guidance dimension can describe the support of students' conceptual understanding in inquiry-based science education. The role of guidance for student learning has been intensively discussed. Furthermore, inquiry learning may pose particular challenges to students with low language proficiency. The present intervention in primary…

  12. Effectiveness of Conceptual Change Instruction on Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study investigated the differential effects of two modes of instructional program (conceptual change oriented and traditionally designed) and gender difference on students' understanding of heat and temperature concepts, and their attitudes toward science as a school subject. The subjects of this study consisted of 72 seventh grade students…

  13. Students' Perceptions and Development of Conceptual Understanding Regarding Trigonometry and Trigonometric Function

    ERIC Educational Resources Information Center

    Cetin, Omer Faruk

    2015-01-01

    This study aims to analyse university level mathematics education students' perceptions on conceptual understanding of trigonometry and trigonometric functions and their content development of these concepts. A case study was conducted with 90 freshman students of Elementary Mathematics Department. The data were gathered via a scale; they included…

  14. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    NASA Astrophysics Data System (ADS)

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime

  15. Towards improving software security by using simulation to inform requirements and conceptual design

    DOE PAGES

    Nutaro, James J.; Allgood, Glenn O.; Kuruganti, Teja

    2015-06-17

    We illustrate the use of modeling and simulation early in the system life-cycle to improve security and reduce costs. The models that we develop for this illustration are inspired by problems in reliability analysis and supervisory control, for which similar models are used to quantify failure probabilities and rates. In the context of security, we propose that models of this general type can be used to understand trades between risk and cost while writing system requirements and during conceptual design, and thereby significantly reduce the need for expensive security corrections after a system enters operation

  16. Supporting Conceptual Change in School Science: A Possible Role for Tacit Understanding

    ERIC Educational Resources Information Center

    Howe, Christine; Devine, Amy; Tavares, Joana Taylor

    2013-01-01

    When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the…

  17. Understanding the nature of science through the historical development of conceptual models

    NASA Astrophysics Data System (ADS)

    Metz, Donald J.

    Understanding the nature of science has been a common goal in science education for years and continues to hold a distinct place in the recently developed Pan-Canadian science framework. Although the nature of science is often prominent in the front end of such reform documents, the implementation of these goals is presumed to be taught implicitly with the delivery of knowledge outcomes. Research strongly indicates that most students have naive conceptions about the nature of science. Surprisingly, research also clearly shows that science teachers do not fare much better, and that when they do possess adequate understanding of the nature of science it does not significantly influence their behaviour in the classroom. Norm Lederman (1998), one of the leading scholars in this field, describes two approaches advocated by curriculum reform documents to address the nature of science outcomes. The first approach suggests that students can achieve nature of science outcomes by "doing science", the second suggests that history of science can enhance students' understanding of the nature of science. While Lederman advocates the use of the history of science, he argues that these approaches are not effective when used implicitly. He recommends that an explicit approach be used (planned for, taught, assessed), but so far there have been no studies which employ this technique beyond short lessons or limited case histories. This thesis advocates an explicit approach to teaching the nature of science using the historical development of conceptual models. The research study of this thesis integrated the historical development of conceptual models with the traditional content found in a typical grade ten chemistry curriculum. Participants in the research were 74 senior 2 (grade 10) science students from four different classes in three different schools in the province of Manitoba. Prior to, and after instruction, students wrote Lederman's VNOS nature of science test. The tests

  18. The utility of resilience as a conceptual framework for understanding and measuring LGBTQ health.

    PubMed

    Colpitts, Emily; Gahagan, Jacqueline

    2016-04-06

    Historically, lesbian, gay, bisexual, transgender and queer (LGBTQ) health research has focused heavily on the risks for poor health outcomes, obscuring the ways in which LGBTQ populations maintain and improve their health across the life course. In this paper we argue that informing culturally competent health policy and systems requires shifting the LGBTQ health research evidence base away from deficit-focused approaches toward strengths-based approaches to understanding and measuring LGBTQ health. We recently conducted a scoping review with the aim of exploring strengths-based approaches to LGBTQ health research. Our team found that the concept of resilience emerged as a key conceptual framework. This paper discusses a subset of our scoping review findings on the utility of resilience as a conceptual framework in understanding and measuring LGBTQ health. The findings of our scoping review suggest that the ways in which resilience is defined and measured in relation to LGBTQ populations remains contested. Given that LGBTQ populations have unique lived experiences of adversity and discrimination, and may also have unique factors that contribute to their resilience, the utility of heteronormative and cis-normative models of resilience is questionable. Our findings suggest that there is a need to consider further exploration and development of LGBTQ-specific models and measures of resilience that take into account structural, social, and individual determinants of health and incorporate an intersectional lens. While we fully acknowledge that the resilience of LGBTQ populations is central to advancing LGBTQ health, there remains much work to be done before the concept of resilience can be truly useful in measuring LGBTQ health.

  19. Three Phase Ranking Framework for Assessing Conceptual Understanding in Algebra Using Multiple Representations

    ERIC Educational Resources Information Center

    Panasuk, Regina M.

    2010-01-01

    Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…

  20. Understanding general practice: a conceptual framework developed from case studies in the UK NHS.

    PubMed

    Checkland, Kath

    2007-01-01

    General practice in the UK is undergoing a period of rapid and profound change. Traditionally, research into the effects of change on general practice has tended to regard GPs as individuals or as members of a professional group. To understand the impact of change, general practices should also be considered as organisations. To use the organisational studies literature to build a conceptual framework of general practice organisations, and to test and develop this empirically using case studies of change in practice. This study used the implementation of National Service Frameworks (NSFs) and the new General Medical Services (GMS) contract as incidents of change. In-depth, qualitative case studies. The design was iterative: each case study was followed by a review of the theoretical ideas. The final conceptual framework was the result of the dynamic interplay between theory and empirical evidence. Five general practices in England, selected using purposeful sampling. Semi-structured interviews with all clinical and managerial personnel in each practice, participant and nonparticipant observation, and examination of documents. A conceptual framework was developed that can be used to understand how and why practices respond to change. This framework enabled understanding of observed reactions to the introduction of NSFs and the new GMS contract. Important factors for generating responses to change included the story that the practice members told about their practice, beliefs about what counted as legitimate work, the role played by the manager, and previous experiences of change. Viewing general practices as small organisations has generated insights into factors that influence responses to change. Change tends to occur from the bottom up and is determined by beliefs about organisational reality. The conceptual framework suggests some questions that can be asked of practices to explain this internal reality.

  1. Understanding general practice: a conceptual framework developed from case studies in the UK NHS

    PubMed Central

    Checkland, Kath

    2007-01-01

    Background General practice in the UK is undergoing a period of rapid and profound change. Traditionally, research into the effects of change on general practice has tended to regard GPs as individuals or as members of a professional group. To understand the impact of change, general practices should also be considered as organisations. Aim To use the organisational studies literature to build a conceptual framework of general practice organisations, and to test and develop this empirically using case studies of change in practice. This study used the implementation of National Service Frameworks (NSFs) and the new General Medical Services (GMS) contract as incidents of change. Design of study In-depth, qualitative case studies. The design was iterative: each case study was followed by a review of the theoretical ideas. The final conceptual framework was the result of the dynamic interplay between theory and empirical evidence. Setting Five general practices in England, selected using purposeful sampling. Method Semi-structured interviews with all clinical and managerial personnel in each practice, participant and non-participant observation, and examination of documents. Results A conceptual framework was developed that can be used to understand how and why practices respond to change. This framework enabled understanding of observed reactions to the introduction of NSFs and the new GMS contract. Important factors for generating responses to change included the story that the practice members told about their practice, beliefs about what counted as legitimate work, the role played by the manager, and previous experiences of change. Conclusion Viewing general practices as small organisations has generated insights into factors that influence responses to change. Change tends to occur from the bottom up and is determined by beliefs about organisational reality. The conceptual framework suggests some questions that can be asked of practices to explain this internal

  2. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Treesearch

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  3. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    ERIC Educational Resources Information Center

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  4. Influence of Environmental Education Modular Curriculum on Academic Achievement and Conceptual Understanding

    ERIC Educational Resources Information Center

    Artun, Huyseyin; Özsevgec, Tuncay

    2018-01-01

    The purpose of this study was to examine the influence of the environmental education modular curriculum on secondary school students' academic achievements and on their conceptual understanding. In the study, the case study method was used. The research sample included a total of 23 7th grade students (12 male and 11 female) who were determined…

  5. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    ERIC Educational Resources Information Center

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  6. Argumentation in elementary science education: addressing methodological issues and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Kaya, Ebru

    2017-11-01

    In this review essay I respond to issues raised in Mijung Kim and Wolff-Michael Roth's paper titled "Dialogical argumentation in elementary science classrooms", which presents a study dealing with dialogical argumentation in early elementary school classrooms. Since there is very limited research on lower primary school students' argumentation in school science, their paper makes a contribution to research on children's argumentation skills. In this response, I focus on two main issues to extend the discussion in Kim and Roth's paper: (a) methodological issues including conducting a quantitative study on children's argumentation levels and focusing on children's written argumentation in addition to their dialogical argumentation, and (b) investigating children's conceptual understanding along with their argumentation levels. Kim and Roth emphasize the difficulty in determining the level of children's argumentation through the Toulmin's Argument Pattern and lack of high level arguments by children due to their difficulties in writing texts. Regarding these methodological issues, I suggest designing quantitative research on coding children's argument levels because such research could potentially provide important findings on children's argumentation. Furthermore, I discuss alternative written products including posters, figures, or pictures generated by children in order to trace children's arguments, and finally articulating argumentation and conceptual understanding of children.

  7. Understanding early elementary children's conceptual knowledge of plant structure and function through drawings.

    PubMed

    Anderson, Janice L; Ellis, Jane P; Jones, Alan M

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings. © 2014 J. L. Anderson et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. A conceptual framework for implementation fidelity

    PubMed Central

    Carroll, Christopher; Patterson, Malcolm; Wood, Stephen; Booth, Andrew; Rick, Jo; Balain, Shashi

    2007-01-01

    Background Implementation fidelity refers to the degree to which an intervention or programme is delivered as intended. Only by understanding and measuring whether an intervention has been implemented with fidelity can researchers and practitioners gain a better understanding of how and why an intervention works, and the extent to which outcomes can be improved. Discussion The authors undertook a critical review of existing conceptualisations of implementation fidelity and developed a new conceptual framework for understanding and measuring the process. The resulting theoretical framework requires testing by empirical research. Summary Implementation fidelity is an important source of variation affecting the credibility and utility of research. The conceptual framework presented here offers a means for measuring this variable and understanding its place in the process of intervention implementation. PMID:18053122

  9. Implementation of Scientific Community Laboratories and Their Effect on Student Conceptual Learning, Attitudes, and Understanding of Uncertainty

    NASA Astrophysics Data System (ADS)

    Lark, Adam

    Scientific Community Laboratories, developed by The University of Maryland, have shown initial promise as laboratories meant to emulate the practice of doing physics. These laboratories have been re-created by incorporating their design elements with the University of Toledo course structure and resources. The laboratories have been titled the Scientific Learning Community (SLC) Laboratories. A comparative study between these SLC laboratories and the University of Toledo physics department's traditional laboratories was executed during the fall 2012 semester on first semester calculus-based physics students. Three tests were executed as pre-test and post-tests to capture the change in students' concept knowledge, attitudes, and understanding of uncertainty. The Force Concept Inventory (FCI) was used to evaluate students' conceptual changes through the semester and average normalized gains were compared between both traditional and SLC laboratories. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) was conducted to elucidate students' change in attitudes through the course of each laboratory. Finally, interviews regarding data analysis and uncertainty were transcribed and coded to track changes in the way students understand uncertainty and data analysis in experimental physics after their participation in both laboratory type. Students in the SLC laboratories showed a notable an increase conceptual knowledge and attitudes when compared to traditional laboratories. SLC students' understanding of uncertainty showed most improvement, diverging completely from students in the traditional laboratories, who declined throughout the semester.

  10. Improving students' understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtian

    2011-12-01

    Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.

  11. The Effects of Virtual Versus Physical Lab Manipulatives on Inquiry Skill Acquisition and Conceptual Understanding of Density

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.

  12. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    NASA Astrophysics Data System (ADS)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  13. Understanding Eating Disorders in Elite Gymnastics: Ethical and Conceptual Challenges.

    PubMed

    Tan, Jacinta Oon Ai; Calitri, Raff; Bloodworth, Andrew; McNamee, Michael J

    2016-04-01

    Eating disorders and disordered eating are more common in high performance sports than the general population, and particularly so in high performance aesthetic sports. This paper presents some of the conceptual difficulties in understanding and diagnosing eating disorders in high performance gymnasts. It presents qualitative and quantitative data from a study designed to ascertain the pattern of eating disorder symptoms, depressive symptoms and levels of self-esteem among national and international level gymnasts from the UK in the gymnastic disciplines of sport acrobatics, tumbling, and rhythmic gymnastics. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Improving conceptual and procedural knowledge: The impact of instructional content within a mathematics lesson.

    PubMed

    Rittle-Johnson, Bethany; Fyfe, Emily R; Loehr, Abbey M

    2016-12-01

    Students, parents, teachers, and theorists often advocate for direct instruction on both concepts and procedures, but some theorists suggest that including instruction on procedures in combination with concepts may limit learning opportunities and student understanding. This study evaluated the effect of instruction on a math concept and procedure within the same lesson relative to a comparable amount of instruction on the concept alone. Direct instruction was provided before or after solving problems to evaluate whether the type of instruction interacted with the timing of instruction within a lesson. We worked with 180 second-grade children in the United States. In a randomized experiment, children received a classroom lesson on mathematical equivalence in one of four conditions that varied in instruction type (conceptual or combined conceptual and procedural) and in instruction order (instruction before or after solving problems). Children who received two iterations of conceptual instruction had better retention of conceptual and procedural knowledge than children who received both conceptual and procedural instruction in the same lesson. Order of instruction did not impact outcomes. Findings suggest that within a single lesson, spending more time on conceptual instruction may be more beneficial than time spent teaching a procedure when the goal is to promote more robust understanding of target concepts and procedures. © 2016 The British Psychological Society.

  15. Lectures and Simulation Laboratories to Improve Learners' Conceptual Understanding

    ERIC Educational Resources Information Center

    Brophy, Sean P.; Magana, Alejandra J.; Strachan, Alejandro

    2013-01-01

    We studied the use of online molecular dynamics simulations (MD) to enhance student abilities to understand the atomic processes governing plastic deformation in materials. The target population included a second-year undergraduate engineering course in the School of Materials Engineering at Purdue University. The objectives of the study were to…

  16. Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics

    ERIC Educational Resources Information Center

    Atasoy, Sengül

    2013-01-01

    The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…

  17. Preservice Elementary School Teachers' Conceptual Understanding of Place Value within a Constructivist Framework

    ERIC Educational Resources Information Center

    Murawska, Jaclyn Marie

    2013-01-01

    This research study examined the development of 43 preservice elementary school teachers' conceptual understanding of place value after participating in a research-based constructivist unit of instruction in place value. The preservice teachers were enrolled in one of three terms of an elementary mathematics methods course in a private midwestern…

  18. Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.

    PubMed

    DeCaro, Marci S

    2016-10-01

    An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.

  19. The Positive and Negative Effects of Science Concept Tests on Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Yeh, Ting-Kuang; Barufaldi, James P.

    2010-01-01

    This study explored the phenomenon of testing effect during science concept assessments, including the mechanism behind it and its impact upon a learner's conceptual understanding. The participants consisted of 208 high school students, in either the 11th or 12th grade. Three types of tests (traditional multiple-choice test, correct concept test,…

  20. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  1. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  2. Understanding Nursing Home Worker Conceptualizations about Good Care

    ERIC Educational Resources Information Center

    Chung, Gawon

    2013-01-01

    This study explored how direct care workers in nursing homes conceptualize good care and how their conceptualizations are influenced by external factors surrounding their work environment and the relational dynamics between them and residents. Study participants were drawn from a local service employees' union, and in-depth interviews were…

  3. Understanding and Improving Multi-Sectoral Partnerships for Chronic Disease Prevention: Blending Conceptual and Practical Insights

    ERIC Educational Resources Information Center

    Willis, Cameron; Greene, Julie; Riley, Barbara

    2017-01-01

    Inter-organisational partnerships are widely used approaches in public health and chronic disease prevention (CDP), and may include organisations from different sectors, such as research-policy-practice sectors, inter-governmental sectors, or public and private sectors. While multiple conceptual frameworks related to multi-sectoral partnerships…

  4. Improving the quality of cognitive behaviour therapy case conceptualization: the role of self-practice/self-reflection.

    PubMed

    Haarhoff, Beverly; Gibson, Kerry; Flett, Ross

    2011-05-01

    CBT case conceptualization is considered to be a key competency. Prior to the publication in 2009 of Kuyken, Padesky and Dudley's book, little has been documented concerning methods for training conceptualization skills and the conceptualization process is usually perceived as predominantly an intellectual process. In this paper, the Declarative-Procedural-Reflective model of therapist skill acquisition provides a route to understanding how different kinds of knowledge systems can be integrated to enhance therapist skill acquisition. Sixteen recent graduates of a postgraduate diploma in cognitive behaviour therapy worked independently through a self-practice/self-reflection workbook designed to lead them through a series of CBT interventions commonly used to elicit the information required for a CBT conceptualization. The participants' self-reflections were thematically analyzed and uncovered the following inter-related themes: increased theoretical understanding of the CBT model, self-awareness, empathy, conceptualization of the therapeutic relationship, and adaptation of clinical interventions and practice. A tentative conclusion reached, based on the self-reflections of the participants, was that targeted self-practice/self-reflection enhanced case conceptualization skill by consolidating the Declarative, Procedural and Reflective systems important in therapist skill acquisition. © British Association for Behavioural and Cognitive Psychotherapies 2011

  5. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    ERIC Educational Resources Information Center

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  6. Understanding Genetics: Analysis of Secondary Students' Conceptual Status

    ERIC Educational Resources Information Center

    Tsui, Chi-Yan; Treagust, David F.

    2007-01-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a…

  7. Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems

    ERIC Educational Resources Information Center

    Dahsah, Chanyah; Coll, Richard K.

    2007-01-01

    Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…

  8. Effect of Conceptual Change Oriented Instruction on Students' Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    This study explores the effectiveness of conceptual change oriented instruction and standard science instruction and contribution of logical thinking ability on seventh grade students' understanding of heat and temperature concepts. Misconceptions related to heat and temperature concepts were determined by related literature on this subject.…

  9. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  10. Orchestrating student discourse opportunities and listening for conceptual understandings in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Kinard, Melissa Grass

    Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could

  11. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  12. Using Targeted Active-Learning Exercises and Diagnostic Question Clusters to Improve Students' Understanding of Carbon Cycling in Ecosystems

    ERIC Educational Resources Information Center

    Maskiewicz, April Cordero; Griscom, Heather Peckham; Welch, Nicole Turrill

    2012-01-01

    In this study, we used targeted active-learning activities to help students improve their ways of reasoning about carbon flow in ecosystems. The results of a validated ecology conceptual inventory (diagnostic question clusters [DQCs]) provided us with information about students' understanding of and reasoning about transformation of inorganic and…

  13. Active Learning session based on Didactical Engineering framework for conceptual change in students' equilibrium and stability understanding

    NASA Astrophysics Data System (ADS)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria and formulae. Our aim is to study the impact of a specific and innovative classroom session, containing well-chosen situations that address students' misconceptions. We propose an example of Active Learning experiment based both on the Didactical Engineering methodology and the Conceptual Fields Theory that aims at promoting a conceptual change in students. The chosen methodology allows, at the same time, a proper design of the student learning activities, an accurate monitoring of the students' rational use during the tasks and provides an internal tool for the evaluation of the session's efficiency. Although the expected starting conceptual change was detected, it would require another activity in order to be reinforced.

  14. Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance

    PubMed Central

    Mead, Rebecca; Hejmadi, Momna

    2017-01-01

    What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students’ understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance. PMID:28542179

  15. Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance.

    PubMed

    Mead, Rebecca; Hejmadi, Momna; Hurst, Laurence D

    2017-05-01

    What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students' understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance.

  16. Introductory Statistics Students' Conceptual Understanding of Study Design and Conclusions

    NASA Astrophysics Data System (ADS)

    Fry, Elizabeth Brondos

    Recommended learning goals for students in introductory statistics courses include the ability to recognize and explain the key role of randomness in designing studies and in drawing conclusions from those studies involving generalizations to a population or causal claims (GAISE College Report ASA Revision Committee, 2016). The purpose of this study was to explore introductory statistics students' understanding of the distinct roles that random sampling and random assignment play in study design and the conclusions that can be made from each. A study design unit lasting two and a half weeks was designed and implemented in four sections of an undergraduate introductory statistics course based on modeling and simulation. The research question that this study attempted to answer is: How does introductory statistics students' conceptual understanding of study design and conclusions (in particular, unbiased estimation and establishing causation) change after participating in a learning intervention designed to promote conceptual change in these areas? In order to answer this research question, a forced-choice assessment called the Inferences from Design Assessment (IDEA) was developed as a pretest and posttest, along with two open-ended assignments, a group quiz and a lab assignment. Quantitative analysis of IDEA results and qualitative analysis of the group quiz and lab assignment revealed that overall, students' mastery of study design concepts significantly increased after the unit, and the great majority of students successfully made the appropriate connections between random sampling and generalization, and between random assignment and causal claims. However, a small, but noticeable portion of students continued to demonstrate misunderstandings, such as confusion between random sampling and random assignment.

  17. Assessing Students' Conceptual Understanding in Science: An Introduction about a National Project in Taiwan

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Guo, Chorng-Jee; Treagust, David F.

    2007-01-01

    In this article, we discuss several aspects of the national project, the National Science Concept Learning Study, designed to assess elementary, middle, and secondary students' conceptual understanding in science. After a short introduction to provide some history of the project, we describe the processes used in the integrative study, the…

  18. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    ERIC Educational Resources Information Center

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  19. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    PubMed Central

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation. PMID:29114235

  20. Multiple intelligences and alternative teaching strategies: The effects on student academic achievement, conceptual understanding, and attitude

    NASA Astrophysics Data System (ADS)

    Baragona, Michelle

    The purpose of this study was to investigate the interactions between multiple intelligence strengths and alternative teaching methods on student academic achievement, conceptual understanding and attitudes. The design was a quasi-experimental study, in which students enrolled in Principles of Anatomy and Physiology, a developmental biology course, received lecture only, problem-based learning with lecture, or peer teaching with lecture. These students completed the Multiple Intelligence Inventory to determine their intelligence strengths, the Students' Motivation Toward Science Learning questionnaire to determine student attitudes towards learning in science, multiple choice tests to determine academic achievement, and open-ended questions to determine conceptual understanding. Effects of intelligence types and teaching methods on academic achievement and conceptual understanding were determined statistically by repeated measures ANOVAs. No significance occurred in academic achievement scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in logical-mathematical, interpersonal, kinesthetic, and intrapersonal intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by problem-based learning (PBL) as compared to peer teaching (PT). No significance occurred in conceptual understanding scores due to lab group or due to teaching method used; however, significant interactions between group and teaching method did occur in students with strengths in musical, kinesthetic, intrapersonal, and spatial intelligences. Post-hoc analysis using Tukey HSD tests revealed students with strengths in logical-mathematical intelligence and enrolled in Group Three scored significantly higher when taught by lecture as compared to PBL. Students with

  1. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    ERIC Educational Resources Information Center

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  2. Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Cakirt, Ozlem S.; Geban, Omer; Yuruk, Nejla

    2002-01-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from four classes of a high school. Two of the classes…

  3. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    NASA Astrophysics Data System (ADS)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that

  4. Conceptual Change in Elementary School Teacher Candidate Knowledge of Rock-Cycle Processes.

    ERIC Educational Resources Information Center

    Stofflett, Rene Therese

    1994-01-01

    Investigates the knowledge of elementary school teacher candidates on rock-cycle processes. Three different instructional interventions were used to improve their knowledge: (1) conceptual-change teaching; (2) traditional didactic teaching; and (3) microteaching. The conceptual-change group showed the most growth in understanding, supporting…

  5. Crafting an International Study of Students' Conceptual Understanding of Astronomy

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Bretones, P. S.; McKinnon, D.; Schleigh, S.; Slater, T. F.; Astronomy, Center; Education Research, Physics

    2013-01-01

    Large international investigations into the learning of science, such as the TIMSS and PISA studies, have been enlightening with regard to effective instructional practices. Data from these studies revealed weaknesses and promising practices within nations' educational systems, with evidence to suggest that these studies have led to international reforms in science education. However, these reforms have focused on the general characteristics of teaching and learning across all sciences. While extraordinarily useful, these studies have provided limited insight for any given content domain. To date, there has been no systematic effort to measure individual's conceptual astronomy understanding across the globe. This paper describes our motivations for a coordinated, multinational study of astronomy understanding. First, reformed education is based upon knowing the preexisting knowledge state of our students. The data from this study will be used to assist international astronomy education and public outreach (EPO) professionals in their efforts to improve practices across global settings. Second, while the US astronomy EPO community has a long history of activity, research has established that many practices are ineffective in the face of robust misconceptions (e.g.: seasons). Within an international sample we hope to find subpopulations that do not conform to our existing knowledge of student misconceptions, leading us to cultural or educational practices that hint at alternative, effective means of instruction. Finally, it is our hope that this first venture into large-scale disciplinary collaboration will help us to craft a set of common languages and practices, building capacity and leading toward long-term cooperation across the international EPO community. This project is sponsored and managed by the Center for Astronomy & Physics Education Research (CAPER), in collaboration with members of the International Astronomical Union-Commission 46. We are actively

  6. Effect of Instruction Based on Conceptual Change Activities on Students' Understanding of Static Electricity Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…

  7. Effectiveness of Conceptual Change Text Oriented Instruction on Students' Understanding of Cellular Respiration Concepts.

