Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
Improving experimental phases for strong reflections prior to density modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P
2018-01-10
Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
USDA-ARS?s Scientific Manuscript database
High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement; high-density linkage maps are especially important in paleopolyploids with exce...
USDA-ARS?s Scientific Manuscript database
High-density linkage maps are fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, e.g., Upland cotton (Gossypium hirsutum L., 2n=52). Using 3 full-sib intra-specific mapping populations fr...
Improving experimental phases for strong reflections prior to density modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uervirojnangkoorn, Monarin; University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck; Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de
A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the mapsmore » can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ▶), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
2013-01-01
Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011
Averaged kick maps: less noise, more signal…and probably less bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pražnikar, Jure; Afonine, Pavel V.; Gunčar, Gregor
2009-09-01
Averaged kick maps are the sum of a series of individual kick maps, where each map is calculated from atomic coordinates modified by random shifts. These maps offer the possibility of an improved and less model-biased map interpretation. Use of reliable density maps is crucial for rapid and successful crystal structure determination. Here, the averaged kick (AK) map approach is investigated, its application is generalized and it is compared with other map-calculation methods. AK maps are the sum of a series of kick maps, where each kick map is calculated from atomic coordinates modified by random shifts. As such, theymore » are a numerical analogue of maximum-likelihood maps. AK maps can be unweighted or maximum-likelihood (σ{sub A}) weighted. Analysis shows that they are comparable and correspond better to the final model than σ{sub A} and simulated-annealing maps. The AK maps were challenged by a difficult structure-validation case, in which they were able to clarify the problematic region in the density without the need for model rebuilding. The conclusion is that AK maps can be useful throughout the entire progress of crystal structure determination, offering the possibility of improved map interpretation.« less
Polder maps: Improving OMIT maps by excluding bulk solvent
Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; ...
2017-02-01
The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factorsmore » and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. As a result, the tools described in this manuscript have been implemented and are available in PHENIX.« less
NASA Astrophysics Data System (ADS)
Qie, G.; Wang, G.; Wang, M.
2016-12-01
Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images
An improved consensus linkage map of barley based on flow-sorted chromosomes and SNP markers
USDA-ARS?s Scientific Manuscript database
Recent advances in high-throughput genotyping have made it easier to combine information from different mapping populations into consensus genetic maps, which provide increased marker density and genome coverage compared to individual maps. Previously, a SNP-based genotyping platform was developed a...
Han, Koeun; Jeong, Hee-Jin; Yang, Hee-Bum; Kang, Sung-Min; Kwon, Jin-Kyung; Kim, Seungill; Choi, Doil; Kang, Byoung-Cheorl
2016-04-01
Most agricultural traits are controlled by quantitative trait loci (QTLs); however, there are few studies on QTL mapping of horticultural traits in pepper (Capsicum spp.) due to the lack of high-density molecular maps and the sequence information. In this study, an ultra-high-density map and 120 recombinant inbred lines (RILs) derived from a cross between C. annuum'Perennial' and C. annuum'Dempsey' were used for QTL mapping of horticultural traits. Parental lines and RILs were resequenced at 18× and 1× coverage, respectively. Using a sliding window approach, an ultra-high-density bin map containing 2,578 bins was constructed. The total map length of the map was 1,372 cM, and the average interval between bins was 0.53 cM. A total of 86 significant QTLs controlling 17 horticultural traits were detected. Among these, 32 QTLs controlling 13 traits were major QTLs. Our research shows that the construction of bin maps using low-coverage sequence is a powerful method for QTL mapping, and that the short intervals between bins are helpful for fine-mapping of QTLs. Furthermore, bin maps can be used to improve the quality of reference genomes by elucidating the genetic order of unordered regions and anchoring unassigned scaffolds to linkage groups. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Peng, Wenzhu; Xu, Jian; Zhang, Yan; Feng, Jianxin; Dong, Chuanju; Jiang, Likun; Feng, Jingyan; Chen, Baohua; Gong, Yiwen; Chen, Lin; Xu, Peng
2016-01-01
High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly. PMID:27225429
Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang
2015-01-01
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894
Prior-knowledge-based spectral mixture analysis for impervious surface mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; He, Chunyang; Zhou, Yuyu
2014-01-03
In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less
Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo
2014-01-01
The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598
Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo
2014-10-01
The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai
2015-01-01
The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227
Evaluation of Techniques Used to Estimate Cortical Feature Maps
Katta, Nalin; Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2011-01-01
Functional properties of neurons are often distributed nonrandomly within a cortical area and form topographic maps that reveal insights into neuronal organization and interconnection. Some functional maps, such as in visual cortex, are fairly straightforward to discern with a variety of techniques, while other maps, such as in auditory cortex, have resisted easy characterization. In order to determine appropriate protocols for establishing accurate functional maps in auditory cortex, artificial topographic maps were probed under various conditions, and the accuracy of estimates formed from the actual maps was quantified. Under these conditions, low-complexity maps such as sound frequency can be estimated accurately with as few as 25 total samples (e.g., electrode penetrations or imaging pixels) if neural responses are averaged together. More samples are required to achieve the highest estimation accuracy for higher complexity maps, and averaging improves map estimate accuracy even more than increasing sampling density. Undersampling without averaging can result in misleading map estimates, while undersampling with averaging can lead to the false conclusion of no map when one actually exists. Uniform sample spacing only slightly improves map estimation over nonuniform sample spacing typical of serial electrode penetrations. Tessellation plots commonly used to visualize maps estimated using nonuniform sampling are always inferior to linearly interpolated estimates, although differences are slight at higher sampling densities. Within primary auditory cortex, then, multiunit sampling with at least 100 samples would likely result in reasonable feature map estimates for all but the highest complexity maps and the highest variability that might be expected. PMID:21889537
Improving Mars-GRAM: Increasing the Accuracy of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
Extensively utilized for numerous mission applications, the Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model. In a Monte-Carlo mode, Mars-GRAM's perturbation modeling capability is used to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM has been found to be inexact when used during the Mars Science Laboratory (MSL) site selection process for sensitivity studies for MapYear=0 and large optical depth values such as tau=3. Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM) from the surface to 80 km altitude. Mars-GRAM with the MapYear parameter set to 0 utilizes results from a MGCM run with a fixed value of tau=3 at all locations for the entire year. Imprecise atmospheric density and pressure at all altitudes is a consequence of this use of MGCM with tau=3. Density factor values have been determined for tau=0.3, 1 and 3 as a preliminary fix to this pressure-density problem. These factors adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. These density factors are fixed values for all latitudes and Ls and are included in Mars-GRAM Release 1.3. Work currently being done, to derive better multipliers by including variations with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data, will be highlighted in the presentation. The TES limb data utilized in this process has been validated by a comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS). This comparison study was undertaken for locations on Mars of varying latitudes, Ls, and LTST. The more precise density factors will be included in Mars-GRAM 2005 Release 1.4 and thus improve the results of future sensitivity studies done for large optical depths.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
2011-01-01
Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species. PMID:21492453
Raines, Gary L.; Bretz, R.F.; Shurr, George W.
1979-01-01
From analysis of a color-coded Landsat 5/6 ratio, image, a map of the vegetation density distribution has been produced by Raines of 25,000 sq km of western South Dakota. This 5/6 ratio image is produced digitally calculating the ratios of the bands 5 and 6 of the Landsat data and then color coding these ratios in an image. Bretz and Shurr compared this vegetation density map with published and unpublished data primarily of the U.S. Geological Survey and the South Dakota Geological Survey; good correspondence is seen between this map and existing geologic maps, especially with the soils map. We believe that this Landsat ratio image can be used as a tool to refine existing maps of surficial geology and bedrock, where bedrock is exposed, and to improve mapping accuracy in areas of poor exposure common in South Dakota. In addition, this type of image could be a useful, additional tool in mapping areas that are unmapped.
Force-field functor theory: classical force-fields which reproduce equilibrium quantum distributions
Babbush, Ryan; Parkhill, John; Aspuru-Guzik, Alán
2013-01-01
Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. We show that such a map is unique and must exist. To explore the feasibility of using this result to improve classical molecular mechanics, we numerically produce a map from a library of randomly generated one-dimensional potential/effective potential pairs then evaluate its performance on independent test problems. We also apply the map to simulate liquid para-hydrogen, finding that the resulting radial pair distribution functions agree well with path integral Monte Carlo simulations. The surprising accessibility and transferability of the technique suggest a quantitative route to adapting Born-Oppenheimer potentials, with a motivation similar in spirit to the powerful ideas and approximations of density functional theory. PMID:24790954
Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire
2012-01-01
Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604
Ash, Jessica A; Velazquez, Ramon; Kelley, Christy M; Powers, Brian E; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
2014-10-01
Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer's disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. Copyright © 2014 Elsevier Inc. All rights reserved.
Pengelly, Reuben J; Tapper, William; Gibson, Jane; Knut, Marcin; Tearle, Rick; Collins, Andrew; Ennis, Sarah
2015-09-03
An understanding of linkage disequilibrium (LD) structures in the human genome underpins much of medical genetics and provides a basis for disease gene mapping and investigating biological mechanisms such as recombination and selection. Whole genome sequencing (WGS) provides the opportunity to determine LD structures at maximal resolution. We compare LD maps constructed from WGS data with LD maps produced from the array-based HapMap dataset, for representative European and African populations. WGS provides up to 5.7-fold greater SNP density than array-based data and achieves much greater resolution of LD structure, allowing for identification of up to 2.8-fold more regions of intense recombination. The absence of ascertainment bias in variant genotyping improves the population representativeness of the WGS maps, and highlights the extent of uncaptured variation using array genotyping methodologies. The complete capture of LD patterns using WGS allows for higher genome-wide association study (GWAS) power compared to array-based GWAS, with WGS also allowing for the analysis of rare variation. The impact of marker ascertainment issues in arrays has been greatest for Sub-Saharan African populations where larger sample sizes and substantially higher marker densities are required to fully resolve the LD structure. WGS provides the best possible resource for LD mapping due to the maximal marker density and lack of ascertainment bias. WGS LD maps provide a rich resource for medical and population genetics studies. The increasing availability of WGS data for large populations will allow for improved research utilising LD, such as GWAS and recombination biology studies.
Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data
NASA Astrophysics Data System (ADS)
Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.
2017-12-01
The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Smyth, E.; Small, E. E.
2017-12-01
The spatial distribution of snow water equivalent (SWE) is not sufficiently monitored with either remotely sensed or ground-based observations for water resources management. Recent applications of airborne Lidar have yielded basin-wide mapping of SWE when combined with a snow density model. However, in the absence of snow density observations, the uncertainty in these SWE maps is dominated by uncertainty in modeled snow density rather than in Lidar measurement of snow depth. Available observations tend to have a bias in physiographic regime (e.g., flat open areas) and are often insufficient in number to support testing of models across a range of conditions. Thus, there is a need for targeted sampling strategies and controlled model experiments to understand where and why different snow density models diverge. This will enable identification of robust model structures that represent dominant processes controlling snow densification, in support of basin-scale estimation of SWE with remotely-sensed snow depth datasets. The NASA SnowEx mission is a unique opportunity to evaluate sampling strategies of snow density and to quantify and reduce uncertainty in modeled snow density. In this presentation, we present initial field data analyses and modeling results over the Colorado SnowEx domain in the 2016-2017 winter campaign. We detail a framework for spatially mapping the uncertainty in snowpack density, as represented across multiple models. Leveraging the modular SUMMA model, we construct a series of physically-based models to assess systematically the importance of specific process representations to snow density estimates. We will show how models and snow pit observations characterize snow density variations with forest cover in the SnowEx domains. Finally, we will use the spatial maps of density uncertainty to evaluate the selected locations of snow pits, thereby assessing the adequacy of the sampling strategy for targeting uncertainty in modeled snow density.
Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging
Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...
2015-11-24
Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less
N'Diaye, Amidou; Haile, Jemanesh K; Fowler, D Brian; Ammar, Karim; Pozniak, Curtis J
2017-01-01
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.
N’Diaye, Amidou; Haile, Jemanesh K.; Fowler, D. Brian; Ammar, Karim; Pozniak, Curtis J.
2017-01-01
Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. PMID:28878789
The Density of Mid-sized Kuiper Belt Objects from ALMA Thermal Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Michael E.; Butler, Bryan J.
The densities of mid-sized Kuiper Belt objects (KBOs) are a key constraint in understanding the assembly of objects in the outer solar system. These objects are critical for understanding the currently unexplained transition from the smallest KBOs with densities lower than that of water, to the largest objects with significant rock content. Mapping this transition is made difficult by the uncertainties in the diameters of these objects, which maps into an even larger uncertainty in volume and thus density. The substantial collecting area of the Atacama Large Millimeter Array allows significantly more precise measurements of thermal emission from outer solarmore » system objects and could potentially greatly improve the density measurements. Here we use new thermal observations of four objects with satellites to explore the improvements possible with millimeter data. We find that effects due to effective emissivity at millimeter wavelengths make it difficult to use the millimeter data directly to find diameters and thus volumes for these bodies. In addition, we find that when including the effects of model uncertainty, the true uncertainties on the sizes of outer solar system objects measured with radiometry are likely larger than those previously published. Substantial improvement in object sizes will likely require precise occultation measurements.« less
Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng
2017-04-10
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.
Updating Mars-GRAM to Increase the Accuracy of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hiliary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). During the Mars Science Laboratory (MSL) site selection process, it was discovered that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear set to 0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. As a preliminary fix to this pressure-density problem, density factor values were determined for tau=0.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented from work being done to derive better multipliers by including variation with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data. The addition of these more precise density factors to Mars-GRAM 2005 Release 1.4 will improve the results of the sensitivity studies done for large optical depths.
Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.
Illman, Walter A
2014-01-01
Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture-rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss ) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this article, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single-hole tests, borehole flowmeter profiling, and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability. © 2013, National Ground Water Association.
Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
NASA Astrophysics Data System (ADS)
Illman, W. A.
2013-12-01
Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture-rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater flow and especially transport modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this presentation, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single-hole tests, borehole flowmeter profiling and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability.
Derivation of a northern-hemispheric biomass map for use in global carbon cycle models
NASA Astrophysics Data System (ADS)
Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane
2013-04-01
Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.
Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter
2016-10-13
Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Li, Xuehui; Wei, Yanling; Acharya, Ananta; Jiang, Qingzhen; Kang, Junmei; Brummer, E. Charles
2014-01-01
A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa. PMID:25147192
Li, Xuehui; Wei, Yanling; Acharya, Ananta; Jiang, Qingzhen; Kang, Junmei; Brummer, E Charles
2014-08-21
A genetic linkage map is a valuable tool for quantitative trait locus mapping, map-based gene cloning, comparative mapping, and whole-genome assembly. Alfalfa, one of the most important forage crops in the world, is autotetraploid, allogamous, and highly heterozygous, characteristics that have impeded the construction of a high-density linkage map using traditional genetic marker systems. Using genotyping-by-sequencing (GBS), we constructed low-cost, reasonably high-density linkage maps for both maternal and paternal parental genomes of an autotetraploid alfalfa F1 population. The resulting maps contain 3591 single-nucleotide polymorphism markers on 64 linkage groups across both parents, with an average density of one marker per 1.5 and 1.0 cM for the maternal and paternal haplotype maps, respectively. Chromosome assignments were made based on homology of markers to the M. truncatula genome. Four linkage groups representing the four haplotypes of each alfalfa chromosome were assigned to each of the eight Medicago chromosomes in both the maternal and paternal parents. The alfalfa linkage groups were highly syntenous with M. truncatula, and clearly identified the known translocation between Chromosomes 4 and 8. In addition, a small inversion on Chromosome 1 was identified between M. truncatula and M. sativa. GBS enabled us to develop a saturated linkage map for alfalfa that greatly improved genome coverage relative to previous maps and that will facilitate investigation of genome structure. GBS could be used in breeding populations to accelerate molecular breeding in alfalfa. Copyright © 2014 Li et al.
High-density genetic map of Miscanthus sinensis reveals inheritance of zebra stripe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Siyao; Clark, Lindsay V.; Swaminathan, Kankshita
Miscanthus is a perennial C4 grass that has recently become an important bioenergy crop. The efficiency of breeding improved Miscanthus biomass cultivars could be greatly increased by marker-assisted selection. Thus, a high-density genetic map is critical to Miscanthus improvement. In this study, a mapping population of 261 F1 progeny was developed from a cross between two diploid M. sinensis cultivars, ‘Strictus’ and ‘Kaskade’. High-density genetic maps for the two parents were produced with 3044 newly developed single nucleotide polymorphisms (SNPs) obtained from restriction site-associated DNA sequencing, and 138 previously mapped GoldenGate SNPs. The female parent (‘Strictus’) map spanned 1599 cM,more » with 1989 SNPs on 19 linkage groups, and an average intermarker spacing of 0.8 cM. The length of the male parent (‘Kaskade’) map was 1612 cM, with 1821 SNPs, and an average intermarker spacing of 0.9 cM. The utility of the map was confirmed by locating quantitative trait loci (QTL) for the zebra-striped trait, which was segregating in this population. Three QTL for zebra-striped presence/absence (zb1, zb2 on LG 7, and zb3 on LG 10) and three for zebra-striped intensity (zbi1, zbi2, zbi3 on LGs 7, 10, 3) were identified. Each allele that caused striping was recessive. Incomplete penetrance was observed for each zb QTL, but penetrance was greatest when two or more zb QTL were homozygous for the causative alleles. Similarly, the intensity of striping was greatest when two or more zbi QTL were homozygous for alleles that conferred the trait. Comparative mapping indicated putative correspondence between zb3 and/or zbi2 on LG 10 to previously sequenced genes conferring zebra stripe in maize and rice. These results demonstrate that the new map is useful for identifying marker–trait associations. The mapped markers will become a valuable community resource, facilitating comparisons among studies and the breeding of Miscanthus.« less
High-density genetic map of Miscanthus sinensis reveals inheritance of zebra stripe
Liu, Siyao; Clark, Lindsay V.; Swaminathan, Kankshita; ...
2015-05-06
Miscanthus is a perennial C4 grass that has recently become an important bioenergy crop. The efficiency of breeding improved Miscanthus biomass cultivars could be greatly increased by marker-assisted selection. Thus, a high-density genetic map is critical to Miscanthus improvement. In this study, a mapping population of 261 F1 progeny was developed from a cross between two diploid M. sinensis cultivars, ‘Strictus’ and ‘Kaskade’. High-density genetic maps for the two parents were produced with 3044 newly developed single nucleotide polymorphisms (SNPs) obtained from restriction site-associated DNA sequencing, and 138 previously mapped GoldenGate SNPs. The female parent (‘Strictus’) map spanned 1599 cM,more » with 1989 SNPs on 19 linkage groups, and an average intermarker spacing of 0.8 cM. The length of the male parent (‘Kaskade’) map was 1612 cM, with 1821 SNPs, and an average intermarker spacing of 0.9 cM. The utility of the map was confirmed by locating quantitative trait loci (QTL) for the zebra-striped trait, which was segregating in this population. Three QTL for zebra-striped presence/absence (zb1, zb2 on LG 7, and zb3 on LG 10) and three for zebra-striped intensity (zbi1, zbi2, zbi3 on LGs 7, 10, 3) were identified. Each allele that caused striping was recessive. Incomplete penetrance was observed for each zb QTL, but penetrance was greatest when two or more zb QTL were homozygous for the causative alleles. Similarly, the intensity of striping was greatest when two or more zbi QTL were homozygous for alleles that conferred the trait. Comparative mapping indicated putative correspondence between zb3 and/or zbi2 on LG 10 to previously sequenced genes conferring zebra stripe in maize and rice. These results demonstrate that the new map is useful for identifying marker–trait associations. The mapped markers will become a valuable community resource, facilitating comparisons among studies and the breeding of Miscanthus.« less
Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng
2017-01-01
High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910
Fang, Xiaomei; Dong, Kongjun; Wang, Xiaoqin; Liu, Tianpeng; He, Jihong; Ren, Ruiyu; Zhang, Lei; Liu, Rui; Liu, Xueying; Li, Man; Huang, Mengzhu; Zhang, Zhengsheng; Yang, Tianyu
2016-05-04
Foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China, has been adopted as a model crop for studying C-4 photosynthesis, stress biology and biofuel traits. Construction of a high density genetic map and identification of stable quantitative trait loci (QTL) lay the foundation for marker-assisted selection for agronomic traits and yield improvement. A total of 10598 SSR markers were developed according to the reference genome sequence of foxtail millet cultivar 'Yugu1'. A total of 1013 SSR markers showing polymorphism between Yugu1 and Longgu7 were used to genotype 167 individuals from a Yugu1 × Longgu7 F2 population, and a high density genetic map was constructed. The genetic map contained 1035 loci and spanned 1318.8 cM with an average distance of 1.27 cM between adjacent markers. Based on agronomic and yield traits identified in 2 years, 29 QTL were identified for 11 traits with combined analysis and single environment analysis. These QTL explained from 7.0 to 14.3 % of phenotypic variation. Favorable QTL alleles for peduncle length originated from Longgu7 whereas favorable alleles for the other traits originated from Yugu1 except for qLMS6.1. New SSR markers, a high density genetic map and QTL identified for agronomic and yield traits lay the ground work for functional gene mapping, map-based cloning and marker-assisted selection in foxtail millet.
Jones, David B; Jerry, Dean R; Khatkar, Mehar S; Raadsma, Herman W; Zenger, Kyall R
2013-11-20
The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny.
Adaptive proxy map server for efficient vector spatial data rendering
NASA Astrophysics Data System (ADS)
Sayar, Ahmet
2013-01-01
The rapid transmission of vector map data over the Internet is becoming a bottleneck of spatial data delivery and visualization in web-based environment because of increasing data amount and limited network bandwidth. In order to improve both the transmission and rendering performances of vector spatial data over the Internet, we propose a proxy map server enabling parallel vector data fetching as well as caching to improve the performance of web-based map servers in a dynamic environment. Proxy map server is placed seamlessly anywhere between the client and the final services, intercepting users' requests. It employs an efficient parallelization technique based on spatial proximity and data density in case distributed replica exists for the same spatial data. The effectiveness of the proposed technique is proved at the end of the article by the application of creating map images enriched with earthquake seismic data records.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.; Selvin, S.; Close, E.R.
In studying geographic disease distributions, one normally compares rates of arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP). Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease-rates are constant. On the transformed map, the statistical analysis of the observed distribution ismore » greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be reliably calculated. The present report describes the first successful application of the DEMP technique to a sizeable ``real-world`` data set of epidemiologic interest. An improved DEMP algorithm [GUSE93, CLOS94] was applied to a data set previously analyzed with conventional techniques [SATA90, REYN91]. The results from the DEMP analysis and a conventional analysis are compared.« less
2012-01-01
Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993
A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.)
Mandal, Paritra; Bhutani, Shefali; Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram Pratap; Chaudhary, A. K.; Yadav, Rekha; Gaikwad, K.; Sevanthi, Amitha Mithra; Datta, Subhojit; Raje, Ranjeet S.; Sharma, Tilak R.; Singh, Nagendra Kumar
2017-01-01
Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits. PMID:28654689
Integrating population dynamics into mapping human exposure to seismic hazard
NASA Astrophysics Data System (ADS)
Freire, S.; Aubrecht, C.
2012-11-01
Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.
Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.
2010-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.
Automatically Generated Vegetation Density Maps with LiDAR Survey for Orienteering Purpose
NASA Astrophysics Data System (ADS)
Petrovič, Dušan
2018-05-01
The focus of our research was to automatically generate the most adequate vegetation density maps for orienteering purpose. Application Karttapullatuin was used for automated generation of vegetation density maps, which requires LiDAR data to process an automatically generated map. A part of the orienteering map in the area of Kazlje-Tomaj was used to compare the graphical display of vegetation density. With different settings of parameters in the Karttapullautin application we changed the way how vegetation density of automatically generated map was presented, and tried to match it as much as possible with the orienteering map of Kazlje-Tomaj. Comparing more created maps of vegetation density the most suitable parameter settings to automatically generate maps on other areas were proposed, too.
Reddy, Vinod; Swanson, Stanley M; Segelke, Brent; Kantardjieff, Katherine A; Sacchettini, James C; Rupp, Bernhard
2003-12-01
Anticipating a continuing increase in the number of structures solved by molecular replacement in high-throughput crystallography and drug-discovery programs, a user-friendly web service for automated molecular replacement, map improvement, bias removal and real-space correlation structure validation has been implemented. The service is based on an efficient bias-removal protocol, Shake&wARP, and implemented using EPMR and the CCP4 suite of programs, combined with various shell scripts and Fortran90 routines. The service returns improved maps, converted data files and real-space correlation and B-factor plots. User data are uploaded through a web interface and the CPU-intensive iteration cycles are executed on a low-cost Linux multi-CPU cluster using the Condor job-queuing package. Examples of map improvement at various resolutions are provided and include model completion and reconstruction of absent parts, sequence correction, and ligand validation in drug-target structures.
Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung
2014-09-01
Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (φ1 and φ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ(DS) list as a criterion to select optimized phases φ(am) from φ1 or φ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases φ(SAD) has been developed. Based on this work, reflections with an angle θ(DS) in the range 35-145° are selected for an optimized improvement, where θ(DS) is the angle between the initial phase φ(SAD) and a preliminary density-modification (DM) phase φ(DM)(NHL). The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
Pandurangan, Arun Prasad; Shakeel, Shabih; Butcher, Sarah Jane; Topf, Maya
2014-01-01
Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1 Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog – EV71 capsid – in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting. PMID:24333899
High-resolution mapping of forest carbon stocks in the Colombian Amazon
NASA Astrophysics Data System (ADS)
Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.
2012-07-01
High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40%) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.
High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon
NASA Astrophysics Data System (ADS)
Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.
2012-03-01
High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.
Jeffrey, N.; Abdalla, F. B.; Lahav, O.; ...
2018-05-15
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey, N.; et al.
2018-01-26
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey, N.; Abdalla, F. B.; Lahav, O.
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less
Ensemble Learning of QTL Models Improves Prediction of Complex Traits
Bian, Yang; Holland, James B.
2015-01-01
Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between markers introduces near collinearity among marker genotypes, complicating the detection of QTL and estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps, maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling, incorporates information from many more markers-trait associations than traditional QTL mapping. The objective of TAGGING was to improve prediction power compared with QTL mapping while also providing more specific insights into genetic architecture than genome-wide prediction models. TAGGING was compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.) nested association mapping population. TAGGING-assisted QTL mapping substantially improved prediction ability for both biparental and multifamily populations by reducing both the variance and bias in prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and infinitesimal models improved prediction abilities over the component models, indicating some complementarity between model assumptions and suggesting that some trait genetic architectures involve a mixture of a few major QTL and polygenic effects. PMID:26276383
Undergraduates Improve upon Published Crystal Structure in Class Assignment
ERIC Educational Resources Information Center
Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.
2014-01-01
Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…
NASA Technical Reports Server (NTRS)
Justus, C. G.
1987-01-01
The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.
A High-Density Linkage Map for Astyanax mexicanus Using Genotyping-by-Sequencing Technology
Carlson, Brian M.; Onusko, Samuel W.; Gross, Joshua B.
2014-01-01
The Mexican tetra, Astyanax mexicanus, is a unique model system consisting of cave-adapted and surface-dwelling morphotypes that diverged >1 million years (My) ago. This remarkable natural experiment has enabled powerful genetic analyses of cave adaptation. Here, we describe the application of next-generation sequencing technology to the creation of a high-density linkage map. Our map comprises more than 2200 markers populating 25 linkage groups constructed from genotypic data generated from a single genotyping-by-sequencing project. We leveraged emergent genomic and transcriptomic resources to anchor hundreds of anonymous Astyanax markers to the genome of the zebrafish (Danio rerio), the most closely related model organism to our study species. This facilitated the identification of 784 distinct connections between our linkage map and the Danio rerio genome, highlighting several regions of conserved genomic architecture between the two species despite ∼150 My of divergence. Using a Mendelian cave-associated trait as a proof-of-principle, we successfully recovered the genomic position of the albinism locus near the gene Oca2. Further, our map successfully informed the positions of unplaced Astyanax genomic scaffolds within particular linkage groups. This ability to identify the relative location, orientation, and linear order of unaligned genomic scaffolds will facilitate ongoing efforts to improve on the current early draft and assemble future versions of the Astyanax physical genome. Moreover, this improved linkage map will enable higher-resolution genetic analyses and catalyze the discovery of the genetic basis for cave-associated phenotypes. PMID:25520037
Improvement of flow and bulk density of pharmaceutical powders using surface modification.
Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N
2012-02-28
Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.
Ulloa, Mauricio; Hulse-Kemp, Amanda M; De Santiago, Luis M; Stelly, David M; Burke, John J
2017-01-01
High-density linkage maps are vital to supporting the correct placement of scaffolds and gene sequences on chromosomes and fundamental to contemporary organismal research and scientific approaches to genetic improvement, especially in paleopolyploids with exceptionally complex genomes, eg, upland cotton ( Gossypium hirsutum L., "2n = 52"). Three independently developed intraspecific upland mapping populations were analyzed to generate 3 high-density genetic linkage single-nucleotide polymorphism (SNP) maps and a consensus map using the CottonSNP63K array. The populations consisted of a previously reported F 2 , a recombinant inbred line (RIL), and reciprocal RIL population, from "Phytogen 72" and "Stoneville 474" cultivars. The cluster file provided 7417 genotyped SNP markers, resulting in 26 linkage groups corresponding to the 26 chromosomes (c) of the allotetraploid upland cotton (AD) 1 arisen from the merging of 2 genomes ("A" Old World and "D" New World). Patterns of chromosome-specific recombination were largely consistent across mapping populations. The high-density genetic consensus map included 7244 SNP markers that spanned 3538 cM and comprised 3824 SNP bins, of which 1783 and 2041 were in the A t and D t subgenomes with 1825 and 1713 cM map lengths, respectively. Subgenome average distances were nearly identical, indicating that subgenomic differences in bin number arose due to the high numbers of SNPs on the D t subgenome. Examination of expected recombination frequency or crossovers (COs) on the chromosomes within each population of the 2 subgenomes revealed that COs were also not affected by the SNPs or SNP bin number in these subgenomes. Comparative alignment analyses identified historical ancestral A t -subgenomic translocations of c02 and c03, as well as of c04 and c05. The consensus map SNP sequences aligned with high congruency to the NBI assembly of Gossypium hirsutum . However, the genomic comparisons revealed evidence of additional unconfirmed possible duplications, inversions and translocations, and unbalance SNP sequence homology or SNP sequence/loci genomic dominance, or homeolog loci bias of the upland tetraploid A t and D t subgenomes. The alignments indicated that 364 SNP-associated previously unintegrated scaffolds can be placed in pseudochromosomes of the NBI G hirsutum assembly. This is the first intraspecific SNP genetic linkage consensus map assembled in G hirsutum with a core of reproducible mendelian SNP markers assayed on different populations and it provides further knowledge of chromosome arrangement of genic and nongenic SNPs. Together, the consensus map and RIL populations provide a synergistically useful platform for localizing and identifying agronomically important loci for improvement of the cotton crop.
NASA Astrophysics Data System (ADS)
Jeffrey, N.; Abdalla, F. B.; Lahav, O.; Lanusse, F.; Starck, J.-L.; Leonard, A.; Kirk, D.; Chang, C.; Baxter, E.; Kacprzak, T.; Seitz, S.; Vikram, V.; Whiteway, L.; Abbott, T. M. C.; Allam, S.; Avila, S.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; De Vicente, J.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Hoyle, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Lima, M.; Lin, H.; March, M.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.
2018-05-01
Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and GLIMPSE offer substantial improvements over smoothed KS with a range of metrics. Both the Wiener filter and GLIMPSE convergence reconstructions show a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for GLIMPSE. With simulations we measure the reconstruction of the harmonic phases; the phase residuals' concentration is improved 17% by GLIMPSE and 18% by the Wiener filter. The correlation between reconstructions from data and foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE.
Monroe, J Grey; Allen, Zachariah A; Tanger, Paul; Mullen, Jack L; Lovell, John T; Moyers, Brook T; Whitley, Darrell; McKay, John K
2017-01-01
Recent advances in nucleic acid sequencing technologies have led to a dramatic increase in the number of markers available to generate genetic linkage maps. This increased marker density can be used to improve genome assemblies as well as add much needed resolution for loci controlling variation in ecologically and agriculturally important traits. However, traditional genetic map construction methods from these large marker datasets can be computationally prohibitive and highly error prone. We present TSPmap , a method which implements both approximate and exact Traveling Salesperson Problem solvers to generate linkage maps. We demonstrate that for datasets with large numbers of genomic markers (e.g. 10,000) and in multiple population types generated from inbred parents, TSPmap can rapidly produce high quality linkage maps with low sensitivity to missing and erroneous genotyping data compared to two other benchmark methods, JoinMap and MSTmap . TSPmap is open source and freely available as an R package. With the advancement of low cost sequencing technologies, the number of markers used in the generation of genetic maps is expected to continue to rise. TSPmap will be a useful tool to handle such large datasets into the future, quickly producing high quality maps using a large number of genomic markers.
Schroder, P
1997-01-01
The author critiques the way population density is represented in school atlases, focusing on those used in German-speaking countries. After a discussion of the methodological problems underlying such representations, he selects examples from several German atlases to illustrate the transmission of contradictory, misleading, or out-of-date information. He also suggests ways to improve this situation, including better teaching of underlying cartographical issues and the use of a dot system to illustrate population density.
A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey
NASA Astrophysics Data System (ADS)
Westmeier, Tobias
2018-02-01
High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
High resolution multispectral photogrammetric imagery: enhancement, interpretation and evaluations
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Haefele, Martin; Bostater, Charles; Becker, Thomas
2007-10-01
A variety of aerial mapping cameras were adapted and developed into simulated multiband digital photogrammetric mapping systems. Direct digital multispectral, two multiband cameras (IIS 4 band and Itek 9 band) and paired mapping and reconnaissance cameras were evaluated for digital spectral performance and photogrammetric mapping accuracy in an aquatic environment. Aerial films (24cm X 24cm format) tested were: Agfa color negative and extended red (visible and near infrared) panchromatic, and; Kodak color infrared and B&W (visible and near infrared) infrared. All films were negative processed to published standards and digitally converted at either 16 (color) or 10 (B&W) microns. Excellent precision in the digital conversions was obtained with scanning errors of less than one micron. Radiometric data conversion was undertaken using linear density conversion and centered 8 bit histogram exposure. This resulted in multiple 8 bit spectral image bands that were unaltered (not radiometrically enhanced) "optical count" conversions of film density. This provided the best film density conversion to a digital product while retaining the original film density characteristics. Data covering water depth, water quality, surface roughness, and bottom substrate were acquired using different measurement techniques as well as different techniques to locate sampling points on the imagery. Despite extensive efforts to obtain accurate ground truth data location errors, measurement errors, and variations in the correlation between water depth and remotely sensed signal persisted. These errors must be considered endemic and may not be removed through even the most elaborate sampling set up. Results indicate that multispectral photogrammetric systems offer improved feature mapping capability.
Studying the kinetics of magnetization in high Tc superconductors
NASA Technical Reports Server (NTRS)
Turchinskaya, Marina
1993-01-01
The first microscopic maps of magnetic induction in YBa2Cu3O(7-x) crystals which directly show the dependence of flux flow on twin density and polytwin block and twin boundary orientation are reported. These maps were obtained by means of a recently-improved magneto-optical imaging technique. Pinning was lowest in untwinned regions and increased with increasing twin density. An isotropy in twin boundary pinning, defined as the ratio of the magnetic induction gradient across twin boundaries to that along twin boundaries, was 10 at 17 K; this ratio increased with increasing temperature. In polycrystals, twin boundaries also had a strongly anisotropic effect on flux flow into a grain from a grain boundary.
Studying the kinetics of magnetization in high Tc superconductors
NASA Technical Reports Server (NTRS)
1993-01-01
We report the first microscopic maps of magnetic induction in YBa2Cu3O(7-x) crystals which directly show the dependence of flux flow on twin density, polytwin block, and twin boundary orientation. These maps were obtained by means of a recently-improved magneto-optical imaging technique. Pinning was lowest in untwinned regions and increasing with increasing twin density. Anisotropy in twin boundary pinning, defined as the ratio of the magnetic induction gradient across twin boundaries to that along twin boundaries, was 10 at 17 K; this ratio increased with increasing temperature. In polycrystals, twin boundaries also had a strongly anisotropic effect on flux flow into a grain from a grain boundary.
Niu, Yuze; Gao, Fengtao; Zhao, Yongwei; Zhang, Jing; Sun, Jian; Shao, Changwei; Liao, Xiaolin; Wang, Lei; Tian, Yongsheng; Chen, Songlin
2012-01-01
High-density genetic linkage maps were constructed for the Japanese flounder (Paralichthys olivaceus). A total of 1624 microsatellite markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 resulted in the mapping of 1487 markers to 24 linkage groups, a result which was consistent with the 24 chromosomes seen in chromosome spreads. The female map was composed of 1257 markers, covering a total of 1663.8 cM with an average interval 1.35 cM between markers. The male map consisted of 1224 markers, spanning 1726.5 cM, with an average interval of 1.44 cM. The genome length in the Japanese flounder was estimated to be 1730.3 cM for the females and 1798.0 cM for the males, a coverage of 96.2% for the female and 96.0% for the male map. The mean recombination at common intervals throughout the genome revealed a slight difference between sexes, i.e. 1.07 times higher in the male than female. High-density genetic linkage maps are very useful for marker-assisted selection (MAS) programs for economically valuable traits in this species and for further evolutionary studies in flatfish and vertebrate species. Furthermore, four quantiative trait loci (QTL) associated with growth traits were mapped on the genetic map. One QTL was identified for body weight on LG 14 f, which explained 14.85% of the total variation of the body weight. Three QTL were identified for body width on LG14f and LG14m, accounting for 16.75%, 13.62% and 13.65% of the total variation in body width, respectively. The additive effects were evident as negative values. There were four QTL for growth traits clustered on LG14, which should prove to be very useful for improving growth traits using molecular MAS. PMID:23209734
Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.
2009-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars- GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars- GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear=0 with MapYears 1 and 2 MGCM output at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented of the work underway to derive better multipliers by including possible variation with latitude and/or Ls. This is achieved by comparison of Mars-GRAM MapYear=0 output with TES limb data. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths. Answers may also be provided to the issues raised in a recent study by Desai(2008). Desai has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing. Desai s reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon EDL. The solution of this problem would be important to the Mars Program since future exploration of Mars by landers and rovers will require more accurate landing capabilities, especially for the proposed Mars Sample Return mission.
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
NASA Technical Reports Server (NTRS)
Marrs, R. W.; Evans, M. A.
1974-01-01
The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.
Method for removing atomic-model bias in macromolecular crystallography
Terwilliger, Thomas C [Santa Fe, NM
2006-08-01
Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.
Ganal, Martin W.; Durstewitz, Gregor; Polley, Andreas; Bérard, Aurélie; Buckler, Edward S.; Charcosset, Alain; Clarke, Joseph D.; Graner, Eva-Maria; Hansen, Mark; Joets, Johann; Le Paslier, Marie-Christine; McMullen, Michael D.; Montalent, Pierre; Rose, Mark; Schön, Chris-Carolin; Sun, Qi; Walter, Hildrun; Martin, Olivier C.; Falque, Matthieu
2011-01-01
SNP genotyping arrays have been useful for many applications that require a large number of molecular markers such as high-density genetic mapping, genome-wide association studies (GWAS), and genomic selection. We report the establishment of a large maize SNP array and its use for diversity analysis and high density linkage mapping. The markers, taken from more than 800,000 SNPs, were selected to be preferentially located in genes and evenly distributed across the genome. The array was tested with a set of maize germplasm including North American and European inbred lines, parent/F1 combinations, and distantly related teosinte material. A total of 49,585 markers, including 33,417 within 17,520 different genes and 16,168 outside genes, were of good quality for genotyping, with an average failure rate of 4% and rates up to 8% in specific germplasm. To demonstrate this array's use in genetic mapping and for the independent validation of the B73 sequence assembly, two intermated maize recombinant inbred line populations – IBM (B73×Mo17) and LHRF (F2×F252) – were genotyped to establish two high density linkage maps with 20,913 and 14,524 markers respectively. 172 mapped markers were absent in the current B73 assembly and their placement can be used for future improvements of the B73 reference sequence. Colinearity of the genetic and physical maps was mostly conserved with some exceptions that suggest errors in the B73 assembly. Five major regions containing non-colinearities were identified on chromosomes 2, 3, 6, 7 and 9, and are supported by both independent genetic maps. Four additional non-colinear regions were found on the LHRF map only; they may be due to a lower density of IBM markers in those regions or to true structural rearrangements between lines. Given the array's high quality, it will be a valuable resource for maize genetics and many aspects of maize breeding. PMID:22174790
NASA Astrophysics Data System (ADS)
Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi
1998-07-01
Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less
Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib
2016-03-01
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.
Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Khodaee, Z.
2013-09-01
Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.
Ma, Xin; Fu, Yongcai; Zhao, Xinhui; Jiang, Liyun; Zhu, Zuofeng; Gu, Ping; Xu, Wenying; Su, Zhen; Sun, Chuanqing; Tan, Lubin
2016-01-01
Oryza nivara, an annual wild AA-genome species of rice, is an important gene pool for broadening the genetic diversity of cultivated rice (O. sativa L.). Towards identifying and utilizing favourable alleles from O. nivara, we developed a set of introgression lines (ILs) by introducing O. nivara segments into the elite indica rice variety 93-11 background through advanced backcrossing and repeated selfing. Using whole-genome resequencing, a high-density genetic map containing 1,070 bin-markers was constructed for the 131 ILs, with an average length of 349 kb per bin. The 131 ILs cover 95% of O. nivara genome, providing a relatively complete genomic library for introgressing O. nivara alleles for trait improvement. Using this high-density bin-map, QTL mapping for 13 yield-related traits was performed and a total of 65 QTLs were detected across two environments. At ~36.9% of detected QTLs, the alleles from O. nivara conferred improving effects on yield-associated traits. Six cloned genes, Sh4/SHA1, Bh4, Sd1, TE/TAD1, GS3 and FZP, colocalised in the peak intervals of 9 QTLs. In conclusion, we developed new genetic materials for exploration and use of beneficial alleles from wild rice and provided a basis for future fine mapping and cloning of the favourable O. nivara-derived QTLs. PMID:27251022
The Herschel-SPIRE Point Source Catalog Version 2
NASA Astrophysics Data System (ADS)
Schulz, Bernhard; Marton, Gábor; Valtchanov, Ivan; María Pérez García, Ana; Pintér, Sándor; Appleton, Phil; Kiss, Csaba; Lim, Tanya; Lu, Nanyao; Papageorgiou, Andreas; Pearson, Chris; Rector, John; Sánchez Portal, Miguel; Shupe, David; Tóth, Viktor L.; Van Dyk, Schuyler; Varga-Verebélyi, Erika; Xu, Kevin
2018-01-01
The Herschel-SPIRE instrument mapped about 8% of the sky in Submillimeter broad-band filters centered at 250, 350, and 500 microns (1199, 857, 600 GHz) with spatial resolutions of 17.9”, 24.2”, and 35.4” respectively. We present here the 2nd version of the SPIRE Point Source Catalog (SPSC). Stacking on WISE 22 micron catalog sources led to the identification of 108 maps, out of 6878, that had astrometry offsets of greater than 5”. After fixing these deviations and re-derivation of all affected map-mosaics, we repeated the systematic and homogeneous source extraction performed on all maps, using an improved version of the 4 different photometry extraction methods that were already employed in the generation of the first version catalog. Only regions affected by strong Galactic emission, mostly in the Galactic Plane, were excluded, as they exceeded the limits of the available source extraction methods. Aimed primarily at point sources, that allow for the best photometric accuracy, the catalog contains also significant fractions of slightly extended sources. With most SPIRE maps being confusion limited, uncertainties in flux densities were established as a function of structure noise and flux density, based on the results of artificial source insertion experiments into real data along a range of celestial backgrounds. Many sources have been rejected that do not pass the imposed SNR threshold, especially at flux densities approaching the extragalactic confusion limit. A range of additional flags provide information on the reliability of the flux information, as well as the spatial extent and orientation of a source. The catalog should be particularly helpful for determining cold dust content in extragalactic and galactic sources with low to moderate background confusion. We present an overview of catalog construction, detailed content, and validation results, with focus on the improvements achieved in the second version that is soon to be released.
Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung
2017-12-14
Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and organ-based dosimetry. Errors at the organ-level were -6.71%, 2.17%, and 227.46% for the single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with non-uniform activity distributions offers fast personalized dosimetry at whole-body level, yielding results comparable to those of the direct Monte Carlo approach. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies
NASA Astrophysics Data System (ADS)
Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš
2016-05-01
Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.