    ERIC Educational Resources Information Center

    Cakir, Ozlem S.; Yuruk, Nejla; Geban, Omer

    The purpose of the study is to compare the effectiveness of conceptual change text oriented instruction and traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from the 4 classes of a high school.…

  8. Tools for Science Inquiry Learning: Tool Affordances, Experimentation Strategies, and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Bumbacher, Engin; Salehi, Shima; Wieman, Carl; Blikstein, Paulo

    2017-12-01

    Manipulative environments play a fundamental role in inquiry-based science learning, yet how they impact learning is not fully understood. In a series of two studies, we develop the argument that manipulative environments (MEs) influence the kind of inquiry behaviors students engage in, and that this influence realizes through the affordances of MEs, independent of whether they are physical or virtual. In particular, we examine how MEs shape college students' experimentation strategies and conceptual understanding. In study 1, students engaged in two consecutive inquiry tasks, first on mass and spring systems and then on electric circuits. They either used virtual or physical MEs. We found that the use of experimentation strategies was strongly related to conceptual understanding across tasks, but that students engaged differently in those strategies depending on what ME they used. More students engaged in productive strategies using the virtual ME for electric circuits, and vice versa using the physical ME for mass and spring systems. In study 2, we isolated the affordance of measurement uncertainty by comparing two versions of the same virtual ME for electric circuits—one with and one without noise—and found that the conditions differed in terms of productive experimentation strategies. These findings indicate that measures of inquiry processes may resolve apparent ambiguities and inconsistencies between studies on MEs that are based on learning outcomes alone.

  9. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    ERIC Educational Resources Information Center

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  10. Effect of PDEODE Teaching Strategy on Turkish Students' Conceptual Understanding: Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Demircioglu, Hülya

    2017-01-01

    The aim of this study is to determine the effect of activities developed in accordance with PDEODE teaching strategy on students' understanding of the particulate nature of matter. The sample of the study consists of the first grade students who study in the Primary School Teacher Education Program. In order to determine the conceptual change on…

  11. Understanding medical symptoms: a conceptual review and analysis.

    PubMed

    Malterud, Kirsti; Guassora, Ann Dorrit; Graungaard, Anette Hauskov; Reventlow, Susanne

    2015-12-01

    The aim of this article is to present a conceptual review and analysis of symptom understanding. Subjective bodily sensations occur abundantly in the normal population and dialogues about symptoms take place in a broad range of contexts, not only in the doctor's office. Our review of symptom understanding proceeds from an initial subliminal awareness by way of attribution of meaning and subsequent management, with and without professional involvement. We introduce theoretical perspectives from phenomenology, semiotics, social interactionism, and discourse analysis. Drew Leder's phenomenological perspectives deal with how symptom perception occurs when any kind of altered balance brings forward a bodily attention. Corporeality is brought to explicit awareness and perceived as sensations. Jesper Hoffmeyer's biosemiotic perspectives provide access to how signs are interpreted to attribute meaning to the bodily messages. Symptom management is then determined by the meaning of a symptom. Dorte E. Gannik's concept "situational disease" explains how situations can be reviewed not just in terms of their potential to produce signs or symptoms, but also in terms of their capacity to contain symptoms. Disease is a social and relational phenomenon of containment, and regulating the situation where the symptoms originate implies adjusting containment. Discourse analysis, as presented by Jonathan Potter and Margaret Wetherell, provides a tool to notice the subtle ways in which language orders perceptions and how language constructs social interaction. Symptoms are situated in culture and context, and trends in modern everyday life modify symptom understanding continuously. Our analysis suggests that a symptom can only be understood by attention to the social context in which the symptom emerges and the dialogue through which it is negotiated.

  12. Hurricanes Katrina and Rita and the Department of Veterans Affairs: a conceptual model for understanding the evacuation of nursing homes.

    PubMed

    Dobalian, Aram; Claver, Maria; Fickel, Jacqueline J

    2010-01-01

    Hurricanes Katrina and Rita exposed significant flaws in US preparedness for catastrophic events and the nation's capacity to respond to them. These flaws were especially evident in the affected disaster areas' nursing homes, which house a particularly vulnerable population of frail older adults. Although evacuation of a healthcare facility is a key preparedness activity, there is limited research on factors that lead to effective evacuation. Our review of the literature on evacuation is focused on developing a conceptual framework to study future evacuations rather than as a comprehensive assessment of prior work. This paper summarizes what is known thus far about disaster response activities of nursing homes following natural and human-caused disasters, describes a conceptual model to guide future inquiry regarding this topic, and suggests future areas of research to further understand the decision-making process of nursing home facilitators regarding evacuating nursing home residents. To demonstrate the utility of the conceptual model and to provide guidance about effective practices and procedures, this paper focuses on the responses of Veterans Health Administration (VHA) nursing homes to the 2 hurricanes. Quarantelli's conceptual framework, as modified by Perry and Mushkatel, is useful in guiding the development of central hypotheses related to the decision-making that occurred in VA nursing homes and other healthcare facilities following Hurricanes Katrina and Rita. However, we define evacuation somewhat differently to account for the fact that evacuation may, in some instances, be permanent. Thus, we propose modifying this framework to improve its applicability beyond preventive evacuation. We need to better understand how disaster plans can be adapted to meet the needs of frail elders and other residents in nursing homes. Moreover, we must address identified gaps in the scientific literature with respect to health outcomes by tracking outcomes over time

  13. Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Butler, Kyle A.; Lumpe, Andrew

    2008-10-01

    This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p < .05) was between the saving/viewing features hits and the students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p < 0.01) was between the searching features hits and the students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship

  14. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  15. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  16. Effects of Gender and Collaborative Learning Approach on Students' Conceptual Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Adolphus, Telima; Omeodu, Doris

    2016-01-01

    The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…

  17. The Positive and Negative Effects of Science Concept Tests on Student Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Yen; Yeh, Ting-Kuang; Barufaldi, James P.

    2010-01-01

    This study explored the phenomenon of testing effect during science concept assessments, including the mechanism behind it and its impact upon a learner's conceptual understanding. The participants consisted of 208 high school students, in either the 11th or 12th grade. Three types of tests (traditional multiple-choice test, correct concept test, and incorrect concept test) related to the greenhouse effect and global warming were developed to explore the mechanisms underlining the test effect. Interview data analyzed by means of the flow-map method were used to examine the two-week post-test consequences of taking one of these three tests. The results indicated: (1) Traditional tests can affect participants' long-term memory, both positively and negatively; in addition, when students ponder repeatedly and think harder about highly distracting choices during a test, they may gradually develop new conceptions; (2) Students develop more correct conceptions when more true descriptions are provided on the tests; on the other hand, students develop more misconceptions while completing tests in which more false descriptions of choices are provided. Finally, the results of this study revealed a noteworthy phenomenon that tests, if employed appropriately, may be also an effective instrument for assisting students' conceptual understanding.

  18. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  19. Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding

    ERIC Educational Resources Information Center

    Herrington, Deborah G.; Yezierski, Ellen J.

    2014-01-01

    The recent revisions to the advanced placement (AP) chemistry curriculum promote deep conceptual understanding of chemistry content over more rote memorization of facts and algorithmic problem solving. For many teachers, this will mean moving away from traditional worksheets and verification lab activities that they have used to address the vast…

  20. Understanding Conceptualizations of Pregnancy and Planning for Pregnancy Among Adolescent Girls and Young Women in Harare, Zimbabwe.

    PubMed

    Tinago, Chiwoneso B; Ingram, Lucy Annang; Frongillo, Edward A; Blake, Christine E; Engelsmann, Barbara; Simmons, David

    2018-07-01

    Zimbabwe has one of the highest rates of maternal mortality, yet little is understood about adolescent girls' and young women's perspectives on pregnancy or planning for pregnancy. The research study took an emic approach to understand and describe how adolescent girls and young women (14-24 years) in Harare, Zimbabwe, conceptualize pregnancy and planning for pregnancy and how these conceptualizations inform pregnancy decisions. Semi-structured, in-depth, qualitative interviews were conducted with adolescent girls and young women ( N = 48) and data were analyzed thematically using NVivo 10. Pregnancy was conceptualized across nine themes: carrying a child and oneself, growing a family, motherhood, the best time for pregnancy, pregnancy decision makers, who is responsible for the pregnancy, pregnancy burden, pregnancy dangers, and increase in social status with pregnancy. Planning for pregnancy was conceptualized during the prepregnancy, pregnancy, and postpregnancy phases. Findings emphasize considering sociocultural views concerning pregnancy and including social networks in maternal health efforts.

  1. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  2. Chinese and Australian Children's Understandings of the Earth: A Cross Cultural Study of Conceptual Development

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-01-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province,…

  3. The Effects of Dynamic Graphing Utilities on Student Attitudes and Conceptual Understanding in College Algebra

    ERIC Educational Resources Information Center

    Thomas, Ryan Vail

    2016-01-01

    The goal of this study is to explore and characterize the effects of using a dynamic graphing utility (DGU) on conceptual understanding and attitudes toward mathematics, measured by the responses of college algebra students to an attitude survey and concepts assessment. Two sections of college algebra taught by the primary researcher are included…

  4. It's Rather like Learning a Language: Development of Talk and Conceptual Understanding in Mechanics Lessons

    ERIC Educational Resources Information Center

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research…

  5. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  6. Learning environment, learning styles and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  7. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  8. Developing Conceptual Understanding in a Statistics Course: Merrill's First Principles and Real Data at Work

    ERIC Educational Resources Information Center

    Tu, Wendy; Snyder, Martha M.

    2017-01-01

    Difficulties in learning statistics primarily at the college-level led to a reform movement in statistics education in the early 1990s. Although much work has been done, effective learning designs that facilitate active learning, conceptual understanding of statistics, and the use of real-data in the classroom are needed. Guided by Merrill's First…

  9. Comparison of two different techniques of cooperative learning approach: Undergraduates' conceptual understanding in the context of hormone biochemistry.

    PubMed

    Mutlu, Ayfer

    2018-03-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished using Team-Game Tournament in Group 1 and Jigsaw in Group 2. Before the instructions, all groups were informed about cooperative learning and techniques, their responsibilities in the learning process and accessing of resources. Instructions were conducted under the guidance of the researcher for nine weeks and the Hormone Concept Test developed by the researcher was used before and after the instructions for data collection. According to the results, while both techniques improved students' understanding, Jigsaw was more effective than Team-Game Tournament. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):114-120, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Understanding and Theorizing the Role of Culture in the Conceptualizations of Successful Aging and Lifelong Learning

    ERIC Educational Resources Information Center

    Tam, Maureen

    2014-01-01

    Successful aging and lifelong learning are value-laden concepts that are culturally determined. To this effect, people with different value systems and cultural backgrounds may perceive and understand these two concepts differently, resulting in different definitions and conceptualizations by people in diverse cultural contexts. There have been…

  11. Exploring the Impact of Argumentation on Pre-Service Science Teachers' Conceptual Understanding of Chemical Equilibrium

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Dogan, Alev

    2016-01-01

    This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…

  12. Long-Term Outcomes of Early Childhood Science Education: Insights from a Cross-National Comparative Case Study on Conceptual Understanding of Science

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2012-01-01

    The purpose of this research was to explore the long-term outcomes of either participating or not participating in early childhood science education on grade 6 students' conceptual understanding of science. The research is situated in a conceptual framework that evokes Piagetian developmental levels as both potential curriculum constraints and…

  13. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  14. It's Rather like Learning a Language: Development of talk and conceptual understanding in mechanics lessons

    NASA Astrophysics Data System (ADS)

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research goal was to investigate and understand how students develop an understanding of the concept of force and how they use and understand the term 'force'. Therefore, we make relation to the research field of students' preconceptions and the field of second language learning. Two classes of students (N = 47) were videotaped during a time period of nine lessons, each transcribed and analysed using a category system. Additional data were obtained via written tasks, logs kept by the students, and tests. The detailed analysis of the talk and the results of the tests indicate that students face difficulties in using the term 'force' scientifically similar to those in a foreign language instruction. Vygotsky already recognised a relationship between learning in science and learning a language. In this paper, important aspects of this relationship are discussed based upon empirical data. We conclude that in some respects it might be useful to make reference to the research related to language learning when thinking about improving science education. In particular, according to Selinker's concept of interlanguage describing language-learning processes within language instruction, the language used by the students during physics lessons can be viewed as a 'scientific interlanguage'.

  15. Effect of Current Electricity Simulation Supported Learning on the Conceptual Understanding of Elementary and Secondary Teachers

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy

    2011-01-01

    This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…

  16. Understanding Leadership Paradigms for Improvement in Higher Education

    ERIC Educational Resources Information Center

    Flumerfelt, Shannon; Banachowski, Michael

    2011-01-01

    Purpose: This research article is based on the Baldrige National Quality Program Education Criteria for Performance Excellence's conceptualization of improvement as a dual cycle/three element initiative of examining and bettering inputs, processes, and outputs as driven by measurement, analysis and knowledge management work. This study isolates a…

  17. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    NASA Astrophysics Data System (ADS)

    Busby, Karin Burk

    Misconceptions of Newtonian mechanics and other physical science concepts are well documented in primary and pre-service teacher populations (Burgoon, Heddle, & Duran, 2009; Allen & Coole, 2012; Kruger, Summers, & Palacio, 1990; Ginns & Watters, 1995; Trumper, 1999; Asikainen & Hirovonen, 2014). These misconceptions match the misconceptions held by students, leaving teachers ill-equipped to rectify these concepts in the classroom (Kind, 2014; Kruger et al., 1990; Cochran & Jones, 1998). Little research has been devoted to misconceptions held by in-service secondary teachers, the population responsible for teaching Newtonian mechanics. This study focuses on Texas in-service science teachers in middle school and high school science, specifically sixth grade science, seventh grade science, eighth grade science, integrated physics and chemistry, and physics teachers. This study utilizes two instruments to gauge conceptual understanding of Newton's laws of motion: the Force Concept Inventory [FCI] (Hestenes, Wells, & Swackhamer, 1992) and a custom instrument developed for the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching (Urquhart, M., e-mail, April 4, 2017). Use of each instrument had its strengths and limitations. In the initial work of this study, the FCI was given to middle and high school teacher volunteers in two urban school districts in the Dallas- Fort Worth area to assess current conceptual understanding of Newtonian mechanics. Along with the FCI, each participant was asked to complete a demographic survey. Demographic data collected included participant's sex, years of service in teaching position, current teaching position, degrees, certification type, and current certifications for science education. Correlations between variables and overall average on the FCI were determined by t-tests and ANOVA tests with a post-hoc Holm-Bonferroni correction test. Test questions pertaining to each of Newton's three laws of motion were

  18. University Student Conceptual Resources for Understanding Energy

    ERIC Educational Resources Information Center

    Sabo, Hannah C.; Goodhew, Lisa M.; Robertson, Amy D.

    2016-01-01

    We report some of the common, prevalent conceptual resources that students used to reason about energy, based on our analysis of written responses to questions given to 807 introductory physics students. These resources include, for example, associating forms of energy with indicators, relating forces and energy, and representing energy…

  19. A Conceptual Framework for Understanding the Association between School Bullying Victimization and Substance Misuse

    PubMed Central

    Hong, Jun Sung; Davis, Jordan P.; Sterzing, Paul R.; Yoon, Jina; Choi, Shinwoo; Smith, Douglas C.

    2014-01-01

    This article reviews current research findings and presents a conceptual framework for better understanding the relationship between bullying victimization (hereafter referred to as victimization) and substance misuse (hereafter referred to as SM) among adolescents. Although victimization and SM may appear to be separate problems, research suggests an intriguing relationship between the two. We present a brief, empirical overview of the direct association between victimization and adolescent SM, followed by a proposed conceptual framework that includes co-occurring risk factors for victimization and SM within family, peer, and school/community contexts. Next, we discuss potential mediators linking victimization and SM, such as internalizing problems, traumatic stress, low academic performance, and school truancy/absence. We then identify potential moderating influences of age, gender/sex, social supports, and school connectedness that could amplify or abate the association between victimization and SM. Finally, we discuss practice and policy implications. PMID:25545436

  20. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    ERIC Educational Resources Information Center

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  1. Prediction/Discussion-Based Learning Cycle versus Conceptual Change Text: Comparative Effects on Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.

    2013-01-01

    Background and Purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of…

  2. The Effects of Students' Cognitive Styles on Conceptual Understandings and Problem-Solving Skills in Introductory Mechanics

    ERIC Educational Resources Information Center

    Ates, Salih; Cataloglu, Erdat

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen students' Field depended or field independent (FD/FI) cognitive style, conceptual understandings, and problem solving skills in mechanics. The sample consisted of 213 freshmen (female = 111, male = 102; age range 17-21) who were enrolled in an introductory physics…

  3. Developing Conceptual Understanding and Procedural Fluency for Junior High School Students through Model-Facilitated Learning (MFL)

    ERIC Educational Resources Information Center

    Laswadi; Kusumah, Yaya S.; Darwis, Sutawanir; Afgani, Jarnawi D.

    2016-01-01

    Conceptual understanding (CU) and procedural fluency (PF) are two important mathematical competencies required by students. CU helps students organizing their knowledge into a coherent whole, and PF helps them to find the right solution of a problem. In order to enhance CU and PF, students need learning experiences in constructing knowledge and…

  4. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  5. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  6. A cross-cultural, multilevel study of inquiry-based instruction effects on conceptual understanding and motivation in physics

    NASA Astrophysics Data System (ADS)

    Negishi, Meiko

    Student achievement and motivation to learn physics is highly valued in many industrialized countries including the United States and Japan. Science education curricula in these countries emphasize the importance and encourage classroom teachers to use an inquiry approach. This dissertation investigated high school students' motivational orientations and their understanding of physics concepts in a context of inquiry-based instruction. The goals were to explore the patterns of instructional effects on motivation and learning in each country and to examine cultural differences and similarities. Participants consisted of 108 students (55 females, 53 males) and 9 physics teachers in the United States and 616 students (203 females and 413 males) and 11 physics teachers in Japan. Students were administered (a) Force Concept Inventory measuring physics conceptual understanding and (b) Attitudes about Science Questionnaire measuring student motivational orientations. Teachers were given a survey regarding their use of inquiry teaching practices and background information. Additionally, three teachers in each country were interviewed and observed in their classrooms. For the data analysis, two-level hierarchical linear modeling (HLM) methods were used to examine individual student differences (i.e., learning, motivation, and gender) within each classroom (i.e., inquiry-based teaching, teaching experience, and class size) in the U.S. and Japan, separately. Descriptive statistical analyses were also conducted. The results indicated that there was a cultural similarity in that current teaching practices had minimal influence on conceptual understanding as well as motivation of high school students between the U.S. and Japan. In contrast, cultural differences were observed in classroom structures and instructional approaches. Furthermore, this study revealed gender inequity in Japanese students' conceptual understanding and self-efficacy. Limitations of the study, as well as

  7. A phenomenographical investigation of gender differences in the conceptual understanding of mechanics: Implications for classroom instruction

    NASA Astrophysics Data System (ADS)

    Sabin, Suzanne Sells

    Using a phenomenographical approach, this study investigates the qualitatively different ways that middle school boys and girls conceptualize aspects of the relationship between force and motion. It is well documented that students enter the classroom with intuitive beliefs that are frequently inconsistent with the Newtonian concept of force. Better known as misconceptions, three such understandings were examined in this study: motion implies force; impetus dissipation; and velocity, or a change in velocity, is proportional to force. With respect to each misconception, potential gender differences in comprehension were examined by monitoring student thinking during the learning process. To gain insight into the prior knowledge of the learner, selected items from the FCI were administered. These conceptions were then compared with the student's qualitative understanding of each physics principle following classroom instruction thereby characterizing the degree of conceptual change exhibited by the learner. After documenting the student's understanding of a given topic, his or her ability to apply these concepts was explored. Not only were students found to harbor misconceptions that served as obstacles to the learning process, these beliefs proved highly contextual and inconsistently applied. Some misconceptions were more prevalent than others. In addition, students who responded with a given misconception in one context often failed to apply the same belief in a different setting. While this pattern of variability was characteristic of all comparison groups, females were generally more likely to continue employing the motion implies force and impetus dissipation misconceptions following instruction. Perhaps more important than any gender specific trend in student thinking, is the number of individuals who continued to apply misconceptions following instruction. The persistence of the learner's intuitive beliefs has serious implications. More work is needed to

  8. The Effect of Enriched Learning Environments on the Conceptual Understanding of Students: "The Erosion and Landslide"

    ERIC Educational Resources Information Center

    Çoruhlu, Tülay Senel; Bilgin, Arzu Kirman; Nas, Sibel Er

    2016-01-01

    The aim of this research is to investigate the effect of enriched learning environments which have been developed in the framework of the "erosion and landslide" concepts on the conceptual understanding of students. A quasi-experimental method has been used in this research. The sample consists of 40 students. 5th grade students (aged…

  9. Seventh Grade Students' Conceptual Understanding about Citizenship: Does a Constructivist Social Studies Program Make a Difference?

    ERIC Educational Resources Information Center

    Sabanci, Osman; Kurnaz, Sefika; Yürük, Nejla

    2016-01-01

    Many studies have shown that students at different age levels come into classrooms with a variety of alternative conceptions. Commonly held alternative conceptions are the main source of the difficulties that students and teachers face in learning and teaching. The aim of this study was to compare the conceptual understanding of students who were…

  10. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  11. Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Energy in Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Taştan, Özgecan; Yalçınkaya, Eylem; Boz, Yezdan

    2008-10-01

    The aim of this study is to compare the effectiveness of conceptual change text instruction (CCT) in the context of energy in chemical reactions. The subjects of the study were 60, 10th grade students at a high school, who were in two different classes and taught by the same teacher. One of the classes was randomly selected as the experimental group in which CCT instruction was applied, and the other as the control group in which traditional teaching method was used. The data were obtained through the use of Energy Concept Test (ECT), the Attitude Scale towards Chemistry (ASC) and Science Process Skill Test (SPST). In order to find out the effect of the conceptual change text on students' learning of energy concept, independent sample t-tests, ANCOVA (analysis of covariance) and ANOVA (analysis of variance) were used. Results revealed that there was a statistically significant mean difference between the experimental and control group in terms of students' ECT total mean scores; however, there was no statistically significant difference between the experimental and control group in terms of students' attitude towards chemistry. These findings suggest that conceptual change text instruction enhances the understanding and achievement.

  12. An Examination of How Middle School Science Teachers Conduct Collaborative Inquiry and Reflection about Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Todd-Gibson, Christine

    2013-01-01

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…

  13. An Examination of How Middle School Science Teachers Conduct Collaborative Inquiry and Reflection about Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Todd-Gibson, Christine

    2017-01-01

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…

  14. Improvement Science: conceptual and theoretical foundations for its application to healthcare quality improvement.

    PubMed

    Portela, Margareth Crisóstomo; Lima, Sheyla Maria Lemos; Martins, Mônica; Travassos, Claudia

    2016-11-03

    The development and study of healthcare quality improvement interventions have been reshaped, moving from more intuitive approaches, dominated by biomedical vision and premised on easy transferability, to gradually acknowledge the need for more planning and systematization, with greater incorporation of the social sciences and enhancement of the role of context. Improvement Science has been established, with a conceptual and methodological framework for such studies. Considering the incipient of the debate and scientific production on Improvement Science in Brazil, this article aims to expound its principal conceptual and theoretical fundamentals, focusing on three central themes: the linkage of different disciplines; recognition of the role of context; and the theoretical basis for the design, implementation, and evaluation of interventions. Resumo: O desenvolvimento e estudo de intervenções para a melhoria do cuidado de saúde tem ganhado novo contorno, movendo-se das abordagens mais intuitivas, com domínio da visão biomédica e assentadas no pressuposto de fácil transferibilidade, para gradativamente reconhecer a necessidade de mais planejamento e sistematização, com maior incorporação das ciências sociais e valorização do papel do contexto. A Ciência da Melhoria do Cuidado de Saúde vem se estabelecendo, propiciando referencial conceitual e metodológico para tais estudos. Considerando a incipiência do debate e produção sobre Ciência da Melhoria do Cuidado de Saúde no Brasil, este artigo objetiva discorrer sobre as principais bases conceituais e teóricas que a sustentam, com foco em três temas centrais: a articulação de diferentes disciplinas; o reconhecimento do papel do contexto; e o embasamento teórico para o desenho, implementação e avaliação das intervenções.

  15. Understanding How Domestic Violence Support Services Promote Survivor Well-being: A Conceptual Model.

    PubMed

    Sullivan, Cris M

    2018-01-01

    Domestic violence (DV) victim service programs have been increasingly expected by legislators and funders to demonstrate that they are making a significant difference in the lives of those using their services. Alongside this expectation, they are being asked to describe the Theory of Change guiding how they believe their practices lead to positive results for survivors and their children. Having a widely accepted conceptual model is not just potentially useful to funders and policy makers as they help shape policy and practice -- it can also help programs continually reflect upon and improve their work. This paper describes the iterative and collaborative process undertaken to generate a conceptual model describing how DV victim services are expected to improve survivors' lives. The Social and Emotional Well-Being Framework guiding the model is an ideal structure to use to describe the goals and practices of DV programs because this framework: (1) accurately represents DV programs' goal of helping survivors and their children thrive; and (2) recognizes the importance of community, social, and societal context in influencing individuals' social and emotional well-being. The model was designed to guide practice and to generate new questions for research and evaluation that address individual, community, and systems factors that promote or hinder survivor safety and well-being.

  16. Impacts of Multi-Representational Instruction on High School Students' Conceptual Understandings of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Adadan, Emine; Irving, Karen E.; Trundle, Kathy C.

    2009-01-01

    This quasi-experimental study examined 42 high school introductory chemistry students' conceptual understandings of the particulate nature of matter (PNM) before and immediately after instruction. Two groups of students, who were taught by the same teacher, received one of two possible instructional interventions: Reform-Based Teaching (RBT) or…

  17. Understanding HIV-related posttraumatic stress disorder in South Africa: a review and conceptual framework.

    PubMed

    Young, Charles

    2011-06-01

    A number of epidemiological studies have attempted to measure the prevalence of HIV-related posttraumatic stress disorder (PTSD) in sub-Saharan Africa. A systematic review of the literature identified eight relevant studies that put current estimates of the prevalence of HIV-related PTSD between 4.2% and 40%. Even the lower estimates suggest that PTSD in response to the trauma of being diagnosed and living with HIV is a significant mental health burden. However, a conceptual framework to advance our understanding of the prevalence and phenomenology of HIV-related PTSD is lacking. This article argues that the Ehlers & Clark (2000) cognitive model of PTSD provides a useful conceptual framework for understanding HIV-related PTSD in South Africa. The model emphasises the role of trauma appraisals in the development and maintenance of PTSD, which can also be usefully applied to some of the other psychological disorders associated with HIV infection. The model appears to fit some of the important research findings, and it offers insights into the relationships between HIV-related PTSD and other psychological disorders, HIV stigma, the high prevalence of non-HIV traumatic events, occasional problems with the delivery of antiretroviral drugs in the South African public health service, the unpredictable course of HIV illness, and the quality of HIV testing and counselling. Implications for individual treatment strategies and broader public health interventions are briefly discussed.

  18. Using Item Response Theory to Conduct a Distracter Analysis on Conceptual Inventory of Natural Selection

    ERIC Educational Resources Information Center

    Battisti, Bryce Thomas; Hanegan, Nikki; Sudweeks, Richard; Cates, Rex

    2010-01-01

    Concept inventories are often used to assess current student understanding although conceptual change models are problematic. Due to controversies with conceptual change models and the realities of student assessment, it is important that concept inventories are evaluated using a variety of theoretical models to improve quality. This study used a…

  19. Exploring the Postgraduate Research Climate and the Postgraduate Research Experience: A Conceptual Model

    ERIC Educational Resources Information Center

    Govender, K. K.

    2011-01-01

    The objective of this article is to develop a conceptual model aimed at improving the postgraduate research students' experience. Since postgraduate students "vote with their feet" an improved understanding of the postgraduate research service encounter may result in improving the quality of the encounter and so increasing throughput and…

  20. The Effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders' Conceptual Understanding of Electrochemistry

    ERIC Educational Resources Information Center

    Sen, Senol; Yilmaz, Ayhan; Geban, Ömer

    2016-01-01

    The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…

  1. Effects of Conceptual Change and Traditional Confirmatory Simulations on Pre-Service Teachers' Understanding of Direct Current Circuits

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    The objective of this research is to investigate the effects of simulations based on conceptual change conditions (CCS) and traditional confirmatory simulations (TCS) on pre-service elementary school teachers' understanding of direct current electric circuits. The data was collected from a sample consisting of 89 students; 48 students in the…

  2. Co-development of Conceptual Understanding and Critical Attitude: Analyzing texts on radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Décamp, N.; Viennot, L.

    2015-08-01

    This research documents the impact of a teaching interview aimed at developing a critical attitude in students, and focused on a particular topic: radiocarbon dating. This teaching interview is designed to observe students' reaction to limited written explanations of the phenomenon under study, and their possible frustration or intellectual satisfaction in relation to these texts. We aim to document the possible link between students' developing conceptual understanding of a topic and their ability to express their frustration when presented with very incomplete explanations, or their intellectual satisfaction when presented with complete explanation. As a side product, we intend to observe some of their a priori ideas concerning this topic. Ten teaching interviews conducted with fourth-year University students were recorded, transcribed and coded. Beyond a series of results concerning students' a priori understanding of the domain, the analysis of the interviews suggests that, when students are presented with texts of increasing completeness and discuss these with the interviewer, their critical reactions evolve in time in a very specific way. We propose a tentative model for this co-evolution of student conceptual command and critical stance. The discussion bears on possible interpretations for the 'anesthesia of judgment' observed in most students at the beginning of the interview, and for a few of them throughout the discussion. Keeping in mind the 'competence vs concepts' current alternative, the conditions that seem to free students' critical potential are analyzed in relation to their evolving command of the topic and their degree of intellectual satisfaction.

  3. Facilitating conceptual change in students’ understanding of concepts related to pressure

    NASA Astrophysics Data System (ADS)

    Ozkan, Gulbin; Sezgin Selcuk, Gamze

    2016-09-01

    The aim of this research was to explore the effects of three different types of methods of learning physics (conceptual change-based, real life context-based and traditional learning) on high school physics students in the 11th grade in terms of conceptual change they achieved in learning about the various topics (pressure exerted by solids, pressure in stagnant liquids and gases, buoyancy, Bernoulli’s principle). In this study, a pre-test/post-test quasi-experimental method with nonequivalent control group, involving a 3 (group) × 2 (time) factorial design was used. Study group 1 were given the conceptual change texts on the mentioned subjects, study group 2 were offered a teaching approach based on real life context-based learning, whereas the control group was taught in the traditional style. Data for the research were collected with the ‘pressure conceptual test’. As a result of research, the number of misconceptions had been reduced or shifted altogether in all three groups. After the instruction, it was seen that none of the students formed new misconceptions. It was found that the most positive change could be seen in the conceptual change text group followed by context-based and lastly traditional. The fact that none of the students formed new misconceptions is important, particularly since research such as the following shows that conceptual change is tenuous and inconsistent, taking time to shift in a sustained manner.

  4. Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career

    NASA Astrophysics Data System (ADS)

    Robinett, Richard

    2003-04-01

    In order to probe various aspects of student understanding of some of the core ideas of quantum mechanics, and especially how they develop over the undergraduate curriculum, we have developed an assessment instrument designed to test conceptual and visualization understanding in quantum theory. We report data obtained from students ranging from sophomore-level modern physics courses, through junior-senior level quantum theory classes, to first year graduate quantum mechanics courses in what may be the first such study of the development of student understanding in this important core subject of physics through the undergraduate career. We discuss the results and their possible relevance to the standard curriculum as well as to the development of new curricular materials.

  5. Examining the influence of formative assessment on conceptual accumulation and conceptual change

    NASA Astrophysics Data System (ADS)

    Tomita, Miki K.

    This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on

  6. Helping secondary school students develop a conceptual understanding of refraction

    NASA Astrophysics Data System (ADS)

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-07-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students’ conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and refraction occur. The use of ray diagrams can be useful in (a) the teacher modelling a correct explanation to a situation where refraction occurs and (b) for students to create as they practice other examples. This paper includes eight examples of increasing complexity that use a cognitive apprenticeship cycle approach to scaffold student learning. The first examples (rock fish, floating penny) are shown and a solution is modeled using a ray diagram. Three more examples (bent pencil, dropping an item in water, sunrise/sunset) are presented for students to practice, with each becoming more sophisticated. Three assessment exercises are then provided (two dots, three coins, broken tube).

  7. The Effects of Conceptual Understanding Procedures (CUPs) Towards Critical Thinking Skills of Senior High School Students

    NASA Astrophysics Data System (ADS)

    Sukaesih, S.; Sutrisno

    2017-04-01

    The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.

  8. Understanding Starts in the Mesocosm: Conceptual metaphor as a framework for external representations in science teaching

    NASA Astrophysics Data System (ADS)

    Niebert, Kai; Gropengiesser, Harald

    2015-04-01

    In recent years, researchers have become aware of the experiential grounding of scientific thought. Accordingly, research has shown that metaphorical mappings between experience-based source domains and abstract target domains are omnipresent in everyday and scientific language. The theory of conceptual metaphor explains these findings based on the assumption that understanding is embodied. Embodied understanding arises from recurrent bodily and social experience with our environment. As our perception is adapted to a medium-scale dimension, our embodied conceptions originate from this mesocosmic scale. With respect to this epistemological principle, we distinguish between micro-, meso- and macrocosmic phenomena. We use these insights to analyse how external representations of phenomena in the micro- and macrocosm can foster learning when they (a) address the students' learning demand by affording a mesocosmic experience or (b) assist reflection on embodied conceptions by representing their image schematic structure. We base our considerations on empirical evidence from teaching experiments on phenomena from the microcosm (microbial growth and signal conduction in neurons) and the macrocosm (greenhouse effect and carbon cycle). We discuss how the theory of conceptual metaphor can inform the development of external representations.

  9. An examination of how middle school science teachers conduct collaborative inquiry and reflection about students' conceptual understanding

    NASA Astrophysics Data System (ADS)

    Todd-Gibson, Christine

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the teachers' ability to engage in collaborative inquiry. Observational, written, and interview data were collected from observations of teachers' face-to-face meetings and reflections, individual interviews, a focus group interview, and online reflections. The results of this study revealed that collaborative inquiry is a form of professional development that includes answering curricular questions through observation, communication, action, and reflection. This approach was developed and implemented by middle school science teachers. The premise of an inquiry is based on a need with students. Middle school science teachers came to consensus about actions to affect students' conceptual understanding, took action as stated, and shared their reflections of the actions taken with consideration to current and upcoming school activities. Activities involved teachers brainstorming and sharing with one another, talking about how the variables were merged into their curriculum, and how they impacted students' conceptual understanding. Teachers valued talking with one another about science content and pedagogy, but did find the inquiry portion of the approach to require more development. The greatest challenge to conducting collaborative inquiry and reflection was embedding teacher inquiry within a prescribed inquiry that was already being conducted by the Sundown School District. Collaborative inquiry should be structured so that it meets the needs of teachers in order to attend to the needs of students. A conducive atmosphere for collaborative inquiry and reflection is one in which administrators make the process mandatory and

  10. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    ERIC Educational Resources Information Center

    Koehler, Karen E.

    2017-01-01

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students'…

  11. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    NASA Astrophysics Data System (ADS)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  12. Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian M.

    2006-12-01

    In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.

  13. The effectiveness of interactive computer simulations on college engineering student conceptual understanding and problem-solving ability related to circular motion

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Chih

    In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power

  14. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    ERIC Educational Resources Information Center

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  15. The Effect of Brain Based Learning on Second Grade Junior Students' Mathematics Conceptual Understanding on Polyhedron

    ERIC Educational Resources Information Center

    Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah

    2018-01-01

    The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…

  16. Conceptual Frameworks for Child Care Decision-Making. White Paper

    ERIC Educational Resources Information Center

    Chaudry, Ajay; Henly, Julia; Meyers, Marcia

    2010-01-01

    This working paper is one in a series of projects initiated by the Administration for Children and Families (ACF) to improve knowledge for child care researchers and policy makers about parental child care decision making. In this paper, the authors identify three distinct conceptual frameworks for understanding child care decisions--a rational…

  17. Exploring the Usefulness of Two Conceptual Frameworks for Understanding How Organizational Factors Influence Innovation Implementation in Cancer Care

    ERIC Educational Resources Information Center

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors…

  18. Middle School Students' Conceptual Understanding of Equations: Evidence From Writing Story Problems. WCER Working Paper No. 2009-3

    ERIC Educational Resources Information Center

    Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.

    2009-01-01

    This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…

  19. Preliminary Study on Kano Model in the Conceptual Design Activities for Product Lifecycle Improvement

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Rahman, M. R. A.; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.; Fauzi Ahmad, Md

    2017-08-01

    Product manufactured with short life cycle had only one major issue, it can lead to increasing volume of waste. Day by day, this untreated waste had consumed many landfill spaces, waiting for any possible alternatives. Lack of product recovery knowledge and recyclability features imprinted into product design are one of the main reason behind all this. Sustainable awareness aspect should not just be implied into people’s mind, but also onto product design. This paper presents a preliminary study on Kano model method in the conceptual design activities to improve product lifecycle. Kano model is a survey-type method, used to analyze and distinguished product qualities or features, also how the customers may have perceived them. Three important attributes of Kano model are performance, attractive and must-be. The proposed approach enables better understanding of customer requirements while providing a way for Kano model to be integrated into engineering design to improve product’s end-of-life. Further works will be continued to provide a better lifecycle option (increase percentage of reuse, remanufacture or recycle, whereby decrease percentage of waste) of a product using Kano model approach.

  20. [Empowerment in prevention and health promotion--a critical conceptual evaluation of basic understanding, dimensions and assessment problems].

    PubMed

    Kliche, T; Kröger, G

    2008-12-01

    Empowerment is an important concept in health care, but despite its prevalence it seems to be more of a buzz word. Thus, a conceptual review on empowerment in prevention and health promotion was carried out. 62 German and international theoretical contributions, reviews and studies were incorporated, covering the fields of prevention, care and therapy, rehabilitation, health-care research, nursing and work-related stress. The analysis revealed eight main dimensions of empowerment: (1) shared decision-making, (2) self-efficacy, (3) social support and social capital, (4) skills and competences, (5) health care utilisation, (6) goal setting and attainment, (7) reflexive thought and (8) innovation. Their empirical assessment can be carried out on a micro-, meso-, or macro-level. Three distinct basic conceptual notions emerged from the analysis, each applying its own specific research questions and measurement instruments: clinical, organizational-professional and political understanding of "empowerment". Therefore, these three specific conceptual notions should each be developed and tested separately, in particular in reviews, and empirical studies should embrace all eight subdimensions.

  1. The use of mobile devices as means of data collection in supporting elementary school students' conceptual understanding about plants

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy

    2016-03-01

    The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of pollination/fertilization, and the interrelationship between animals and plants, more than students' use of traditional means of data collection. For this purpose, we designed a pre-post experimental design study with two conditions: one in which participants used a mobile device for data collection and another using traditional means (e.g. sketching and note-taking). The sample comprised 48 fourth graders (24 in each condition), who studied the flower, its parts, and their functions. A conceptual test was administered to assess students' understanding before and after instruction. Moreover, the students' science notebooks and accompanying artifacts were used as a data source for examining students' progress during the study's intervention. The conceptual test and notebook data were analyzed statistically, whereas we used open coding for the artifacts. Findings revealed that using mobile devices for data collection enhanced students' conceptual understanding more than using traditional means of data collection.

  2. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the conceptual landscape

    NASA Astrophysics Data System (ADS)

    Yan, Fan; Talanquer, Vicente

    2015-12-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative study to explore students reasoning about chemical causality and mechanism. Study participants included individuals at different educational levels, from college to graduate school. We identified diverse conceptual modes expressed by students when engaged in the analysis of different types of reactions. Main findings indicate that student reasoning about chemical reactions is influenced by the nature of the process. More advanced students tended to express conceptual modes that were more normative and had more explanatory power, but major conceptual difficulties persisted in their reasoning. The results of our study are relevant to educators interested in conceptual development, learning progressions, and assessment.

  3. Exploring Pre-Service Elementary Science Teachers' Conceptual Understanding of Particulate Nature of Matter through Three-Tier Diagnostic Test

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Bilican, Kader; Kirbulut, Zubeyde Demet

    2017-01-01

    The purpose of this study was to explore Pre-service Elementary Science Teachers' (PSTs) conceptual understanding of Particulate Nature of Matter (PNM) through a three-tier diagnostic test. Participants were 215 PSTs from Turkey. Data consisted of participants' responses to the Particulate Nature of Matter Test (PNMT). The PNMT consists of…

  4. Teaching for clinical reasoning - helping students make the conceptual links.

    PubMed

    McMillan, Wendy Jayne

    2010-01-01

    Dental educators complain that students struggle to apply what they have learnt theoretically in the clinical context. This paper is premised on the assumption that there is a relationship between conceptual thinking and clinical reasoning. The paper provides a theoretical framework for understanding the relationship between conceptual learning and clinical reasoning. A review of current literature is used to explain the way in which conceptual understanding influences clinical reasoning and the transfer of theoretical understandings to the clinical context. The paper argues that the connections made between concepts are what is significant about conceptual understanding. From this point of departure the paper describes teaching strategies that facilitate the kinds of learning opportunities that students need in order to develop conceptual understanding and to be able to transfer knowledge from theoretical to clinical contexts. Along with a variety of teaching strategies, the value of concept maps is discussed. The paper provides a framework for understanding the difficulties that students have in developing conceptual networks appropriate for later clinical reasoning. In explaining how students learn for clinical application, the paper provides a theoretical framework that can inform how dental educators facilitate the conceptual learning, and later clinical reasoning, of their students.

  5. Conceptual Change and Education

    ERIC Educational Resources Information Center

    Vosniadou, Stella

    2007-01-01

    In order to understand the advanced, scientific concepts of the various disciplines, students cannot rely on the simple memorization of facts. They must learn how to restructure their naive, intuitive theories based on everyday experience and lay culture. In other words, they must undergo profound conceptual change. This type of conceptual change…

  6. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  7. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  8. Understanding the Patient Perspective of Seizure Severity in Epilepsy: Development of a Conceptual Model.

    PubMed

    Borghs, Simon; Tomaszewski, Erin L; Halling, Katarina; de la Loge, Christine

    2016-10-01

    For patients with uncontrolled epilepsy, the severity and postictal sequelae of seizures might be more impactful than their frequency. Seizure severity is often assessed using patient-reported outcome (PRO) instruments; however, evidence of content validity for existing instruments is lacking. Our aim was to understand the real-life experiences of patients with uncontrolled epilepsy. A preliminary conceptual model was developed. The model was refined through (1) a targeted literature review of qualitative research on seizure severity; (2) interviews with four clinical epilepsy experts to evaluate identified concepts; and (3) qualitative interviews with patients with uncontrolled epilepsy, gathering descriptions of symptoms and impacts of epilepsy, focusing on how patients experience and describe "seizure severity." Findings were summarized in a final conceptual model of seizure severity in epilepsy. Twenty-five patients (12 who experienced primary generalized tonic-clonic seizures and 13 who experienced partial-onset seizures) expressed 42 different symptoms and 26 different impacts related to seizures. The final conceptual model contained a wide range of concepts related to seizure frequency, symptoms, and duration. Our model identified several new concepts that characterize the patient experience of seizure severity. A seizure severity PRO instrument should cover a wide range of seizure symptoms alongside frequency and duration of seizures. This qualitative work reinforces the notion that measuring seizure frequency is insufficient and that seizure severity is important in defining the patient's experience of epilepsy. This model could be used to assess the content validity of existing PRO instruments, or could support the development of a new one.

  9. The impact of science notebook writing on ELL and low-SES students' science language development and conceptual understanding

    NASA Astrophysics Data System (ADS)

    Huerta, Margarita

    This quantitative study explored the impact of literacy integration in a science inquiry classroom involving the use of science notebooks on the academic language development and conceptual understanding of students from diverse (i.e., English Language Learners, or ELLs) and low socio-economic status (low-SES) backgrounds. The study derived from a randomized, longitudinal, field-based NSF funded research project (NSF Award No. DRL - 0822343) targeting ELL and non-ELL students from low-SES backgrounds in a large urban school district in Southeast Texas. The study used a scoring rubric (modified and tested for validity and reliability) to analyze fifth-grade school students' science notebook entries. Scores for academic language quality (or, for brevity, language ) were used to compare language growth over time across three time points (i.e., beginning, middle, and end of the school year) and to compare students across categories (ELL, former ELL, non-ELL, and gender) using descriptive statistics and mixed between-within subjects analysis of variance (ANOVA). Scores for conceptual understanding (or, for brevity, concept) were used to compare students across categories (ELL, former ELL, non-ELL, and gender) in three domains using descriptive statistics and ANOVA. A correlational analysis was conducted to explore the relationship, if any, between language scores and concept scores for each group. Students demonstrated statistically significant growth over time in their academic language as reflected by science notebook scores. While ELL students scored lower than former ELL and non-ELL students at the first two time points, they caught up to their peers by the third time point. Similarly, females outperformed males in language scores in the first two time points, but males caught up to females in the third time point. In analyzing conceptual scores, ELLs had statistically significant lower scores than former-ELL and non-ELL students, and females outperformed males in

  10. Using the science writing heuristic approach as a tool for assessing and promoting students' conceptual understanding and perceptions in the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Mohammad, Elham Ghazi

    This thesis reports on a study that examined the impact of implementing SWH (inquiry-based approach) in a general chemistry lab on non-science-major students' understanding of chemistry concepts and students' perceptions toward writing in science and implementing SWH. This study was conducted in a large university in the Midwest of the United States in a college freshman chemistry laboratory for non-science-major students. The research framework is presented including the following: the qualitative research design with the observation as data collection method for this design and the criteria for teacher level of implementation and the ranking mechanism; and the quantitative research design with data collection and analysis methods including pre- and post-conceptual exams, lecture question, open-ended surveys. This research was based on a quasi-experimental mixed-method design a focus on student performance on higher order conceptual questions, and open-ended survey at the end of semester about their perception toward writing to learn ad implementing SWH. Results from the qualitative and quantitative component indicated that implementing SWH approach has notably enhanced both male and female conceptual understanding and perception toward chemistry and implementing SWH. It is known that there is gender gap in science, where female have lower perception and self confident toward science. Interestingly, my findings have showed that implementing SWH helped closing the gap between male and female who started the semester with a statistically significant lower level of conceptual understanding of chemistry concepts among females than males.

  11. Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Gailly, Frederik; Poels, Geert

    Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.

  12. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual

  13. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    ERIC Educational Resources Information Center

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  14. Conceptual design study of an improved gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Chapman, W. I.

    1980-01-01

    The conceptual design for an improved gas turbine (IGT) powertrain and vehicle was investigated. Cycle parameters, rotor systems, and component technology were reviewed and a dual rotor gas turbine concept was selected and optimized for best vehicle fuel economy. The engine had a two stage centrifugal compressor with a design pressure ratio of 5.28, two axial turbine stages with advanced high temperature alloy integral wheels, variable power turbine nozzle for turbine temperature and output torque control, catalytic combustor, and annular ceramic recuperator. The engine was rated at 54.81 kW, using water injection on hot days to maintain vehicle acceleration. The estimated vehicle fuel economy was 11.9 km/l in the combined driving cycle, 43 percent over the 1976 compact automobile. The estimated IGT production vehicle selling price was 10 percent over the comparable piston engine vehicle, but the improved fuel economy and reduced maintenance and repair resulted in a 9 percent reduction in life cycle cost.

  15. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  16. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    ERIC Educational Resources Information Center

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  17. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    ERIC Educational Resources Information Center

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  18. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    ERIC Educational Resources Information Center

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  19. Teaching to the Test…or Testing to Teach: Exams Requiring Higher Order Thinking Skills Encourage Greater Conceptual Understanding

    ERIC Educational Resources Information Center

    Jensen, Jamie L.; McDaniel, Mark A.; Woodard, Steven M.; Kummer, Tyler A.

    2014-01-01

    In order to test the effect of exam-question level on fostering student conceptual understanding, low-level and high-level quizzes and exams were administered in two sections of an introductory biology course. Each section was taught in a high-level inquiry based style but was assigned either low-level questions (memory oriented) on the quizzes…

  20. College physics students' epistemological self-reflection and its relationship to conceptual learning

    NASA Astrophysics Data System (ADS)

    May, David B.; Etkina, Eugenia

    2002-12-01

    Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.

  1. Effects of Directed Learning Groups upon Students' Ability to Understand Conceptual Ideas

    ERIC Educational Resources Information Center

    Johnson, Karen Gabrielle; Galluzzo, Benjamin Jason

    2014-01-01

    Mathematical modeling and directed learning groups were employed in a terminal mathematics course to encourage university students to conceptualize real-world mathematics problems. Multiple assessments were utilized to determine whether students' conceptual development is enhanced by participating in directed learning groups conducted in a…

  2. Comparison of Two Different Techniques of Cooperative Learning Approach: Undergraduates' Conceptual Understanding in the Context of Hormone Biochemistry

    ERIC Educational Resources Information Center

    Mutlu, Ayfer

    2018-01-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished…

  3. An Investigation of Effectiveness of Conceptual Change Text-oriented Instruction on Students' Understanding of Solution Concepts

    NASA Astrophysics Data System (ADS)

    Pinarbaşi; , Tacettin; Canpolat, Nurtaç; Bayrakçeken, Samih; Geban, Ömer

    2006-12-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The sample of this study consisted of 87 undergraduate students from two classes enrolled in an introductory chemistry course. One of the classes was assigned randomly to the control group, and the other class were assigned randomly to the experimental group. During teaching the topic of solution concepts in the chemistry curriculum, a conceptual change text-oriented instruction was applied in the experimental group whereas traditional instruction was followed in the control group. The results showed that the students in the experimental group performed better with respect to solution concepts. In addition, it has been found that there was no significant difference between the attitudes of students in the experimental and control groups towards chemistry.

  4. Understanding Nuisance Flooding Conceptualizations and Concerns of Stakeholders in the Northern U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    DeLorme, D.; Collini, R.; Stephens, S. H.

    2017-12-01

    As sea level rises, nuisance flooding along coasts is increasing. There is a need to understand how the public views flooding events in order to tailor communications to different audiences appropriately and help improve community resilience. This interdisciplinary presentation is intended to foster greater awareness about present-day nuisance flooding, ongoing conversation about best practices for accurately and effectively communicating about this "cumulative hazard" and its risks, and consideration about possible preparation and mitigation options for community resilience. The presentation will begin by defining and explaining nuisance flooding according to scientific experts and the scholarly literature. Next, we will share several specific examples of how nuisance flooding is increasingly impacting certain areas in the Northern U.S. Gulf Coast to demonstrate the importance of raising attention to and better understanding of this phenomenon across a range of audiences. We will particularly focus on the complex interrelated social, economic, and ecological issues associated with this hazard. Then, we will compare and contrast conceptualizations of nuisance flooding (characteristics, causes, consequences) and associated concerns from the viewpoints and experiences of various stakeholders in the Northern U.S. Gulf Coast (e.g., natural resource managers, community planners, extension specialists). These data are synthesized from multiple research methods and engagement mechanisms (e.g., focus groups, workshop mapping exercises) implemented during the first year of a multi-year NOAA-sponsored interdisciplinary project on Dynamic Sea Level Rise Assessments of the Ability of Natural and Nature-based Features to Mitigate Surge and Nuisance Flooding. To conclude, we will provide future research recommendations along with references and resources about nuisance flooding.

  5. Design e-learning with flipped learning model to improve layout understanding the concepts basic of the loop control structure

    NASA Astrophysics Data System (ADS)

    Handayani, D. P.; Sutarno, H.; Wihardi, Y.

    2018-05-01

    This study aimed in design and build e-learning with classroom flipped model to improve the concept of understanding of SMK students on the basic programming subject. Research and development obtained research data from survey questionnaire given to students of SMK class X RPL in SMK Negeri 2 Bandung and interviews to RPL productive teacher. Data also obtained from questionnaire of expert validation and students' assessment from e-learning with flipped classroom models. Data also obtained from multiple-choice test to measure improvements in conceptual understanding. The results of this research are: 1) Developed e- learning with flipped classroom model considered good and worthy of use by the average value of the percentage of 86,3% by media experts, and 85,5% by subjects matter experts, then students gave judgment is very good on e-learning either flipped classroom model with a percentage of 79,15% votes. 2) e-learning with classroom flipped models show an increase in the average value of pre-test before using e-learning 26.67 compared to the average value post-test after using e- learning at 63.37 and strengthened by the calculation of the index gains seen Increased understanding of students 'concepts by 50% with moderate criteria indicating that students' understanding is improving.