Comparison of an Atomic Model and Its Cryo-EM Image at the Central Axis of a Helix
He, Jing; Zeil, Stephanie; Hallak, Hussam; McKaig, Kele; Kovacs, Julio; Wriggers, Willy
2016-01-01
Cryo-electron microscopy (cryo-EM) is an important biophysical technique that produces three-dimensional (3D) density maps at different resolutions. Because more and more models are being produced from cryo-EM density maps, validation of the models is becoming important. We propose a method for measuring local agreement between a model and the density map using the central axis of the helix. This method was tested using 19 helices from cryo-EM density maps between 5.5 Å and 7.2 Å resolution and 94 helices from simulated density maps. This method distinguished most of the well-fitting helices, although challenges exist for shorter helices. PMID:27280059
Johnston, Susan E.; Huisman, Jisca; Ellis, Philip A.; Pemberton, Josephine M.
2017-01-01
High-density linkage maps are an important tool to gain insight into the genetic architecture of traits of evolutionary and economic interest, and provide a resource to characterize variation in recombination landscapes. Here, we used information from the cattle genome and the 50 K Cervine Illumina BeadChip to inform and refine a high-density linkage map in a wild population of red deer (Cervus elaphus). We constructed a predicted linkage map of 38,038 SNPs and a skeleton map of 10,835 SNPs across 34 linkage groups. We identified several chromosomal rearrangements in the deer lineage relative to sheep and cattle, including six chromosome fissions, one fusion, and two large inversions. Otherwise, our findings showed strong concordance with map orders in the cattle genome. The sex-averaged linkage map length was 2739.7 cM and the genome-wide autosomal recombination rate was 1.04 cM/Mb. The female autosomal map length was 1.21 longer than that of males (2767.4 cM vs. 2280.8 cM, respectively). Sex differences in map length were driven by high female recombination rates in peri-centromeric regions, a pattern that is unusual relative to other mammal species. This effect was more pronounced in fission chromosomes that would have had to produce new centromeres. We propose two hypotheses to explain this effect: (1) that this mechanism may have evolved to counteract centromeric drive associated with meiotic asymmetry in oocyte production; and/or (2) that sequence and structural characteristics suppressing recombination in close proximity to the centromere may not have evolved at neo-centromeres. Our study provides insight into how recombination landscapes vary and evolve in mammals, and will provide a valuable resource for studies of evolution, genetic improvement, and population management in red deer and related species. PMID:28667018
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keshri, Anup Kumar
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ˜27% and ˜24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.)
2013-01-01
Background Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. Results We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. Conclusions The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs. PMID:24160306
Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.).
Yagi, Masafumi; Yamamoto, Toshiya; Isobe, Sachiko; Hirakawa, Hideki; Tabata, Satoshi; Tanase, Koji; Yamaguchi, Hiroyasu; Onozaki, Takashi
2013-10-26
Genetic linkage maps are important tools for many genetic applications including mapping of quantitative trait loci (QTLs), identifying DNA markers for fingerprinting, and map-based gene cloning. Carnation (Dianthus caryophyllus L.) is an important ornamental flower worldwide. We previously reported a random amplified polymorphic DNA (RAPD)-based genetic linkage map derived from Dianthus capitatus ssp. andrezejowskianus and a simple sequence repeat (SSR)-based genetic linkage map constructed using data from intraspecific F2 populations; however, the number of markers was insufficient, and so the number of linkage groups (LGs) did not coincide with the number of chromosomes (x = 15). Therefore, we aimed to produce a high-density genetic map to improve its usefulness for breeding purposes and genetic research. We improved the SSR-based genetic linkage map using SSR markers derived from a genomic library, expression sequence tags, and RNA-seq data. Linkage analysis revealed that 412 SSR loci (including 234 newly developed SSR loci) could be mapped to 17 linkage groups (LGs) covering 969.6 cM. Comparison of five minor LGs covering less than 50 cM with LGs in our previous RAPD-based genetic map suggested that four LGs could be integrated into two LGs by anchoring common SSR loci. Consequently, the number of LGs corresponded to the number of chromosomes (x = 15). We added 192 new SSRs, eight RAPD, and two sequence-tagged site loci to refine the RAPD-based genetic linkage map, which comprised 15 LGs consisting of 348 loci covering 978.3 cM. The two maps had 125 SSR loci in common, and most of the positions of markers were conserved between them. We identified 635 loci in carnation using the two linkage maps. We also mapped QTLs for two traits (bacterial wilt resistance and anthocyanin pigmentation in the flower) and a phenotypic locus for flower-type by analyzing previously reported genotype and phenotype data. The improved genetic linkage maps and SSR markers developed in this study will serve as reference genetic linkage maps for members of the genus Dianthus, including carnation, and will be useful for mapping QTLs associated with various traits, and for improving carnation breeding programs.
Functional connectivity density mapping: comparing multiband and conventional EPI protocols.
Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang
2018-06-01
Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.
Pinhas, Alexander; Linderman, Rachel; Mo, Shelley; Krawitz, Brian D; Geyman, Lawrence S; Carroll, Joseph; Rosen, Richard B; Chui, Toco Y
2018-01-01
To present a method for age-matched deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries (RPCs). We reviewed 4.5x4.5mm en face peripapillary OCT-A scans of 133 healthy control eyes (133 subjects, mean 41.5 yrs, range 11-82 yrs) and 4 eyes with distinct retinal pathologies, obtained using spectral-domain optical coherence tomography angiography. Statistical analysis was performed to evaluate the impact of age on RPC perfusion densities. RPC density group mean and standard deviation maps were generated for each decade of life. Deviation maps were created for the diseased eyes based on these maps. Large peripapillary vessel (LPV; noncapillary vessel) perfusion density was also studied for impact of age. Average healthy RPC density was 42.5±1.47%. ANOVA and pairwise Tukey-Kramer tests showed that RPC density in the ≥60yr group was significantly lower compared to RPC density in all younger decades of life (p<0.01). Average healthy LPV density was 21.5±3.07%. Linear regression models indicated that LPV density decreased with age, however ANOVA and pairwise Tukey-Kramer tests did not reach statistical significance. Deviation mapping enabled us to quantitatively and visually elucidate the significance of RPC density changes in disease. It is important to consider changes that occur with aging when analyzing RPC and LPV density changes in disease. RPC density, coupled with age-matched deviation mapping techniques, represents a potentially clinically useful method in detecting changes to peripapillary perfusion in disease.
NR-code: Nonlinear reconstruction code
NASA Astrophysics Data System (ADS)
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
Bajaj, Deepak; Upadhyaya, Hari D.; Khan, Yusuf; Das, Shouvik; Badoni, Saurabh; Shree, Tanima; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Singh, Sube; Sharma, Shivali; Tyagi, Akhilesh K.; Chattopdhyay, Debasis; Parida, Swarup K.
2015-01-01
High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea. PMID:25786576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qing, E-mail: yangqing@cqu.edu.cn; Yu, Fei; Sima, Wenxia
Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticlesmore » can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.« less
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
Mapping radon-prone areas using γ-radiation dose rate and geological information.
García-Talavera, M; García-Pérez, A; Rey, C; Ramos, L
2013-09-01
Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions.
Atomic Resolution Cryo-EM Structure of β-Galactosidase.
Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram
2018-05-10
The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.
Mapping out the QCD phase transition in multiparticle production
NASA Astrophysics Data System (ADS)
Kabana, Sonja; Minkowski, Peter
2001-04-01
We analyse multiparticle production in a thermal framework for seven central nucleus + nucleus collisions, e+ + e- annihilation into hadrons on the Z resonance and four hadronic reactions p + p and p + pbar with partial centrality selection), with centre of mass energies ranging from √(s) = 2.6 GeV (per nucleon pair) to 1.8 TeV. Thermodynamic parameters at chemical freeze-out (temperature and baryon and strangeness fugacities) are obtained from appropriate fits, generally improving in quality for reactions subjected to centrality cuts. All systems with non-vanishing fugacities are extrapolated along trajectories of equal energy density, density and entropy density to zero fugacities. The so-obtained temperatures extrapolated to zero fugacities as a function of initial energy density ɛin universally show a strong rise followed by a saturating limit of Tlim = 155 +/- 6 +/- 20 MeV. We interpret this behaviour as mapping out the boundary between quark gluon plasma and hadronic phases. The ratio of strange antiquarks to light ones as a function of the initial energy density ɛin shows the same behaviour as the temperature, saturating at a value of 0.365 +/- 0.033 +/- 0.07. No distinctive feature of `strangeness enhancement' is seen for heavy ion collisions relative to hadronic and leptonic reactions, when compared at the same initial energy density.
Chen, Jun; Wang, Bo; Zhang, Yueli; Yue, Xiaopeng; Li, Zhaohong; Liu, Kede
2017-06-01
Rapeseed ( Brassica napus L.) is one of the most important oil crops almost all over the world. Seed-related traits, including oil content (OC), silique length (SL), seeds per silique (SS), and seed weight (SW), are primary targets for oil yield improvement. To dissect the genetic basis of these traits, 192 recombinant inbred lines (RILs) were derived from two parents with distinct oil content and silique length. High-density linkage map with a total length of 1610.4 cM were constructed using 1,329 double-digestion restriction site associated DNA (ddRAD) markers, 107 insertion/deletions (INDELs), and 90 well-distributed simple sequence repeats (SSRs) markers. A total of 37 consensus quantitative trait loci (QTLs) were detected for the four traits, with individual QTL explained 3.1-12.8% of the phenotypic variations. Interestingly, one OC consensus QTL ( cqOCA10b ) on chromosome A10 was consistently detected in all three environments, and explained 9.8% to 12.8% of the OC variation. The locus was further delimited into an approximately 614 kb genomic region, in which the flanking markers could be further evaluated for marker-assisted selection in rapeseed OC improvement and the candidate genes targeted for map-based cloning and genetic manipulation.
USDA-ARS?s Scientific Manuscript database
Since its domestication 200 years ago, breeding of the American Cranberry (Vaccinium macrocarpon) has relied on phenotypic selection because applicable resources for molecular improvement strategies such as marker-assisted selection (MAS) remain limited. To enable MAS in cranberry, the first high de...
Mwangungulu, Stephen Peter; Sumaye, Robert David; Limwagu, Alex Julius; Siria, Doreen Josen; Kaindoa, Emmanuel Wilson; Okumu, Fredros Oketch
2016-01-01
Lack of reliable techniques for large-scale monitoring of disease-transmitting mosquitoes is a major public health challenge, especially where advanced geo-information systems are not regularly applicable. We tested an innovative crowd-sourcing approach, which relies simply on knowledge and experiences of residents to rapidly predict areas where disease-transmitting mosquitoes are most abundant. Guided by community-based resource persons, we mapped boundaries and major physical features in three rural Tanzanian villages. We then selected 60 community members, taught them basic map-reading skills, and offered them gridded maps of their own villages (grid size: 200m×200m) so they could identify locations where they believed mosquitoes were most abundant, by ranking the grids from one (highest density) to five (lowest density). The ranks were interpolated in ArcGIS-10 (ESRI-USA) using inverse distance weighting (IDW) method, and re-classified to depict areas people believed had high, medium and low mosquito densities. Finally, we used odor-baited mosquito traps to compare and verify actual outdoor mosquito densities in the same areas. We repeated this process for 12 months, each time with a different group of 60 residents. All entomological surveys depicted similar geographical stratification of mosquito densities in areas classified by community members as having high, medium and low vector abundance. These similarities were observed when all mosquito species were combined, and also when only malaria vectors were considered. Of the 12,412 mosquitoes caught, 60.9% (7,555) were from areas considered by community members as having high mosquito densities, 28% (3,470) from medium density areas, and 11.2% (1,387) from low density areas. This study provides evidence that we can rely on community knowledge and experiences to identify areas where mosquitoes are most abundant or least abundant, even without entomological surveys. This crowd-sourcing method could be further refined and validated to improve community-based planning of mosquito control operations at low-cost.
Limwagu, Alex Julius; Siria, Doreen Josen; Kaindoa, Emmanuel Wilson; Okumu, Fredros Oketch
2016-01-01
Lack of reliable techniques for large-scale monitoring of disease-transmitting mosquitoes is a major public health challenge, especially where advanced geo-information systems are not regularly applicable. We tested an innovative crowd-sourcing approach, which relies simply on knowledge and experiences of residents to rapidly predict areas where disease-transmitting mosquitoes are most abundant. Guided by community-based resource persons, we mapped boundaries and major physical features in three rural Tanzanian villages. We then selected 60 community members, taught them basic map-reading skills, and offered them gridded maps of their own villages (grid size: 200m×200m) so they could identify locations where they believed mosquitoes were most abundant, by ranking the grids from one (highest density) to five (lowest density). The ranks were interpolated in ArcGIS-10 (ESRI-USA) using inverse distance weighting (IDW) method, and re-classified to depict areas people believed had high, medium and low mosquito densities. Finally, we used odor-baited mosquito traps to compare and verify actual outdoor mosquito densities in the same areas. We repeated this process for 12 months, each time with a different group of 60 residents. All entomological surveys depicted similar geographical stratification of mosquito densities in areas classified by community members as having high, medium and low vector abundance. These similarities were observed when all mosquito species were combined, and also when only malaria vectors were considered. Of the 12,412 mosquitoes caught, 60.9% (7,555) were from areas considered by community members as having high mosquito densities, 28% (3,470) from medium density areas, and 11.2% (1,387) from low density areas. This study provides evidence that we can rely on community knowledge and experiences to identify areas where mosquitoes are most abundant or least abundant, even without entomological surveys. This crowd-sourcing method could be further refined and validated to improve community-based planning of mosquito control operations at low-cost. PMID:27253869
NASA Technical Reports Server (NTRS)
Rowan, L. C.; Abrams, M. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Positive findings of earlier evaluations of the color-ratio compositing technique for mapping limonitic altered rocks in south-central Nevada are confirmed, but important limitations in the approach used are pointed out. These limitations arise from environmental, geologic, and image processing factors. The greater vegetation density in the East Tintic Mountains required several modifications in procedures to improve the overall mapping accuracy of the CRC approach. Large format ratio images provide better internal registration of the diazo films and avoids the problems associated with magnifications required in the original procedure. Use of the Linoscan 204 color recognition scanner permits accurate consistent extraction of the green pixels representing limonitic bedrock maps that can be used for mapping at large scales as well as for small scale reconnaissance.
Zhang, Ning; Zhang, Linan; Tao, Ye; Guo, Li; Sun, Juan; Li, Xia; Zhao, Nan; Peng, Jie; Li, Xiaojie; Zeng, Liang; Chen, Jinsa; Yang, Guanpin
2015-03-15
Kelp (Saccharina japonica) has been intensively cultured in China for almost a century. Its genetic improvement is comparable with that of rice. However, the development of its molecular tools is extremely limited, thus its genes, genetics and genomics. Kelp performs an alternative life cycle during which sporophyte generation alternates with gametophyte generation. The gametophytes of kelp can be cloned and crossed. Due to these characteristics, kelp may serve as a reference for the biological and genetic studies of Volvox, mosses and ferns. We constructed a high density single nucleotide polymorphism (SNP) linkage map for kelp by restriction site associated DNA (RAD) sequencing. In total, 4,994 SNP-containing physical (tag-defined) RAD loci were mapped on 31 linkage groups. The map expanded a total genetic distance of 1,782.75 cM, covering 98.66% of the expected (1,806.94 cM). The length of RAD tags (85 bp) was extended to 400-500 bp with Miseq method, offering us an easiness of developing SNP chips and shifting SNP genotyping to a high throughput track. The number of linkage groups was in accordance with the documented with cytological methods. In addition, we identified a set of microsatellites (99 in total) from the extended RAD tags. A gametophyte sex determining locus was mapped on linkage group 2 in a window about 9.0 cM in width, which was 2.66 cM up to marker_40567 and 6.42 cM down to marker_23595. A high density SNP linkage map was constructed for kelp, an intensively cultured brown alga in China. The RAD tags were also extended so that a SNP chip could be developed. In addition, a set of microsatellites were identified among mapped loci, and a gametophyte sex determining locus was mapped. This map will facilitate the genetic studies of kelp including for example the evaluation of germplasm and the decipherment of the genetic bases of economic traits.
Wenzl, Peter; Li, Haobing; Carling, Jason; Zhou, Meixue; Raman, Harsh; Paul, Edie; Hearnden, Phillippa; Maier, Christina; Xia, Ling; Caig, Vanessa; Ovesná, Jaroslava; Cakir, Mehmet; Poulsen, David; Wang, Junping; Raman, Rosy; Smith, Kevin P; Muehlbauer, Gary J; Chalmers, Ken J; Kleinhofs, Andris; Huttner, Eric; Kilian, Andrzej
2006-01-01
Background Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations. PMID:16904008
Ash, Jessica A.; Velazquez, Ramon; Kelley, Christy M.; Powers, Brian E.; Ginsberg, Stephen D.; Mufson, Elliott J.; Strupp, Barbara J.
2014-01-01
Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimer’s disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) lessens hippocampal dysfunction and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1 g/kg choline chloride) or choline supplemented (5.0 g/kg choline chloride) diet. Between 13 and 17 months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial learning and memory followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing powerful support for a functional relationship between these behavioral and morphometric effects of MCS for the trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large. PMID:24932939
Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi
2016-04-07
Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.
Nunes, José de Ribamar da Silva; Liu, Shikai; Pértille, Fábio; Perazza, Caio Augusto; Villela, Priscilla Marqui Schmidt; de Almeida-Val, Vera Maria Fonseca; Hilsdorf, Alexandre Wagner Silva; Liu, Zhanjiang; Coutinho, Luiz Lehmann
2017-01-01
Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs. PMID:28387238
Rastas, Pasi; Calboli, Federico C. F.; Guo, Baocheng; Shikano, Takahito; Merilä, Juha
2016-01-01
High-density linkage maps are important tools for genome biology and evolutionary genetics by quantifying the extent of recombination, linkage disequilibrium, and chromosomal rearrangements across chromosomes, sexes, and populations. They provide one of the best ways to validate and refine de novo genome assemblies, with the power to identify errors in assemblies increasing with marker density. However, assembly of high-density linkage maps is still challenging due to software limitations. We describe Lep-MAP2, a software for ultradense genome-wide linkage map construction. Lep-MAP2 can handle various family structures and can account for achiasmatic meiosis to gain linkage map accuracy. Simulations show that Lep-MAP2 outperforms other available mapping software both in computational efficiency and accuracy. When applied to two large F2-generation recombinant crosses between two nine-spined stickleback (Pungitius pungitius) populations, it produced two high-density (∼6 markers/cM) linkage maps containing 18,691 and 20,054 single nucleotide polymorphisms. The two maps showed a high degree of synteny, but female maps were 1.5–2 times longer than male maps in all linkage groups, suggesting genome-wide recombination suppression in males. Comparison with the genome sequence of the three-spined stickleback (Gasterosteus aculeatus) revealed a high degree of interspecific synteny with a low frequency (<5%) of interchromosomal rearrangements. However, a fairly large (ca. 10 Mb) translocation from autosome to sex chromosome was detected in both maps. These results illustrate the utility and novel features of Lep-MAP2 in assembling high-density linkage maps, and their usefulness in revealing evolutionarily interesting properties of genomes, such as strong genome-wide sex bias in recombination rates. PMID:26668116
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu
2015-08-18
Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Georeferenced LiDAR 3D vine plantation map generation.
Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell
2011-01-01
The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes.
Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U.B.; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh
2015-01-01
DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world’s first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of ‘mono’ repeat (76.82%) over ‘di’ repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait of bioethanol and biogas production along with reaping advantage of crop efficiency in terms of low water and carbon footprint especially in era of climate change. Database URL: http://webapp.cabgrid.res.in/sbmdb/ PMID:26647370
Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U B; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh
2015-01-01
DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world's first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of 'mono' repeat (76.82%) over 'di' repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait of bioethanol and biogas production along with reaping advantage of crop efficiency in terms of low water and carbon footprint especially in era of climate change. Database URL: http://webapp.cabgrid.res.in/sbmdb/. © The Author(s) 2015. Published by Oxford University Press.
Tao, Aifen; Huang, Long; Wu, Guifen; Afshar, Reza Keshavarz; Qi, Jianmin; Xu, Jiantang; Fang, Pingping; Lin, Lihui; Zhang, Liwu; Lin, Peiqing
2017-05-08
Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. An F 8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F 8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F 8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.
Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya
2014-01-01
Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727
Imaging isodensity contours of molecular states with STM
NASA Astrophysics Data System (ADS)
Reecht, Gaël; Heinrich, Benjamin W.; Bulou, Hervé; Scheurer, Fabrice; Limot, Laurent; Schull, Guillaume
2017-11-01
We present an improved way for imaging the density of states of a sample with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dI/dV) constant. When archetypical C60 molecules on Cu(111) are imaged with this method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60 orbitals and their hybridization is then possible.
Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D
2016-07-07
High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.
Multitracer CMB delensing maps from Planck and WISE data
NASA Astrophysics Data System (ADS)
Yu, Byeonghee; Hill, J. Colin; Sherwin, Blake D.
2017-12-01
Delensing, the removal of the limiting lensing B -mode background, is crucial for the success of future cosmic microwave background (CMB) surveys in constraining inflationary gravitational waves (IGWs). In recent work, delensing with large-scale structure tracers has emerged as a promising method both for improving constraints on IGWs and for testing delensing methods for future use. However, the delensing fractions (i.e., the fraction of the lensing-B mode power removed) achieved by recent efforts have been only 20%-30%. In this work, we provide a detailed characterization of a full-sky, dust-cleaned cosmic infrared background (CIB) map for delensing and construct a further-improved delensing template by adding additional tracers to increase delensing performance. In particular, we build a multitracer delensing template by combining the dust-cleaned Planck CIB map with a reconstructed CMB lensing map from Planck and a galaxy number density map from the Wide-field Infrared Survey Explorer (WISE) satellite. For this combination, we calculate the relevant weightings by fitting smooth templates to measurements of all the cross-spectra and autospectra of these maps. On a large fraction of the sky (fsky=0.43 ), we demonstrate that our maps are capable of providing a delensing factor of 43 ±1 % ; using a more restrictive mask (fsky=0.11 ), the delensing factor reaches 48 ±1 % . For low-noise surveys, our delensing maps, which cover much of the sky, can thus improve constraints on the tensor-to-scalar ratio (r ) by nearly a factor of 2. The delensing tracer maps are made publicly available, and we encourage their use in ongoing and upcoming B -mode surveys.
Shetty, Priya B; Tang, Hua; Feng, Tao; Tayo, Bamidele; Morrison, Alanna C; Kardia, Sharon L R; Hanis, Craig L; Arnett, Donna K; Hunt, Steven C; Boerwinkle, Eric; Rao, Dabeeru C; Cooper, Richard S; Risch, Neil; Zhu, Xiaofeng
2015-02-01
Admixture mapping of lipids was followed-up by family-based association analysis to identify variants for cardiovascular disease in African Americans. The present study conducted admixture mapping analysis for total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. The analysis was performed in 1905 unrelated African American subjects from the National Heart, Lung and Blood Institute's Family Blood Pressure Program (FBPP). Regions showing admixture evidence were followed-up with family-based association analysis in 3556 African American subjects from the FBPP. The admixture mapping and family-based association analyses were adjusted for age, age(2), sex, body mass index, and genome-wide mean ancestry to minimize the confounding caused by population stratification. Regions that were suggestive of local ancestry association evidence were found on chromosomes 7 (low-density lipoprotein cholesterol), 8 (high-density lipoprotein cholesterol), 14 (triglycerides), and 19 (total cholesterol and triglycerides). In the fine-mapping analysis, 52 939 single-nucleotide polymorphisms (SNPs) were tested and 11 SNPs (8 independent SNPs) showed nominal significant association with high-density lipoprotein cholesterol (2 SNPs), low-density lipoprotein cholesterol (4 SNPs), and triglycerides (5 SNPs). The family data were used in the fine-mapping to identify SNPs that showed novel associations with lipids and regions, including genes with known associations for cardiovascular disease. This study identified regions on chromosomes 7, 8, 14, and 19 and 11 SNPs from the fine-mapping analysis that were associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides for further studies of cardiovascular disease in African Americans. © 2014 American Heart Association, Inc.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2014-11-17
Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...
Lisa A. Schulte; David J. Mladenoff; Erik V. Nordheim
2002-01-01
We developed a quantitative and replicable classification system to improve understanding of historical composition and structure within northern Wisconsin's forests. The classification system was based on statistical cluster analysis and two forest metrics, relative dominance (% basal area) and relative importance (mean of relative dominance and relative density...
Model-based local density sharpening of cryo-EM maps
Jakobi, Arjen J; Wilmanns, Matthias
2017-01-01
Atomic models based on high-resolution density maps are the ultimate result of the cryo-EM structure determination process. Here, we introduce a general procedure for local sharpening of cryo-EM density maps based on prior knowledge of an atomic reference structure. The procedure optimizes contrast of cryo-EM densities by amplitude scaling against the radially averaged local falloff estimated from a windowed reference model. By testing the procedure using six cryo-EM structures of TRPV1, β-galactosidase, γ-secretase, ribosome-EF-Tu complex, 20S proteasome and RNA polymerase III, we illustrate how local sharpening can increase interpretability of density maps in particular in cases of resolution variation and facilitates model building and atomic model refinement. PMID:29058676
NASA Technical Reports Server (NTRS)
Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew
2005-01-01
Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) for which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities from National Lightning Detection Network (NLDN) data. The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at the two organizations provided this data and supporting software for the work performed by the AMU. The densities were first stratified by flow regime, then by time in 1-, 3-, 6-, 12-, and 24-hour increments while maintaining the 2.5 km x 2.5 km grid resolution. A CG frequency of occurrence was calculated for each stratification and grid box by counting the number of days with lightning and dividing by the total number of days in the data set. New CG strike densities were calculated for each stratification and grid box by summing the strike number values over all warm seasons, then normalized by dividing the summed values by the number of lightning days. This makes the densities conditional on whether lightning occurred. The frequency climatology values will be used by forecasters as proxy inputs for lightning prObability, while the density climatology values will be used for CG amount. In addition to the benefits outlined above, these climatologies will provide improved temporal and spatial resolution, expansion of the lightning threat area to include adjacent coastal waters, and potential to extend the forecast to include the day-2 period. This presentation will describe the lightning threat index map, discuss the work done to create the maps initialized with climatological guidance, and show examples of the climatological CG lightning densities and frequencies of occurren based on flow regime.
Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob
2002-11-01
We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. Copyright 2002 Wiley-Liss, Inc.
Overlay improvement by exposure map based mask registration optimization
NASA Astrophysics Data System (ADS)
Shi, Irene; Guo, Eric; Chen, Ming; Lu, Max; Li, Gordon; Li, Rivan; Tian, Eric
2015-03-01
Along with the increased miniaturization of semiconductor electronic devices, the design rules of advanced semiconductor devices shrink dramatically. [1] One of the main challenges of lithography step is the layer-to-layer overlay control. Furthermore, DPT (Double Patterning Technology) has been adapted for the advanced technology node like 28nm and 14nm, corresponding overlay budget becomes even tighter. [2][3] After the in-die mask registration (pattern placement) measurement is introduced, with the model analysis of a KLA SOV (sources of variation) tool, it's observed that registration difference between masks is a significant error source of wafer layer-to-layer overlay at 28nm process. [4][5] Mask registration optimization would highly improve wafer overlay performance accordingly. It was reported that a laser based registration control (RegC) process could be applied after the pattern generation or after pellicle mounting and allowed fine tuning of the mask registration. [6] In this paper we propose a novel method of mask registration correction, which can be applied before mask writing based on mask exposure map, considering the factors of mask chip layout, writing sequence, and pattern density distribution. Our experiment data show if pattern density on the mask keeps at a low level, in-die mask registration residue error in 3sigma could be always under 5nm whatever blank type and related writer POSCOR (position correction) file was applied; it proves random error induced by material or equipment would occupy relatively fixed error budget as an error source of mask registration. On the real production, comparing the mask registration difference through critical production layers, it could be revealed that registration residue error of line space layers with higher pattern density is always much larger than the one of contact hole layers with lower pattern density. Additionally, the mask registration difference between layers with similar pattern density could also achieve under 5nm performance. We assume mask registration excluding random error is mostly induced by charge accumulation during mask writing, which may be calculated from surrounding exposed pattern density. Multi-loading test mask registration result shows that with x direction writing sequence, mask registration behavior in x direction is mainly related to sequence direction, but mask registration in y direction would be highly impacted by pattern density distribution map. It proves part of mask registration error is due to charge issue from nearby environment. If exposure sequence is chip by chip for normal multi chip layout case, mask registration of both x and y direction would be impacted analogously, which has also been proved by real data. Therefore, we try to set up a simple model to predict the mask registration error based on mask exposure map, and correct it with the given POSCOR (position correction) file for advanced mask writing if needed.
Covarrubias-Pazaran, Giovanny; Diaz-Garcia, Luis; Schlautman, Brandon; Deutsch, Joseph; Salazar, Walter; Hernandez-Ochoa, Miguel; Grygleski, Edward; Steffan, Shawn; Iorizzo, Massimo; Polashock, James; Vorsa, Nicholi; Zalapa, Juan
2016-06-13
The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).
2013-01-01
Background Genetic linkage maps are important tools in breeding programmes and quantitative trait analyses. Traditional molecular markers used for genotyping are limited in throughput and efficiency. The advent of next-generation sequencing technologies has facilitated progeny genotyping and genetic linkage map construction in the major grains. However, the applicability of the approach remains untested in the fungal system. Findings Shiitake mushroom, Lentinula edodes, is a basidiomycetous fungus that represents one of the most popular cultivated edible mushrooms. Here, we developed a rapid genotyping method based on low-coverage (~0.5 to 1.5-fold) whole-genome resequencing. We used the approach to genotype 20 single-spore isolates derived from L. edodes strain L54 and constructed the first high-density sequence-based genetic linkage map of L. edodes. The accuracy of the proposed genotyping method was verified experimentally with results from mating compatibility tests and PCR-single-strand conformation polymorphism on a few known genes. The linkage map spanned a total genetic distance of 637.1 cM and contained 13 linkage groups. Two hundred sequence-based markers were placed on the map, with an average marker spacing of 3.4 cM. The accuracy of the map was confirmed by comparing with previous maps the locations of known genes such as matA and matB. Conclusions We used the shiitake mushroom as an example to provide a proof-of-principle that low-coverage resequencing could allow rapid genotyping of basidiospore-derived progenies, which could in turn facilitate the construction of high-density genetic linkage maps of basidiomycetous fungi for quantitative trait analyses and improvement of genome assembly. PMID:23915543
SCF-Xα-SW electron densities with the overlapping sphere approximation
NASA Astrophysics Data System (ADS)
McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.
Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential approximation, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT approximation in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS approximation is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS approximation increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
In June, NASA plans to launch the Microwave Anisotropy Probe (MAP) to survey the ancient radiation in unprecedented detail. MAP will map slight temperature fluctuations within the microwave background that vary by only 0.00001 C across a chilly radiation that now averages 2.73 C above absolute zero. The temperature differences today point back to density differences in the fiery baby universe, in which there was a little more matter here and a little less matter there. Areas of slightly enhanced density had stronger gravity than low-density areas. The high-density areas pulled back on the background radiation, making it appear slightly cooler in those directions.
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
USDA-ARS?s Scientific Manuscript database
Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
Correcting pervasive errors in RNA crystallography through enumerative structure prediction.
Chou, Fang-Chieh; Sripakdeevong, Parin; Dibrov, Sergey M; Hermann, Thomas; Das, Rhiju
2013-01-01
Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R(free) factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
Milczarski, Paweł; Hanek, Monika; Tyrka, Mirosław; Stojałowski, Stefan
2016-11-01
Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.
Investigating Star-Gas Correlation and Evolution in the 100pc Cygnus X Complex
NASA Astrophysics Data System (ADS)
Gutermuth, Robert
We request support to pursue a substantial refinement of the ongoing characterizations of star and gas surface density in nearby star forming regions by engaging in a focused study of the Cygnus X star forming complex. The substantial physical size of the region and high spatial dynamic range of its surveys enables us to achieve the following science goals: - Characterize the distributions of gas and stellar column densities in a large, nearby starforming complex and integrate those values over successively larger physical scales in order to gauge the effect of varying physical resolution on the measured star-gas correlation. - Validate integrated 24 ¼m luminosity as a method of estimating star formation rate surface density using a region in which the substantial number of known forming members should ensure that the IMF is statistically well-sampled. - Validate 12CO luminosity as a method of estimating molecular gas column density against 13CO column density. tegrated 24 micron and radio continuum luminosity. To achieve these goals, we will perform substantial improvement and expansion of the Cygnus X Spitzer (and 2MASS) Legacy Survey point source catalog using UKIRT Infrared Deep Sky Survey (UKIDSS) near-IR data and WISE mid-IR data. From this catalog, we will produce a comprehensive census of young stellar objects (YSOs) with IR-excess emission over the numerical bulk of the stellar mass function (0.2 2 M ). This YSO catalog is expected to be considerably larger than the entire YSO census of the nearest kiloparsec. Both the point source and YSO catalogs will be contributed to the Infrared Science Archive (IRSA) to facilitate community access to these improved data products. In addition, we will provide a star formation surface density map derived from the MIPS 24 micron map of Cygnus X from the Spitzer Legacy Survey and gas column density maps derived from 12CO and 13CO data from the Exeter-Five College Radio Astronomy Observatory Cygnus Survey. The proposed program will bring to maturity a major new scientific result from the combination of data from several NASA program investments (Spitzer Legacy, WISE, & 2MASS) and some external archives (UKIDSS GPS, Exeter-FCRAO XGRS) that we have shown above add considerable value to the scientific interpretation of the data from the NASA archive. The improvement in effective sensitivity to low mass YSOs from the Cygnus X Legacy Survey source catalog and our targeted science investigation to examine the star-gas correlation (and any deviation that may correlate with local YSO evolutionary age) are relevant to the NASA Astrophysics Theme, Cosmic Origins, which aspires to unveil how the universe developed to the current day configuration of galaxies, stars and planets and the conditions necessary for life.
Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou
2016-01-01
Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016
Spatial fuel data products of the LANDFIRE Project
Reeves, M.C.; Ryan, K.C.; Rollins, M.G.; Thompson, T.G.
2009-01-01
The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50 states. Here we describe development of the LANDFIRE wildland fuels data layers for the conterminous 48 states: surface fire behavior fuel models, canopy bulk density, canopy base height, canopy cover, and canopy height. Surface fire behavior fuel models are mapped by developing crosswalks to vegetation structure and composition created by LANDFIRE. Canopy fuels are mapped using regression trees relating field-referenced estimates of canopy base height and canopy bulk density to satellite imagery, biophysical gradients and vegetation structure and composition data. Here we focus on the methods and data used to create the fuel data products, discuss problems encountered with the data, provide an accuracy assessment, demonstrate recent use of the data during the 2007 fire season, and discuss ideas for updating, maintaining and improving LANDFIRE fuel data products.
NASA Astrophysics Data System (ADS)
D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.
2017-11-01
We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.
Romero Navarro, J. Alberto; Phillips-Mora, Wilbert; Arciniegas-Leal, Adriana; Mata-Quirós, Allan; Haiminen, Niina; Mustiga, Guiliana; Livingstone III, Donald; van Bakel, Harm; Kuhn, David N.; Parida, Laxmi; Kasarskis, Andrew; Motamayor, Juan C.
2017-01-01
Chocolate is a highly valued and palatable confectionery product. Chocolate is primarily made from the processed seeds of the tree species Theobroma cacao. Cacao cultivation is highly relevant for small-holder farmers throughout the tropics, yet its productivity remains limited by low yields and widespread pathogens. A panel of 148 improved cacao clones was assembled based on productivity and disease resistance, and phenotypic single-tree replicated clonal evaluation was performed for 8 years. Using high-density markers, the diversity of clones was expressed relative to 10 known ancestral cacao populations, and significant effects of ancestry were observed in productivity and disease resistance. Genome-wide association (GWA) was performed, and six markers were significantly associated with frosty pod disease resistance. In addition, genomic selection was performed, and consistent with the observed extensive linkage disequilibrium, high predictive ability was observed at low marker densities for all traits. Finally, quantitative trait locus mapping and differential expression analysis of two cultivars with contrasting disease phenotypes were performed to identify genes underlying frosty pod disease resistance, identifying a significant quantitative trait locus and 35 differentially expressed genes using two independent differential expression analyses. These results indicate that in breeding populations of heterozygous and recently admixed individuals, mapping approaches can be used for low complexity traits like pod color cacao, or in other species single gene disease resistance, however genomic selection for quantitative traits remains highly effective relative to mapping. Our results can help guide the breeding process for sustainable improved cacao productivity. PMID:29184558
Serin, Elise A. R.; Snoek, L. B.; Nijveen, Harm; Willems, Leo A. J.; Jiménez-Gómez, Jose M.; Hilhorst, Henk W. M.; Ligterink, Wilco
2017-01-01
High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches. PMID:29259624
Adaptive noise correction of dual-energy computed tomography images.
Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross
2016-04-01
Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.
USDA-ARS?s Scientific Manuscript database
Hard red winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) was used to develop a recombinant inbred population to identify genomic regions associated with drought and adaptation. To precisely map genomic regions high-density linkage maps are a prerequisite. In this s...
Open access resources for genome-wide association mapping in rice
McCouch, Susan R.; Wright, Mark H.; Tung, Chih-Wei; Maron, Lyza G.; McNally, Kenneth L.; Fitzgerald, Melissa; Singh, Namrata; DeClerck, Genevieve; Agosto-Perez, Francisco; Korniliev, Pavel; Greenberg, Anthony J.; Naredo, Ma. Elizabeth B.; Mercado, Sheila Mae Q.; Harrington, Sandra E.; Shi, Yuxin; Branchini, Darcy A.; Kuser-Falcão, Paula R.; Leung, Hei; Ebana, Kowaru; Yano, Masahiro; Eizenga, Georgia; McClung, Anna; Mezey, Jason
2016-01-01
Increasing food production is essential to meet the demands of a growing human population, with its rising income levels and nutritional expectations. To address the demand, plant breeders seek new sources of genetic variation to enhance the productivity, sustainability and resilience of crop varieties. Here we launch a high-resolution, open-access research platform to facilitate genome-wide association mapping in rice, a staple food crop. The platform provides an immortal collection of diverse germplasm, a high-density single-nucleotide polymorphism data set tailored for gene discovery, well-documented analytical strategies, and a suite of bioinformatics resources to facilitate biological interpretation. Using grain length, we demonstrate the power and resolution of our new high-density rice array, the accompanying genotypic data set, and an expanded diversity panel for detecting major and minor effect QTLs and subpopulation-specific alleles, with immediate implications for rice improvement. PMID:26842267
Global soil-climate-biome diagram: linking soil properties to climate and biota
NASA Astrophysics Data System (ADS)
Zhao, X.; Yang, Y.; Fang, J.
2017-12-01
As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.
[Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].
Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong
2015-11-01
With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott
2006-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott
2007-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
USDA-ARS?s Scientific Manuscript database
High-density genetic linkage maps are essential for fine mapping QTLs controlling disease resistance traits, such as early leaf spot (ELS), late leaf spot (LLS), and Tomato spotted wilt virus (TSWV). With completion of the genome sequences of two diploid ancestors of cultivated peanut, we could use ...
Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.
Wang, Ray Yu-Ruei; Song, Yifan; Barad, Benjamin A; Cheng, Yifan; Fraser, James S; DiMaio, Frank
2016-09-26
Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3-4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids - typical in a macromolecular assembly - is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps.
Local activation time sampling density for atrial tachycardia contact mapping: how much is enough?
Williams, Steven E; Harrison, James L; Chubb, Henry; Whitaker, John; Kiedrowicz, Radek; Rinaldi, Christopher A; Cooklin, Michael; Wright, Matthew; Niederer, Steven; O'Neill, Mark D
2018-02-01
Local activation time (LAT) mapping forms the cornerstone of atrial tachycardia diagnosis. Although anatomic and positional accuracy of electroanatomic mapping (EAM) systems have been validated, the effect of electrode sampling density on LAT map reconstruction is not known. Here, we study the effect of chamber geometry and activation complexity on optimal LAT sampling density using a combined in silico and in vivo approach. In vivo 21 atrial tachycardia maps were studied in three groups: (1) focal activation, (2) macro-re-entry, and (3) localized re-entry. In silico activation was simulated on a 4×4cm atrial monolayer, sampled randomly at 0.25-10 points/cm2 and used to re-interpolate LAT maps. Activation patterns were studied in the geometrically simple porcine right atrium (RA) and complex human left atrium (LA). Activation complexity was introduced into the porcine RA by incomplete inter-caval linear ablation. In all cases, optimal sampling density was defined as the highest density resulting in minimal further error reduction in the re-interpolated maps. Optimal sampling densities for LA tachycardias were 0.67 ± 0.17 points/cm2 (focal activation), 1.05 ± 0.32 points/cm2 (macro-re-entry) and 1.23 ± 0.26 points/cm2 (localized re-entry), P = 0.0031. Increasing activation complexity was associated with increased optimal sampling density both in silico (focal activation 1.09 ± 0.14 points/cm2; re-entry 1.44 ± 0.49 points/cm2; spiral-wave 1.50 ± 0.34 points/cm2, P < 0.0001) and in vivo (porcine RA pre-ablation 0.45 ± 0.13 vs. post-ablation 0.78 ± 0.17 points/cm2, P = 0.0008). Increasing chamber geometry was also associated with increased optimal sampling density (0.61 ± 0.22 points/cm2 vs. 1.0 ± 0.34 points/cm2, P = 0.0015). Optimal sampling densities can be identified to maximize diagnostic yield of LAT maps. Greater sampling density is required to correctly reveal complex activation and represent activation across complex geometries. Overall, the optimal sampling density for LAT map interpolation defined in this study was ∼1.0-1.5 points/cm2. Published on behalf of the European Society of Cardiology
A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut
2012-01-01
Background Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. Results More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago. Conclusions The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine mapping in other peanut species and has already had application for mapping a nematode resistance gene that was introgressed into A. hypogaea from A. cardenasii. PMID:22967170
Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun
2017-01-01
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding. PMID:28848588
NASA Astrophysics Data System (ADS)
Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.; McIntosh, Kirk D.; Gibson, James; Orange, Daniel; Ranero, Cesar R.; von Huene, Roland
2013-03-01
We used high-resolution mapping to document 161 sites of potential fluid seepage on the shelf and slope regions where no geophysical seep indicators had been reported. Identified potential seabed seepage sites show both high-backscatter anomalies and bathymetric expressions, such as pockmarks, mounds, and ridges. Almost all identified seabed features are associated with bright spots and flat spots beneath, as mapped within the 3-D seismic grid. We obtained EM122 multi-beam data using closely spaced receiver beams and 4-5 times overlapping multi-beam swaths, which greatly improved the sounding density and geologic resolvability of the data. At least one location shows an acoustic plume in the water column on a 3.5 kHz profile, and this plume is located along a fault trace and above surface and subsurface seepage indicators. Fluid indicators are largely associated with folds and faults within the sediment section, and many of the faults continue into and offset the reflective basement. A dense pattern of normal faults is seen on the outer shelf in the multi-beam bathymetry, backscatter, and 3-D seismic data, and the majority of fluid seepage indicators lie along mapped fault traces. Furthermore, linear mounds, ridges, and pockmark chains are found on the upper, middle, and lower slope regions. The arcuate shape of the shelf edge, projection of the Quepos Ridge, and high density of potential seep sites suggest that this area may be a zone of former seamount/ridge subduction. These results demonstrate a much greater potential seep density and distribution than previously reported across the Costa Rican margin.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-01-01
Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
NASA Astrophysics Data System (ADS)
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-01
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.
Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong
2016-08-26
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
2012-01-01
Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186) was C03, and the chromosome with smallest number of markers (99) was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps. PMID:23033896
2013-01-01
Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications. PMID:24377374
Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family
Sun, Qi; Manns, David C.; Sacks, Gavin L.; Mansfield, Anna Katharine; Luby, James J.; Londo, Jason P.; Reisch, Bruce I.; Cadle-Davidson, Lance E.; Fennell, Anne Y.
2016-01-01
In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species. PMID:26974672
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Qian, Wei; Fan, Guiyan; Liu, Dandan; Zhang, Helong; Wang, Xiaowu; Wu, Jian; Xu, Zhaosheng
2017-04-04
Cultivated spinach (Spinacia oleracea L.) is one of the most widely cultivated types of leafy vegetable in the world, and it has a high nutritional value. Spinach is also an ideal plant for investigating the mechanism of sex determination because it is a dioecious species with separate male and female plants. Some reports on the sex labeling and localization of spinach in the study of molecular markers have surfaced. However, there have only been two reports completed on the genetic map of spinach. The lack of rich and reliable molecular markers and the shortage of high-density linkage maps are important constraints in spinach research work. In this study, a high-density genetic map of spinach based on the Specific-locus Amplified Fragment Sequencing (SLAF-seq) technique was constructed; the sex-determining gene was also finely mapped. Through bio-information analysis, 50.75 Gb of data in total was obtained, including 207.58 million paired-end reads. Finally, 145,456 high-quality SLAF markers were obtained, with 27,800 polymorphic markers and 4080 SLAF markers were finally mapped onto the genetic map after linkage analysis. The map spanned 1,125.97 cM with an average distance of 0.31 cM between the adjacent marker loci. It was divided into 6 linkage groups corresponding to the number of spinach chromosomes. Besides, the combination of Bulked Segregation Analysis (BSA) with SLAF-seq technology(super-BSA) was employed to generate the linkage markers with the sex-determining gene. Combined with the high-density genetic map of spinach, the sex-determining gene X/Y was located at the position of the linkage group (LG) 4 (66.98 cM-69.72 cM and 75.48 cM-92.96 cM), which may be the ideal region for the sex-determining gene. A high-density genetic map of spinach based on the SLAF-seq technique was constructed with a backcross (BC 1 ) population (which is the highest density genetic map of spinach reported at present). At the same time, the sex-determining gene X/Y was mapped to LG4 with super-BSA. This map will offer a suitable basis for further study of spinach, such as gene mapping, map-based cloning of Specific genes, quantitative trait locus (QTL) mapping and marker-assisted selection (MAS). It will also provide an efficient reference for studies on the mechanism of sex determination in other dioecious plants.