  6. Understanding gambling related harm: a proposed definition, conceptual framework, and taxonomy of harms.

    PubMed

    Langham, Erika; Thorne, Hannah; Browne, Matthew; Donaldson, Phillip; Rose, Judy; Rockloff, Matthew

    2016-01-27

    Harm from gambling is known to impact individuals, families, and communities; and these harms are not restricted to people with a gambling disorder. Currently, there is no robust and inclusive internationally agreed upon definition of gambling harm. In addition, the current landscape of gambling policy and research uses inadequate proxy measures of harm, such as problem gambling symptomology, that contribute to a limited understanding of gambling harms. These issues impede efforts to address gambling from a public health perspective. Data regarding harms from gambling was gathered using four separate methodologies, a literature review, focus groups and interviews with professionals involved in the support and treatment of gambling problems, interviews with people who gamble and their affected others, and an analysis of public forum posts for people experiencing problems with gambling and their affected others. The experience of harm related to gambling was examined to generate a conceptual framework. The catalogue of harms experienced were organised as a taxonomy. The current paper proposes a definition and conceptual framework of gambling related harm that captures the full breadth of harms that gambling can contribute to; as well as a taxonomy of harms to facilitate the development of more appropriate measures of harm. Our aim is to create a dialogue that will lead to a more coherent interpretation of gambling harm across treatment providers, policy makers and researchers.

  7. Strategies for Teaching Healthy Behavior Conceptual Knowledge

    ERIC Educational Resources Information Center

    Kloeppel, Tiffany; Kulinna, Pamela Hodges

    2012-01-01

    By definition, conceptual knowledge is rich in relationships and understanding the kind of knowledge that may be transferred between situations. Despite the lack of importance that Conceptual Physical Education has been given in previous physical education reform efforts, research findings have shown that Conceptual Physical Education along with…

  8. The effectiveness of conceptual change texts and concept clipboards in learning the nature of science

    NASA Astrophysics Data System (ADS)

    Çil, Emine; Çepni, Salih

    2016-01-01

    Background: One of the most important goals of science education is to enable students to understand the nature of science (NOS). However, generally regular science teaching in classrooms does not help students improve informed NOS views. Purpose: This study investigated the influence of an explicit reflective conceptual change approach compared with an explicit reflective inquiry-oriented approach on seventh graders' understanding of NOS. Sample: The research was conducted with seventh grade students. A total of 44 students participated in the study. Design and method: The study was an interpretive study because this study focused on the meanings that students attach to target aspects of NOS. Participants were divided into two groups, each consisting of 22 students. One of the groups learned NOS with an explicit reflective conceptual change approach. The requirements of conceptual change were provided through the use of conceptual change texts and concept cartoons. The other group learned NOS with an explicit reflective inquiry-oriented approach. The data were collected through open-ended questionnaires and semi-structured interviews. These instruments were employed in a pre-test, a post-test and a delayed test. Students' views of the aspects of NOS were categorized as naive, transitional and informed. Results: The result of this study indicated that before receiving instruction, most of the participants had transitional views of the tentative, empirical and imaginative and creative aspects of the NOS, and they had naive understandings of the distinction between observation and inference. The instruction in the experimental group led to a 60% - a 25% increase in the number of students who possessed an informed understanding of the tentative, empirical, creative and observation and inference aspect of the NOS. The instruction in the control group led to a 30% - a 15% increase in the informed NOS views. Conclusion: The explicit reflective conceptual change approach

  9. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    NASA Astrophysics Data System (ADS)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  10. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  11. Traditional Instruction of Differential Equations and Conceptual Learning

    ERIC Educational Resources Information Center

    Arslan, Selahattin

    2010-01-01

    Procedural and conceptual learning are two types of learning, related to two types of knowledge, which are often referred to in mathematics education. Procedural learning involves only memorizing operations with no understanding of underlying meanings. Conceptual learning involves understanding and interpreting concepts and the relations between…

  12. Conceptualizing and Communicating River Restoration

    NASA Astrophysics Data System (ADS)

    Jacobosn, R. B.

    2007-12-01

    River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.

  13. Are Creative Comparisons Developed by Prospective Chemistry Teachers Evidence of Their Conceptual Understanding? The Case of Inter- and Intramolecular Forces

    ERIC Educational Resources Information Center

    Sendur, Gulten

    2014-01-01

    The aim of this study is to determine prospective chemistry teachers' creative comparisons about the basic concepts of inter- and intramolecular forces, and to uncover the relationship between these creative comparisons and prospective teachers' conceptual understanding. Based on a phenomenological research method, this study was conducted with…

  14. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    ERIC Educational Resources Information Center

    Artun, Huseyin; Costu, Bayram

    2013-01-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…

  15. Improving high school physical science students' understanding of the electromagnetic spectrum: A modified diagram approach

    NASA Astrophysics Data System (ADS)

    Quebedeaux, James Edward

    The focus of this study was to identify major conceptual difficulties that selected public high school physical science students encounter in understanding a standard electromagnetic spectrum diagram. A research-driven, modified version of that standard diagram was used in this study to determine the value added to student understanding of electromagnetic waves. A content analysis was performed on electromagnetic spectrum diagrams found in US textbooks from the 1950s through the present. A class of public high school physical science students participated in a study consisting of four activities conducted during a three-week unit. Students were given a pre- and post-achievement test and a pre- and post-survey on the regions of the electromagnetic spectrum. At the conclusion of each activity, selected students were interviewed and each co-constructed a concept map with the researcher. The Electromagnetic Spectrum Literacy Rubric (ESLR) was designed and used to assess students' conceptual understanding periodically as they proceeded through the unit study. A mixed methods analysis was performed, employing both qualitative and quantitative data. A paired t-test determined that there was a statistically significant difference (p = 0.014) between the pre- and post-achievement test scores for the class of students participating in the unit study. Effect sizes also determined that students have difficulties with mathematical calculations and wave properties. These topics present conceptual challenges which must be overcome to understand and use an electromagnetic spectrum diagram effectively.

  16. Mathematical Rigor vs. Conceptual Change: Some Early Results

    NASA Astrophysics Data System (ADS)

    Alexander, W. R.

    2003-05-01

    Results from two different pedagogical approaches to teaching introductory astronomy at the college level will be presented. The first of these approaches is a descriptive, conceptually based approach that emphasizes conceptual change. This descriptive class is typically an elective for non-science majors. The other approach is a mathematically rigorous treatment that emphasizes problem solving and is designed to prepare students for further study in astronomy. The mathematically rigorous class is typically taken by science majors. It also fulfills an elective science requirement for these science majors. The Astronomy Diagnostic Test version 2 (ADT 2.0) was used as an assessment instrument since the validity and reliability have been investigated by previous researchers. The ADT 2.0 was administered as both a pre-test and post-test to both groups. Initial results show no significant difference between the two groups in the post-test. However, there is a slightly greater improvement for the descriptive class between the pre and post testing compared to the mathematically rigorous course. There was great care to account for variables. These variables included: selection of text, class format as well as instructor differences. Results indicate that the mathematically rigorous model, doesn't improve conceptual understanding any better than the conceptual change model. Additional results indicate that there is a similar gender bias in favor of males that has been measured by previous investigators. This research has been funded by the College of Science and Mathematics at James Madison University.

  17. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  18. Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.

    ERIC Educational Resources Information Center

    Kim, Eunsook; Pak, Sung-Jae

    2002-01-01

    Investigates the relationship between traditional physics textbook problem solving and conceptual understanding. Reports that students had many of the well-known conceptual difficulties with basic mechanics and that there was little correlation between the number of problems solved and conceptual understanding. (Contains 21 references.)…

  19. Preserved conceptual implicit memory for pictures in patients with Alzheimer's disease.

    PubMed

    Deason, Rebecca G; Hussey, Erin P; Flannery, Sean; Ally, Brandon A

    2015-10-01

    The current study examined different aspects of conceptual implicit memory in patients with mild Alzheimer's disease (AD). Specifically, we were interested in whether priming of distinctive conceptual features versus general semantic information related to pictures and words would differ for the mild AD patients and healthy older adults. In this study, 14 healthy older adults and 15 patients with mild AD studied both pictures and words followed by an implicit test section, where they were asked about distinctive conceptual or general semantic information related to the items they had previously studied (or novel items). Healthy older adults and patients with mild AD showed both conceptual priming and the picture superiority effect, but the AD patients only showed these effects for the questions focused on the distinctive conceptual information. We found that patients with mild AD showed intact conceptual picture priming in a task that required generating a response (answer) from a cue (question) for cues that focused on distinctive conceptual information. This experiment has helped improve our understanding of both the picture superiority effect and conceptual implicit memory in patients with mild AD in that these findings support the notion that conceptual implicit memory might potentially help to drive familiarity-based recognition in the face of impaired recollection in patients with mild AD. Copyright © 2015. Published by Elsevier Inc.

  20. Explicit argumentation instruction to facilitate conceptual understanding and argumentation skills

    NASA Astrophysics Data System (ADS)

    Seda Cetin, Pinar

    2014-01-01

    Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the effects of argumentation-based chemistry lessons on pre-service science teachers' understanding of reaction rate concepts, their quality of argumentation, and their consideration of specific reaction rate concepts in constructing an argument. Moreover, students' perceptions of argumentation lessons were explored. Sample: There were 116 participants (21 male and 95 female), who were pre-service first-grade science teachers from a public university. The participants were recruited from the two intact classes of a General Chemistry II course, both of which were taught by the same instructor. Design and methods: In the present study, non-equivalent control group design was used as a part of quasi-experimental design. The experimental group was taught using explicit argumentation activities, and the control group was instructed using traditional instruction. The data were collected using a reaction rate concept test, a pre-service teachers' survey, and the participants' perceptions of the argumentation lessons questionnaire. For the data analysis, the Wilcoxon Signed Rank Test, the Mann-Whitney U-test and qualitative techniques were used. Results: The results of the study indicated that an argumentation-based intervention caused significantly better acquisition of scientific reaction rate-related concepts and positively impacted the structure and complexity of pre-service teachers' argumentation. Moreover, the majority of the participants reported positive feelings toward argumentation activities. Conclusions: As students are encouraged to state and support their view in the chemistry classroom when studying reaction rate, it was

  1. A Lakatosian Conceptual Change Teaching Strategy Based on Student Ability to Build Models with Varying Degrees of Conceptual Understanding of Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Niaz, M.

    The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students'' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate post tests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. ''hard core'', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating ''auxiliary hypotheses'' in order to resolve their contradictions; e) students'' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students'' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.

  2. Perspectives on Information Literacy: A Framework for Conceptual Understanding

    ERIC Educational Resources Information Center

    Addison, Colleen; Meyers, Eric

    2013-01-01

    Information literacy, 40 years since the term was coined, remains a conceptually contested aspect of library and information science research. This paper uses a review of the literature related to the concept of information literacy to identify three different perspectives, their historical origins, and connection to library and information…

  3. Development of a conceptual model of cancer caregiver health literacy.

    PubMed

    Yuen, E Y N; Dodson, S; Batterham, R W; Knight, T; Chirgwin, J; Livingston, P M

    2016-03-01

    Caregivers play a vital role in caring for people diagnosed with cancer. However, little is understood about caregivers' capacity to find, understand, appraise and use information to improve health outcomes. The study aimed to develop a conceptual model that describes the elements of cancer caregiver health literacy. Six concept mapping workshops were conducted with 13 caregivers, 13 people with cancer and 11 healthcare providers/policymakers. An iterative, mixed methods approach was used to analyse and synthesise workshop data and to generate the conceptual model. Six major themes and 17 subthemes were identified from 279 statements generated by participants during concept mapping workshops. Major themes included: access to information, understanding of information, relationship with healthcare providers, relationship with the care recipient, managing challenges of caregiving and support systems. The study extends conceptualisations of health literacy by identifying factors specific to caregiving within the cancer context. The findings demonstrate that caregiver health literacy is multidimensional, includes a broad range of individual and interpersonal elements, and is influenced by broader healthcare system and community factors. These results provide guidance for the development of: caregiver health literacy measurement tools; strategies for improving health service delivery, and; interventions to improve caregiver health literacy. © 2015 John Wiley & Sons Ltd.

  4. The unified model of vegetarian identity: A conceptual framework for understanding plant-based food choices.

    PubMed

    Rosenfeld, Daniel L; Burrow, Anthony L

    2017-05-01

    By departing from social norms regarding food behaviors, vegetarians acquire membership in a distinct social group and can develop a salient vegetarian identity. However, vegetarian identities are diverse, multidimensional, and unique to each individual. Much research has identified fundamental psychological aspects of vegetarianism, and an identity framework that unifies these findings into common constructs and conceptually defines variables is needed. Integrating psychological theories of identity with research on food choices and vegetarianism, this paper proposes a conceptual model for studying vegetarianism: The Unified Model of Vegetarian Identity (UMVI). The UMVI encompasses ten dimensions-organized into three levels (contextual, internalized, and externalized)-that capture the role of vegetarianism in an individual's self-concept. Contextual dimensions situate vegetarianism within contexts; internalized dimensions outline self-evaluations; and externalized dimensions describe enactments of identity through behavior. Together, these dimensions form a coherent vegetarian identity, characterizing one's thoughts, feelings, and behaviors regarding being vegetarian. By unifying dimensions that capture psychological constructs universally, the UMVI can prevent discrepancies in operationalization, capture the inherent diversity of vegetarian identities, and enable future research to generate greater insight into how people understand themselves and their food choices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    NASA Astrophysics Data System (ADS)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  6. Assessing the Development of Chemistry Students' Conceptual and Visual Understanding of Dimensional Analysis via Supplemental Use of Web-Based Software

    ERIC Educational Resources Information Center

    Ellis, Jennifer T.

    2013-01-01

    This study was designed to evaluate the effects of a proprietary software program on students' conceptual and visual understanding of dimensional analysis. The participants in the study were high school general chemistry students enrolled in two public schools with different demographics (School A and School B) in the Chattanooga, Tennessee,…

  7. The Comparative Effects of Prediction/Discussion-Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics

    ERIC Educational Resources Information Center

    Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra

    2011-01-01

    The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by…

  8. The Effects of Field Dependent/Field Independent Cognitive Styles and Motivational Styles on Students' Conceptual Understanding about Direct Current Circuits

    ERIC Educational Resources Information Center

    Karaçam, Sedat; Digilli Baran, Azize

    2015-01-01

    The purpose of this study is to investigate the effects of Field Dependent (FD)/Field Independent (FI) cognitive styles and motivational styles on high school students' conceptual understandings about direct current circuit concepts. The participants of this study consisted of 295 high school students (male = 127, female = 168) who were enrolled…

  9. Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

    DOE PAGES

    Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa; ...

    2017-09-14

    Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less

  10. Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessa, Ricardo; Möhrlen, Corinna; Fundel, Vanessa

    Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding ofmore » its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. Our paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. Furthermore, a set of recommendations for standardization and improved training of operators are provided along with examples of best practices.« less

  11. Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students' conceptual understanding of heat and temperature

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Constantinou, Constantinos P.

    2008-04-01

    We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.

  12. Experiencing conceptual change about teaching: A case study from astronomy

    NASA Astrophysics Data System (ADS)

    Bailey, Janelle M.; Nagamine, Kentaro

    2012-06-01

    Understanding faculty motivations for and barriers to change is an important component of facilitating instructional reform efforts to improve student learning. This case study describes the process of adoption of learner-centered instructional strategies by an astronomy faculty member, Ken, as viewed through the lens of conceptual change. Specifically, we applied the Cognitive Reconstruction of Knowledge Model (CRKM) to understand why Ken was willing to change his instructional strategies, what barriers to and supports for change existed, and how he and his students were impacted by this change. Ken's statements and actions represented characteristics consistent with the CRKM. Notably, dissatisfaction, considered the primary motivator in many conceptual change models, was not of high importance in this case. Upon implementing learner-centered strategies, Ken's students performed better on a measure of knowledge about stellar properties, which served to reinforce his motivation to continue with learner-centered methods.

  13. Organizational coherence in health care organizations: conceptual guidance to facilitate quality improvement and organizational change.

    PubMed

    McAlearney, Ann Scheck; Terris, Darcey; Hardacre, Jeanne; Spurgeon, Peter; Brown, Claire; Baumgart, Andre; Nyström, Monica E

    2013-01-01

    We sought to improve our understanding of how health care quality improvement (QI) methods and innovations could be efficiently and effectively translated between settings to reduce persistent gaps in health care quality both within and across countries. We aimed to examine whether we could identify a core set of organizational cultural attributes, independent of context and setting, which might be associated with success in implementing and sustaining QI systems in health care organizations. We convened an international group of investigators to explore the issues of organizational culture and QI in different health care contexts and settings. This group met in person 3 times and held a series of conference calls to discuss emerging ideas over 2 years. Investigators also conducted pilot studies in their home countries to examine the applicability of our conceptual model. We suggest that organizational coherence may be a critical element of QI efforts in health care organizations and propose that there are 3 key components of organizational coherence: (1) people, (2) processes, and (3) perspectives. Our work suggests that the concept of organizational coherence embraces both culture and context and can thus help guide both researchers and practitioners in efforts to enhance health care QI efforts, regardless of organizational type, location, or context.

  14. Organizational coherence in health care organizations: conceptual guidance to facilitate quality improvement and organizational change.

    PubMed

    McAlearney, Ann Scheck; Terris, Darcey; Hardacre, Jeanne; Spurgeon, Peter; Brown, Claire; Baumgart, Andre; Nyström, Monica E

    2014-01-01

    We sought to improve our understanding of how health care quality improvement (QI) methods and innovations could be efficiently and effectively translated between settings to reduce persistent gaps in health care quality both within and across countries. We aimed to examine whether we could identify a core set of organizational cultural attributes, independent of context and setting, which might be associated with success in implementing and sustaining QI systems in health care organizations. We convened an international group of investigators to explore the issues of organizational culture and QI in different health care contexts and settings. This group met in person 3 times and held a series of conference calls to discuss emerging ideas over 2 years. Investigators also conducted pilot studies in their home countries to examine the applicability of our conceptual model. We suggest that organizational coherence may be a critical element of QI efforts in health care organizations and propose that there are 3 key components of organizational coherence: (1) people, (2) processes, and (3) perspectives. Our work suggests that the concept of organizational coherence embraces both culture and context and can thus help guide both researchers and practitioners in efforts to enhance health care QI efforts, regardless of organizational type, location, or context.

  15. A social ecological conceptual framework for understanding adolescent health literacy in the health education classroom.

    PubMed

    Wharf Higgins, Joan; Begoray, Deborah; MacDonald, Marjorie

    2009-12-01

    With the rising concern over chronic health conditions and their prevention and management, health literacy is emerging as an important public health issue. As with the development of other forms of literacy, the ability for students to be able to access, understand, evaluate and communicate health information is a skill best developed during their years of public schooling. Health education curricula offer one approach to develop health literacy, yet little is known about its influence on neither students nor their experiences within an educational context. In this article, we describe our experience applying a social ecological model to investigating the implementation of a health education curriculum in four high schools in British Columbia, Canada. We used the model to guide a conceptual understanding of health literacy, develop research questions, select data collection strategies, and interpret the findings. Reflections and recommendations for using the model are offered.

  16. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    ERIC Educational Resources Information Center

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  17. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  18. The Impact of Guiding Materials on Students' Conceptual Understanding: The Case of "What Is the Earth's Crust Composed of?

    ERIC Educational Resources Information Center

    Çoruhlu, Tülay Senel; Er Nas, Sibel

    2017-01-01

    The aim of this research is to determine the effect of the use of guidance material based on the 5E model on students' conceptual understanding of a topic entitled "What is the earth's crust composed of?" The sample consists of 40 students from the 5th grade (experimental group 20, control group 20). A concept test, a drawing test, and…

  19. On the conceptual foundations of psychological measurement

    NASA Astrophysics Data System (ADS)

    Maul, Andrew; Wilson, Mark; Torres Irribarra, David

    2013-09-01

    Measurement has long been an important element of epistemology in the physical sciences and natural philosophy. More recently, the psychological sciences have developed a variety of techniques that purport to be instances of measurement as well. However, it is not clear how the understanding of measurement invoked in psychological science applications accords with the understanding of measurement found in other scientific disciplines. A sharper focus on conceptual clarity and coherence across the psychological and physical sciences has the potential to add a great deal to efforts to improve such practices. In this paper, we argue that it is possible to formulate a philosophically coherent account of how measurement works in both the physical and the human sciences.

  20. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  1. Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry

    NASA Astrophysics Data System (ADS)

    Daubenmire, Paul L.

    which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.

  2. Preserved conceptual implicit memory for pictures in patients with Alzheimer’s disease

    PubMed Central

    Deason, Rebecca G.; Hussey, Erin P.; Flannery, Sean; Ally, Brandon A.

    2015-01-01

    The current study examined different aspects of conceptual implicit memory in patients with mild Alzheimer’s disease (AD). Specifically, we were interested in whether priming of distinctive conceptual features versus general semantic information related to pictures and words would differ for the mild AD patients and healthy older adults. In this study, 14 healthy older adults and 15 patients with mild AD studied both pictures and words followed by an implicit test section, where they were asked about distinctive conceptual or general semantic information related to the items they had previously studied (or novel items) Healthy older adults and patients with mild AD showed both conceptual priming and the picture superiority effect, but the AD patients only showed these effects for the questions focused on the distinctive conceptual information. We found that patients with mild AD showed intact conceptual picture priming in a task that required generating a response (answer) from a cue (question) for cues that focused on distinctive conceptual information. This experiment has helped improve our understanding of both the picture superiority effect and conceptual implicit memory in patients with mild AD in that these findings support the notion that conceptual implicit memory might potentially help to drive familiarity-based recognition in the face of impaired recollection in patients with mild AD. PMID:26291521

  3. On Conceptual Analysis as the Primary Qualitative Approach to Statistics Education Research in Psychology

    ERIC Educational Resources Information Center

    Petocz, Agnes; Newbery, Glenn

    2010-01-01

    Statistics education in psychology often falls disappointingly short of its goals. The increasing use of qualitative approaches in statistics education research has extended and enriched our understanding of statistical cognition processes, and thus facilitated improvements in statistical education and practices. Yet conceptual analysis, a…

  4. Using Open-Response Tasks to Reveal the Conceptual Understanding of Learners--Learners Teaching the Teacher What They Know about Trigonometry

    ERIC Educational Resources Information Center

    Price, Charmaine; van Jaarsveld, Pieter

    2017-01-01

    This article reports on using open-response questions to reveal the level of, and change in, conceptual understanding of a small sample of Grade 11 learners of trigonometry in a South African high school. The investigation used learner response sheets in a regular classroom with the teacher as researcher. Combining the idea of concept image and…

  5. Conceptual astronomy. II. Replicating conceptual gains, probing attitude changes across three semesters

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy

    1999-10-01

    We report on a long-term, large-scale study of a one-semester, conceptually based, introductory astronomy course with data from more than 400 students over three semesters at the University of New Mexico. Using traditional and alternative assessment tools developed for the project, we examined the pre- and postcourse results for Fall 1994, Spring 1995, and Fall 1995. We find our results are robust: novice students show large, positive gains on assessments of conceptual understanding and connected understanding of the knowledge structure of astronomy. We find no relationship between course achievement and completion of prior courses in science or math; we do find a small to moderate relationship between students' science self-image and course achievement. Also, we detect little change over each semester in students' mildly positive incoming attitudes about astronomy and science.

  6. Geobiology: A Conceptual Framework for Understanding Earth's Surface

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.

    2016-12-01

    A topic of study becomes a new field when it provides a useful conceptual framework for understanding suites of important processes. Geobiology integrates microbial biology with Earth sciences in a way that allows us to ask - and answer - deeper questions about Earth and the life on it. Recent studies of the oxidation of Earth's surface exemplify the impact of Geobiology as a new field. For decades, scientists have understood that Earth's surface was oxidized by photosynthesis. Geochemical records indicate dramatic redox changes both globally, e.g. the loss of MIF sulfur signatures due to formation of an ozone layer, and locally, as preserved in sedimentary rocks. However, these records depend critically on the dynamics of both the global biosphere and local microbial ecology. For example, an increase in global redox due to photosynthetic iron oxidation has different biogeochemical implications than an increase from oxygenic photosynthesis; O2 reacts very differently with organic matter and minerals than iron oxyhydroxides do, influencing microbial ecology as well as potential geochemical signatures in sedimentary rocks. Thus, studies of modern microbial communities provide insights into the interactions among metabolisms and geochemical gradients that have shaped Earth's redox history. For example, the ability of cyanobacteria to create O2 oases in benthic mats and soils on land provides a new framework for evaluating redox-sensitive elemental fluxes to the ocean. Similarly, genomic studies of Cyanobacteria have revealed close relatives, Melainabacteria, that are mostly obligate anaerobes. The evolutionary relationships between these two groups, as preserved in their genomes, reflect important microbial processes that led to oxidation of Earth's surface. By combining insights from microbial biology and sedimentary geochemistry, geobiologists will develop significantly more accurate models of the interactions between life and Earth.