Garza-Gisholt, Eduardo; Hemmi, Jan M; Hart, Nathan S; Collin, Shaun P
2014-01-01
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed 'by eye'. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation 'respects' the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the 'noise' caused by artefacts and permits a clearer representation of the dominant, 'real' distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome.
Crawford, Paul; Wiltz, Scott
2015-01-01
The Diabetes Conversation Map program includes 4 "board game-like" education tools. We describe how the Journey to Life Conversation Map Education Class improves diabetes performance measures of hemoglobin A1c (HbA1c), low-density lipoprotein (LDL), and blood pressure (BP). Retrospective case-control study in a military family medicine clinic from January 2007 to January 2010. We included 202 patients who completed ≥1 conversation map class and a comparison group of 209 patients who did not attend. Attendees started with HbA1c 8.25 (95% confidence interval [CI], 7.86-8.64) and decreased to 6.96 (95% CI, 6.69-7.23). Patients in the comparison group started at 8.57 (95% CI, 8.18-8.95) and decreased to 8.27 (95% CI, 8.01-8.54) (P < .001). Attendees began with LDL of 111 mg/dL (95% CI, 103-119) and decreased to 94 mg/dL (95% CI, 81-106). Patients in the comparison group started at 89 mg/dL (95% CI, 81-98) and increased to 98 mg/dL (95% CI, 85-110) (P < .007). Systolic BP decreased 5.4 mmHg among attendees versus 0.8 mmHg among those in the comparison group (P = .014), whereas diastolic BP was unchanged (P = .110). The Journey to Life Healthy Interactions Conversation Map Education Class for diabetes improves diabetes performance measures. © Copyright 2015 by the American Board of Family Medicine.
Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu
2015-01-01
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line ‘APL01’ and a normally petalled variety ‘Holly’. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus. PMID:26779193
Wang, Xiaodong; Yu, Kunjiang; Li, Hongge; Peng, Qi; Chen, Feng; Zhang, Wei; Chen, Song; Hu, Maolong; Zhang, Jiefu
2015-01-01
The apetalous genotype is a morphological ideotype for increasing seed yield and should be of considerable agricultural use; however, only a few studies have focused on the genetic control of this trait in Brassica napus. In the present study, a recombinant inbred line, the AH population, containing 189 individuals was derived from a cross between an apetalous line 'APL01' and a normally petalled variety 'Holly'. The Brassica 60 K Infinium BeadChip Array harboring 52,157 single nucleotide polymorphism (SNP) markers was used to genotype the AH individuals. A high-density genetic linkage map was constructed based on 2,755 bins involving 11,458 SNPs and 57 simple sequence repeats, and was used to identify loci associated with petalous degree (PDgr). The linkage map covered 2,027.53 cM, with an average marker interval of 0.72 cM. The AH map had good collinearity with the B. napus reference genome, indicating its high quality and accuracy. After phenotypic analyses across five different experiments, a total of 19 identified quantitative trait loci (QTLs) distributed across chromosomes A3, A5, A6, A9 and C8 were obtained, and these QTLs were further integrated into nine consensus QTLs by a meta-analysis. Interestingly, the major QTL qPD.C8-2 was consistently detected in all five experiments, and qPD.A9-2 and qPD.C8-3 were stably expressed in four experiments. Comparative mapping between the AH map and the B. napus reference genome suggested that there were 328 genes underlying the confidence intervals of the three steady QTLs. Based on the Gene Ontology assignments of 52 genes to the regulation of floral development in published studies, 146 genes were considered as potential candidate genes for PDgr. The current study carried out a QTL analysis for PDgr using a high-density SNP map in B. napus, providing novel targets for improving seed yield. These results advanced our understanding of the genetic control of PDgr regulation in B. napus.
NASA Astrophysics Data System (ADS)
Baptiste, Julien; Martelet, Guillaume; Faure, Michel; Beccaletto, Laurent; Chen, Yan; Reninger, Pierre-Alexandre
2016-04-01
Mapping the geometries (structure and lithology) of a buried basement is a key for targeting resources and for improving the regional geological knowledge. The Paris basin is a Mesozoic to Cenozoic intraplate basin set up on a Variscan substratum, which crops out in the surrounding massifs. We focus our study on the southwestern part of the Paris basin at its junction with the Aquitaine basin. This Mezo-Cenozoic cover separates the Armorican Massif and the Massif Central which compose of several litho-tectonic units bounded by crustal-scale shear zones. In spite of several lithological and structural correlations between various domains of the two massifs, their geological connection, hidden below the Paris basin sedimentary cover, is still largely debated. Potential field geophysics have proven effective for mapping buried basin/basement interfaces. In order to enhance the cartographic interpretation of these data, we have set up a detailed petrophysical library (field magnetic susceptibility data and density measurements on rock samples) of the Paleozoic rocks outcropping in the Variscan massifs. The combination of aeromagnetic and gravity data supported by the petrophysical signatures and field/borehole geological information, is carried out to propose a new map of the architecture of the Variscan substratum. The new synthetic map of geophysical signature of the Paris basin basement combines: i) the magnetic anomaly reduced to the pole, ii) the vertical gradient of the Bouguer anomaly and iii) the tilt derivative of the magnetic anomaly reduced to the pole. Based on this information, the Eastern extension of the major shear zones below the sedimentary cover is assessed. The petrophysical signatures were classified in three classes of magnetic susceptibility and density: low, intermediate and high. Basic rocks have high magnetization and density values whereas granite, migmatite and orthogneiss show low magnetization and density values, Proterozoic and Paleozoic sediments, micaschists and metagrauwackes have intermediate to low magnetization and density values. Detailed lithological attribution of geophysical anomalies was achieved separately for each geological sub-domain (in between 2 major structures). This methodology will be generalized at the scale of the entire Paris basin in order to propose a tectonic reconstruction of this segment of the Variscan belt, and provide guides for the exploration of hidden resources.
Genetic dissection of sorghum grain quality traits using diverse and segregating populations.
Boyles, Richard E; Pfeiffer, Brian K; Cooper, Elizabeth A; Rauh, Bradley L; Zielinski, Kelsey J; Myers, Matthew T; Brenton, Zachary; Rooney, William L; Kresovich, Stephen
2017-04-01
Coordinated association and linkage mapping identified 25 grain quality QTLs in multiple environments, and fine mapping of the Wx locus supports the use of high-density genetic markers in linkage mapping. There is a wide range of end-use products made from cereal grains, and these products often demand different grain characteristics. Fortunately, cereal crop species including sorghum [Sorghum bicolor (L.) Moench] contain high phenotypic variation for traits influencing grain quality. Identifying genetic variants underlying this phenotypic variation allows plant breeders to develop genotypes with grain attributes optimized for their intended usage. Multiple sorghum mapping populations were rigorously phenotyped across two environments (SC Coastal Plain and Central TX) in 2 years for five major grain quality traits: amylose, starch, crude protein, crude fat, and gross energy. Coordinated association and linkage mapping revealed several robust QTLs that make prime targets to improve grain quality for food, feed, and fuel products. Although the amylose QTL interval spanned many megabases, the marker with greatest significance was located just 12 kb from waxy (Wx), the primary gene regulating amylose production in cereal grains. This suggests higher resolution mapping in recombinant inbred line (RIL) populations can be obtained when genotyped at a high marker density. The major QTL for crude fat content, identified in both a RIL population and grain sorghum diversity panel, encompassed the DGAT1 locus, a critical gene involved in maize lipid biosynthesis. Another QTL on chromosome 1 was consistently mapped in both RIL populations for multiple grain quality traits including starch, crude protein, and gross energy. Collectively, these genetic regions offer excellent opportunities to manipulate grain composition and set up future studies for gene validation.
Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle
Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.
2003-01-01
This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.
Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline
2010-05-01
This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.
Computer aided manufacturing for complex freeform optics
NASA Astrophysics Data System (ADS)
Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg
2017-10-01
Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.
Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands.
Hiemstra, Paul H; Pebesma, Edzer J; Heuvelink, Gerard B M; Twenhöfel, Chris J W
2010-12-01
The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect. Copyright © 2010 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...
NASA Astrophysics Data System (ADS)
Luther, J.; Meyer, V.; Kuhlicke, C.; Scheuer, S.; Unnerstall, H.
2012-04-01
The EU Floods Directive requires the establishment of flood risk maps for high risk areas in all EU Member States by 2013. However, if existing at all, the current practice of risk mapping still shows some deficits: Risk maps are often seen as an information tool rather than a communication tool. This means that e.g. important local knowledge is not incorporated and forms a contrast to the understanding of capacity building which calls for engaging individuals in the process of learning and adapting to change and for the establishment of a more interactive public administration that learns equally from its actions and from the feedback it receives. Furthermore, the contents of risk maps often do not match the requirements of the end users, so that risk maps are often designed and visualised in a way which cannot be easily understood by laypersons and/or which is not suitable for the respective needs of public authorities in risk and flood event management. The project RISK MAP aimed at improving flood risk maps as a means to foster public participation and raising flood risk awareness. For achieving this aim, RISK MAP (1) developed rules for appropriate stakeholder participation enabling the incorporation of local knowledge and preferences; (2) improved the content of risk maps by considering different risk criteria through the use of a deliberative multicriteria risk mapping tool; and (3) improved the visualisation of risk maps in order to produce user-friendly risk maps by applying the experimental graphic semiology (EGS) method that uses the eye tracking approach. The research was carried out in five European case studies where the status quo of risk mapping and the legal framework was analysed, several stakeholder interviews and workshops were conducted, the visual perception of risk maps was tested and - based on this empirical work - exemplary improved risk maps were produced. The presentation and paper will outline the main findings of the project which ended in September 2011, focussing on the participatory aspects in one of the German case studies (the Mulde River in Saxony). In short, different map users such as strategic planners, emergency managers or the (affected) public require different maps, with varying information density and complexity. The purpose of participation may therefore have a substantive rationale (i.e. improving the content, including local knowledge) or a more instrumental rationale (i.e. building trust, raising awareness, increasing legitimacy). The degree to which both rationales are accommodated depends on the project objectives and determines the participants and process type. In the Mulde case study, both the process of collaborating with each other and considering the (local) knowledge and different experiences as well as the results were highly appreciated. Hazard and risk maps are thus not an end-product that could be complemented e.g. by emergency management information on existing or planned defences, evacuation routes, assembly points, but they should be embedded into a participatory maintenance/updating framework. Map visualisation could be enhanced by using more common and/or self-explanatory symbols, text and a limited number of colour grades for hazard and risk information. Keywords: Flood mapping, hazard and risk maps, participation, risk communication, flood risk awareness, emergency management
On the interpolation of volumetric water content in research catchments
NASA Astrophysics Data System (ADS)
Dlamini, Phesheya; Chaplot, Vincent
Digital Soil Mapping (DSM) is widely used in the environmental sciences because of its accuracy and efficiency in producing soil maps compared to the traditional soil mapping. Numerous studies have investigated how the sampling density and the interpolation process of data points affect the prediction quality. While, the interpolation process is straight forward for primary attributes such as soil gravimetric water content (θg) and soil bulk density (ρb), the DSM of volumetric water content (θv), the product of θg by ρb, may either involve direct interpolations of θv (approach 1) or independent interpolation of ρb and θg data points and subsequent multiplication of ρb and θg maps (approach 2). The main objective of this study was to compare the accuracy of these two mapping approaches for θv. A 23 ha grassland catchment in KwaZulu-Natal, South Africa was selected for this study. A total of 317 data points were randomly selected and sampled during the dry season in the topsoil (0-0.05 m) for θg by ρb estimation. Data points were interpolated following approaches 1 and 2, and using inverse distance weighting with 3 or 12 neighboring points (IDW3; IDW12), regular spline with tension (RST) and ordinary kriging (OK). Based on an independent validation set of 70 data points, OK was the best interpolator for ρb (mean absolute error, MAE of 0.081 g cm-3), while θg was best estimated using IDW12 (MAE = 1.697%) and θv by IDW3 (MAE = 1.814%). It was found that approach 1 underestimated θv. Approach 2 tended to overestimate θv, but reduced the prediction bias by an average of 37% and only improved the prediction accuracy by 1.3% compared to approach 1. Such a great benefit of approach 2 (i.e., the subsequent multiplication of interpolated maps of primary variables) was unexpected considering that a higher sampling density (∼14 data point ha-1 in the present study) tends to minimize the differences between interpolations techniques and approaches. In the context of much lower sampling densities, as generally encountered in environmental studies, one can thus expect approach 2 to yield significantly greater accuracy than approach 1. This approach 2 seems promising and can be further tested for DSM of other secondary variables.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Molecular mapping of chromosomes 17 and X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1991-01-15
Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.« less
Molecular mapping of chromosomes 17 and X. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, D.F.
1991-01-15
Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.« less
Evolution of probability densities in stochastic coupled map lattices
NASA Astrophysics Data System (ADS)
Losson, Jérôme; Mackey, Michael C.
1995-08-01
This paper describes the statistical properties of coupled map lattices subjected to the influence of stochastic perturbations. The stochastic analog of the Perron-Frobenius operator is derived for various types of noise. When the local dynamics satisfy rather mild conditions, this equation is shown to possess either stable, steady state solutions (i.e., a stable invariant density) or density limit cycles. Convergence of the phase space densities to these limit cycle solutions explains the nonstationary behavior of statistical quantifiers at equilibrium. Numerical experiments performed on various lattices of tent, logistic, and shift maps with diffusivelike interelement couplings are examined in light of these theoretical results.
Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G
2016-12-01
Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and K trans _Φ, microvessel area and K trans _SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ r s ≤ 0.57). A weaker correlation was found between microvessel density and K trans _Φ and between microvessel density and K trans _SI (r s ≤ 0.41). With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area. © 2016 by American Journal of Neuroradiology.
Agarwal, Gaurav; Clevenger, Josh; Pandey, Manish K; Wang, Hui; Shasidhar, Yaduru; Chu, Ye; Fountain, Jake C; Choudhary, Divya; Culbreath, Albert K; Liu, Xin; Huang, Guodong; Wang, Xingjun; Deshmukh, Rupesh; Holbrook, C Corley; Bertioli, David J; Ozias-Akins, Peggy; Jackson, Scott A; Varshney, Rajeev K; Guo, Baozhu
2018-04-10
Whole-genome resequencing (WGRS) of mapping populations has facilitated development of high-density genetic maps essential for fine mapping and candidate gene discovery for traits of interest in crop species. Leaf spots, including early leaf spot (ELS) and late leaf spot (LLS), and Tomato spotted wilt virus (TSWV) are devastating diseases in peanut causing significant yield loss. We generated WGRS data on a recombinant inbred line population, developed a SNP-based high-density genetic map, and conducted fine mapping, candidate gene discovery and marker validation for ELS, LLS and TSWV. The first sequence-based high-density map was constructed with 8869 SNPs assigned to 20 linkage groups, representing 20 chromosomes, for the 'T' population (Tifrunner × GT-C20) with a map length of 3120 cM and an average distance of 1.45 cM. The quantitative trait locus (QTL) analysis using high-density genetic map and multiple season phenotyping data identified 35 main-effect QTLs with phenotypic variation explained (PVE) from 6.32% to 47.63%. Among major-effect QTLs mapped, there were two QTLs for ELS on B05 with 47.42% PVE and B03 with 47.38% PVE, two QTLs for LLS on A05 with 47.63% and B03 with 34.03% PVE and one QTL for TSWV on B09 with 40.71% PVE. The epistasis and environment interaction analyses identified significant environmental effects on these traits. The identified QTL regions had disease resistance genes including R-genes and transcription factors. KASP markers were developed for major QTLs and validated in the population and are ready for further deployment in genomics-assisted breeding in peanut. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Newell, Felicity L.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Buehler, David A.; Keyser, Patrick D.; Larkin, Jeffrey L.; Beachy, Tiffany A.; Bakermans, Marja H.; Boves, Than J.; Evans, Andrea; George, Gregory A.; McDermott, Molly E.; Perkins, Kelly A.; White, Matthew; Wigley, T. Bently
2013-01-01
Point counts are commonly used to assess changes in bird abundance, including analytical approaches such as distance sampling that estimate density. Point-count methods have come under increasing scrutiny because effects of detection probability and field error are difficult to quantify. For seven forest songbirds, we compared fixed-radii counts (50 m and 100 m) and density estimates obtained from distance sampling to known numbers of birds determined by territory mapping. We applied point-count analytic approaches to a typical forest management question and compared results to those obtained by territory mapping. We used a before–after control impact (BACI) analysis with a data set collected across seven study areas in the central Appalachians from 2006 to 2010. Using a 50-m fixed radius, variance in error was at least 1.5 times that of the other methods, whereas a 100-m fixed radius underestimated actual density by >3 territories per 10 ha for the most abundant species. Distance sampling improved accuracy and precision compared to fixed-radius counts, although estimates were affected by birds counted outside 10-ha units. In the BACI analysis, territory mapping detected an overall treatment effect for five of the seven species, and effects were generally consistent each year. In contrast, all point-count methods failed to detect two treatment effects due to variance and error in annual estimates. Overall, our results highlight the need for adequate sample sizes to reduce variance, and skilled observers to reduce the level of error in point-count data. Ultimately, the advantages and disadvantages of different survey methods should be considered in the context of overall study design and objectives, allowing for trade-offs among effort, accuracy, and power to detect treatment effects.
Speech processing using conditional observable maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, John; Nix, David
A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less
U.S.A. National Surface Rock Density Map - Part 2
NASA Astrophysics Data System (ADS)
Winester, D.
2016-12-01
A map of surface rock densities over the USA has been developed by the NOAA-National Geodetic Survey (NGS) as part of its Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Program. GRAV-D is part of an international effort to generate a North American gravimetric geoid for use as the vertical datum reference surface. As a part of modeling process, it is necessary to eliminate from the observed gravity data the topographic and density effects of all masses above the geoid. However, the long-standing tradition in geoid modeling, which is to use an average rock density (e.g. 2.67 g/cm3), does not adequately represent the variety of lithologies in the USA. The U.S. Geological Survey has assembled a downloadable set of surface geologic formation maps (typically 1:100,000 to 1:500, 000 scale in NAD27) in GIS format. The lithologies were assigned densities typical of their rock type (Part 1) and these variety of densities were then rasterized and averaged over one arc-minute areas. All were then transformed into WGS84 datum. Thin layers of alluvium and some water bodies (interpreted to be less than 40 m thick) have been ignored in deference to underlying rocks. Deep alluvial basins have not been removed, since they represent significant fraction of local mass. The initial assumption for modeling densities will be that the surface rock densities extend down to the geoid. If this results in poor modeling, variable lithologies with depth can be attempted. Initial modeling will use elevations from the SRTM DEM. A map of CONUS densities is presented (denser lithologies are shown brighter). While a visual map at this scale does show detailed features, digital versions are available upon request. Also presented are some pitfalls of using source GIS maps digitized from variable reference sources, including the infamous `state line faults.'
A tool for the estimation of the distribution of landslide area in R
NASA Astrophysics Data System (ADS)
Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.
2012-04-01
We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
Wang, Linhai; Xia, Qiuju; Zhang, Yanxin; Zhu, Xiaodong; Zhu, Xiaofeng; Li, Donghua; Ni, Xuemei; Gao, Yuan; Xiang, Haitao; Wei, Xin; Yu, Jingyin; Quan, Zhiwu; Zhang, Xiurong
2016-01-05
Sesame is an important high-quality oil seed crop. The sesame genome was de novo sequenced and assembled in 2014 (version 1.0); however, the number of anchored pseudomolecules was higher than the chromosome number (2n = 2x = 26) due to the lack of a high-density genetic map with 13 linkage groups. We resequenced a permanent population consisting of 430 recombinant inbred lines and constructed a genetic map to improve the sesame genome assembly. We successfully anchored 327 scaffolds onto 13 pseudomolecules. The new genome assembly (version 2.0) included 97.5 % of the scaffolds greater than 150 kb in size present in assembly version 1.0 and increased the total pseudomolecule length from 233.7 to 258.4 Mb with 94.3 % of the genome assembled and 97.2 % of the predicted gene models anchored. Based on the new genome assembly, a bin map including 1,522 bins spanning 1090.99 cM was generated and used to identified 41 quantitative trait loci (QTLs) for sesame plant height and 9 for seed coat color. The plant height-related QTLs explained 3-24 % the phenotypic variation (mean value, 8 %), and 29 of them were detected in at least two field trials. Two major loci (qPH-8.2 and qPH-3.3) that contributed 23 and 18 % of the plant height were located in 350 and 928-kb spaces on Chr8 and Chr3, respectively. qPH-3.3, is predicted to be responsible for the semi-dwarf sesame plant phenotype and contains 102 candidate genes. This is the first report of a sesame semi-dwarf locus and provides an interesting opportunity for a plant architecture study of the sesame. For the sesame seed coat color, the QTLs of the color spaces L*, a*, and b* were detected with contribution rates of 3-46 %. qSCb-4.1 contributed approximately 39 % of the b* value and was located on Chr4 in a 199.9-kb space. A list of 32 candidate genes for the locus, including a predicted black seed coat-related gene, was determined by screening the newly anchored genome. This study offers a high-density genetic map and an improved assembly of the sesame genome. The number of linkage groups and pseudomolecules in this assembly equals the number of sesame chromosomes for the first time. The map and updated genome assembly are expected to serve as a platform for future comparative genomics and genetic studies.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.
Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.
2010-01-01
The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.
Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping
Yarnykh, Vasily L.
2015-01-01
Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097
NASA Astrophysics Data System (ADS)
Risky, Yanuar S.; Aulia, Yogi H.; Widayani, Prima
2017-12-01
Spectral indices variations support for rapid and accurate extracting information such as built-up density. However, the exact determination of spectral waves for built-up density extraction is lacking. This study explains and compares the capabilities of 5 variations of spectral indices in spatiotemporal built-up density mapping using Landsat-7 ETM+ and Landsat-8 OLI/TIRS in Surakarta City on 2002 and 2015. The spectral indices variations used are 3 mid-infrared (MIR) based indices such as the Normalized Difference Built-up Index (NDBI), Urban Index (UI) and Built-up and 2 visible based indices such as VrNIR-BI (visible red) and VgNIR-BI (visible green). Linear regression statistics between ground value samples from Google Earth image in 2002 and 2015 and spectral indices for determining built-up land density. Ground value used amounted to 27 samples for model and 7 samples for accuracy test. The classification of built-up density mapping is divided into 9 classes: unclassified, 0-12.5%, 12.5-25%, 25-37.5%, 37.5-50%, 50-62.5%, 62.5-75%, 75-87.5% and 87.5-100 %. Accuracy of built-up land density mapping in 2002 and 2015 using VrNIR-BI (81,823% and 73.235%), VgNIR-BI (78.934% and 69.028%), NDBI (34.870% and 74.365%), UI (43.273% and 64.398%) and Built-up (59.755% and 72.664%). Based all spectral indices, Surakarta City on 2000-2015 has increased of built-up land density. VgNIR-BI has better capabilities for built-up land density mapping on Landsat-7 ETM + and Landsat-8 OLI/TIRS.
USDA-ARS?s Scientific Manuscript database
Fragaria iinumae is recognized as an ancestor of the octoploid strawberry species, including the cultivated strawberry, Fragaria ×ananassa. Here we report the construction of the first high density linkage map for F. iinumae. The map is based on two high-throughput techniques of single nucleotide p...
Demonstration of a Strategy to Perform Two-Dimensional Diode Laser Tomography
2008-03-01
training set allows interpolation between beam paths resulting in temperature and density maps. Finally, the TDLAS temperature and density maps are... TDLAS and Tomography Results .................................................................. 38 Introduction...38 vii Page TDLAS Burner Setup
Biometric recognition via fixation density maps
NASA Astrophysics Data System (ADS)
Rigas, Ioannis; Komogortsev, Oleg V.
2014-05-01
This work introduces and evaluates a novel eye movement-driven biometric approach that employs eye fixation density maps for person identification. The proposed feature offers a dynamic representation of the biometric identity, storing rich information regarding the behavioral and physical eye movement characteristics of the individuals. The innate ability of fixation density maps to capture the spatial layout of the eye movements in conjunction with their probabilistic nature makes them a particularly suitable option as an eye movement biometrical trait in cases when free-viewing stimuli is presented. In order to demonstrate the effectiveness of the proposed approach, the method is evaluated on three different datasets containing a wide gamut of stimuli types, such as static images, video and text segments. The obtained results indicate a minimum EER (Equal Error Rate) of 18.3 %, revealing the perspectives on the utilization of fixation density maps as an enhancing biometrical cue during identification scenarios in dynamic visual environments.
Drost, Derek R; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I; Brown, Ryan S; Yin, Tongming; Tuskan, Gerald A; Kirst, Matias
2009-06-01
Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.
Water management in the Roman world
NASA Astrophysics Data System (ADS)
Dermody, Brian J.; van Beek, Rens L. P. H.; Meeks, Elijah; Klein Goldewijk, Kees; Bierkens, Marc F. P.; Scheidel, Walter; Wassen, Martin J.; van der Velde, Ype; Dekker, Stefan C.
2014-05-01
Climate variability can have extreme impacts on societies in regions that are water-limited for agriculture. A society's ability to manage its water resources in such environments is critical to its long-term viability. Water management can involve improving agricultural yields through in-situ irrigation or redistributing water resources through trade in food. Here, we explore how such water management strategies affected the resilience of the Roman Empire to climate variability in the water-limited region of the Mediterranean. Using the large-scale hydrological model PCR-GLOBWB and estimates of landcover based on the Historical Database of the Global Environment (HYDE) we generate potential agricultural yield maps under variable climate. HYDE maps of population density in conjunction with potential yield estimates are used to develop maps of agricultural surplus and deficit. The surplus and deficit regions are abstracted to nodes on a water redistribution network based on the Stanford Geospatial Network Model of the Roman World (ORBIS). This demand-driven, water redistribution network allows us to quantitatively explore how water management strategies such as irrigation and food trade improved the resilience of the Roman Empire to climate variability.
Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.
2013-01-01
Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805
Dominkovics, Pau; Granell, Carlos; Pérez-Navarro, Antoni; Casals, Martí; Orcau, Angels; Caylà, Joan A
2011-11-29
Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios.
Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.
2014-01-01
Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect the outcome. PMID:24747568
2011-01-01
Background Health professionals and authorities strive to cope with heterogeneous data, services, and statistical models to support decision making on public health. Sophisticated analysis and distributed processing capabilities over geocoded epidemiological data are seen as driving factors to speed up control and decision making in these health risk situations. In this context, recent Web technologies and standards-based web services deployed on geospatial information infrastructures have rapidly become an efficient way to access, share, process, and visualize geocoded health-related information. Methods Data used on this study is based on Tuberculosis (TB) cases registered in Barcelona city during 2009. Residential addresses are geocoded and loaded into a spatial database that acts as a backend database. The web-based application architecture and geoprocessing web services are designed according to the Representational State Transfer (REST) principles. These web processing services produce spatial density maps against the backend database. Results The results are focused on the use of the proposed web-based application to the analysis of TB cases in Barcelona. The application produces spatial density maps to ease the monitoring and decision making process by health professionals. We also include a discussion of how spatial density maps may be useful for health practitioners in such contexts. Conclusions In this paper, we developed web-based client application and a set of geoprocessing web services to support specific health-spatial requirements. Spatial density maps of TB incidence were generated to help health professionals in analysis and decision-making tasks. The combined use of geographic information tools, map viewers, and geoprocessing services leads to interesting possibilities in handling health data in a spatial manner. In particular, the use of spatial density maps has been effective to identify the most affected areas and its spatial impact. This study is an attempt to demonstrate how web processing services together with web-based mapping capabilities suit the needs of health practitioners in epidemiological analysis scenarios. PMID:22126392
Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario
2012-01-01
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541
Xia, Zhiqiang; Zhang, Shengkui; Wen, Mingfu; Lu, Cheng; Sun, Yufang; Zou, Meiling; Wang, Wenquan
2018-01-01
As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF - 1 , qNF - 2a , qNF - 2b , qNF - 2c , qNF - 3 , qNF - 4 , qNF - 6 , qNF - 7a , qNF - 7b and qNF - 8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF - 1 , qTWF - 2 and qTWF - 3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha .
2012-01-01
Background High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. Results We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. Conclusions Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity. PMID:22424262
Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G.; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Background Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. Methodology and Principal Findings A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Conclusion and Significance Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level. PMID:22235254
Mapping migratory bird prevalence using remote sensing data fusion.
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.
StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.
Li, Chenhui; Baciu, George; Han, Yu
2018-03-01
Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.
NASA Astrophysics Data System (ADS)
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Guo, Yinshan; Xing, Huiyang; Zhao, Yuhui; Liu, Zhendong; Li, Kun; Guo, Xiuwu
2017-01-01
Genetic maps are important tools in plant genomics and breeding. We report a large-scale discovery of single nucleotide polymorphisms (SNPs) using the specific length amplified fragment sequencing (SLAF-seq) technique for the construction of high-density genetic maps for two elite wine grape cultivars, ‘Chardonnay’ and ‘Beibinghong’, and their 130 F1 plants. A total of 372.53 M paired-end reads were obtained after preprocessing. The average sequencing depth was 33.81 for ‘Chardonnay’ (the female parent), 48.20 for ‘Beibinghong’ (the male parent), and 12.66 for the F1 offspring. We detected 202,349 high-quality SLAFs of which 144,972 were polymorphic; 10,042 SNPs were used to construct a genetic map that spanned 1,969.95 cM, with an average genetic distance of 0.23 cM between adjacent markers. This genetic map contains the largest molecular marker number of the grape maps so far reported. We thus demonstrate that SLAF-seq is a promising strategy for the construction of high-density genetic maps; the map that we report here is a good potential resource for QTL mapping of genes linked to major economic and agronomic traits, map-based cloning, and marker-assisted selection of grape. PMID:28746364
NASA Astrophysics Data System (ADS)
Leherte, L.; Allen, F. H.; Vercauteren, D. P.
1995-04-01
A computational method is described for mapping the volume within the DNA double helix accessible to a groove-binding antibiotic, netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to be a good representation of the electron density function at various resolutions; while at the atomic level the ellipsoid method gives results which are in close agreement with those from the conventional, spherical, van der Waals approach.
NASA Astrophysics Data System (ADS)
Leherte, Laurence; Allen, Frank H.
1994-06-01
A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.
USDA-ARS?s Scientific Manuscript database
Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...
NASA Astrophysics Data System (ADS)
Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie
2018-05-01
Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ± 0.004 Mg/ha). Estimated C stocks for predefined jurisdictional areas ranged from 1023 ± 39 Mg in the Nisqually National Wildlife Refuge in Washington to 507,761 ± 14,822 Mg in the Terrebonne and St. Mary Parishes in Louisiana. This modeling and data synthesis effort will allow for aboveground C stocks in tidal marshes to be included in the coastal wetland section of the U.S. National Greenhouse Gas Inventory. With the increased availability of free post-processed satellite data, we provide a tractable means of modeling tidal marsh aboveground biomass and carbon at the global extent as well.
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.
2013-01-01
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.
Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W
2013-04-09
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F 7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. Copyright © 2013 Truco et al.
Relationships between human population density and burned area at continental and global scales.
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C L; Harrison, Sandy P; Prentice, I Colin; Pereira, José M C
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning.
Relationships between Human Population Density and Burned Area at Continental and Global Scales
Bistinas, Ioannis; Oom, Duarte; Sá, Ana C. L.; Harrison, Sandy P.; Prentice, I. Colin; Pereira, José M. C.
2013-01-01
We explore the large spatial variation in the relationship between population density and burned area, using continental-scale Geographically Weighted Regression (GWR) based on 13 years of satellite-derived burned area maps from the global fire emissions database (GFED) and the human population density from the gridded population of the world (GPW 2005). Significant relationships are observed over 51.5% of the global land area, and the area affected varies from continent to continent: population density has a significant impact on fire over most of Asia and Africa but is important in explaining fire over < 22% of Europe and Australia. Increasing population density is associated with both increased and decreased in fire. The nature of the relationship depends on land-use: increasing population density is associated with increased burned are in rangelands but with decreased burned area in croplands. Overall, the relationship between population density and burned area is non-monotonic: burned area initially increases with population density and then decreases when population density exceeds a threshold. These thresholds vary regionally. Our study contributes to improved understanding of how human activities relate to burned area, and should contribute to a better estimate of atmospheric emissions from biomass burning. PMID:24358108
EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.
Zaefferer, S; Romano, P; Friedel, F
2008-06-01
Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.
Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less
Zhao, Yuhui; Su, Kai; Wang, Gang; Zhang, Liping; Zhang, Jijun; Li, Junpeng; Guo, Yinshan
2017-07-14
Genetic linkage maps are an important tool in genetic and genomic research. In this study, two hawthorn cultivars, Qiujinxing and Damianqiu, and 107 progenies from a cross between them were used for constructing a high-density genetic linkage map using the 2b-restriction site-associated DNA (2b-RAD) sequencing method, as well as for mapping quantitative trait loci (QTL) for flavonoid content. In total, 206,411,693 single-end reads were obtained, with an average sequencing depth of 57× in the parents and 23× in the progeny. After quality trimming, 117,896 high-quality 2b-RAD tags were retained, of which 42,279 were polymorphic; of these, 12,951 markers were used for constructing the genetic linkage map. The map contained 17 linkage groups and 3,894 markers, with a total map length of 1,551.97 cM and an average marker interval of 0.40 cM. QTL mapping identified 21 QTLs associated with flavonoid content in 10 linkage groups, which explained 16.30-59.00% of the variance. This is the first high-density linkage map for hawthorn, which will serve as a basis for fine-scale QTL mapping and marker-assisted selection of important traits in hawthorn germplasm and will facilitate chromosome assignment for hawthorn whole-genome assemblies in the future.
Jeong, Woo Chul; Chauhan, Munish; Sajib, Saurav Z K; Kim, Hyung Joong; Serša, Igor; Kwon, Oh In; Woo, Eung Je
2014-09-07
Magnetic Resonance Electrical Impedance Tomography (MREIT) is an MRI method that enables mapping of internal conductivity and/or current density via measurements of magnetic flux density signals. The MREIT measures only the z-component of the induced magnetic flux density B = (Bx, By, Bz) by external current injection. The measured noise of Bz complicates recovery of magnetic flux density maps, resulting in lower quality conductivity and current-density maps. We present a new method for more accurate measurement of the spatial gradient of the magnetic flux density gradient (∇ Bz). The method relies on the use of multiple radio-frequency receiver coils and an interleaved multi-echo pulse sequence that acquires multiple sampling points within each repetition time. The noise level of the measured magnetic flux density Bz depends on the decay rate of the signal magnitude, the injection current duration, and the coil sensitivity map. The proposed method uses three key steps. The first step is to determine a representative magnetic flux density gradient from multiple receiver coils by using a weighted combination and by denoising the measured noisy data. The second step is to optimize the magnetic flux density gradient by using multi-echo magnetic flux densities at each pixel in order to reduce the noise level of ∇ Bz and the third step is to remove a random noise component from the recovered ∇ Bz by solving an elliptic partial differential equation in a region of interest. Numerical simulation experiments using a cylindrical phantom model with included regions of low MRI signal to noise ('defects') verified the proposed method. Experimental results using a real phantom experiment, that included three different kinds of anomalies, demonstrated that the proposed method reduced the noise level of the measured magnetic flux density. The quality of the recovered conductivity maps using denoised ∇ Bz data showed that the proposed method reduced the conductivity noise level up to 3-4 times at each anomaly region in comparison to the conventional method.
A New, Large-scale Map of Interstellar Reddening Derived from H I Emission
NASA Astrophysics Data System (ADS)
Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier
2017-09-01
We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}< 4× {10}20 cm-2 or E(B-V)≈ 45 mmag) at 16\\buildrel{ \\prime}\\over{.} 1 resolution, based on all-sky observations of Galactic H I emission by the HI4PI Survey. In this low-column-density regime, we derive a characteristic value of {N}{{H}{{I}}}/E(B-V)=8.8 × {10}21 {{cm}}2 {{mag}}-1 for gas with | {v}{LSR}| < 90 km s-1 and find no significant reddening associated with gas at higher velocities. We compare our H I-based reddening map with the Schlegel et al. (SFD) reddening map and find them consistent to within a scatter of ≃ 5 mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low-resolution (4\\buildrel{\\circ}\\over{.} 5) corrections to the SFD map derived by Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.
Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.
Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor
2014-02-01
To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.
Mapping Tree Density at the Global Scale
NASA Astrophysics Data System (ADS)
Covey, K. R.; Crowther, T. W.; Glick, H.; Bettigole, C.; Bradford, M.
2015-12-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global-scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical regions, with 0.74, and 0.61 trillion in boreal and temperate regions, respectively. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming impact of humans across most of the world. Based on our projected tree densities, we estimate that deforestation is currently responsible for removing over 15 billion trees each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale
NASA Astrophysics Data System (ADS)
Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M.-N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G.-J.; Tikhonova, E.; Borchardt, P.; Li, C.-F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
2015-09-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale.
Crowther, T W; Glick, H B; Covey, K R; Bettigole, C; Maynard, D S; Thomas, S M; Smith, J R; Hintler, G; Duguid, M C; Amatulli, G; Tuanmu, M-N; Jetz, W; Salas, C; Stam, C; Piotto, D; Tavani, R; Green, S; Bruce, G; Williams, S J; Wiser, S K; Huber, M O; Hengeveld, G M; Nabuurs, G-J; Tikhonova, E; Borchardt, P; Li, C-F; Powrie, L W; Fischer, M; Hemp, A; Homeier, J; Cho, P; Vibrans, A C; Umunay, P M; Piao, S L; Rowe, C W; Ashton, M S; Crane, P R; Bradford, M A
2015-09-10
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.
2016-04-01
Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in the derivation of air mass factors used to convert the measurements into vertical columns. Due to the high-resolution measurements, no data product of surface reflectance with sufficient spatial resolution is available. Thus the surface reflectance is estimated from AirMAP's own spectra. In this work the results of the research flights will be presented. The study focuses on the validation of AirMAP's measurements by comparison to other ground-based platforms like (mobile) MAX-DOAS measurements. Conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.
Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I
2008-10-27
The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.
Predicting Anthropogenic Noise Contributions to US Waters.
Gedamke, Jason; Ferguson, Megan; Harrison, Jolie; Hatch, Leila; Henderson, Laurel; Porter, Michael B; Southall, Brandon L; Van Parijs, Sofie
2016-01-01
To increase understanding of the potential effects of chronic underwater noise in US waters, the National Oceanic and Atmospheric Administration (NOAA) organized two working groups in 2011, collectively called "CetSound," to develop tools to map the density and distribution of cetaceans (CetMap) and predict the contribution of human activities to underwater noise (SoundMap). The SoundMap effort utilized data on density, distribution, acoustic signatures of dominant noise sources, and environmental descriptors to map estimated temporal, spatial, and spectral contributions to background noise. These predicted soundscapes are an initial step toward assessing chronic anthropogenic noise impacts on the ocean's varied acoustic habitats and the animals utilizing them.
Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu
2016-01-01
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat.
Jin, Hui; Wen, Weie; Liu, Jindong; Zhai, Shengnan; Zhang, Yan; Yan, Jun; Liu, Zhiyong; Xia, Xianchun; He, Zhonghu
2016-01-01
Dough rheological and starch pasting properties play an important role in determining processing quality in bread wheat (Triticum aestivum L.). In the present study, a recombinant inbred line (RIL) population derived from a Gaocheng 8901/Zhoumai 16 cross grown in three environments was used to identify quantitative trait loci (QTLs) for dough rheological and starch pasting properties evaluated by Mixograph, Rapid Visco-Analyzer (RVA), and Mixolab parameters using the wheat 90 and 660 K single nucleotide polymorphism (SNP) chip assays. A high-density linkage map constructed with 46,961 polymorphic SNP markers from the wheat 90 and 660 K SNP assays spanned a total length of 4121 cM, with an average chromosome length of 196.2 cM and marker density of 0.09 cM/marker; 6596 new SNP markers were anchored to the bread wheat linkage map, with 1046 and 5550 markers from the 90 and 660 K SNP assays, respectively. Composite interval mapping identified 119 additive QTLs on 20 chromosomes except 4D; among them, 15 accounted for more than 10% of the phenotypic variation across two or three environments. Twelve QTLs for Mixograph parameters, 17 for RVA parameters and 55 for Mixolab parameters were new. Eleven QTL clusters were identified. The closely linked SNP markers can be used in marker-assisted wheat breeding in combination with the Kompetitive Allele Specific PCR (KASP) technique for improvement of processing quality in bread wheat. PMID:27486464
Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui
2017-01-01
Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.
A LANDSAT study of ephemeral and perennial rangeland vegetation and soils
NASA Technical Reports Server (NTRS)
Bentley, R. G., Jr. (Principal Investigator); Salmon-Drexler, B. C.; Bonner, W. J.; Vincent, R. K.
1976-01-01
The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species.
NASA Astrophysics Data System (ADS)
Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie
2018-04-01
Lithospheric effective elastic thickness (Te), a proxy for plate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.
NASA Astrophysics Data System (ADS)
Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie
2018-07-01
Lithospheric effective elastic thickness (Te), a proxy for plIate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te-estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2-D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.
Detection, Classification, and Density Estimation of Marine Mammals
2012-10-01
Energy and Environmental Readiness Division, Washington, D.C. DETECTION...was prepared for and funded by Chief of Naval Operations, Energy and Environmental Readiness Division, Washington DC. The report was prepared by...and classification, including improvements to the Energy Ratio Mapping Algorithm (ERMA) method for use on gliders and its extension to new
Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.).
Liu, Jindong; He, Zhonghu; Wu, Ling; Bai, Bin; Wen, Weie; Xie, Chaojie; Xia, Xianchun
2016-11-01
Nine QTL for black point resistance in wheat were identified using a RIL population derived from a Linmai 2/Zhong 892 cross and 90K SNP assay. Black point, discoloration of the embryo end of the grain, downgrades wheat grain quality leading to significant economic losses to the wheat industry. The availability of molecular markers will accelerate improvement of black point resistance in wheat breeding. The aims of this study were to identify quantitative trait loci (QTL) for black point resistance and tightly linked molecular markers, and to search for candidate genes using a high-density genetic linkage map of wheat. A recombinant inbred line (RIL) population derived from the cross Linmai 2/Zhong 892 was evaluated for black point reaction during the 2011-2012, 2012-2013 and 2013-2014 cropping seasons, providing data for seven environments. A high-density linkage map was constructed by genotyping the RILs with the wheat 90K single nucleotide polymorphism (SNP) chip. Composite interval mapping detected nine QTL on chromosomes 2AL, 2BL, 3AL, 3BL, 5AS, 6A, 7AL (2) and 7BS, designated as QBp.caas-2AL, QBp.caas-2BL, QBp.caas-3AL, QBp.caas-3BL, QBp.caas-5AS, QBp.caas-6A, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS, respectively. All resistance alleles, except for QBp.caas-7AL.1 from Linmai 2, were contributed by Zhong 892. QBp.caas-3BL, QBp.caas-5AS, QBp.caas-7AL.1, QBp.caas-7AL.2 and QBp.caas-7BS probably represent new loci for black point resistance. Sequences of tightly linked SNPs were used to survey wheat and related cereal genomes identifying three candidate genes for black point resistance. The tightly linked SNP markers can be used in marker-assisted breeding in combination with the kompetitive allele specific PCR technique to improve black point resistance.
Kumawat, Giriraj; Raje, Ranjeet S; Bhutani, Shefali; Pal, Jitendra K; Mithra, Amitha S V C R; Gaikwad, Kishor; Sharma, Tilak R; Singh, Nagendra K
2012-10-08
Pigeonpea is an important grain legume of the semi-arid tropics and sub-tropical regions where it plays a crucial role in the food and nutritional security of the people. The average productivity of pigeonpea has remained very low and stagnant for over five decades due to lack of genomic information and intensive breeding efforts. Previous SSR-based linkage maps of pigeonpea used inter-specific crosses due to low inter-varietal polymorphism. Here our aim was to construct a high density intra-specific linkage map using genic-SNP markers for mapping of major quantitative trait loci (QTLs) for key agronomic traits, including plant height, number of primary and secondary branches, number of pods, days to flowering and days to maturity in pigeonpea. A population of 186 F2:3 lines derived from an intra-specific cross between inbred lines 'Pusa Dwarf' and 'HDM04-1' was used to construct a dense molecular linkage map of 296 genic SNP and SSR markers covering a total adjusted map length of 1520.22 cM for the 11 chromosomes of the pigeonpea genome. This is the first dense intra-specific linkage map of pigeonpea with the highest genome length coverage. Phenotypic data from the F2:3 families were used to identify thirteen QTLs for the six agronomic traits. The proportion of phenotypic variance explained by the individual QTLs ranged from 3.18% to 51.4%. Ten of these QTLs were clustered in just two genomic regions, indicating pleiotropic effects or close genetic linkage. In addition to the main effects, significant epistatic interaction effects were detected between the QTLs for number of pods per plant. A large amount of information on transcript sequences, SSR markers and draft genome sequence is now available for pigeonpea. However, there is need to develop high density linkage maps and identify genes/QTLs for important agronomic traits for practical breeding applications. This is the first report on identification of QTLs for plant type and maturity traits in pigeonpea. The QTLs identified in this study provide a strong foundation for further validation and fine mapping for utilization in the pigeonpea improvement.
Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy; He, Jing
2017-01-01
Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4-7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map-model pairs.
Genome Mapping and Molecular Breeding of Tomato
Foolad, Majid R.
2007-01-01
The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989
King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A
2013-01-01
Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859
King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A
2013-10-01
Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring 'nontoxic' provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F₂ mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F₂ plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. © 2013 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.
Thorn, Andrea
2017-01-01
This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.
On Galactic Density Modeling in the Presence of Dust Extinction
NASA Astrophysics Data System (ADS)
Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.
2016-02-01
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.
Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris
2016-04-21
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
The effect of respiratory induced density variations on non-TOF PET quantitation in the lung
NASA Astrophysics Data System (ADS)
Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris
2016-04-01
Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.
Ma, Hao; Moore, Paul H; Liu, Zhiyong; Kim, Minna S; Yu, Qingyi; Fitch, Maureen M M; Sekioka, Terry; Paterson, Andrew H; Ming, Ray
2004-01-01
A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya. PMID:15020433
Harrison, Jolie; Ferguson, Megan; Gedamke, Jason; Hatch, Leila; Southall, Brandon; Van Parijs, Sofie
2016-01-01
To help manage chronic and cumulative impacts of human activities on marine mammals, the National Oceanic and Atmospheric Administration (NOAA) convened two working groups, the Underwater Sound Field Mapping Working Group (SoundMap) and the Cetacean Density and Distribution Mapping Working Group (CetMap), with overarching effort of both groups referred to as CetSound, which (1) mapped the predicted contribution of human sound sources to ocean noise and (2) provided region/time/species-specific cetacean density and distribution maps. Mapping products were presented at a symposium where future priorities were identified, including institutionalization/integration of the CetSound effort within NOAA-wide goals and programs, creation of forums and mechanisms for external input and funding, and expanded outreach/education. NOAA is subsequently developing an ocean noise strategy to articulate noise conservation goals and further identify science and management actions needed to support them.
2013-01-01
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications. PMID:24359668
Bosch, J; Iglesias, I; Muñoz, M J; de la Torre, A
2017-12-01
The current African swine fever (ASF) epidemic in Eurasia represents a risk for the swine industry with devastating socio-economic and political consequences. Wild boar appears to be a key factor in maintaining the disease in endemic areas (mainly the Russian Federation) and spreading the disease across borders, including within the European Union. To help predict and interpret the dynamics of ASF infection, we developed a standardized distribution map based on global land cover vegetation (GLOBCOVER) that quantifies the quality of available habitats (QAH) for wild boar across Eurasia as an indirect index for quantifying numbers of wild boar. QAHs were estimated using a seven-level scale based on expert opinion and found to correlate closely with georeferenced presence of wild boar (n = 22 362): the highest wild boar densities (74.47%) were found in areas at the two highest QAH levels, while the lowest densities (5.66%) were found in areas at the lowest QAH levels. Mapping notifications from 2007 to 2016 onto the QAH map showed that in endemic areas, 60% of ASF notifications occurred in domestic pigs, mostly in agricultural landscapes (QAHs 1.75 and 1) containing low-biosecurity domestic pig farms. In the EU, in contrast, 95% of ASF notifications occurred in wild boar, within natural landscapes (QAH 2). These results suggest that the QAH map can be a useful epi-tool for defining risk scenarios and identifying potential travel corridors for ASF. This tool will help inform resource allocation decisions and improve prevention, control and surveillance of ASF and potentially of other diseases affecting swine and wild boar in Eurasia. © 2016 Blackwell Verlag GmbH.
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2014-01-01
For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583
Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi
2014-12-01
For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.
Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.
2013-01-01
Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313
Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I
2013-01-15
Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.
Westermeier, Christian; Fiebig, Matthias; Nickel, Bert
2013-10-25
Frequency-resolved scanning photoresponse microscopy of pentacene thin-film transistors is reported. The photoresponse pattern maps the in-plane distribution of trap states which is superimposed by the level of trap filling adjusted by the gate voltage of the transistor. Local hotspots in the photoresponse map thus indicate areas of high trap densities within the pentacene thin film. © 2013 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim.
Improved maize reference genome with single-molecule technologies.
Jiao, Yinping; Peluso, Paul; Shi, Jinghua; Liang, Tiffany; Stitzer, Michelle C; Wang, Bo; Campbell, Michael S; Stein, Joshua C; Wei, Xuehong; Chin, Chen-Shan; Guill, Katherine; Regulski, Michael; Kumari, Sunita; Olson, Andrew; Gent, Jonathan; Schneider, Kevin L; Wolfgruber, Thomas K; May, Michael R; Springer, Nathan M; Antoniou, Eric; McCombie, W Richard; Presting, Gernot G; McMullen, Michael; Ross-Ibarra, Jeffrey; Dawe, R Kelly; Hastie, Alex; Rank, David R; Ware, Doreen
2017-06-22
Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.
Xiao, Dan; Balcom, Bruce J
2012-07-01
Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
First measurement of the cross-correlation of CMB lensing and galaxy lensing
Hand, Nick; Leauthaud, Alexie; Das, Sudeep; ...
2015-03-02
Here, we measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2 sigma, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ~0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematicmore » biases in weak lensing measurements.« less
Mars topography harmonics and geophysical implications
NASA Technical Reports Server (NTRS)
Bills, B. G.; Ferrari, A. J.
1978-01-01
The paper describes an improved model of Martian global topography which has been obtained by fitting a sixteenth-degree harmonic series to occultation, radar, spectral, and photogrammetric measurements. Empirical elevation data based on photographic data are used to supplement the observations in areas without data. Values for the mean radius, the mean density, and the displacement of the center of the figure from the center of mass are presented. The reported geometric flattening is too great and the reported dynamic flattening is too small for Mars to be homogeneous and hydrostatic. Maps of the data distribution, global topography, and Bouguer gravity anomaly are interpreted in terms of a crustal thickness map which is consistent with gravity, topography, and recent preliminary Viking seismic results.
Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.
Carugo, Oliviero; Djinović-Carugo, Kristina
2016-01-01
It is often necessary to build subsets of the Protein Data Bank to extract structural trends and average values. For this purpose it is mandatory that the subsets are non-redundant and of high quality. The first problem can be solved relatively easily at the sequence level or at the structural level. The second, on the contrary, needs special attention. It is not sufficient, in fact, to consider the crystallographic resolution and other feature must be taken into account: the absence of strings of residues from the electron density maps and from the files deposited in the Protein Data Bank; the B-factor values; the appropriate validation of the structural models; the quality of the electron density maps, which is not uniform; and the temperature of the diffraction experiments. More stringent criteria produce smaller subsets, which can be enlarged with more tolerant selection criteria. The incessant growth of the Protein Data Bank and especially of the number of high-resolution structures is allowing the use of more stringent selection criteria, with a consequent improvement of the quality of the subsets of the Protein Data Bank.
Remanent magnetization and three-dimensional density model of the Kentucky anomaly region
NASA Technical Reports Server (NTRS)
1982-01-01
Existing software was modified to handle 3-D density and magnetization models of the Kentucky body and is being tested. Gravity and magnetic anomaly data sets are ready for use. A preliminary block model is under construction using the 1:1,000,000 maps. An x-y grid to overlay the 1:2,500,000 Albers maps and keyed to the 1:1,000,000 scale block models was created. Software was developed to generate a smoothed MAGSAT data set over this grid; this is to be input to an inversion program for generating the regional magnetization map. The regional scale 1:2,500,000 map mosaic is being digitized using previous magnetization models, the U.S. magnetic anomaly map, and regional tectonic maps as a guide.
Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador
Molina, Santiago; Fuller, Angela K.; Morin, Dana J.; Royle, J. Andrew
2017-01-01
The Andean bear (Tremarctos ornatus) is the only extant species of bear in South America and is considered threatened across its range and endangered in Ecuador. Habitat loss and fragmentation is considered a critical threat to the species, and there is a lack of knowledge regarding its distribution and abundance. The species is thought to occur at low densities, making field studies designed to estimate abundance or density challenging. We conducted a pilot camera-trap study to estimate Andean bear density in a recently identified population of Andean bears northwest of Quito, Ecuador, during 2012. We compared 12 candidate spatial capture–recapture models including covariates on encounter probability and density and estimated a density of 7.45 bears/100 km2 within the region. In addition, we estimated that approximately 40 bears used a recently named Andean bear corridor established by the Secretary of Environment, and we produced a density map for this area. Use of a rub-post with vanilla scent attractant allowed us to capture numerous photographs for each event, improving our ability to identify individual bears by unique facial markings. This study provides the first empirically derived density estimate for Andean bears in Ecuador and should provide direction for future landscape-scale studies interested in conservation initiatives requiring spatially explicit estimates of density.
Local thermodynamic mapping for effective liquid density-functional theory
NASA Technical Reports Server (NTRS)
Kyrlidis, Agathagelos; Brown, Robert A.
1992-01-01
The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.
An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana
NASA Technical Reports Server (NTRS)
Varney, J. R.; Craighead, J. J.; Sumner, J. S.
1974-01-01
Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.
Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun
2015-10-01
Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.
Assessing and modelling ecohydrologic processes at the agricultural field scale
NASA Astrophysics Data System (ADS)
Basso, Bruno
2015-04-01
One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.
Rapid model building of beta-sheets in electron-density maps.
Terwilliger, Thomas C
2010-03-01
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian
2015-04-01
Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.
EnviroAtlas - New York, NY - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Paterson, NJ - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Des Moines, IA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Phoenix, AZ - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Austin, TX - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads
This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Blenda, Anna; Fang, David D.; Rami, Jean-François; Garsmeur, Olivier; Luo, Feng; Lacape, Jean-Marc
2012-01-01
A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous AT and DT chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per AT/DT chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton. PMID:23029214
Assessment and Mapping of Forest Parcel Sizes
Brett J. Butler; Susan L. King
2005-01-01
A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...
Lewis, Jesse S.; Farnsworth, Matthew L.; Burdett, Chris L.; Theobald, David M.; Gray, Miranda; Miller, Ryan S.
2017-01-01
Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors. PMID:28276519
NASA Astrophysics Data System (ADS)
Cherniak, Iurii; Zakharenkova, Irina
2017-05-01
Monitoring, tracking and nowcasting of the ionospheric plasma density disturbances using dual-frequency measurements of the Global Positioning System (GPS) signals are effectively carried out during several decades. Recent rapid growth and modernization of the ground-based segment gives an opportunity to establish a great database consisting of more than 6000 stations worldwide which provide GPS signals measurements with an open access. Apart of the GPS signals, at least two-third of these stations receive simultaneously signals transmitted by another Global Navigation Satellite System (GNSS)—the Russian system GLONASS. Today, GLONASS signal measurements are mainly used in navigation and geodesy only and very rarely for ionosphere research. We present the first results demonstrating advantages of using several independent but compatible GNSS systems like GPS and GLONASS for improvement of the permanent monitoring of the high-latitude ionospheric irregularities. For the first time, the high-resolution two-dimensional maps of ROTI perturbation were made using not only GPS but also GLONASS measurements. We extend the use of the ROTI maps for analyzing ionospheric irregularities distribution. We demonstrate that the meridional slices of the ROTI maps can be effectively used to study the occurrence and temporal evolution of the ionospheric irregularities. The meridional slices of the geographical sectors with a high density of the GPS and GLONASS measurements can represent spatio-temporal dynamics of the intense ionospheric plasma density irregularities with very high resolution, and they can be effectively used for detailed study of the space weather drivers on the processes of the ionospheric irregularities generation, development and their lifetimes. Using a representative database of 5800 ground-based GNSS stations located worldwide, we have investigated the occurrence of the high-latitude ionospheric plasma density irregularities during the geomagnetic storm of June 22-23, 2015.[Figure not available: see fulltext.
Kim, Youngwoo; Hong, Byung Woo; Kim, Seung Ja; Kim, Jong Hyo
2014-07-01
A major challenge when distinguishing glandular tissues on mammograms, especially for area-based estimations, lies in determining a boundary on a hazy transition zone from adipose to glandular tissues. This stems from the nature of mammography, which is a projection of superimposed tissues consisting of different structures. In this paper, the authors present a novel segmentation scheme which incorporates the learned prior knowledge of experts into a level set framework for fully automated mammographic density estimations. The authors modeled the learned knowledge as a population-based tissue probability map (PTPM) that was designed to capture the classification of experts' visual systems. The PTPM was constructed using an image database of a selected population consisting of 297 cases. Three mammogram experts extracted regions for dense and fatty tissues on digital mammograms, which was an independent subset used to create a tissue probability map for each ROI based on its local statistics. This tissue class probability was taken as a prior in the Bayesian formulation and was incorporated into a level set framework as an additional term to control the evolution and followed the energy surface designed to reflect experts' knowledge as well as the regional statistics inside and outside of the evolving contour. A subset of 100 digital mammograms, which was not used in constructing the PTPM, was used to validate the performance. The energy was minimized when the initial contour reached the boundary of the dense and fatty tissues, as defined by experts. The correlation coefficient between mammographic density measurements made by experts and measurements by the proposed method was 0.93, while that with the conventional level set was 0.47. The proposed method showed a marked improvement over the conventional level set method in terms of accuracy and reliability. This result suggests that the proposed method successfully incorporated the learned knowledge of the experts' visual systems and has potential to be used as an automated and quantitative tool for estimations of mammographic breast density levels.
FragFit: a web-application for interactive modeling of protein segments into cryo-EM density maps.
Tiemann, Johanna K S; Rose, Alexander S; Ismer, Jochen; Darvish, Mitra D; Hilal, Tarek; Spahn, Christian M T; Hildebrand, Peter W
2018-05-21
Cryo-electron microscopy (cryo-EM) is a standard method to determine the three-dimensional structures of molecular complexes. However, easy to use tools for modeling of protein segments into cryo-EM maps are sparse. Here, we present the FragFit web-application, a web server for interactive modeling of segments of up to 35 amino acids length into cryo-EM density maps. The fragments are provided by a regularly updated database containing at the moment about 1 billion entries extracted from PDB structures and can be readily integrated into a protein structure. Fragments are selected based on geometric criteria, sequence similarity and fit into a given cryo-EM density map. Web-based molecular visualization with the NGL Viewer allows interactive selection of fragments. The FragFit web-application, accessible at http://proteinformatics.de/FragFit, is free and open to all users, without any login requirements.
Potential Stream Density in Mid-Atlantic U.S. Watersheds
Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.
2013-01-01
Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704
Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie
2018-01-01
Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ± 0.004 Mg/ha). Estimated C stocks for predefined jurisdictional areas ranged from 1023 ± 39 Mg in the Nisqually National Wildlife Refuge in Washington to 507,761 ± 14,822 Mg in the Terrebonne and St. Mary Parishes in Louisiana. This modeling and data synthesis effort will allow for aboveground C stocks in tidal marshes to be included in the coastal wetland section of the U.S. National Greenhouse Gas Inventory. With the increased availability of free post-processed satellite data, we provide a tractable means of modeling tidal marsh aboveground biomass and carbon at the global extent as well.
Developing the Stabilized Mapping System for the Gyrocopter - Report from the First Tests
NASA Astrophysics Data System (ADS)
Kolecki, J.; Prochaska, M.; Kurczyński, Z.; Piątek, P.; Baranowski, J.
2016-06-01
The LiDAR mapping carried out using gyrocopters provides a relatively cheap alternative for traditional mapping involving airplanes. The costs of the fuel and the overall maintenance are much lower when compared to planes. At the same time the flight kinematics of the gyrocopter makes it an ideal vehicle for corridor mapping. However a limited payload and a strongly limited space prevent using stabilized platforms dedicated for aerial photogrammetry. As the proper stabilization of the laser scanner during the flight is crucial in order to keep the desirable quality of the LiDAR data, it was decided to develop the prototype of the stabilized, ultra-light mapping platform that can meet the restricted requirements of the gyrocopter. The paper starts with the brief discussion of the legal and practical aspects of the LiDAR data quality, dealing mostly with the influence of the flight imperfections on the point pattern and point density. Afterwards the mapping system prototype is characterized, taking into account three main components: stabilized platform, sensors and control. Subsequently first in-flight tests are described. Though the data are still not perfect mostly due to vibrations, the stabilization provides a substantial improvement of their geometry, reducing both roll and pitch deflections.
Sharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sønderkær, Mads; Amoros, Walter; Carboni, Martin Federico; D’Ambrosio, Juan Martín; de la Cruz, German; Di Genova, Alex; Douches, David S.; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A.; Hamilton, John P.; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejía, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J.; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G. F.; Bachem, Christian W. B.; Sagredo, Boris; Feingold, Sergio E.; Orjeda, Gisella; Veilleux, Richard E.; Bonierbale, Merideth; Jacobs, Jeanne M. E.; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J.
2013-01-01
The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”. PMID:24062527
Distinguishability notion based on Wootters statistical distance: Application to discrete maps
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.; Portesi, M.; Lamberti, P. W.
2017-08-01
We study the distinguishability notion given by Wootters for states represented by probability density functions. This presents the particularity that it can also be used for defining a statistical distance in chaotic unidimensional maps. Based on that definition, we provide a metric d ¯ for an arbitrary discrete map. Moreover, from d ¯ , we associate a metric space with each invariant density of a given map, which results to be the set of all distinguished points when the number of iterations of the map tends to infinity. Also, we give a characterization of the wandering set of a map in terms of the metric d ¯ , which allows us to identify the dissipative regions in the phase space. We illustrate the results in the case of the logistic and the circle maps numerically and analytically, and we obtain d ¯ and the wandering set for some characteristic values of their parameters. Finally, an extension of the metric space associated for arbitrary probability distributions (not necessarily invariant densities) is given along with some consequences. The statistical properties of distributions given by histograms are characterized in terms of the cardinal of the associated metric space. For two conjugate variables, the uncertainty principle is expressed in terms of the diameters of the associated metric space with those variables.
Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou
2018-04-02
A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several candidate growth genes were also identified from the QTL regions by comparative mapping. This genetic map would provide a basis for genome assembly and comparative genomics studies, and those QTL-derived candidate genes and genetic markers are useful genomic resources for marker-assisted selection (MAS) of growth-related traits in the Yangtze River common carp.
The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.
Smith, Jeramiah J; Keinath, Melissa C
2015-08-01
It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.
SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; University of Toronto, Dept of Radiation Oncology, Toronto, Ontario; Fatemi-Ardekani, A
Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequencemore » with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.« less
Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.
2015-01-01
Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine the choice of drainage density extraction parameters and more readily improve extraction procedures than conventional processing.
Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2017-01-26
Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.
Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows
NASA Technical Reports Server (NTRS)
He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2016-06-01
Podhale is a region in southern Poland, which is the northernmost part of the Central Carpathian Mountains. It is characterized by the presence of a large number of landslides that threaten the local infrastructure. In an article presents application of LiDAR data and geostatistical methods to assess landslides susceptibility map. Landslide inventory map were performed using LiDAR data and field work. The Weights of Evidence method was applied to assess landslides susceptibility map. Used factors for modeling: slope gradient, slope aspect, elevation, drainage density, faults density, lithology and curvature. All maps were subdivided into different classes. Then were converted to grid format in the ArcGIS 10.0. The conditional independence test was carried out to determine factors that are conditionally independent of each other with landslides. As a result, chi-square test for further GIS analysis used only five factors: slope gradient, slope aspect, elevation, drainage density and lithology. The final prediction results, it is concluded that the susceptibility map gives useful information both on present instability of the area and its possible future evolution in agreement with the morphological evolution of the area.
Characterising the Structure of Molecular Clouds
NASA Astrophysics Data System (ADS)
Wong, Graeme Francis
The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.
Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502
Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
The Next Generation of Mars-GRAM and Its Role in the Autonomous Aerobraking Development Plan
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Ramey, Holly S.
2011-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.
Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps
Gosselin, Thierry; Normandeau, Eric; Lamothe, Manuel; Isabel, Nathalie; Audet, Céline; Bernatchez, Louis
2016-01-01
Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/ PMID:28173098
Initial Experience With Ultra High-Density Mapping of Human Right Atria.
Bollmann, Andreas; Hilbert, Sebastian; John, Silke; Kosiuk, Jedrzej; Hindricks, Gerhard
2016-02-01
Recently, an automatic, high-resolution mapping system has been presented to accurately and quickly identify right atrial geometry and activation patterns in animals, but human data are lacking. This study aims to assess the clinical feasibility and accuracy of high-density electroanatomical mapping of various RA arrhythmias. Electroanatomical maps of the RA (35 partial and 24 complete) were created in 23 patients using a novel mini-basket catheter with 64 electrodes and automatic electrogram annotation. Median acquisition time was 6:43 minutes (0:39-23:05 minutes) with shorter times for partial (4.03 ± 4.13 minutes) than for complete maps (9.41 ± 4.92 minutes). During mapping 3,236 (710-16,306) data points were automatically annotated without manual correction. Maps obtained during sinus rhythm created geometry consistent with CT imaging and demonstrated activation originating at the middle to superior crista terminalis, while maps during CS pacing showed right atrial activation beginning at the infero-septal region. Activation patterns were consistent with cavotricuspid isthmus-dependent atrial flutter (n = 4), complex reentry tachycardia (n = 1), or ectopic atrial tachycardia (n = 2). His bundle and fractionated potentials in the slow pathway region were automatically detected in all patients. Ablation of the cavotricuspid isthmus (n = 9), the atrio-ventricular node (n = 2), atrial ectopy (n = 2), and the slow pathway (n = 3) was successfully and safely performed. RA mapping with this automatic high-density mapping system is fast, feasible, and safe. It is possible to reproducibly identify propagation of atrial activation during sinus rhythm, various tachycardias, and also complex reentrant arrhythmias. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...
High and low density development in Puerto Rico
William A. Gould; Sebastian Martinuzzi; Olga M. Ramos Gonzalez
2008-01-01
This map shows the distribution of high and low density developed lands in Puerto Rico (Martinuzzi et al. 2007). The map was created using a mosaic of Landsat ETM+ images that range from the years 2000 to 2003. The developed land cover was classified using the Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised classification (ERDAS 2003)....