  7. Conceptualizations of clinical leadership: a review of the literature

    PubMed Central

    Mianda, Solange; Voce, Anna S

    2017-01-01

    Introduction Poor patient outcomes in South African maternal health settings have been associated with inadequately performing health care providers and poor clinical leadership at the point of care. While skill deficiencies among health care providers have been largely addressed, the provision of clinical leadership has been neglected. In order to develop and implement initiatives to ensure clinical leadership among frontline health care providers, a need was identified to understand the ways in which clinical leadership is conceptualized in the literature. Design Using the systematic quantitative literature review, papers published between 2004 and 2016 were obtained from search engines (Google Scholar and EBSCOhost). Electronic databases (CINHAL, PubMed, Medline, Academic Search Complete, Health Source: Consumer, Health Source: Nursing/Academic, ScienceDirect and Ovid®) and electronic journals (Contemporary Nurse, Journal of Research in Nursing, Australian Journal of Nursing and Midwifery, International Journal of Clinical Leadership) were also searched. Results Using preselected inclusion criteria, 7256 citations were identified. After screening 230 potentially relevant full-text papers for eligibility, 222 papers were excluded because they explored health care leadership or clinical leadership among health care providers other than frontline health care providers. Eight papers met the inclusion criteria for the review. Most studies were conducted in high-income settings. Conceptualizations of clinical leadership share similarities with the conceptualizations of service leadership but differ in focus, with the intent of improving direct patient care. Clinical leadership can be a shared responsibility, performed by every competent frontline health care provider, regardless of the position in the health care system. Conclusion Conceptualizations of clinical leadership among frontline health care providers arise mainly from high-income settings. Understanding the

  8. Conceptualizations of clinical leadership: a review of the literature.

    PubMed

    Mianda, Solange; Voce, Anna S

    2017-01-01

    Poor patient outcomes in South African maternal health settings have been associated with inadequately performing health care providers and poor clinical leadership at the point of care. While skill deficiencies among health care providers have been largely addressed, the provision of clinical leadership has been neglected. In order to develop and implement initiatives to ensure clinical leadership among frontline health care providers, a need was identified to understand the ways in which clinical leadership is conceptualized in the literature. Using the systematic quantitative literature review, papers published between 2004 and 2016 were obtained from search engines (Google Scholar and EBSCOhost). Electronic databases (CINHAL, PubMed, Medline, Academic Search Complete, Health Source: Consumer, Health Source: Nursing/Academic, ScienceDirect and Ovid ® ) and electronic journals ( Contemporary Nurse , Journal of Research in Nursing , Australian Journal of Nursing and Midwifery , International Journal of Clinical Leadership ) were also searched. Using preselected inclusion criteria, 7256 citations were identified. After screening 230 potentially relevant full-text papers for eligibility, 222 papers were excluded because they explored health care leadership or clinical leadership among health care providers other than frontline health care providers. Eight papers met the inclusion criteria for the review. Most studies were conducted in high-income settings. Conceptualizations of clinical leadership share similarities with the conceptualizations of service leadership but differ in focus, with the intent of improving direct patient care. Clinical leadership can be a shared responsibility, performed by every competent frontline health care provider, regardless of the position in the health care system. Conceptualizations of clinical leadership among frontline health care providers arise mainly from high-income settings. Understanding the influence of context on

  9. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

    NASA Astrophysics Data System (ADS)

    Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.

    2018-06-01

    A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

  10. Conceptual Questions and Challenge Problems

    NASA Astrophysics Data System (ADS)

    Nurrenbern, Susan C.; Robinson, William R.

    1998-11-01

    The JCE Internet Conceptual Question and Challenge Problem Web site is a source of questions and problems that can be used in teaching and assessing conceptual understanding and problem solving in chemistry. Here you can find a library of free-response and multiple-choice conceptual questions and challenge problems, tips for writing these questions and problems, and a discussion of types of conceptual questions. This site is intended to be a means of sharing conceptual questions and challenge problems among chemical educators. This is a living site that will grow as you share conceptual questions and challenge problems and as we find new sources of information. We would like to make this site as inclusive as possible. Please share your questions and problems with us and alert us to references or Web sites that could be included on the site. You can use email, fax, or regular mail. Email: nurrenbern@purdue.edu or wrrobin@purdue.edu Fax: 765/494-0239 Mailing address: Susan C. Nurrenbern or William R. Robinson; Department of Chemistry; Purdue University; 1393 Brown Building; West Lafayette, IN 47907-1393. The Conceptual Questions and Challenge Problems Web site can be found here.

  11. Trajectories of collaborative scientific conceptual change: Middle school students learning about ecosystems in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to

  12. The Influence of Computer-Assisted Instruction on Students' Conceptual Understanding of Chemical Bonding and Attitude toward Chemistry: A Case for Turkey

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2008-01-01

    In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…

  13. Young Adults' Financial Socialization Processes as Influences of Conceptualization and Understanding of Financial Well-Being and Choice in Relationship Commitment

    ERIC Educational Resources Information Center

    Rea, Jennifer K.

    2017-01-01

    The two studies presented in this dissertation provide an understanding of young adults' perspective financial socialization processes and how the experiences influence a conceptualization of financial well-being and their choice of romantic relationship status (Study 1: N = 31, Study 2: N = 549). Study 1 has adapted Gudmunson and Danes' (2011)…

  14. Understanding decimal numbers: a foundation for correct calculations.

    PubMed

    Pierce, Robyn U; Steinle, Vicki A; Stacey, Kaye C; Widjaja, Wanty

    2008-01-01

    This paper reports on the effectiveness of an intervention designed to improve nursing students' conceptual understanding of decimal numbers. Results of recent intervention studies have indicated some success at improving nursing students' numeracy through practice in applying procedural rules for calculation and working in real or simulated practical contexts. However, in this we identified a fundamental problem: a significant minority of students had an inadequate understanding of decimal numbers. The intervention aimed to improve nursing students' basic understanding of the size of decimal numbers, so that, firstly, calculation rules are more meaningful, and secondly, students can interpret decimal numbers (whether digital output or results of calculations) sensibly. A well-researched, time-efficient diagnostic instrument was used to identify individuals with an inadequate understanding of decimal numbers. We describe a remedial intervention that resulted in significant improvement on a delayed post-intervention test. We conclude that nurse educators should consider diagnosing and, as necessary, plan for remediation of students' foundational understanding of decimal numbers before teaching procedural rules.

  15. A conceptual persistent healthcare quality improvement process for software development management.

    PubMed

    Lin, Jen-Chiun; Su, Mei-Ju; Cheng, Po-Hsun; Weng, Yung-Chien; Chen, Sao-Jie; Lai, Jin-Shin; Lai, Feipei

    2007-01-01

    This paper illustrates a sustained conceptual service quality improvement process for the management of software development within a healthcare enterprise. Our proposed process is revised from Niland's healthcare quality information system (HQIS). This process includes functions to survey the satisfaction of system functions, describe the operation bylaws on-line, and provide on-demand training. To achieve these goals, we integrate five information systems in National Taiwan University Hospital, including healthcare information systems, health quality information system, requirement management system, executive information system, and digital learning system, to form a full Deming cycle. A preliminary user satisfaction survey showed that our outpatient information system scored an average of 71.31 in 2006.

  16. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  17. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a “hub-and-spokes” perspective

    PubMed Central

    Chiou, Rocco

    2014-01-01

    Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This “inducer-to-concurrent” nexus is

  18. Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Woyessa, Y.; Welderufael, W.; Edossa, D.

    2011-12-01

    Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin

  19. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  20. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    PubMed

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  1. Exploring the usefulness of two conceptual frameworks for understanding how organizational factors influence innovation implementation in cancer care.

    PubMed

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors important to the successful implementation of innovations in health care settings; (2) discuss each in relation to the literature; and (3) briefly demonstrate how each may be applied to 3 initiatives involving the implementation of a specific innovation-synoptic reporting tools-in cancer care. Synoptic reporting tools capture information from diagnostic tests, surgeries, and pathology examinations in a standardized, structured manner and contain only the information necessary for patient care. The frameworks selected were the Promoting Action on Research Implementation in Health Services framework and an organizational framework of innovation implementation; these frameworks arise from different disciplines (nursing and management, respectively). The constructs from each framework are examined in relation to the literature, with each construct applied to synoptic reporting tool implementation to demonstrate how each may be used to inform both practice and research in this area. By improving our understanding of existing frameworks, we enhance our ability to more effectively study and target implementation processes. Copyright © 2013 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  2. Integration of Language and Cognition at Pre-Conceptual Level

    DTIC Science & Technology

    2003-10-04

    and cognition at a pre-conceptual level, where conceptual and emotional contents are not differentiated might be interesting for theoretical linguistics and for practical development of understanding-based search engines .

  3. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    NASA Astrophysics Data System (ADS)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-10-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  4. Why should I care? Engaging students in conceptual understanding using global context to develop social attitudes.

    NASA Astrophysics Data System (ADS)

    Forder, S. E.; Welstead, C.; Pritchard, M.

    2014-12-01

    A glance through the Harvard Business Review reveals many suggestions and research pieces reviewing sales and marketing techniques. Most educators will be familiar with the notion that making accurate first impressions and being responsive, whilst maintaining pace is critical to engaging an audience. There are lessons to be learnt from industry that can significantly impact upon our teaching. Eisenkraft, in his address to the NSTA, proposed four essential questions. This presentation explores one of those questions: 'Why should I care?', and discusses why this question is crucial for engaging students by giving a clear purpose for developing their scientific understanding. Additionally, this presentation explores how The ISF Academy has adapted the NGSS, using the 14 Grand Engineering Challenges and the IB MYP, to provide current, authentic global contexts, in order to give credibility to the concepts, understandings and skills being learnt. The provision of global contexts across units and within lessons supports a platform for students to have the freedom to explore their own sense of social responsibility. The Science Department believes that planning lessons with tasks that elaborate on the student's new conceptualisations, has helped to transfer the student's new understanding into social behavior beyond the classroom. Furthermore, extension tasks have been used to transfer conceptual understanding between different global contexts.

  5. Conceptualizing Learning in the Climate Justice Movement

    ERIC Educational Resources Information Center

    Kluttz, Jenalee; Walter, Pierre

    2018-01-01

    This article extends Scandrett et al.'s conceptual framework for social movement learning to understand learning and knowledge creation in the climate justice movement. Drawing on radical pluralist theoretical approaches to social movement learning, learning in the climate justice movement is conceptualized at the micro, meso, and macro levels,…

  6. Modelling Photosynthesis to Increase Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Pauline; Tronson, Deidre; Ritchie, Raymond J.

    2006-01-01

    Biology students in their first year at university have difficulty understanding the abstract concepts of photosynthesis. The traditional didactic lecture followed by practical exercises that show various macroscopic aspects of photosynthesis often do not help the students visualise or understand the submicroscopic (molecular-level) reactions that…

  7. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  8. On the Conceptual Ambiguity Surrounding Perceived Message Effectiveness

    PubMed Central

    Yzer, Marco; LoRusso, Susan; Nagler, Rebekah H.

    2015-01-01

    Health message quality is best understood in terms of a message’s ability to effectively produce change in the variables that it was designed to change. The importance of determining a message’s effectiveness in producing change prior to implementation is clear: The better a message’s potential effectiveness is understood, the better able interventionists are to distinguish effective from ineffective messages before allocating scarce resources to message implementation. For this purpose, research has relied on perceived message effectiveness measures as a proxy of a message’s potential effectiveness. Remarkably, however, very little conceptual work has been done on perceived message effectiveness, which renders its measures under-informed and inconsistent across studies. To encourage greater conceptual work on this important construct, we review several threats to the validity of existing measures and consider strategies for improving our understanding of perceived message effectiveness. PMID:25470437

  9. Better Measurement for Performance Improvement in Low- and Middle-Income Countries: The Primary Health Care Performance Initiative (PHCPI) Experience of Conceptual Framework Development and Indicator Selection.

    PubMed

    Veillard, Jeremy; Cowling, Krycia; Bitton, Asaf; Ratcliffe, Hannah; Kimball, Meredith; Barkley, Shannon; Mercereau, Laure; Wong, Ethan; Taylor, Chelsea; Hirschhorn, Lisa R; Wang, Hong

    2017-12-01

    Policy Points: Strengthening accountability through better measurement and reporting is vital to ensure progress in improving quality primary health care (PHC) systems and achieving universal health coverage (UHC). The Primary Health Care Performance Initiative (PHCPI) provides national decision makers and global stakeholders with opportunities to benchmark and accelerate performance improvement through better performance measurement. Results from the initial PHC performance assessments in low- and middle-income countries (LMICs) are helping guide PHC reforms and investments and improve the PHCPI's instruments and indicators. Findings from future assessment activities will further amplify cross-country comparisons and peer learning to improve PHC. New indicators and sources of data are needed to better understand PHC system performance in LMICs. The Primary Health Care Performance Initiative (PHCPI), a collaboration between the Bill and Melinda Gates Foundation, The World Bank, and the World Health Organization, in partnership with Ariadne Labs and Results for Development, was launched in 2015 with the aim of catalyzing improvements in primary health care (PHC) systems in 135 low- and middle-income countries (LMICs), in order to accelerate progress toward universal health coverage. Through more comprehensive and actionable measurement of quality PHC, the PHCPI stimulates peer learning among LMICs and informs decision makers to guide PHC investments and reforms. Instruments for performance assessment and improvement are in development; to date, a conceptual framework and 2 sets of performance indicators have been released. The PHCPI team developed the conceptual framework through literature reviews and consultations with an advisory committee of international experts. We generated 2 sets of performance indicators selected from a literature review of relevant indicators, cross-referenced against indicators available from international sources, and evaluated through

  10. Conceptual models of information processing

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  11. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    ERIC Educational Resources Information Center

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  12. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    ERIC Educational Resources Information Center

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  13. The Test of Basic Mechanics Conceptual Understanding (bMCU): Using Rasch Analysis to Develop and Evaluate an Efficient Multiple Choice Test on Newton's Mechanics

    ERIC Educational Resources Information Center

    Hofer, Sarah I.; Schumacher, Ralph; Rubin, Herbert

    2017-01-01

    Background: Valid assessment of the understanding of Newton's mechanics is highly relevant to both physics classrooms and research. Several tests have been developed. What remains missing, however, is an efficient and fair test of conceptual understanding that is adapted to the content taught to secondary school students and that can be validly…

  14. Students' Communicative Resources in Relation to Their Conceptual Understanding--The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-01-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated…

  15. Improving students’ understanding of mathematical concept using maple

    NASA Astrophysics Data System (ADS)

    Ningsih, Y. L.; Paradesa, R.

    2018-01-01

    This study aimed to improve students’ understanding of mathematical concept ability through implementation of using Maple in learning and expository learning. This study used a quasi-experimental research with pretest-posttest control group design. The sample on this study was 61 students in the second semester of Mathematics Education of Universitas PGRI Palembang, South Sumatera in academic year 2016/2017. The sample was divided into two classes, one class as the experiment class who using Maple in learning and the other class as a control class who received expository learning. Data were collective through the test of mathematical initial ability and mathematical concept understanding ability. Data were analyzed by t-test and two ways ANOVA. The results of this study showed (1) the improvement of students’ mathematical concept understanding ability who using Maple in learning is better than those who using expository learning; (2) there is no interaction between learning model and students’ mathematical initial ability toward the improvement of students’ understanding of mathematical concept ability.

  16. The effects of academic literacy instruction on engagement and conceptual understanding of biology of ninth-grade students

    NASA Astrophysics Data System (ADS)

    Larson, Susan C.

    Academic language, discourse, vocabulary, motivation, and comprehension of complex texts and concepts are keys to learning subject-area content. The need for a disciplinary literacy approach in high school classrooms accelerates as students become increasing disengaged in school and as content complexity increases. In the present quasi-experimental mixed-method study, a ninth-grade biology unit was designed with an emphasis on promoting academic literacy skills, discourse, meaningful constructivist learning, interest development, and positive learning experiences in order to learn science content. Quantitative and qualitative analyses on a variety of measures completed by 222 students in two high schools revealed that those who received academic literacy instruction in science class performed at significantly higher levels of conceptual understanding of biology content, academic language and vocabulary use, reasoned thought, engagement, and quality of learning experience than control-group students receiving traditionally-organized instruction. Academic literacy was embedded into biology instruction to engage students in meaning-making discourses of science to promote learning. Academic literacy activities were organized according the phases of interest development to trigger and sustain interest and goal-oriented engagement throughout the unit. Specific methods included the Generative Vocabulary Matrix (GVM), scenario-based writing, and involvement in a variety of strategically-placed discourse activities to sustain or "boost" engagement for learning. Traditional instruction for the control group included teacher lecture, whole-group discussion, a conceptual organizer, and textbook reading. Theoretical foundations include flow theory, sociocultural learning theory, and interest theory. Qualitative data were obtained from field notes and participants' journals. Quantitative survey data were collected and analyzed using the Experience Sampling Method (ESM) to

  17. Probing Students' Understanding of Some Conceptual Themes in General Relativity

    ERIC Educational Resources Information Center

    Bandyopadhyay, Atanu; Kumar, Arvind

    2010-01-01

    This work is an attempt to see how physics undergraduates view the basic ideas of general relativity when they are exposed to the topic in a standard introductory course. Since the subject is conceptually and technically difficult, we adopted a "case studies" approach, focusing in depth on about six students who had just finished a one semester…

  18. The Effectiveness of Conceptual Change Texts and Concept Clipboards in Learning the Nature of Science

    ERIC Educational Resources Information Center

    Çil, Emine; Çepni, Salih

    2016-01-01

    Background: One of the most important goals of science education is to enable students to understand the nature of science (NOS). However, generally regular science teaching in classrooms does not help students improve informed NOS views. Purpose: This study investigated the influence of an explicit reflective conceptual change approach compared…

  19. The Role of Cognitive, Metacognitive, and Motivational Variables in Conceptual Change: Preservice Early Childhood Teachers' Conceptual Understanding of the Cause of Lunar Phases

    ERIC Educational Resources Information Center

    Sackes, Mesut

    2010-01-01

    This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…

  20. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  1. Music-therapy analyzed through conceptual mapping

    NASA Astrophysics Data System (ADS)

    Martinez, Rodolfo; de la Fuente, Rebeca

    2002-11-01

    Conceptual maps have been employed lately as a learning tool, as a modern study technique, and as a new way to understand intelligence, which allows for the development of a strong theoretical reference, in order to prove the research hypothesis. This paper presents a music-therapy analysis based on this tool to produce a conceptual mapping network, which ranges from magic through the rigor of the hard sciences.

  2. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    PubMed

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P <.01). Furthermore, 3 of the 4 components of the nephrometry score (radius, nearness to collecting system, and location) showed significant improvement (P <.001) using the models. There was also more consistent agreement among trainees when using the 3D models compared with CT scans to assess the nephrometry score (intraclass correlation coefficient, 0.28 for CT scan vs 0.72 for 3D models). Qualitative evaluation with questionnaires filled out by the trainees further confirmed that the 3D models improved their ability to understand and conceptualize the renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  3. Data-model fusion to better understand emerging pathogens and improve infectious disease forecasting.

    PubMed

    LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S

    2011-07-01

    Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.

  4. On Being in the Wrong Place: The Role of Children's Conceptual Understanding and Ballgame Experience When Judging a Football Player's Offside Position

    ERIC Educational Resources Information Center

    Lange-Küttner, Christiane; Bosco, Giorgia

    2016-01-01

    We investigated the role of children's conceptual understanding and ballgame experience when judging whether a football player is in an offside position, or not. In the offside position, a player takes advantage of being behind the defence line of the opposing team and just waits for the ball to arrive in order to score a goal. We explained the…

  5. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Seah, Lay Hoon

    2016-06-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life cycle of plants, in four grade 4 classrooms (age 10) taught by three teachers constitute the data for this study. Students' written explanations were subjected to a combination of content and linguistic analysis. The linguistic analysis was conducted using selected analytical tools from the systemic functional linguistics framework. A diversity of linguistic resources and meanings were identified from the students' explanations, which reveal the extent to which the students were able to employ linguistic resources to construct written scientific explanations and the challenges involved. Both content and linguistic analyses also illuminate patterns of language use that are significant for realising scientific meanings. Finally, a comparison is made in the use of linguistic resources between the students' explanations and the instructional language to highlight possible links. This comparison reveals that the teachers' expectations of the students' written explanations were seldom reflected in their oral questioning or made explicit during the instruction. The findings of this study suggest that a focus on conceptual development is not sufficient in itself to foster students' ability to construct explanations. Pedagogical implications involving the support needed by primary students to construct scientific explanations are discussed.

  6. Enhancing Case Conceptualization through Film: The Addiction Web

    ERIC Educational Resources Information Center

    Warren, Jane; Stech, Matt; Douglas, Kristin; Lambert, Serena

    2010-01-01

    Self-reflection, creativity, and experiential education are effective teaching strategies for counselor educators. Understanding and conceptualizing client cases can feel overwhelming for counselors-in-training. This article describes how the process of case conceptualization can be enhanced through the use of film. A case example is provided of…

  7. A Cross-Cultural Comparison: Teachers' Conceptualizations of Creativity

    ERIC Educational Resources Information Center

    Zhou, Ji; Shen, Jiliang; Wang, Xinghua; Neber, Heinz; Johji, Ikuma

    2013-01-01

    The purpose of this study was to understand teachers' conceptualizations of creativity and its difference among 3 countries. The conceptualization of creativity denotes the concept and exhibition of creativity, the traits of creative students, and the fostering and hindering factors for creativity in school settings. A questionnaire was…

  8. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  9. Low-Income Women’s Conceptualizations of Emotional- and Stress-Eating

    PubMed Central

    Hayman, Lenwood W.; Lee, Hannah J.; Miller, Alison L.; Lumeng, Julie C.

    2014-01-01

    Emotional- and stress-eating have been proposed as risk factors for obesity. However, the way that individuals conceptualize these behaviors is not well understood and no studies have employed a qualitative approach. We sought to understand how women conceptualize emotional- and stress-eating. Sixty-one low-income women from South-central Michigan with young children (ages 2–5 years) participated in either a focus group or individual semi-structured interview during which they were asked about their conceptualizations of eating behaviors among adults and children. Responses were transcribed and the constant comparative method was used to identify themes. Identified themes included that emotional- and stress-eating are viewed as uncommon, severe, pitiable behaviors that reflect a lack of self-control and are highly stigmatized; that when these behaviors occurred among children, the behaviors resulted from neglect or even abuse; and that bored-eating is viewed as distinct from emotional- or stress-eating and is a common and humorous behavior with which participants readily self-identified. Future research and interventions should seek to develop more detailed conceptualizations of these behaviors to improve measurement, destigmatize emotional- and stress-eating and potentially capitalize on the strong identification with bored-eating by targeting this behavior for interventions. PMID:25218718

  10. Contribution of the priming paradigm to the understanding of the conceptual developmental shift from 5 to 9 years of age.

    PubMed

    Perraudin, Sandrine; Mounoud, Pierre

    2009-11-01

    We conducted three experiments to study the role of instrumental (e.g. knife-bread) and categorical (e.g. cake-bread) relations in the development of conceptual organization with a priming paradigm, by varying the nature of the task (naming--Experiment 1--or categorical decision--Experiments 2 and 3). The participants were 5-, 7- and 9-year-old children and adults. The results showed that on both types of task, adults and 9-year-old children presented instrumental and categorical priming effects, whereas 5-year-old children presented mainly instrumental priming effects, with categorical effects remaining marginal. Moreover, the magnitude of the instrumental priming effects decreased with age. Finally, the priming effects observed for 7-year-old children depended on the task, especially for the categorical effects. The theoretical implications of these results for our understanding of conceptual reorganization from 5 to 9 years of age are discussed.

  11. How Teacher Leaders Influence Others and Understand Their Leadership

    ERIC Educational Resources Information Center

    Fairman, Janet C.; Mackenzie, Sarah V.

    2015-01-01

    This study elaborates the many ways that teachers lead work with colleagues to improve teaching and learning, and their understanding of their work as leadership. Through qualitative case studies of seven Maine schools and a review of the literature, the authors developed a conceptual model, Spheres of Teacher Leadership Action for Learning. They…

  12. Ontologies to improve chronic disease management research and quality improvement studies - a conceptual framework.

    PubMed

    Liyanage, Harshana; Liaw, Siaw-Teng; Kuziemsky, Craig; de Lusignan, Simon

    2013-01-01

    There is a growing burden of chronic non-communicable disease (CNCD). Managing CNCDs requires use of multiple sources of health and social care data, and information about coordination and outcomes. Many people with CNCDs have multimorbidity. Problems with data quality exacerbate challenges in measuring quality and health outcomes especially where there is multimorbidity. We have developed an ontological toolkit to support research and quality improvement studies in CNCDs using heterogeneous data, with diabetes mellitus as an exemplar. International experts held a workshop meeting, with follow up discussions and consensus building exercise. We generated conceptual statements about problems with a CNCD that ontologies might support, and a generic reference model. There were varying degrees of consensus. We propose a set of tools, and a four step method: (1) Identification and specification of data sources; (2) Conceptualisation of semantic meaning; (3) How available routine data can be used as a measure of the process or outcome of care; (4) Formalisation and validation of the final ontology.

  13. Promoting Conceptual Coherence within Context-Based Biology Education

    ERIC Educational Resources Information Center

    Ummels, Micha H. J.; Kamp, Marcel J. A.; De Kroon, Hans; Boersma, Kerst Th.

    2015-01-01

    In secondary science education, the learning and teaching of coherent conceptual understanding are often problematic. Context-based education has been proposed as a partial solution to this problem. This study aims to gain insight into the development of conceptual coherence and how context-embedded learning-teaching activities (LT) can promote…

  14. Improving Students' Conceptual Understanding of a Specific Content Learning: A Designed Teaching Sequence

    ERIC Educational Resources Information Center

    Ahmad, N. J.; Lah, Y. Che

    2012-01-01

    The efficacy of a teaching sequence designed for a specific content of learning of electrochemistry is described in this paper. The design of the teaching draws upon theoretical insights into perspectives on learning and empirical studies to improve the teaching of this topic. A case study involving two classes, the experimental and baseline…

  15. Use of theoretical and conceptual frameworks in qualitative research.

    PubMed

    Green, Helen Elise

    2014-07-01

    To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.

  16. Understanding Global Change: A New Conceptual Framework To Guide Teaching About Planetary Systems And Both The Causes And Effects Of Changes In Those Systems

    NASA Astrophysics Data System (ADS)

    Levine, J.; Bean, J. R.

    2016-12-01

    Goals of the Next Generation Science Standards include understanding climate change and learning about ways to moderate the causes and mitigate the consequences of planetary-scale anthropogenic activities that interact synergistically to affect ecosystems and societies. The sheer number and scale of both causes and effects of global change can be daunting for teachers, and the lack of a clear conceptual framework for presenting this material usually leads educators (and textbooks) to present these phenomenon as a disjointed "laundry list." But an alternative approach is in the works. The Understanding Global Change web resource, currently under development at the UC Berkeley Museum of Paleontology, will provide educators with a conceptual framework, graphic models, lessons, and assessment templates for teaching NGSS-aligned, interdisciplinary, global change curricula. The core of this resource is an original informational graphic that presents and relates Earth's global systems, human and non-human factors that produce changes in those systems, and the effects of those changes that scientists can measure.

  17. Investigating and improving student understanding of the expectation values of observables in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-07-01

    The expectation value of an observable is an important concept in quantum mechanics since measurement outcomes are, in general, probabilistic and we only have information about the probability distribution of measurement outcomes in a given quantum state of a system. However, we find that upper-level undergraduate and PhD students in physics have both conceptual and procedural difficulties when determining the expectation value of a physical observable in a given quantum state in terms of the eigenstates and eigenvalues of the corresponding operator, especially when using Dirac notation. Here we first describe the difficulties that these students have with determining the expectation value of an observable in Dirac notation. We then discuss how the difficulties found via student responses to written surveys and individual interviews were used as a guide in the development of a quantum interactive learning tutorial (QuILT) to help students develop a good grasp of the expectation value. The QuILT strives to help students integrate conceptual understanding and procedural skills to develop a coherent understanding of the expectation value. We discuss the effectiveness of the QuILT in helping students learn this concept from in-class evaluations.

  18. Youth with Autism Spectrum Disorder Comprehend Lexicalized and Novel Primary Conceptual Metaphors

    ERIC Educational Resources Information Center

    Olofson, Eric L.; Casey, Drew; Oluyedun, Olufemi A.; Van Herwegen, Jo; Becerra, Adam; Rundblad, Gabriella

    2014-01-01

    Individuals with autism spectrum disorder (ASD) have difficulty comprehending metaphors. However, no study to date has examined whether or not they understand conceptual metaphors (i.e. mappings between conceptual structures), which could be the building blocks of metaphoric thinking and understanding. We investigated whether 13 participants with…

  19. Understanding students' explanations of biological phenomena: Conceptual frameworks or p-prims?

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry A.; Abrams, Eleanor; Cummins, Catherine L.; Anzelmo, Julie

    2001-07-01

    This study explores two differing perspectives of the nature of students' biological knowledge structures, conceptual frameworks, and p-prims. Students from four grade levels and from three regions of the United States were asked to explain a variety of biological phenomena. Students' responses to the interview probes were analyzed to describe 1) patterns in the nature of students' explanations across grade levels and interview probes, and 2) the consistency of students' explanations across individual interview probes and across the range of probes. The results were interpreted from both perspectives of knowledge structures. While definitive assertions supporting either perspective could not be made, each hypothesis was explored. Although the more prevalent description of student conceptions within a broader conceptual framework could not be discounted, the p-prim of need as a rationale for change was also found to offer a useful description of knowledge frameworks for this content area. The difficulties endemic to the use of biology for the study of basic knowledge structures are also discussed.

  20. Conceptual and Analytical Considerations toward the Use of Patient-Reported Outcomes in Personalized Medicine.

    PubMed

    Alemayehu, Demissie; Cappelleri, Joseph C

    2012-07-01

    Patient-reported outcomes (PROs) can play an important role in personalized medicine. PROs can be viewed as an important fundamental tool to measure the extent of disease and the effect of treatment at the individual level, because they reflect the self-reported health state of the patient directly. However, their effective integration in personalized medicine requires addressing certain conceptual and methodological challenges, including instrument development and analytical issues. To evaluate methodological issues, such as multiple comparisons, missing data, and modeling approaches, associated with the analysis of data related to PRO and personalized medicine to further our understanding on the role of PRO data in personalized medicine. There is a growing recognition of the role of PROs in medical research, but their potential use in customizing healthcare is not widely appreciated. Emerging insights into the genetic basis of PROs could potentially lead to new pathways that may improve patient care. Knowledge of the biologic pathways through which the various genetic predispositions propel people toward negative or away from positive health experiences may ultimately transform healthcare. Understanding and addressing the conceptual and methodological issues in PROs and personalized medicine are expected to enhance the emerging area of personalized medicine and to improve patient care. This article addresses relevant concerns that need to be considered for effective integration of PROs in personalized medicine, with particular reference to conceptual and analytical issues that routinely arise with personalized medicine and PRO data. Some of these issues, including multiplicity problems, handling of missing values-and modeling approaches, are common to both areas. It is hoped that this article will help to stimulate further research to advance our understanding of the role of PRO data in personalized medicine. A robust conceptual framework to incorporate PROs into

  1. Understanding "Price" and the Environment: Exploring Upper Secondary Students' Conceptual Development

    ERIC Educational Resources Information Center

    Ignell, Caroline; Davies, Peter; Lundholm, Cecilia

    2017-01-01

    Purpose: To explore changes in upper secondary students' conceptions of environmental issues in how prices are determined and how they should be determined. Design: The study uses an "alternative frameworks" conceptual change approach to examine change in the conceptions of fifteen business and economic students. Students were asked…

  2. Re-"Conceptualizing" Procedural Knowledge in Mathematics.

    ERIC Educational Resources Information Center

    Star, Jon R.

    Many mathematics educators have lost sight of the critical importance of the mathematical understanding which underlies procedural competence, in part because we do not have a language to refer to this kind of understanding. The modal way of categorizing mathematical knowledge--conceptual and procedural knowledge--is limited in that: (a) it is…

  3. An exploratory study into students' conceptual understanding of acid/base principles associated with chemical buffer systems

    NASA Astrophysics Data System (ADS)

    MacGowan, Catherine Elizabeth

    The overall objective of this research project was to provide an insight into students' conceptual understanding of acid/base principles as it relates to the comprehension and correct application of scientific concepts during a problem-solving activity. The difficulties experienced learning science and in developing appropriate problem-solving strategies most likely are predetermined by students' existing conceptual and procedural knowledge constructs; with the assimilation of newly acquired knowledge hindering or aiding the learning process. Learning chemistry requires a restructuring of content knowledge which will allow the individual to assemble and to integrate his/her own perception of science with instructional knowledge. The epistemology of constructivism, the theoretical grounding for this research project, recognizes the student's role as an active participant in the learning process. The study's design was exploratory in nature and descriptive in design. The problem-solving activity, the preparation of a chemical buffer solution at pH of 9, was selected and modified to reflect and meet the study's objective. Qualitative research methods (i.e., think aloud protocols, retrospective interviews, survey questionnaires such as the Scale of Intellectual Development (SID), and archival data sources) were used in the collection and assessment of data. Given its constructivist grounding, simplicity, and interpretative view of knowledge acquisition and learning of collegiate aged individuals, the Perry Intellectual and Ethical Development Model (1970) was chosen as the applied model for evaluation student cognition. The study's participants were twelve traditional college age students from a small, private liberal arts college. All participants volunteered for the project and had completed or were completing a general college chemistry course at the time of the project. Upon analysis of the data the following observations and results were noted: (1) students

  4. What role does performance information play in securing improvement in healthcare? a conceptual framework for levers of change

    PubMed Central

    Levesque, Jean-Frederic; Sutherland, Kim

    2017-01-01

    Objective Across healthcare systems, there is consensus on the need for independent and impartial assessment of performance. There is less agreement about how measurement and reporting performance improves healthcare. This paper draws on academic theories to develop a conceptual framework—one that classifies in an integrated manner the ways in which change can be leveraged by healthcare performance information. Methods A synthesis of published frameworks. Results The framework identifies eight levers for change enabled by performance information, spanning internal and external drivers, and emergent and planned processes: (1) cognitive levers provide awareness and understanding; (2) mimetic levers inform about the performance of others to encourage emulation; (3) supportive levers provide facilitation, implementation tools or models of care to actively support change; (4) formative levers develop capabilities and skills through teaching, mentoring and feedback; (5) normative levers set performance against guidelines, standards, certification and accreditation processes; (6) coercive levers use policies, regulations incentives and disincentives to force change; (7) structural levers modify the physical environment or professional cultures and routines; (8) competitive levers attract patients or funders. Conclusion This framework highlights how performance measurement and reporting can contribute to eight different levers for change. It provides guidance into how to align performance measurement and reporting into quality improvement programme. PMID:28851769

  5. Measurement and monitoring of safety: impact and challenges of putting a conceptual framework into practice.

    PubMed

    Chatburn, Eleanor; Macrae, Carl; Carthey, Jane; Vincent, Charles

    2018-03-06

    The Measurement and Monitoring of Safety Framework provides a conceptual model to guide organisations in assessing safety. The Health Foundation funded a large-scale programme to assess the value and impact of applying the Framework in regional and frontline care settings. We explored the experiences and reflections of key participants in the programme. The study was conducted in the nine healthcare organisations in England and Scotland testing the Framework (three regional improvement bodies, six frontline settings). Post hoc interviews with clinical and managerial staff were analysed using template analysis. Participants reported that the Framework promoted a substantial shift in their thinking about how safety is actively managed in their environment. It provided a common language, facilitated a more inquisitive approach and encouraged a more holistic view of the components of safety. These changes in conceptual understanding, however, did not always translate into broader changes in practice, with many sites only addressing some aspects of the Framework. One of the three regions did embrace the Framework in its entirety and achieved wider impact with a range of interventions. This region had committed leaders who took time to fully understand the concepts, who maintained a flexible approach to exploring the utility of the Framework and who worked with frontline staff to translate the concepts for local settings. The Measuring and Monitoring of Safety Framework has the potential to support a broader and richer approach to organisational safety. Such a conceptually based initiative requires both committed leaders who themselves understand the concepts and more time to establish understanding and aims than might be needed in a standard improvement programme. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Strategic Improvement of Mathematical Problem-Solving Performance of Secondary School Students Using Procedural and Conceptual Learning Strategies

    ERIC Educational Resources Information Center

    Adeleke, M. A.

    2007-01-01

    The paper examined the possibility of finding out if improvements in students' problem solving performance in simultaneous linear equation will be recorded with the use of procedural and conceptual learning strategies and in addition to find out which of the strategies will be more effective. The study adopted a pretest, post test control group…

  7. Analysis of Physical Science Textbooks for Conceptual Frameworks on Acids, Bases and Neutralization: Implications for Students' Conceptual Understanding.

    ERIC Educational Resources Information Center

    Erduran, Sibel

    Eight physical science textbooks were analyzed for coverage on acids, bases, and neutralization. At the level of the text, clarity and coherence of statements were investigated. The conceptual framework for this topic was represented in a concept map which was used as a coding tool for tracing concepts and links present in textbooks. Cognitive…

  8. Applying a Cognitive-Affective Model of Conceptual Change to Professional Development

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen K.; Crippen, Kent J.

    2010-04-01

    This study evaluated Gregoire’s (2003) Cognitive-Affective Conceptual Change model (CAMCC) for predicting and assessing conceptual change in science teachers engaged in a long-term professional development project set in a large school district in the southwestern United States. A multiple case study method with data from three teacher participants was used to understand the process of integrating and applying a reform message of inquiry based science teaching. Data sources included: responses to example teaching scenarios, reflective essays, lesson plans, classroom observations, and action research projects. Findings show that the CAMCC functioned well in predicting how these teachers made decisions that impacted how they processed the reform message. When the reform message was communicated in such a way as to initiate stress appraisal, conceptual change occurred, producing changes in classroom practice. If the reform message did not initiate stress appraisal, teachers rejected the professional development message and developed heuristic responses. In order to further research and improve practice, propositions for assessments related to the CAMCC are provided.

  9. Food, health, and complexity: towards a conceptual understanding to guide collaborative public health action.

    PubMed

    Majowicz, Shannon E; Meyer, Samantha B; Kirkpatrick, Sharon I; Graham, Julianne L; Shaikh, Arshi; Elliott, Susan J; Minaker, Leia M; Scott, Steffanie; Laird, Brian

    2016-06-08

    What we eat simultaneously impacts our exposure to pathogens, allergens, and contaminants, our nutritional status and body composition, our risks for and the progression of chronic diseases, and other outcomes. Furthermore, what we eat is influenced by a complex web of drivers, including culture, politics, economics, and our built and natural environments. To date, public health initiatives aimed at improving food-related population health outcomes have primarily been developed within 'practice silos', and the potential for complex interactions among such initiatives is not well understood. Therefore, our objective was to develop a conceptual model depicting how infectious foodborne illness, food insecurity, dietary contaminants, obesity, and food allergy can be linked via shared drivers, to illustrate potential complex interactions and support future collaboration across public health practice silos. We developed the conceptual model by first conducting a systematic literature search to identify review articles containing schematics that depicted relationships between drivers and the issues of interest. Next, we synthesized drivers into a common model using a modified thematic synthesis approach that combined an inductive thematic analysis and mapping to synthesize findings. The literature search yielded 83 relevant references containing 101 schematics. The conceptual model contained 49 shared drivers and 227 interconnections. Each of the five issues was connected to all others. Obesity and food insecurity shared the most drivers (n = 28). Obesity shared several drivers with food allergy (n = 11), infectious foodborne illness (n = 7), and dietary contamination (n = 6). Food insecurity shared several drivers with infectious foodborne illness (n = 9) and dietary contamination (n = 9). Infectious foodborne illness shared drivers with dietary contamination (n = 8). Fewer drivers were shared between food allergy and: food insecurity (n

  10. Improving Students' Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Li, Jing

    2012-01-01

    Electricity and magnetism are important topics in physics. Research shows that students have many common difficulties in understanding concepts related to electricity and magnetism. However, research to improve students' understanding of electricity and magnetism is limited compared to introductory mechanics. This thesis explores issues…

  11. Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.

    ERIC Educational Resources Information Center

    Michener, Edwina Rissland

    This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…

  12. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  13. Digging Deeper: A Case Study of Farmer Conceptualization of Ecosystem Services in the American South.

    PubMed

    Quinn, Courtney E; Quinn, John E; Halfacre, Angela C

    2015-10-01

    The interest in improved environmental sustainability of agriculture via biodiversity provides an opportunity for placed-based research on the conceptualization and articulation of ecosystem services. Yet, few studies have explored how farmers conceptualize the relationship between their farm and nature and by extension ecosystem services. Examining how farmers in the Southern Piedmont of South Carolina discuss and explain the role of nature on their farm, we create a detail-rich picture of how they perceive ecosystem services and their contributions to the agroeconomy. Using 34 semi-structured interviews, we developed a detail-rich qualitative portrait of these farmers' conceptualizations of ecosystem services. Farmers' conceptualization of four ecosystem services: provisioning, supporting, regulating, and cultural are discussed, as well as articulation of disservices. Results of interviews show that most interviewees expressed a basic understanding of the relationship between nature and agriculture and many articulated benefits provided by nature to their farm. Farmers referred indirectly to most services, though they did not attribute services to biodiversity or ecological function. While farmers have a general understanding and appreciation of nature, they lack knowledge on specific ways biodiversity benefits their farm. This lack of knowledge may ultimately limit farmer decision-making and land management to utilize ecosystem services for environmental and economic benefits. These results suggest that additional communication with farmers about ecosystem services is needed as our understanding of these benefits increases. This change may require collaboration between conservation biology professionals and extension and agriculture professionals to extended successful biomass provisioning services to other ecosystem services.

  14. Knowledge is power: how conceptual knowledge transforms visual cognition.

    PubMed

    Collins, Jessica A; Olson, Ingrid R

    2014-08-01

    In this review, we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks that demonstrate interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are in our understanding of the visual environment, and to demonstrate the need for future research aimed at understanding how such interactions arise in the brain.

  15. Knowledge is Power: How Conceptual Knowledge Transforms Visual Cognition

    PubMed Central

    Collins, Jessica A.; Olson, Ingrid R.

    2014-01-01

    In this review we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks demonstrating interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are to our understanding of the visual environment, and demonstrate the need for future research aimed at understanding how such interactions arise in the brain. PMID:24402731

  16. A Conceptual Guide to Natural History Museum Visitors' Understanding of Evolution

    ERIC Educational Resources Information Center

    Evans, E. Margaret; Spiegel, Amy N.; Gram, Wendy; Frazier, Brandy N.; Tare, Medha; Thompson, Sarah; Diamond, Judy

    2010-01-01

    Museum visitors are an ideal population for assessing the persistence of the conceptual barriers that make it difficult to grasp Darwinian evolutionary theory. In comparison with other members of the public, they are more likely to be interested in natural history, have higher education levels, and be exposed to the relevant content. If museum…

  17. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity

    USGS Publications Warehouse

    Beever, Erik; O’Leary, John; Mengelt, Claudia; West, Jordan M.; Julius, Susan; Green, Nancy; Magness, Dawn; Petes, Laura E.; Stein, Bruce A.; Nicotra, Adrienne B; Hellmann, Jessica J; Robertson, Amanda L; Staudinger, Michelle D.; Rosenberg, Andrew A.; Babij, Eleanora; Brennan, Jean; Schuurman, Gregor W.; Hofmann, Gretchen E

    2016-01-01

    Worldwide, many species are responding to ongoing climate change with shifts in distribution, abundance, phenology, or behavior. Consequently, natural-resource managers face increasingly urgent conservation questions related to biodiversity loss, expansion of invasive species, and deteriorating ecosystem services. We argue that our ability to address these questions is hampered by the lack of explicit consideration of species’ adaptive capacity (AC). AC is the ability of a species or population to cope with climatic changes and is characterized by three fundamental components: phenotypic plasticity, dispersal ability, and genetic diversity. However, few studies simultaneously address all elements; often, AC is confused with sensitivity or omitted altogether from climate-change vulnerability assessments. Improved understanding, consistent definition, and comprehensive evaluations of AC are needed. Using classic ecological-niche theory as an analogy, we propose a new paradigm that considers fundamental and realized AC: the former reflects aspects inherent to species, whereas the latter denotes how extrinsic factors constrain AC to what is actually expressed or observed. Through this conceptualization, we identify ecological attributes contributing to AC, outline areas of research necessary to advance understanding of AC, and provide examples demonstrating how the inclusion of AC can better inform conservation and natural-resource management.

  18. Introducing a Culture of Modeling to Enhance Conceptual Understanding in High School Chemistry Courses

    ERIC Educational Resources Information Center

    Edwards, Amanda D.; Head, Michelle

    2016-01-01

    Both the Next Generation Science Standards (NGSS) and the new AP Chemistry curriculum focus on a deeper understanding of content, as well as application of concepts within science classes. A well accepted research-based method for improving student understanding and the ability to apply many of the abstract concepts presented in chemistry is…

  19. Depression and stressful environments: identifying gaps in conceptualization and measurement.

    PubMed

    Hammen, Constance

    2016-07-01

    Stress is well known as a trigger of depressive reactions, fear, anxiety, and behavioral disorders. However, there are many gaps in the conceptualization and measurement of environmental stress. Exciting developments in the neuroscience of stress have increasingly expanded our knowledge of mechanisms by which stress may affect emotional and behavioral adjustment. Ironically, environmental stress has often been a silent player in human studies of stress processes. There is a significant need for increased efforts to include environmental stress variables in models of internalizing and other disorders. Measurement and conceptualization issues are prominent, and this article makes the case for improved methods of measuring acute, chronic, and early life stress, and for additional conceptualization of the dynamically changing and bidirectional effects of stress on disorder over time. There is a critical need for greater focus on and better measurement of the environment and its impact on emotional and other disorders, with emphasis on developmentally informed hypotheses. Empirical findings and new perspectives may contribute enormously to our understanding of normal and abnormal outcomes, and also to the challenge of effective interventions to promote mental health and optimal functioning.

  20. Self-Reported Pediatric Measures of Physical Activity, Sedentary Behavior and Strength Impact for PROMIS®: Conceptual Framework

    PubMed Central

    Tucker, Carole A.; Bevans, Katherine B.; Teneralli, Rachel E.; Smith, Ashley Wilder; Bowles, Heather R; Forrest, Christopher B.

    2014-01-01

    Purpose Children's physical activity (PA) levels are commonly assessed in pediatric clinical research, but rigorous self-report assessment tools for children are scarce, and computer adaptive test implementations are rare. Our objective was to improve pediatric self-report measures of activity using semi-structured interviews with experts and children for conceptualization of a child-informed framework. Methods Semi-structured interviews were conducted to conceptualize physical activity, sedentary behaviors, and strengthening activities. We performed systematic literature reviews to identify item-level concepts used to assess these 3 domains. Results We developed conceptual frameworks for each domain using words and phrases identified by children as relevant. Conclusions Semi-structured interview methods provide valuable information of children's perspectives and the ways children recall previous activities. Conceptualized domains of physical activity are based on the literature and expert views that also reflect children's experiences and understanding providing a basis for pediatric self-report instruments. PMID:25251789

  1. A Conceptual Framework for the Social Analysis of Reproductive Health

    PubMed Central

    Hawkins, Kirstan

    2007-01-01

    The dominant conceptual framework for understanding reproductive behaviour is highly individualistic. In this article, it is demonstrated that such a conceptualization is flawed, as behaviour is shaped by social relations and institutions. Using ethnographic evidence, the value of a social analysis of the local contexts of reproductive health is highlighted. A framework is set out for conducting such a social analysis, which is capable of generating data necessary to allow health programmes to assess the appropriate means of improving the responsiveness of service-delivery structures to the needs of the most vulnerable. Six key issues are identified in the framework for the analysis of social vulnerability to poor reproductive health outcomes. The key issues are: poverty and livelihood strategies, gender, health-seeking behaviour, reproductive behaviour, and access to services. The article concludes by briefly identifying the key interventions and strategies indicated by such an analysis. PMID:17615901

  2. Effect of Animation Enhanced Conceptual Change Texts on 6th Grade Students' Understanding of the Particulate Nature of Matter and Transformation During Phase Changes

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2011-01-01

    In this study, the effect of animation enhanced conceptual change texts (CCT-CA) on grade 6 students' understanding of the particulate nature of matter (PNM) and transformation during the phase changes was investigated. A quasi-experimental design and one control group (CG, N = 25) and one experimental group (EG, N = 26) were used. While the…

  3. Individual differences in children's understanding of inversion and arithmetical skill.

    PubMed

    Gilmore, Camilla K; Bryant, Peter

    2006-06-01

    Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.

  4. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  5. Systems Thinking to Improve the Public’s Health

    PubMed Central

    Leischow, Scott J.; Best, Allan; Trochim, William M.; Clark, Pamela I.; Gallagher, Richard S.; Marcus, Stephen E.; Matthews, Eva

    2014-01-01

    Improving population health requires understanding and changing societal structures and functions, but countervailing forces sometimes undermine those changes, thus reflecting the adaptive complexity inherent in public health systems. The purpose of this paper is to propose systems thinking as a conceptual rubric for the practice of team science in public health, and transdisciplinary, translational research as a catalyst for promoting the functional efficiency of science. The paper lays a foundation for the conceptual understanding of systems thinking and transdisciplinary research, and will provide illustrative examples within and beyond public health. A set of recommendations for a systems-centric approach to translational science will be presented. PMID:18619400

  6. A Study of Novice Science Teachers' Conceptualizations of Culturally Relevant Pedagogy

    NASA Astrophysics Data System (ADS)

    Redman, Elizabeth Horst

    This qualitative study examined new science teachers' conceptualization of culturally relevant pedagogy (CRP). The study followed six novice science teachers from their preservice teaching placements into their first jobs as instructors of record, observing in their classrooms and interviewing them about their use of CRP. The study sought to understand (1) how the participating teachers conceptualize CRP in science, and (2) what challenges the teachers faced in trying to implement CRP. Findings suggest that the teachers conceptualized CRP in ways that were consistent with Enyedy, Danish and Fields' (2011) interpretations of relevance: relevance of authentic purpose, relevance of content and/or context, and relevance of practices. The teachers, however, translated those interpretations of relevance into their conceptualizations and classroom practice in a variety of ways. While they encountered difficulties in conceptualizing and practicing CRP, they also made productive moves in their practice and evidenced positive elements in their conceptualizations of CRP. In order to address the challenges these teachers faced in implementing CRP, I suggest an approach to teacher preparation in CRP that builds upon the understandings and productive moves the teachers evidenced in this study.

  7. Investigating the Relationship between Instructors’ Use of Active-Learning Strategies and Students’ Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    PubMed Central

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students’ conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants’ conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students’ attitudes and motivation in the domain. PMID:28389428

  8. The impact of rigorous mathematical thinking as learning method toward geometry understanding

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-05-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding. RMT is a unique realization of the cognitive conceptual construction approach based on Mediated Learning Experience (MLE) theory by Feurstein and Vygotsky’s sociocultural theory. This was quasi experimental research which was comparing the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning method toward conceptual understanding of Junior High School students. The data was analyzed by using Independent t-test and obtained a significant difference of mean value between experimental and control class on geometry conceptual understanding. Further, by semi-structure interview known that students taught by RMT had deeper conceptual understanding than students who were taught by conventional way. By these result known that Rigorous Mathematical Thinking (RMT) as learning method have positive impact toward Geometry conceptual understanding.

  9. Conceptual and perceptual encoding instructions differently affect event recall.

    PubMed

    García-Bajos, Elvira; Migueles, Malen; Aizpurua, Alaitz

    2014-11-01

    When recalling an event, people usually retrieve the main facts and a reduced proportion of specific details. The objective of this experiment was to study the effects of conceptually and perceptually driven encoding in the recall of conceptual and perceptual information of an event. The materials selected for the experiment were two movie trailers. To enhance the encoding instructions, after watching the first trailer participants answered conceptual or perceptual questions about the event, while a control group answered general knowledge questions. After watching the second trailer, all of the participants completed a closed-ended recall task consisting of conceptual and perceptual items. Conceptual information was better recalled than perceptual details and participants made more perceptual than conceptual commission errors. Conceptually driven processing enhanced the recall of conceptual information, while perceptually driven processing not only did not improve the recall of descriptive details, but also damaged the standard conceptual/perceptual recall relationship.

  10. Conceptual Level of Understanding about Sound Concept: Sample of Fifth Grade Students

    ERIC Educational Resources Information Center

    Bostan Sarioglan, Ayberk

    2016-01-01

    In this study, students' conceptual change processes related to the sound concept were examined. Study group was comprises of 325 fifth grade middle school students. Three multiple-choice questions were used as the data collection tool. At the data analysis process "scientific response", "scientifically unacceptable response"…

  11. The Instrumental Value of Conceptual Frameworks in Educational Technology Research

    ERIC Educational Resources Information Center

    Antonenko, Pavlo D.

    2015-01-01

    Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…

  12. Conceptual Change Text: A Supplementary Material To Facilitate Conceptual Change in Electrochemical Cell Concepts.

    ERIC Educational Resources Information Center

    Yuruk, Nejla; Geban, Omer

    The main purpose of the study was to investigate the effectiveness of conceptual change text (CCT) oriented instruction over traditionally designed instruction on students' understanding of electrochemical (galvanic and electrolytic) cell concepts. The subjects of the study consisted of 64 students from the two classes of a high school in Turkey.…

  13. Irony comprehension: social conceptual knowledge and emotional response.

    PubMed

    Akimoto, Yoritaka; Sugiura, Motoaki; Yomogida, Yukihito; Miyauchi, Carlos Makoto; Miyazawa, Shiho; Kawashima, Ryuta

    2014-04-01

    Verbal irony conveys various emotional messages, from criticism to humor, that differ from the meaning of the actual words. To understand irony, we need conceptual knowledge of irony in addition to an understanding of context. We investigated the neural mechanism of irony comprehension, focusing on two overlooked issues: conceptual knowledge and emotional response. We studied 35 healthy subjects who underwent functional MRI. During the scan, the subject examined first-person-view stories describing verbal interactions, some of which included irony directed toward the subject. After MRI, the subject viewed the stories again and rated the degree of irony, humor, and negative emotion evoked by the statements. We identified several key findings about irony comprehension: (1) the right anterior superior temporal gyrus may be responsible for representing social conceptual knowledge of irony, (2) activation in the medial prefrontal cortex and the right anterior inferior temporal gyrus might underlie the understanding of context, (3) modulation of activity in the right amygdala, hippocampus, and parahippocampal gyrus is associated with the degree of irony perceived, and (4) modulation of activity in the right dorsolateral prefrontal cortex varies with the degree of humor perceived. Our results clarified the differential contributions of the neural loci of irony comprehension, enriching our understanding of pragmatic language communication from a social behavior point of view. Copyright © 2013 Wiley Periodicals, Inc.

  14. Evolution in students' understanding of thermal physics with increasing complexity

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Safran, Samuel A.; Livne, Shelly; Yerushalmi, Edit

    2013-12-01

    We analyze the development in students’ understanding of fundamental principles in the context of learning a current interdisciplinary research topic—soft matter—that was adapted to the level of high school students. The topic was introduced in a program for interested 11th grade high school students majoring in chemistry and/or physics, in an off-school setting. Soft matter was presented in a gradual increase in the degree of complexity of the phenomena as well as in the level of the quantitative analysis. We describe the evolution in students’ use of fundamental thermodynamics principles to reason about phase separation—a phenomenon that is ubiquitous in soft matter. In particular, we examine the impact of the use of free energy analysis, a common approach in soft matter, on the understanding of the fundamental principles of thermodynamics. The study used diagnostic questions and classroom observations to gauge the student’s learning. In order to gain insight on the aspects that shape the understanding of the basic principles, we focus on the responses and explanations of two case-study students who represent two trends of evolution in conceptual understanding in the group. We analyze changes in the two case studies’ management of conceptual resources used in their analysis of phase separation, and suggest how their prior knowledge and epistemological framing (a combination of their personal tendencies and their prior exposure to different learning styles) affect their conceptual evolution. Finally, we propose strategies to improve the instruction of these concepts.

  15. Conceptual learning by miniature brains

    PubMed Central

    Avarguès-Weber, Aurore; Giurfa, Martin

    2013-01-01

    Concepts act as a cornerstone of human cognition. Humans and non-human primates learn conceptual relationships such as ‘same’, ‘different’, ‘larger than’, ‘better than’, among others. In all cases, the relationships have to be encoded by the brain independently of the physical nature of objects linked by the relation. Consequently, concepts are associated with high levels of cognitive sophistication and are not expected in an insect brain. Yet, various works have shown that the miniature brain of honeybees rapidly learns conceptual relationships involving visual stimuli. Concepts such as ‘same’, ‘different’, ‘above/below of’ or ‘left/right are well mastered by bees. We review here evidence about concept learning in honeybees and discuss both its potential adaptive advantage and its possible neural substrates. The results reviewed here challenge the traditional view attributing supremacy to larger brains when it comes to the elaboration of concepts and have wide implications for understanding how brains can form conceptual relations. PMID:24107530

  16. Self-Diagnosis as a Tool for Supporting Students' Conceptual Understanding and Achievements in Physics: The Case of 8th-Graders Studying Force and Motion

    ERIC Educational Resources Information Center

    Safadi, Rafi'

    2017-01-01

    I examined the impact of a self-diagnosis activity on students' conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own--namely, to identify and explain their errors--and self-score them--that is, assign scores to their solutions--aided by…

  17. Conceptual understandings of biology in pre-service science educators and undergraduate biology students at Colorado institutions of higher education

    NASA Astrophysics Data System (ADS)

    Smith, Trenton John

    Pre-service secondary science individuals, future middle or high school instructors training to become teachers, along with both Honors and general first year undergraduate biology students were investigated to determine how they reason about and understand two core topics in Biology: matter and energy flow through biological systems and evolution by natural selection. Diagnostic Question Clusters were used to assess student understanding of the processes by which matter and energy flow through biological systems over spatial scales, from the atomic-molecular to ecosystem levels. Key concepts and identified misconceptions were examined over topics of evolution by natural selection using the multiple-choice Concept Inventory of Natural Selection (CINS) and open-response Assessing COntextual Reasoning about Natural Selection (ACORNS). Pre-service teachers used more scientifically based reasoning than the undergraduate students over the topics of matter and energy flow. The Honors students used more scientific and less improper informal reasoning than the general undergraduates over matter and energy flow. Honors students performed best on both the CINS and ACORNS items over natural selection, while the general undergraduates scored the lowest on the CINS, and the pre-service instructors scored lowest on the ACORNS. Overall, there remain a large proportion of students not consistently using scientific reasoning about these two important concepts, even in future secondary science teachers. My findings are similar to those of other published studies using the same assessments. In general, very few biology students at the college level use scientific reasoning that exhibits deep conceptual understanding. A reason for this could be that instructors fail to recognize deficiencies in student reasoning; they assume their students use principle-based reasoning. Another reason could be that principle-based reasoning is very difficult and our teaching approaches in college

  18. E-learning process maturity level: a conceptual framework

    NASA Astrophysics Data System (ADS)

    Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.

    2018-03-01

    ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.

  19. Toward improved understanding and control in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hieftje, Gary M.

    1989-01-01

    As with most papers which attempt to predict the future, this treatment will begin with a coverage of past events. It will be shown that progress in the field of analytical atomic spectrometry has occurred through a series of steps which involve the addition of new techniques and the occasional displacement of established ones. Because it is difficult or impossible to presage true breakthroughs, this manuscript will focus on how such existing methods can be modified or improved to greatest advantage. The thesis will be that rational improvement can be accomplished most effectively by understanding fundamentally the nature of an instrumental system, a measurement process, and a spectrometric technique. In turn, this enhanced understanding can lead to closer control, from which can spring improved performance. Areas where understanding is now lacking and where control is most greatly needed will be identified and a possible scheme for implementing control procedures will be outlined. As we draw toward the new millennium, these novel procedures seem particularly appealing; new high-speed computers, the availability of expert systems, and our enhanced understanding of atomic spectrometric events combine to make future prospects extremely bright.

  20. A new pressure ulcer conceptual framework.

    PubMed

    Coleman, Susanne; Nixon, Jane; Keen, Justin; Wilson, Lyn; McGinnis, Elizabeth; Dealey, Carol; Stubbs, Nikki; Farrin, Amanda; Dowding, Dawn; Schols, Jos M G A; Cuddigan, Janet; Berlowitz, Dan; Jude, Edward; Vowden, Peter; Schoonhoven, Lisette; Bader, Dan L; Gefen, Amit; Oomens, Cees W J; Nelson, E Andrea

    2014-10-01

    This paper discusses the critical determinants of pressure ulcer development and proposes a new pressure ulcer conceptual framework. Recent work to develop and validate a new evidence-based pressure ulcer risk assessment framework was undertaken. This formed part of a Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research. The foundation for the risk assessment component incorporated a systematic review and a consensus study that highlighted the need to propose a new conceptual framework. Discussion Paper. The new conceptual framework links evidence from biomechanical, physiological and epidemiological evidence, through use of data from a systematic review (search conducted March 2010), a consensus study (conducted December 2010-2011) and an international expert group meeting (conducted December 2011). A new pressure ulcer conceptual framework incorporating key physiological and biomechanical components and their impact on internal strains, stresses and damage thresholds is proposed. Direct and key indirect causal factors suggested in a theoretical causal pathway are mapped to the physiological and biomechanical components of the framework. The new proposed conceptual framework provides the basis for understanding the critical determinants of pressure ulcer development and has the potential to influence risk assessment guidance and practice. It could also be used to underpin future research to explore the role of individual risk factors conceptually and operationally. By integrating existing knowledge from epidemiological, physiological and biomechanical evidence, a theoretical causal pathway and new conceptual framework are proposed with potential implications for practice and research. © 2014 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  1. A new pressure ulcer conceptual framework

    PubMed Central

    Coleman, Susanne; Nixon, Jane; Keen, Justin; Wilson, Lyn; McGinnis, Elizabeth; Dealey, Carol; Stubbs, Nikki; Farrin, Amanda; Dowding, Dawn; Schols, Jos MGA; Cuddigan, Janet; Berlowitz, Dan; Jude, Edward; Vowden, Peter; Schoonhoven, Lisette; Bader, Dan L; Gefen, Amit; Oomens, Cees WJ; Nelson, E Andrea

    2014-01-01

    Aim This paper discusses the critical determinants of pressure ulcer development and proposes a new pressure ulcer conceptual framework. Background Recent work to develop and validate a new evidence-based pressure ulcer risk assessment framework was undertaken. This formed part of a Pressure UlceR Programme Of reSEarch (RP-PG-0407-10056), funded by the National Institute for Health Research. The foundation for the risk assessment component incorporated a systematic review and a consensus study that highlighted the need to propose a new conceptual framework. Design Discussion Paper. Data Sources The new conceptual framework links evidence from biomechanical, physiological and epidemiological evidence, through use of data from a systematic review (search conducted March 2010), a consensus study (conducted December 2010–2011) and an international expert group meeting (conducted December 2011). Implications for Nursing A new pressure ulcer conceptual framework incorporating key physiological and biomechanical components and their impact on internal strains, stresses and damage thresholds is proposed. Direct and key indirect causal factors suggested in a theoretical causal pathway are mapped to the physiological and biomechanical components of the framework. The new proposed conceptual framework provides the basis for understanding the critical determinants of pressure ulcer development and has the potential to influence risk assessment guidance and practice. It could also be used to underpin future research to explore the role of individual risk factors conceptually and operationally. Conclusion By integrating existing knowledge from epidemiological, physiological and biomechanical evidence, a theoretical causal pathway and new conceptual framework are proposed with potential implications for practice and research. PMID:24684197

  2. The intersection of disability and healthcare disparities: a conceptual framework.

    PubMed

    Meade, Michelle A; Mahmoudi, Elham; Lee, Shoou-Yih

    2015-01-01

    This article provides a conceptual framework for understanding healthcare disparities experienced by individuals with disabilities. While health disparities are the result of factors deeply rooted in culture, life style, socioeconomic status, and accessibility of resources, healthcare disparities are a subset of health disparities that reflect differences in access to and quality of healthcare and can be viewed as the inability of the healthcare system to adequately address the needs of specific population groups. This article uses a narrative method to identify and critique the main conceptual frameworks that have been used in analyzing disparities in healthcare access and quality, and evaluating those frameworks in the context of healthcare for individuals with disabilities. Specific models that are examined include the Aday and Anderson Model, the Grossman Utility Model, the Institute of Medicine (IOM)'s models of Access to Healthcare Services and Healthcare Disparities, and the Cultural Competency model. While existing frameworks advance understandings of disparities in healthcare access and quality, they fall short when applied to individuals with disabilities. Specific deficits include a lack of attention to cultural and contextual factors (Aday and Andersen framework), unrealistic assumptions regarding equal access to resources (Grossman's utility model), lack of recognition or inclusion of concepts of structural accessibility (IOM model of Healthcare Disparities) and exclusive emphasis on supply side of the healthcare equation to improve healthcare disparities (Cultural Competency model). In response to identified gaps in the literature and short-comings of current conceptualizations, an integrated model of disability and healthcare disparities is put forth. We analyzed models of access to care and disparities in healthcare to be able to have an integrated and cohesive conceptual framework that could potentially address issues related to access to

  3. A conceptual model of physician work intensity: guidance for evaluating policies and practices to improve health care delivery.

    PubMed

    Horner, Ronnie D; Matthews, Gerald; Yi, Michael S

    2012-08-01

    Physician work intensity, although a major factor in determining the payment for medical services, may potentially affect patient health outcomes including quality of care and patient safety, and has implications for the redesign of medical practice to improve health care delivery. However, to date, there has been minimal research regarding the relationship between physician work intensity and either patient outcomes or the organization and management of medical practices. A theoretical model on physician work intensity will provide useful guidance to such inquiries. To describe an initial conceptual model to facilitate further investigations of physician work intensity. A conceptual model of physician work intensity is described using as its theoretical base human performance science relating to work intensity. For each of the theoretical components, we present relevant empirical evidence derived from a review of the current literature. The proposed model specifies that the level of work intensity experienced by a physician is a consequence of the physician performing the set of tasks (ie, demands) relating to a medical service. It is conceptualized that each medical service has an inherent level of intensity that is experienced by a physician as a function of factors relating to the physician, patient, and medical practice environment. The proposed conceptual model provides guidance to researchers as to the factors to consider in studies of how physician work intensity impacts patient health outcomes and how work intensity may be affected by proposed policies and approaches to health care delivery.

  4. Postacute rehabilitation quality of care: toward a shared conceptual framework.

    PubMed

    Jesus, Tiago Silva; Hoenig, Helen

    2015-05-01

    There is substantial interest in mechanisms for measuring, reporting, and improving the quality of health care, including postacute care (PAC) and rehabilitation. Unfortunately, current activities generally are either too narrow or too poorly specified to reflect PAC rehabilitation quality of care. In part, this is caused by a lack of a shared conceptual understanding of what construes quality of care in PAC rehabilitation. This article presents the PAC-rehab quality framework: an evidence-based conceptual framework articulating elements specifically pertaining to PAC rehabilitation quality of care. The widely recognized Donabedian structure, process, and outcomes (SPO) model furnished the underlying structure for the PAC-rehab quality framework, and the International Classification of Functioning, Disability and Health (ICF) framed the functional outcomes. A comprehensive literature review provided the evidence base to specify elements within the SPO model and ICF-derived framework. A set of macrolevel-outcomes (functional performance, quality of life of patient and caregivers, consumers' experience, place of discharge, health care utilization) were defined for PAC rehabilitation and then related to their (1) immediate and intermediate outcomes, (2) underpinning care processes, (3) supportive team functioning and improvement processes, and (4) underlying care structures. The role of environmental factors and centrality of patients in the framework are explicated as well. Finally, we discuss why outcomes may best measure and reflect the quality of PAC rehabilitation. The PAC-rehab quality framework provides a conceptually sound, evidence-based framework appropriate for quality of care activities across the PAC rehabilitation continuum. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Grade 12 Students' Conceptual Understanding and Mental Models of Galvanic Cells before and after Learning by Using Small-Scale Experiments in Conjunction with a Model Kit

    ERIC Educational Resources Information Center

    Supasorn, Saksri

    2015-01-01

    This study aimed to develop the small-scale experiments involving electrochemistry and the galvanic cell model kit featuring the sub-microscopic level. The small-scale experiments in conjunction with the model kit were implemented based on the 5E inquiry learning approach to enhance students' conceptual understanding of electrochemistry. The…

  6. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry

    2017-01-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  7. A Multilevel Conceptual Framework to Understand the Role of Food Insecurity on Antiretroviral Therapy Adherence in Low-Resource Settings: From Theory to Practice

    PubMed Central

    Masa, Rainier; Chowa, Gina

    2018-01-01

    The objective of this study was to describe a multilevel conceptual framework to understand the role of food insecurity on antiretroviral therapy adherence. The authors illustrated an example of how they used the multilevel framework to develop an intervention for poor people living with HIV in a rural and low-resource community. The framework incorporates intra-personal, interpersonal, and structural-level theories of understanding and changing health behaviors. The framework recognizes the role of personal, social, and environmental factors on cognition and behavior, with particular attention to ways in which treatment adherence is enabled or prevented by structural conditions, such as food insecurity. PMID:28368779

  8. Conceptual Knowledge of Decimal Arithmetic

    ERIC Educational Resources Information Center

    Lortie-Forgues, Hugues; Siegler, Robert S.

    2016-01-01

    In two studies (N's = 55 and 54), we examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or…

  9. Conceptualizing the Role of Research Literacy in Advancing Societal Health

    PubMed Central

    Brody, Janet L.; Dalen, Jeanne; Annett, Robert D.; Scherer, David G.; Turner, Charles W.

    2013-01-01

    Purpose To provide a conceptual formulation for “research literacy” and preliminary evidence for the utility of the construct in enhancing knowledge of and ethical participation in research. Methods Examined the impact of a brief educational intervention on parents’ research knowledge and their research participation decisions. Results Research-related knowledge was improved. Parents with greater knowledge were more comfortable with their research participation decisions. Enhanced understanding of child volition increased parents’ willingness to enroll their children in research. Conclusion The proposed research literacy model identifies methods to enhance population knowledge and appreciation of research, strengthening links between scientific advancement and health. PMID:22021275

  10. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    ERIC Educational Resources Information Center

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  11. Identifying technology innovations for marginalized smallholders-A conceptual approach.

    PubMed

    Malek, Mohammad Abdul; Gatzweiler, Franz W; Von Braun, Joachim

    2017-05-01

    This paper adds a contribution in the existing literature in terms of theoretical and conceptual background for the identification of idle potentials of marginal rural areas and people by means of technological and institutional innovations. The approach follows ex-ante assessment for identifying suitable technology and institutional innovations for marginalized smallholders in marginal areas-divided into three main parts (mapping, surveying and evaluating) and several steps. Finally, it contributes to the inclusion of marginalized smallholders by an improved way of understanding the interactions between technology needs, farming systems, ecological resources and poverty characteristics in the different segments of the poor, and to link these insights with productivity enhancing technologies.

  12. The Effects of Learning Activities Based on Argumentation on Conceptual Understanding of 7th Graders about "Force and Motion" Unit and Establishing Thinking Friendly Classroom Environment

    ERIC Educational Resources Information Center

    Buber, Ayse; Coban, Gul Unal

    2017-01-01

    The purpose of this study was to investigate the effects of learning activities based on argumentation about "Force and Motion" unit on conceptual understanding and views about establishing thinking friendly classroom environment of 7th graders. The study was conducted with total 39 students (20 students in experimental group and 19…

  13. Development of Conceptual Models for Internet Search: A Case Study.

    ERIC Educational Resources Information Center

    Uden, Lorna; Tearne, Stephen; Alderson, Albert

    This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…

  14. Surgical wound dehiscence: a conceptual framework for patient assessment.

    PubMed

    Sandy-Hodgetts, Kylie; Carville, Keryln; Leslie, Gavin D

    2018-03-02

    This paper presents a conceptual framework which outlines the risk factors associated with surgical wound dehiscence (SWD) as identified in the literature. The purpose for the development of the conceptual framework was to derive an evidence-based, informed understanding of factors associated with SWD, in order to inform a programme of research on the aetiology and potential risk factors of SWD. Incorporated within the patient-centric conceptual framework are patient related comorbidities, intraoperative and postoperative risk factors related to SWD. These are categorised as either 'mechanical' or 'physiological mechanisms' posited to influence these relationships. The use of the conceptual model for assessment of patients has particular clinical relevance for identification of risk and the management of patients in the pre-, intra- and postoperative period.

  15. The Comparative Effects of Prediction/Discussion-Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics

    NASA Astrophysics Data System (ADS)

    Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra

    2011-03-01

    The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.

  16. Teaching for conceptual change: An intervention to promote deeper understanding of diffusion and osmosis

    NASA Astrophysics Data System (ADS)

    Berg, Cheryl

    levels of the participants. In addition, the short length of this intervention may not provide adequate time for students to successfully acquire the schema to understand conceptually difficult science concepts such as diffusion and osmosis. Future directions of research include expanding the sample size and length of exposure to the intervention, in addition to examining the individual ability levels of the participants.

  17. Measuring Visual Literacy Skills on Students’ Concept Understanding of Genetic Transfer Material

    NASA Astrophysics Data System (ADS)

    Fibriana, F.; Pamelasari, S. D.; Aulia, L. S.

    2017-04-01

    Visualization is an important skill for all students majoring in natural sciences. Also, the visual literacy skills (VLS) are essential for Microbiology learning. The lecturer can use the external representations (ERs) to visualize the microorganisms and its microenvironment. One of learning materials which are rather difficult to interpret in microbiology is genetic transfer. In this study, we measure the VLS on students’ concept understanding of genetic transfer material using a simple test. The tests were held before and after the lecture on this topic employing a combination of talking drawing with picture and picture model. The results show that in the beginning, students showed their poor visual literacy. After the lecture, students were able to draw their understanding on the genetic transfer in bacteria. Most students’ visual literacy ability improves in the level of acceptable. In conclusion, the students’ ability was improved in the average amount of conceptual knowledge. This result reveals that some students comprehend in the correct level of ability, meaning that they have a high degree of conceptual (propositional) and visual knowledge.

  18. Strategies to Move From Conceptual Models to Quantifying Resilience in FEW Systems

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Adam, J. C.; Boll, J.; Barber, M. E.; Cosens, B.; Goldsby, M.; Fortenbery, R.; Fowler, A.; Givens, J.; Guzman, C. D.; Hampton, S. E.; Harrison, J.; Huang, M.; Katz, S. L.; Kraucunas, I.; Kruger, C. E.; Liu, M.; Luri, M.; Malek, K.; Mills, A.; McLarty, D.; Pickering, N. B.; Rajagopalan, K.; Stockle, C.; Richey, A.; Voisin, N.; Witinok-Huber, B.; Yoder, J.; Yorgey, G.; Zhao, M.

    2017-12-01

    Understanding interdependencies within Food-Energy-Water (FEW) systems is critical to maintain FEW security. This project examines how coordinated management of physical (e.g., reservoirs, aquifers, and batteries) and non-physical (e.g., water markets, social capital, and insurance markets) storage systems across the three sectors promotes resilience. Coordination increases effective storage within the overall system and enhances buffering against shocks at multiple scales. System-wide resilience can be increased with innovations in technology (e.g., smart systems and energy storage) and institutions (e.g., economic systems and water law). Using the Columbia River Basin as our geographical study region, we use an integrated approach that includes a continuum of science disciplines, moving from theory to practice. In order to understand FEW linkages, we started with detailed, connected conceptual models of the food, energy, water, and social systems to identify where key interdependencies (i.e., overlaps, stocks, and flows) exist within and between systems. These are used to identify stress and opportunity points, develop innovation solutions across FEW sectors, remove barriers to the adoption of solutions, and quantify increases in system-wide resilience to regional and global change. The conceptual models act as a foundation from which we can identify key drivers, parameters, time steps, and variables of importance to build and improve existing systems dynamic and biophysical models. Our process of developing conceptual models and moving to integrated modeling is critical and serves as a foundation for coupling quantitative components with economic and social domain components and analyses of how these interact through time and space. This poster provides a description of this process that pulls together conceptual maps and integrated modeling output to quantify resilience across all three of the FEW sectors (a.k.a. "The Resilience Calculator"). Companion posters

  19. Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics

    ERIC Educational Resources Information Center

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…

  20. Improving Student Understanding of Spatial Ecology Statistics

    ERIC Educational Resources Information Center

    Hopkins, Robert, II; Alberts, Halley

    2015-01-01

    This activity is designed as a primer to teaching population dispersion analysis. The aim is to help improve students' spatial thinking and their understanding of how spatial statistic equations work. Students use simulated data to develop their own statistic and apply that equation to experimental behavioral data for Gambusia affinis (western…

  1. Fostering radical conceptual change through dual-situated learning model

    NASA Astrophysics Data System (ADS)

    She, Hsiao-Ching

    2004-02-01

    This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.

  2. A conceptual framework for homeostasis: development and validation

    PubMed Central

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  3. What role does performance information play in securing improvement in healthcare? a conceptual framework for levers of change.

    PubMed

    Levesque, Jean-Frederic; Sutherland, Kim

    2017-08-28

    Across healthcare systems, there is consensus on the need for independent and impartial assessment of performance. There is less agreement about how measurement and reporting performance improves healthcare. This paper draws on academic theories to develop a conceptual framework-one that classifies in an integrated manner the ways in which change can be leveraged by healthcare performance information. A synthesis of published frameworks. The framework identifies eight levers for change enabled by performance information, spanning internal and external drivers, and emergent and planned processes: (1) cognitive levers provide awareness and understanding; (2) mimetic levers inform about the performance of others to encourage emulation; (3) supportive levers provide facilitation, implementation tools or models of care to actively support change; (4) formative levers develop capabilities and skills through teaching, mentoring and feedback; (5) normative levers set performance against guidelines, standards, certification and accreditation processes; (6) coercive levers use policies, regulations incentives and disincentives to force change; (7) structural levers modify the physical environment or professional cultures and routines; (8) competitive levers attract patients or funders. This framework highlights how performance measurement and reporting can contribute to eight different levers for change. It provides guidance into how to align performance measurement and reporting into quality improvement programme. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Cycle time reduction using lean six sigma in make-to-order (MTO) environment: Conceptual framework

    NASA Astrophysics Data System (ADS)

    Man, Siti Mariam; Zain, Zakiyah; Nawawi, Mohd Kamal Mohd

    2015-12-01

    This paper outlines the framework for application of lean six sigma (LSS) methodology to improve semiconductor assembly cycle time in a make-to-order (MTO) business environment. The cycle time reduction is the prime objective in the context of an overall productivity improvement particularly in the MTO environment. The interaction of the production rate and cycle time is described, while the emphasis is on Define-Measure-Analyze-Improve-Control (DMAIC) and Plan-Do-Check-Act (PDCA) activities. A framework for the conceptual understanding is provided along with practical implementation issues. A relevant measure for the degree of flexibility (DOF) in the context of quick setup is also discussed.

  5. Technology Focus: Enhancing Conceptual Knowledge of Linear Programming with a Flash Tool

    ERIC Educational Resources Information Center

    Garofalo, Joe; Cory, Beth

    2007-01-01

    Mathematical knowledge can be categorized in different ways. One commonly used way is to distinguish between procedural mathematical knowledge and conceptual mathematical knowledge. Procedural knowledge of mathematics refers to formal language, symbols, algorithms, and rules. Conceptual knowledge is essential for meaningful understanding of…

  6. Investigating outliers to improve conceptual models of bedrock aquifers

    NASA Astrophysics Data System (ADS)

    Worthington, Stephen R. H.

    2018-06-01

    Numerical models play a prominent role in hydrogeology, with simplifying assumptions being inevitable when implementing these models. However, there is a risk of oversimplification, where important processes become neglected. Such processes may be associated with outliers, and consideration of outliers can lead to an improved scientific understanding of bedrock aquifers. Using rigorous logic to investigate outliers can help to explain fundamental scientific questions such as why there are large variations in permeability between different bedrock lithologies.

  7. Toward a better understanding of the future of the solo medical practitioner in health care industry: a conceptual review.

    PubMed

    Erdem, S A; Lacombe, B

    1998-01-01

    Even a brief conceptual review of the current developments in the health care industry indicates that the future of independent medical practitioners is rather challenging. It may be necessary for these parties to pursue proactive and aggressive marketing strategies to be able to compete with the managed care organizations. Accordingly, this paper outlines some of the current trends in health care marketing as they relate to the ongoing changes to which solo medical practitioners need to respond. It is hoped that the review of the issues raised in this paper can provide an initial basis for a better understanding of some of the challenges to come up with more comprehensive and effective strategy decisions.

  8. Development and Use of a Conceptual Survey in Introductory Quantum Physics

    ERIC Educational Resources Information Center

    Wuttiprom, Sura; Sharma, Manjula Devi; Johnston, Ian D.; Chitaree, Ratchapak; Soankwan, Chernchok

    2009-01-01

    Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple-choice conceptual survey to investigate…

  9. The Model for Understanding Success in Quality (MUSIQ): building a theory of context in healthcare quality improvement.

    PubMed

    Kaplan, Heather C; Provost, Lloyd P; Froehle, Craig M; Margolis, Peter A

    2012-01-01

    BACKGROUND Quality improvement (QI) efforts have become widespread in healthcare, however there is significant variability in their success. Differences in context are thought to be responsible for some of the variability seen. To develop a conceptual model that can be used by organisations and QI researchers to understand and optimise contextual factors affecting the success of a QI project. 10 QI experts were provided with the results of a systematic literature review and then participated in two rounds of opinion gathering to identify and define important contextual factors. The experts subsequently met in person to identify relationships among factors and to begin to build the model. The Model for Understanding Success in Quality (MUSIQ) is organised based on the level of the healthcare system and identifies 25 contextual factors likely to influence QI success. Contextual factors within microsystems and those related to the QI team are hypothesised to directly shape QI success, whereas factors within the organisation and external environment are believed to influence success indirectly. The MUSIQ framework has the potential to guide the application of QI methods in healthcare and focus research. The specificity of MUSIQ and the explicit delineation of relationships among factors allows a deeper understanding of the mechanism of action by which context influences QI success. MUSIQ also provides a foundation to support further studies to test and refine the theory and advance the field of QI science.

  10. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  11. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  12. Understanding projectile acceleration.

    PubMed

    Hecht, H; Bertamini, M

    2000-04-01

    Throwing and catching balls or other objects is a generally highly practiced skill; however, conceptual as well as perceptual understanding of the mechanics that underlie this skill is surprisingly poor. In 5 experiments, we investigated conceptual and perceptual understanding of simple ballistic motion. Paper-and-pencil tests revealed that up to half of all participants mistakenly believed that a ball would continue to accelerate after it left the thrower's hand. Observers also showed a remarkable tolerance for anomalous trajectory shapes. Perceptual judgments based on graphics animations replicated these erroneous beliefs for shallow release angles. Observers' tolerance for anomalies tended to decrease with their distance from the actor. The findings are at odds with claims of the naive physics literature that liken intuitive understanding to Aristotelian or medieval physics theories. Instead, observers seem to project their intentions to the ball itself (externalization) or even feel that they have power over the ball when it is still close.

  13. Blending Physical and Virtual Manipulatives: An Effort to Improve Students' Conceptual Understanding through Science Laboratory Experimentation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharia, Zacharias C.

    2012-01-01

    This study aimed to investigate the effect of experimenting with physical manipulatives (PM), virtual manipulatives (VM), and a blended combination of PM and VM on undergraduate students' understanding of concepts in the domain of "Light and Color." A pre-post comparison study design was used for the purposes of this study that involved 70…

  14. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  15. Self-diagnosis as a tool for supporting students’ conceptual understanding and achievements in physics: the case of 8th-graders studying force and motion

    NASA Astrophysics Data System (ADS)

    Safadi, Rafi'

    2017-01-01

    I examined the impact of a self-diagnosis activity on students’ conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own—namely, to identify and explain their errors—and self-score them—that is, assign scores to their solutions—aided by a rubric demonstrating how to solve each problem step by step. I also examined a common practice in the physics classroom in which teachers manage a whole class discussion during which they solve, together with their students, problems that students had solved on their own. Three 8th-grade classes studying force and motion with the same teacher participated. Students were first taught the unit in force and motion. Then a first summative exam was administered. Next, two classes (59 students) were assigned to the self-diagnosis activity and the other class to the whole class discussion (27 students). To assess students’ learning with these activities, a repeat exam was administered. Results suggest that at least for teachers who are not competent in managing argumentative class discussions, the self-diagnosis activity is more effective than the whole class discussion in advancing students’ conceptual understanding and achievements. I account for these results and suggest possible directions for future research.

  16. Developing Conceptual Understanding of Mechanical Advantage through the Use of Lego Robotic Technology

    ERIC Educational Resources Information Center

    Chambers, Joan M.; Carbonaro, Mike; Murray, Hana

    2008-01-01

    Science educators advocate hands on experiences and the use of manipulatives as important for children's conceptual development. Consequently, the utilisation of "Lego" robotic technologies in teaching and learning has become more prevalent in school science classrooms. It is important to investigate their value as educational tools, particularly…

  17. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  18. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  19. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  20. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    NASA Astrophysics Data System (ADS)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  1. A Conceptual Model to be Used for Community-based Drinking-water Improvements

    PubMed Central

    Ahmed, Mushfique

    2006-01-01

    A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate ‘externally-imposed’ processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic

  2. A conceptual model to be used for community-based drinking-water improvements.

    PubMed

    Anstiss, Richard G; Ahmed, Mushfique

    2006-09-01

    A conceptual model that can be applied to improve community-based drinking-water in crisis-type situations has been developed from the original general science and technology/development bridging concept and from a case study in Northwest Bangladesh. The main feature of this model is the strengthened role of communities in identifying and implementing appropriate drinking-water improvements with facilitation by multi-disciplinary collaborative regional agency networks. These combined representative community/regional agency networks make decisions and take actions that involve environmental and health data, related capacity factors, and appropriateness of drinking-water improvements. They also progressively link regional decisions and actions together, expanding them nationally and preferably within a sustainable national policy-umbrella. This use of the model reflects stronger community control and input with more appropriate solutions to such drinking-water crisis situations and minimization of risk from potentially-inappropriate 'externally-imposed' processes. The application here is not intended as a generic or complete poverty-alleviation strategy by itself but as a crisis-solving intervention, complementary to existing and developing sustainable national policies and to introduce how key principles and concepts can relate in the wider context. In terms of the Bangladesh arsenic crisis, this translates into community/regional networks in geographic regions making assessments on the appropriateness of their drinking-water configuration. Preferred improvement options are decided and acted upon in a technological framework. Options include: pond-sand filters, rainwater harvesting, dugwell, deep-protected tubewell, and shallow tubewell with treatment devices. Bedding in the regional drinking-water improvement configuration protocols then occurs. This involves establishing ongoing representative monitoring and screening, clear delineation of arsenic

  3. Midwife-physician collaboration: a conceptual framework for interprofessional collaborative practice.

    PubMed

    Smith, Denise Colter

    2015-01-01

    Since the passage of the Affordable Care Act, collaborative practice has been cited as one method of increasing access to care, decreasing costs, and improving efficiency. How and under what conditions might these goals be achieved? Midwives and physicians have built effective collaborative practice models over a period of 30 years. Empirical study of interprofessional collaboration between midwives and physicians could be useful in guiding professional education, regulation, and health policy in women's health and maternity care. Construction of a conceptual framework for interprofessional collaboration between midwives and physicians was guided by a review of the literature. A theory derivation strategy was used to define dimensions, concepts, and statements of the framework. Midwife-physician interprofessional collaboration can be defined by 4 dimensions (organizational, procedural, relational, and contextual) and 12 concepts (trust, shared power, synergy, commitment, and respect, among others). The constructed framework provides the foundation for further empirical study of the interprofessional collaborative process. The experiences of midwife-physician collaborations provide solid support for a conceptual framework of the collaborative process. A conceptual framework provides a point from which further research can increase knowledge and understanding about how successful outcomes are achieved in collaborative health care practices. Construction of a measurement scale and validation of the model are important next steps. © 2014 by the American College of Nurse-Midwives.

  4. Students' Conceptual Difficulties in Hydrodynamics

    ERIC Educational Resources Information Center

    Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.

    2017-01-01

    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to…

  5. Reciprocity in therapeutic relationships: A conceptual review.

    PubMed

    Sandhu, Sima; Arcidiacono, Eleonora; Aguglia, Eugenio; Priebe, Stefan

    2015-12-01

    Reciprocity has generally been understood as a process of giving and taking, within an exchange of emotions or services, and has long been recognized as a central part of human life. However, an understanding of reciprocity in professional helping relationships has seldom received attention, despite movements in mental health care towards more collaborative approaches between service users and professionals. In this review, a systematic search of the published papers was conducted in order to explore how reciprocity is conceptualized and understood as part of the dyadic therapeutic relationship between professionals and service users. Eleven papers met our inclusion criteria and a narrative synthesis was used to synthesize the key concepts of reciprocity. The concepts of: 'dynamic equilibrium', 'shared affect', 'asymmetric alliance', and 'recognition as a fellow human being' were recurrent in understandings of reciprocity in professional contexts. These conceptualizations of reciprocity were also linked to specific behavioural and psychological processes. The findings suggest that reciprocity may be conceptualized and incorporated as a component of mental health care, with recurrent and observable processes which may be harnessed to promote positive outcomes for service users. To this end, we make recommendations for further research to progress and develop reciprocal processes in mental health care. © 2015 Australian College of Mental Health Nurses Inc.

  6. An Empirical Study of Enterprise Conceptual Modeling

    NASA Astrophysics Data System (ADS)

    Anaby-Tavor, Ateret; Amid, David; Fisher, Amit; Ossher, Harold; Bellamy, Rachel; Callery, Matthew; Desmond, Michael; Krasikov, Sophia; Roth, Tova; Simmonds, Ian; de Vries, Jacqueline

    Business analysts, business architects, and solution consultants use a variety of practices and methods in their quest to understand business. The resulting work products could end up being transitioned into the formal world of software requirement definitions or as recommendations for all kinds of business activities. We describe an empirical study about the nature of these methods, diagrams, and home-grown conceptual models as reflected in real practice at IBM. We identify the models as artifacts of "enterprise conceptual modeling". We study important features of these models, suggest practical classifications, and discuss their usage. Our survey shows that the "enterprise conceptual modeling" arena presents a variety of descriptive models, each used by a relatively small group of colleagues. Together they form a "long tail" that extends from "drawings" on one end to "standards" on the other.

  7. A conceptual framework for homeostasis: development and validation.

    PubMed

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  8. Building Conceptual Understanding in a Remedial College Mathematics Classroom: A Study of Effectiveness

    ERIC Educational Resources Information Center

    Bachman, Rachel Marie

    2013-01-01

    This study investigated the effectiveness of two remedial mathematics courses that aimed to (a) present topics conceptually, (b) construct adequate schemata, and (c) introduce students to the culture of mathematics. The topics covered during the two courses were word problems, equivalence, variables and expressions, equations and inequalities, and…

  9. Evaluating the Functionality of Conceptual Models

    NASA Astrophysics Data System (ADS)

    Mehmood, Kashif; Cherfi, Samira Si-Said

    Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.

  10. Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2015-01-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…

  11. Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

    NASA Astrophysics Data System (ADS)

    Byrne, Michael P.; O'Gorman, Paul A.

    2016-12-01

    Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.

  12. Executive Leadership in School Improvement Networks: A Conceptual Framework and Agenda for Research

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Gumus, Emine

    2011-01-01

    The purpose of this analysis is to improve understanding of executive leadership in school improvement networks: for example, networks supported by comprehensive school reform providers, charter management organizations, and education management organizations. In this analysis, we review the literature on networks and executive leadership. We draw…

  13. Students' conceptual difficulties in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Suarez, Alvaro; Kahan, Sandra; Zavala, Genaro; Marti, Arturo C.

    2017-12-01

    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams complemented with several oral interviews, which were held with first-year engineering and science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most critical difficulties arise from the students' inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.

  14. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    NASA Astrophysics Data System (ADS)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  15. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    PubMed

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  16. Development of a Conceptual Framework for Understanding Shared Decision making Among African-American LGBT Patients and their Clinicians.

    PubMed

    Peek, Monica E; Lopez, Fanny Y; Williams, H Sharif; Xu, Lucy J; McNulty, Moira C; Acree, M Ellen; Schneider, John A

    2016-06-01

    Enhancing patient-centered care and shared decision making (SDM) has become a national priority as a means of engaging patients in their care, improving treatment adherence, and enhancing health outcomes. Relatively little is known about the healthcare experiences or shared decision making among racial/ethnic minorities who also identify as being LGBT. The purpose of this paper is to understand how race, sexual orientation and gender identity can simultaneously influence SDM among African-American LGBT persons, and to propose a model of SDM between such patients and their healthcare providers. We reviewed key constructs necessary for understanding SDM among African-American LGBT persons, which guided our systematic literature review. Eligible studies for the review included English-language studies of adults (≥ 19 y/o) in North America, with a focus on LGBT persons who were African-American/black (i.e., > 50 % of the study population) or included sub-analyses by sexual orientation/gender identity and race. We searched PubMed, CINAHL, ProQuest Dissertations & Theses, PsycINFO, and Scopus databases using MESH terms and keywords related to shared decision making, communication quality (e.g., trust, bias), African-Americans, and LGBT persons. Additional references were identified by manual reviews of peer-reviewed journals' tables of contents and key papers' references. We identified 2298 abstracts, three of which met the inclusion criteria. Of the included studies, one was cross-sectional and two were qualitative; one study involved transgender women (91 % minorities, 65 % of whom were African-Americans), and two involved African-American men who have sex with men (MSM). All of the studies focused on HIV infection. Sexual orientation and gender identity were patient-reported factors that negatively impacted patient/provider relationships and SDM. Engaging in SDM helped some patients overcome normative beliefs about clinical encounters. In this paper, we present a

  17. Investigation of Conceptual Change about Double-Slit Interference in Secondary School Physics

    ERIC Educational Resources Information Center

    Kocakulah, Mustafa Sabri; Kural, Mehmet

    2010-01-01

    In this study, whether or not constructivist teaching of double-slit interference of light has a positive effect on the secondary school students' conceptual change is examined. An achievement test, a conceptual understanding test and semi-structured interviews were used as data collection tools in this mixed methods research. Experimental group…

  18. The Role of Language Games in Children's Understanding of Mental States: A Training Study

    ERIC Educational Resources Information Center

    Ornaghi, Veronica; Brockmeier, Jens; Grazzani Gavazzi, Ilaria

    2011-01-01

    In this study the authors investigated whether training preschool children in the use of mental state lexicon plays a significant role in bringing about advanced conceptual understanding of mental terms and improved performance on theory-of-mind tasks. A total of 70 participants belonging to two age groups (3 and 4 years old) were randomly…

  19. Sensemaking: Conceptualizing and Coding for “Good” Student Reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew; Scherr, R.; Bing, T.

    2006-12-01

    Physics instructors’ goals often go beyond improving students’ conceptual understanding and problem solving. Instructors also want students to engage in inquiry, become scientific/critical thinkers, understand the scientific process, and so on. We see two problems with these “non-content” goals. First, notions such as inquiry and scientific thinking are often defined vaguely or inconsistently across the literature. Second, even when like-minded instructors share a vision of what we’d love to see our students do, descriptions of that vision are often too squishy to communicate, debate, or assess: “We know it when we see it!” In this talk and poster, we address these problems by introducing sensemaking vs. answermaking, two mindsets with which students can approach physics. Our definitions of those notions benefit from a theoretical base, and our coding scheme for sensemaking vs. answermaking displays high interrater reliability and rests upon a list of specific indicators.

  20. Teaching Modern Dance: A Conceptual Approach

    ERIC Educational Resources Information Center

    Enghauser, Rebecca Gose

    2008-01-01

    A conceptual approach to teaching modern dance can broaden the awareness and deepen the understanding of modern dance in the educational arena in general, and in dance education specifically. This article describes a unique program that dance teachers can use to introduce modern dance to novice dancers, as well as more experienced dancers,…

  1. Middle school teachers' familiarity with, interest in, performance on, and conceptual and pedagogical knowledge of light

    NASA Astrophysics Data System (ADS)

    Mbewe, Simeon

    The purpose of this study was threefold: Examine middle school teachers' familiarity with, interest in, conceptual knowledge of and performance on light; Examine their ability to identify misconceptions on light and their suggested pedagogical ideas to address the identified misconceptions; and Establish the relationship between the middle school teachers' interest, familiarity, conceptual understanding, performance, misconception identification, and pedagogical ideas for light. Sixty six (66) middle school science teachers enrolled in three math and science teacher professional development projects at Southern Illinois University Carbondale participated in this study. This study used mixed-methods approach to collect and analyze data. The participants responded in writing to four different instruments: Familiarity and Interest Questionnaire, Conceptual Knowledge Test, Two-tier Performance Test, and Misconceptions Identification Questionnaire. Data was analyzed quantitatively by conducting non-parametric (Wilcoxon, Mann-Whitney U, and Kruskal-Wallis) and parametric (paired samples, independent samples, and One-Way ANOVA) tests. Qualitative data was analyzed using thematic analysis and open coding to identify emerging themes and categories. The results showed that the teachers reported high levels of familiarity with and interest in learning more about light concepts. However, they had low conceptual knowledge and performance on light concepts. As such, middle school teachers' perceived knowledge of light concepts was not consistent with their actual knowledge of light. To some extent, the teachers identified students' misconceptions expressed in some scenarios on light and also suggested pedagogical ideas for addressing such misconceptions in middle school science classrooms. However, most teachers did not provide details on their pedagogical ideas for light. Correlations among the four constructs (familiarity, interest, conceptual understanding, and performance

  2. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  3. Conceptualization of preferential flow for hillslope stability assessment

    NASA Astrophysics Data System (ADS)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  4. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  5. Improving Conceptual Design for Launch Vehicles. The Bimese Concept: A Study of Mission and Economic Options

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Tooley, Jeffrey

    1999-01-01

    This report summarizes key activities conducted in the third and final year of the cooperative agreement NCC1-229 entitled "Improving Conceptual Design for Launch Vehicles." This project has been funded by the Vehicle Analysis Branch at NASA's Langley Research Center in Hampton, VA. Work has been performed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology, Atlanta, GA. Accomplishments during the first and second years of this project have been previously reported in annual progress reports. This report will focus on the third and final year of the three year activity.

  6. A Functional Conceptualization of Understanding Science in the News

    ERIC Educational Resources Information Center

    Anderson, Megan M.

    2012-01-01

    The idea that the public should have the capacity for understanding science in the news has been embraced by scientists, educators, and policymakers alike. An oft-cited goal of contemporary science education, in fact, is to enhance students' understanding of science in the news. But what exactly does it "mean" to understand science…

  7. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  8. Surveying Students' Conceptual and Procedural Knowledge of Acid-Base Behavior of Substances

    ERIC Educational Resources Information Center

    Furio-Mas, Carles; Calatayud, Maria-Luisa; Barcenas, Sergio L.

    2007-01-01

    By the end of their high school studies, students should be able to understand macroscopic and sub-microscopic conceptualization of acid-base behavior and the relationship between these conceptual models. The aim of this article is to ascertain whether grade-12 students have sufficient background knowledge to explain the properties of acids,…

  9. Toward a multidimensional understanding of culture for health interventions.

    PubMed

    Asad, Asad L; Kay, Tamara

    2015-11-01

    Although a substantial literature examines the relationship between culture and health in myriad individual contexts, a lack of comparative data across settings has resulted in disparate and imprecise conceptualizations of the concept for scholars and practitioners alike. This article examines scholars and practitioners' understandings of culture in relation to health interventions. Drawing on 169 interviews with officials from three different nongovernmental organizations working on health issues in multiple countries-Partners in Health, Oxfam America, and Sesame Workshop-we examine how these respondents' interpretations of culture converge or diverge with recent developments in the study of the concept, as well as how these understandings influence health interventions at three different stages-design, implementation, and evaluation-of a project. Based on these analyses, a tripartite definition of culture is built-as knowledge, practice, and change-and these distinct conceptualizations are linked to the success or failure of a project at each stage of an intervention. In so doing, the study provides a descriptive and analytical starting point for scholars interested in understanding the theoretical and empirical relevance of culture for health interventions, and sets forth concrete recommendations for practitioners working to achieve robust improvements in health outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High-School Students' Conceptual Difficulties and Attempts at Conceptual Change: The Case of Basic Quantum Chemical Concepts

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Papaphotis, Georgios

    2009-01-01

    This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…

  11. Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System

    ERIC Educational Resources Information Center

    Gazit, Elhanan; Yair, Yoav; Chen, David

    2005-01-01

    This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…

  12. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We

  13. Collaboration Scripts--A Conceptual Analysis

    ERIC Educational Resources Information Center

    Kollar, Ingo; Fischer, Frank; Hesse, Friedrich W.

    2006-01-01

    This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components:…

  14. Consistent assignment of nursing staff to residents in nursing homes: a critical review of conceptual and methodological issues.

    PubMed

    Roberts, Tonya; Nolet, Kimberly; Bowers, Barbara

    2015-06-01

    Consistent assignment of nursing staff to residents is promoted by a number of national organizations as a strategy for improving nursing home quality and is included in pay for performance schedules in several states. However, research has shown inconsistent effects of consistent assignment on quality outcomes. In order to advance the state of the science of research on consistent assignment and inform current practice and policy, a literature review was conducted to critique conceptual and methodological understandings of consistent assignment. Twenty original research reports of consistent assignment in nursing homes were found through a variety of search strategies. Consistent assignment was conceptualized and operationalized in multiple ways with little overlap from study to study. There was a lack of established methods to measure consistent assignment. Methodological limitations included a lack of control and statistical analyses of group differences in experimental-level studies, small sample sizes, lack of attention to confounds in multicomponent interventions, and outcomes that were not theoretically linked. Future research should focus on developing a conceptual understanding of consistent assignment focused on definition, measurement, and links to outcomes. To inform current policies, testing consistent assignment should include attention to contexts within and levels at which it is most effective. Published by Oxford University Press on behalf of the Gerontological Society of America 2013.

  15. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  16. The Importance of Dialogic Processes to Conceptual Development in Mathematics

    ERIC Educational Resources Information Center

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…

  17. Social exclusion of older persons: a scoping review and conceptual framework.

    PubMed

    Walsh, Kieran; Scharf, Thomas; Keating, Norah

    2017-03-01

    As a concept, social exclusion has considerable potential to explain and respond to disadvantage in later life. However, in the context of ageing populations, the construct remains ambiguous. A disjointed evidence-base, spread across disparate disciplines, compounds the challenge of developing a coherent understanding of exclusion in older age. This article addresses this research deficit by presenting the findings of a two-stage scoping review encompassing seven separate reviews of the international literature pertaining to old-age social exclusion. Stage one involved a review of conceptual frameworks on old-age exclusion, identifying conceptual understandings and key domains of later-life exclusion. Stage two involved scoping reviews on each domain (six in all). Stage one identified six conceptual frameworks on old-age exclusion and six common domains across these frameworks: neighbourhood and community; services, amenities and mobility; social relations; material and financial resources; socio-cultural aspects; and civic participation. International literature concentrated on the first four domains, but indicated a general lack of research knowledge and of theoretical development. Drawing on all seven scoping reviews and a knowledge synthesis, the article presents a new definition and conceptual framework relating to old-age exclusion.

  18. A conceptual life-history model for pallid and shovelnose sturgeon

    USGS Publications Warehouse

    Wildhaber, Mark L.; DeLonay, Aaron J.; Papoulias, Diana M.; Galat, David L.; Jacobson, Robert B.; Simpkins, Darin G.; Braaten, P. J.; Korschgen, Carl E.; Mac, Michael J.

    2007-01-01

    Intensive management of the Missouri and Mississippi Rivers has resulted in dramatic physical changes to these rivers. These changes have been implicated as causative agents in the decline of pallid sturgeon. The pallid sturgeon, federally listed as endangered, is endemic to the turbid waters of the Missouri River and the Lower Mississippi River. The sympatric shovelnose sturgeon historically was more common and widespread than the pallid sturgeon. Habitat alteration, river regulation, pollution, and over-harvest have resulted in the now predictable patterns of decline and localized extirpation of sturgeon across species and geographic areas. Symptomatic of this generalized pattern of decline is poor reproductive success, and low or no recruitment of wild juveniles to the adult population. The purpose of this report is to introduce a conceptual life-history model of the factors that affect reproduction, growth, and survival of shovelnose and pallid sturgeons. The conceptual model provided here was developed to organize the understanding about the complex life history of Scaphirhynchus sturgeons. It was designed to be used for communication, planning, and to provide the structure for a population-forecasting model. These models are intended to be dynamic and responsive to new information and changes in river management, thereby providing scientists, stakeholders, and managers with ways to improve understanding of the effects of management actions on the ecological requirements of Scaphirhynchus sturgeons. As new scientific knowledge becomes available, it could be included in the model in many ways at various integration levels.

  19. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    NASA Astrophysics Data System (ADS)

    McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.

    2016-12-01

    The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  20. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    PubMed

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.