Maps and models of density and stiffness within individual Douglas-fir trees
Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs
2012-01-01
Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...
A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins
NASA Astrophysics Data System (ADS)
Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.
2011-12-01
Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.
Thermospheric density and wind retrieval from Swarm observations
NASA Astrophysics Data System (ADS)
Visser, Pieter; Doornbos, Eelco; van den IJssel, Jose; Teixeira da Encarnação, João
2013-11-01
The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10-15 nm/s2 and 0.01-0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9-11% level (standard deviation) with values predicted by models (taking into account that model values are 20-30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.
Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.
2006-01-01
This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.
Discovery and refinement of muscle weight QTLs in B6 × D2 advanced intercross mice
Carbonetto, P.; Cheng, R.; Gyekis, J. P.; Parker, C. C.; Blizard, D. A.; Palmer, A. A.
2014-01-01
The genes underlying variation in skeletal muscle mass are poorly understood. Although many quantitative trait loci (QTLs) have been mapped in crosses of mouse strains, the limited resolution inherent in these conventional studies has made it difficult to reliably pinpoint the causal genetic variants. The accumulated recombination events in an advanced intercross line (AIL), in which mice from two inbred strains are mated at random for several generations, can improve mapping resolution. We demonstrate these advancements in mapping QTLs for hindlimb muscle weights in an AIL (n = 832) of the C57BL/6J (B6) and DBA/2J (D2) strains, generations F8–F13. We mapped muscle weight QTLs using the high-density MegaMUGA SNP panel. The QTLs highlight the shared genetic architecture of four hindlimb muscles and suggest that the genetic contributions to muscle variation are substantially different in males and females, at least in the B6D2 lineage. Out of the 15 muscle weight QTLs identified in the AIL, nine overlapped the genomic regions discovered in an earlier B6D2 F2 intercross. Mapping resolution, however, was substantially improved in our study to a median QTL interval of 12.5 Mb. Subsequent sequence analysis of the QTL regions revealed 20 genes with nonsense or potentially damaging missense mutations. Further refinement of the muscle weight QTLs using additional functional information, such as gene expression differences between alleles, will be important for discerning the causal genes. PMID:24963006
Discovery and refinement of muscle weight QTLs in B6 × D2 advanced intercross mice.
Carbonetto, P; Cheng, R; Gyekis, J P; Parker, C C; Blizard, D A; Palmer, A A; Lionikas, A
2014-08-15
The genes underlying variation in skeletal muscle mass are poorly understood. Although many quantitative trait loci (QTLs) have been mapped in crosses of mouse strains, the limited resolution inherent in these conventional studies has made it difficult to reliably pinpoint the causal genetic variants. The accumulated recombination events in an advanced intercross line (AIL), in which mice from two inbred strains are mated at random for several generations, can improve mapping resolution. We demonstrate these advancements in mapping QTLs for hindlimb muscle weights in an AIL (n = 832) of the C57BL/6J (B6) and DBA/2J (D2) strains, generations F8-F13. We mapped muscle weight QTLs using the high-density MegaMUGA SNP panel. The QTLs highlight the shared genetic architecture of four hindlimb muscles and suggest that the genetic contributions to muscle variation are substantially different in males and females, at least in the B6D2 lineage. Out of the 15 muscle weight QTLs identified in the AIL, nine overlapped the genomic regions discovered in an earlier B6D2 F2 intercross. Mapping resolution, however, was substantially improved in our study to a median QTL interval of 12.5 Mb. Subsequent sequence analysis of the QTL regions revealed 20 genes with nonsense or potentially damaging missense mutations. Further refinement of the muscle weight QTLs using additional functional information, such as gene expression differences between alleles, will be important for discerning the causal genes. Copyright © 2014 the American Physiological Society.
Analysis of recoverable current from one component of magnetic flux density in MREIT and MRCDI.
Park, Chunjae; Lee, Byung Il; Kwon, Oh In
2007-06-07
Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.
ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Schlafly, Edward F.
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to amore » low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.« less
Sanchez Sorzano, Carlos Oscar; Alvarez-Cabrera, Ana Lucia; Kazemi, Mohsen; Carazo, Jose María; Jonić, Slavica
2016-04-26
Single-particle electron microscopy (EM) has been shown to be very powerful for studying structures and associated conformational changes of macromolecular complexes. In the context of analyzing conformational changes of complexes, distinct EM density maps obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 3D for interpretation of structural differences. However, graphic visualization of these differences based on a quantitative analysis of elastic transformations (deformations) among density maps has not been done yet due to a lack of appropriate methods. Here, we present an approach that allows such visualization. This approach is based on statistical analysis of distances among elastically aligned pairs of EM maps (one map is deformed to fit the other map), and results in visualizing EM maps as points in a lower-dimensional distance space. The distances among points in the new space can be analyzed in terms of clusters or trajectories of points related to potential conformational changes. The results of the method are shown with synthetic and experimental EM maps at different resolutions. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mars: Stratigraphy of Western Highlands and Polar Regions
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.
1985-01-01
Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.
McPhee, D.K.; Langenheim, V.E.; Watt, J.T.
2011-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
NASA Astrophysics Data System (ADS)
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-03-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature.
Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico
Roberts, Jason J.; Best, Benjamin D.; Mannocci, Laura; Fujioka, Ei; Halpin, Patrick N.; Palka, Debra L.; Garrison, Lance P.; Mullin, Keith D.; Cole, Timothy V. N.; Khan, Christin B.; McLellan, William A.; Pabst, D. Ann; Lockhart, Gwen G.
2016-01-01
Cetaceans are protected worldwide but vulnerable to incidental harm from an expanding array of human activities at sea. Managing potential hazards to these highly-mobile populations increasingly requires a detailed understanding of their seasonal distributions and habitats. Pursuant to the urgent need for this knowledge for the U.S. Atlantic and Gulf of Mexico, we integrated 23 years of aerial and shipboard cetacean surveys, linked them to environmental covariates obtained from remote sensing and ocean models, and built habitat-based density models for 26 species and 3 multi-species guilds using distance sampling methodology. In the Atlantic, for 11 well-known species, model predictions resembled seasonal movement patterns previously suggested in the literature. For these we produced monthly mean density maps. For lesser-known taxa, and in the Gulf of Mexico, where seasonal movements were less well described, we produced year-round mean density maps. The results revealed high regional differences in small delphinoid densities, confirmed the importance of the continental slope to large delphinoids and of canyons and seamounts to beaked and sperm whales, and quantified seasonal shifts in the densities of migratory baleen whales. The density maps, freely available online, are the first for these regions to be published in the peer-reviewed literature. PMID:26936335
Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps
Adam Brandt
2015-11-15
This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark
2018-02-01
To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.
2012-01-01
Background Pigeonpea is an important grain legume of the semi-arid tropics and sub-tropical regions where it plays a crucial role in the food and nutritional security of the people. The average productivity of pigeonpea has remained very low and stagnant for over five decades due to lack of genomic information and intensive breeding efforts. Previous SSR-based linkage maps of pigeonpea used inter-specific crosses due to low inter-varietal polymorphism. Here our aim was to construct a high density intra-specific linkage map using genic-SNP markers for mapping of major quantitative trait loci (QTLs) for key agronomic traits, including plant height, number of primary and secondary branches, number of pods, days to flowering and days to maturity in pigeonpea. Results A population of 186 F2:3 lines derived from an intra-specific cross between inbred lines ‘Pusa Dwarf’ and ‘HDM04-1’ was used to construct a dense molecular linkage map of 296 genic SNP and SSR markers covering a total adjusted map length of 1520.22 cM for the 11 chromosomes of the pigeonpea genome. This is the first dense intra-specific linkage map of pigeonpea with the highest genome length coverage. Phenotypic data from the F2:3 families were used to identify thirteen QTLs for the six agronomic traits. The proportion of phenotypic variance explained by the individual QTLs ranged from 3.18% to 51.4%. Ten of these QTLs were clustered in just two genomic regions, indicating pleiotropic effects or close genetic linkage. In addition to the main effects, significant epistatic interaction effects were detected between the QTLs for number of pods per plant. Conclusions A large amount of information on transcript sequences, SSR markers and draft genome sequence is now available for pigeonpea. However, there is need to develop high density linkage maps and identify genes/QTLs for important agronomic traits for practical breeding applications. This is the first report on identification of QTLs for plant type and maturity traits in pigeonpea. The QTLs identified in this study provide a strong foundation for further validation and fine mapping for utilization in the pigeonpea improvement. PMID:23043321
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings.
Häger, Christian; Amat, Alexandre Graell I; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-06-16
Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.
1.0 Mm Maps and Radial Density Distributions of Southern Hii/molecular Cloud Complexes
NASA Technical Reports Server (NTRS)
Cheung, L. H.; Frogel, J. A.; Gezar, D. Y.; Hauser, M. G.
1980-01-01
Several 1.0 continuum mapping observations were made of seven southern hemisphere h12/molecular cloud complexes with 65 arcsec resolution. The radial density distribution of the clouds with central luminosity sources was determined observationally. Strong similarities in morphology and general physical conditions were found to exist among all of the southern clouds in the sample.
Very High Quality Crystals of Wide-Gap II-VI Semiconductors: What for?
2001-01-01
the reciprocal space mapping , by the etch pit density (EPD) measurements (to determine the density of dislocations) and by the measurement of the width...crystals. The EPD was in the range 5 x 1 + 104 cmn2 for Cdl.,ZnxTe crystals and about 104 cmz for ZnTe. The reciprocal space mapping of the crystals
Smooth H I Low Column Density Outskirts in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias
2018-06-01
The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.
Saturn’s Ring Rain: Initial Estimates of Ring Mass Loss Rates
NASA Astrophysics Data System (ADS)
Moore, Luke; O'Donoghue, J.; Mueller-Wodarg, I.; Mendillo, M.
2013-10-01
We estimate rates of mass loss from Saturn’s rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. The intensity of two bright H3+ rotational-vibrational emission lines was visible from nearly pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. Even more striking, those minima and maxima mapped to latitudes of increased or increased density in Saturn’s rings, implying a direct ring-atmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they “rain” down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the observed H3+ densities. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn’s upper atmosphere, we derive the rates of water influx required from the rings in order to reproduce the observed H3+ column densities. As a unique pair of conjugate latitudes map to a specific radial distance in the ring plane, the derived water influxes can equivalently be described as rates of ring mass erosion as a function of radial distance in the ring plane, and therefore also allow for an improved estimate of the lifetime of Saturn’s rings.
Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy
2017-01-01
Abstract Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4–7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map–model pairs. PMID:27936925
Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs
NASA Astrophysics Data System (ADS)
Lim, Wanggi; Carey, Sean J.
2014-07-01
We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre
2017-01-01
High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829
Adaptive treatment-length optimization in spatiobiologically integrated radiotherapy
NASA Astrophysics Data System (ADS)
Ajdari, Ali; Ghate, Archis; Kim, Minsun
2018-04-01
Recent theoretical research on spatiobiologically integrated radiotherapy has focused on optimization models that adapt fluence-maps to the evolution of tumor state, for example, cell densities, as observed in quantitative functional images acquired over the treatment course. We propose an optimization model that adapts the length of the treatment course as well as the fluence-maps to such imaged tumor state. Specifically, after observing the tumor cell densities at the beginning of a session, the treatment planner solves a group of convex optimization problems to determine an optimal number of remaining treatment sessions, and a corresponding optimal fluence-map for each of these sessions. The objective is to minimize the total number of tumor cells remaining (TNTCR) at the end of this proposed treatment course, subject to upper limits on the biologically effective dose delivered to the organs-at-risk. This fluence-map is administered in future sessions until the next image is available, and then the number of sessions and the fluence-map are re-optimized based on the latest cell density information. We demonstrate via computer simulations on five head-and-neck test cases that such adaptive treatment-length and fluence-map planning reduces the TNTCR and increases the biological effect on the tumor while employing shorter treatment courses, as compared to only adapting fluence-maps and using a pre-determined treatment course length based on one-size-fits-all guidelines.
ERTS-1 image enhancement by optically combining density slices
NASA Technical Reports Server (NTRS)
Tapper, G. O.; Pease, R. W.
1973-01-01
The technique of density slicing using a photographic film and its application to enhancement of ERTS-1 imagery has proved to be useful for mapping varigated areal phenomena and provides a useful supplement ot the I2S MiniAddcol viewing system. The intial experiments conducted with this film were encouraging, and indicated that this technique of density slicing using readily accessible darkroom facilities and simple darkroom procedures allows rapid, accurate, and facile interpretation of certain areal phenomena to be made from the imagery. The distribution of the tree yucca, Yucca brevifolia Jaegeriana, in the eastern Mojave Desert of Southern California and southern Nevada was used as an example to test the accuracy of the technique for mapping purposes. The distribution was mapped at a relatively high level of accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro
Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less
Shirasawa, Kenta; Tanaka, Masaru; Takahata, Yasuhiro; ...
2017-03-10
Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we usedmore » an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.« less
The relation of ground-water quality to housing density, Cape Cod, Massachusetts
Persky, J.H.
1986-01-01
Correlation of median nitrate concentration in groundwater with housing density for 18 sample areas on Cape Cod yields a Pearson correlation coefficient of 0.802, which is significant at the 95 % confidence level. In five of nine sample areas where housing density is greater than one unit/acre, nitrate concentrations exceed 5 mg of nitrate/L (the Barnstable County planning goal for nitrate) in 25% of wells. Nitrate concentrations exceed 5 mg of nitrogen/L in 25% of wells in only one of nine sample areas where housing density is less than one unit/acre. Median concentrations of sodium and iron, and median levels of pH and specific conductance, are not significantly correlated with housing density. A computer generated map of nitrate shows a positive relation between nitrate concentration and housing density on Cape Cod. However, the presence of septage- or sewage-disposal sites and fertilizer use are also important factors that affect the nitrate concentration. A map of specific conductance also shows a positive relation to housing density, but little or no relation between housing density and sodium, ammonia, pH, or iron is apparent on the maps. Chemical analyses of samples collected from 3,468 private- and public-supply wells between January 1980 and June 1984 were used to examine the extent to which housing density determines water quality on Cape Cod, an area largely unsewered and underlain by a sole source aquifer. (Author 's abstract)
Fifteen years of quantitative trait loci studies in fish: challenges and future directions.
Ashton, David T; Ritchie, Peter A; Wellenreuther, Maren
2017-03-01
Understanding the genetic basis of phenotypic variation is a major challenge in biology. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on teleost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting QTL detection and fine-mapping. The number of fish QTL studies per year increased over the review period and identified a cumulative number of 3632 putative QTLs. Most studies used linkage-based mapping approaches and were conducted on nonmodel species with limited genomic resources. A gradual and moderate increase in the size of the mapping population and a sharp increase in marker density from 2011 onwards were observed; however, the number of QTLs and variance explained by QTLs changed only minimally over the review period. Based on these findings, we discuss the causative factors and outline how larger sample sizes, phenomics, comparative genomics, epigenetics and software development could improve both the quantity and quality of QTLs in future genotype-phenotype studies. Given that the technical limitations on DNA sequencing have mostly been overcome in recent years, a renewed focus on these and other study design factors will likely lead to significant improvements in QTL studies in the future. © 2016 John Wiley & Sons Ltd.
High-density genetic map construction and comparative genome analysis in asparagus bean.
Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu
2018-03-19
Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.
NASA Astrophysics Data System (ADS)
Higginbottom, Thomas P.; Symeonakis, Elias; Meyer, Hanna; van der Linden, Sebastian
2018-05-01
Increasing attention is being directed at mapping the fractional woody cover of savannahs using Earth-observation data. In this study, we test the utility of Landsat TM/ ETM-based spectral-temporal variability metrics for mapping regional-scale woody cover in the Limpopo Province of South Africa, for 2010. We employ a machine learning framework to compare the accuracies of Random Forest models derived using metrics calculated from different seasons. We compare these results to those from fused Landsat-PALSAR data to establish if seasonal metrics can compensate for structural information from the PALSAR signal. Furthermore, we test the applicability of a statistical variable selection method, the recursive feature elimination (RFE), in the automation of the model building process in order to reduce model complexity and processing time. All of our tests were repeated at four scales (30, 60, 90, and 120 m-pixels) to investigate the role of spatial resolution on modelled accuracies. Our results show that multi-seasonal composites combining imagery from both the dry and wet seasons produced the highest accuracies (R2 = 0.77, RMSE = 9.4, at the 120 m scale). When using a single season of observations, dry season imagery performed best (R2 = 0.74, RMSE = 9.9, at the 120 m resolution). Combining Landsat and radar imagery was only marginally beneficial, offering a mean relative improvement of 1% in accuracy at the 120 m scale. However, this improvement was concentrated in areas with lower densities of woody coverage (<30%), which are areas of concern for environmental monitoring. At finer spatial resolutions, the inclusion of SAR data actually reduced accuracies. Overall, the RFE was able to produce the most accurate model (R2 = 0.8, RMSE = 8.9, at the 120 m pixel scale). For mapping savannah woody cover at the 30 m pixel scale, we suggest that monitoring methodologies continue to exploit the Landsat archive, but should aim to use multi-seasonal derived information. When the coarser 120 m pixel scale is adequate, integration of Landsat and SAR data should be considered, especially in areas with lower woody cover densities. The use of multiple seasonal compositing periods offers promise for large-area mapping of savannahs, even in regions with a limited historical Landsat coverage.
Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D
2017-01-01
Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Jinhyeok; Kim, Hyeonjin
2016-12-01
To improve the efficacy of undersampled MRI, a method of designing adaptive sampling functions is proposed that is simple to implement on an MR scanner and yet effectively improves the performance of the sampling functions. An approximation of the energy distribution of an image (E-map) is estimated from highly undersampled k-space data acquired in a prescan and efficiently recycled in the main scan. An adaptive probability density function (PDF) is generated by combining the E-map with a modeled PDF. A set of candidate sampling functions are then prepared from the adaptive PDF, among which the one with maximum energy is selected as the final sampling function. To validate its computational efficiency, the proposed method was implemented on an MR scanner, and its robust performance in Fourier-transform (FT) MRI and compressed sensing (CS) MRI was tested by simulations and in a cherry tomato. The proposed method consistently outperforms the conventional modeled PDF approach for undersampling ratios of 0.2 or higher in both FT-MRI and CS-MRI. To fully benefit from undersampled MRI, it is preferable that the design of adaptive sampling functions be performed online immediately before the main scan. In this way, the proposed method may further improve the efficacy of the undersampled MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Larson, Sandra C.
2011-04-15
Purpose: This study was performed to investigate the accuracies of the synthesized monochromatic images and effective atomic number maps obtained with the new GE Discovery CT750 HD CT scanner. Methods: A Gammex-RMI model 467 tissue characterization phantom and the CT number linearity section of a Phantom Laboratory Catphan 600 phantom were scanned using the dual energy (DE) feature on the GE CT750 HD scanner. Synthesized monochromatic images at various energies between 40 and 120 keV and effective atomic number (Z{sub eff}) maps were generated. Regions of interest were placed within these images/maps to measure the average monochromatic CT numbers andmore » average Z{sub eff} of the materials within these phantoms. The true Z{sub eff} values were either supplied by the phantom manufacturer or computed using Mayneord's equation. The linear attenuation coefficients for the true CT numbers were computed using the NIST XCOM program with the input of manufacturer supplied elemental compositions and densities. The effects of small variations in the assumed true densities of the materials were also investigated. Finally, the effect of body size on the accuracies of the synthesized monochromatic CT numbers was investigated using a custom lumbar section phantom with and without an external fat-mimicking ring. Results: Other than the Z{sub eff} of the simulated lung inserts in the tissue characterization phantom, which could not be measured by DECT, the Z{sub eff} values of all of the other materials in the tissue characterization and Catphan phantoms were accurate to 15%. The accuracies of the synthesized monochromatic CT numbers of the materials in both phantoms varied with energy and material. For the 40-120 keV range, RMS errors between the measured and true CT numbers in the Catphan are 8-25 HU when the true CT numbers were computed using the nominal plastic densities. These RMS errors improve to 3-12 HU for assumed true densities within the nominal density {+-}0.02 g/cc range. The RMS errors between the measured and true CT numbers of the tissue mimicking materials in the tissue characterization phantom over the 40-120 keV range varied from about 6 HU-248 HU and did not improve as dramatically with small changes in assumed true density. Conclusions: Initial tests indicate that the Z{sub eff} values computed with DECT on this scanner are reasonably accurate; however, the synthesized monochromatic CT numbers can be very inaccurate, especially for dense tissue mimicking materials at low energies. Furthermore, the synthesized monochromatic CT numbers of materials still depend on the amount of the surrounding tissues especially at low keV, demonstrating that the numbers are not truly monochromatic. Further research is needed to develop DE methods that produce more accurate synthesized monochromatic CT numbers.« less
USDA-ARS?s Scientific Manuscript database
Preliminary investigations into the organization of the western corn rootworm (Diabrotica virgifera virgifera; WCR) genome have resulted in low to moderate density gender-specific maps constructed from progeny of a backcrossed, short-diapause WCR family. Maps were based upon variation at microsatel...
The North American upper mantle: density, composition, and evolution
Mooney, Walter D.; Kaban, Mikhail K.
2010-01-01
The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data. The thermally corrected mantle density map reveals density anomalies that are chiefly due to compositional variations. These compositional density anomalies cause gravitational anomalies that reach ~250 mGal. A pronounced negative anomaly (−50 to −200 mGal) is found over the Canadian shield, which is consistent with chemical depletion and a corresponding low density of the lithospheric mantle, also referred to as the mantle tectosphere. The strongest positive anomaly is coincident with the Gulf of Mexico and indicates a positive density anomaly in the upper mantle, possibly an eclogite layer that has caused subsidence in the Gulf. Two linear positive anomalies are also seen south of 40°N: one with a NE-SW trend in the eastern United States, roughly coincident with the Grenville-Appalachians, and a second with a NW-SE trend beneath the states of Texas, New Mexico, and Colorado. These anomalies are interpreted as being due to (1) the presence of remnants of an oceanic slab in the upper mantle beneath the Grenville-Appalachian suture and (2) mantle thickening caused by a period of shallow, flat subduction during the Laramie orogeny, respectively. Based on these geophysical results, the evolution of the NA upper mantle is depicted in a series of maps and cartoons that display the primary processes that have formed and modified the NA crust and lithospheric upper mantle.
Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Data
NASA Astrophysics Data System (ADS)
Kogut, Alan
Current determinations of the cosmic infrared background (CIB) at far-infrared to millimeter wavelengths have large uncertainties, on the order of 30%. We propose to make new, more accurate determinations of the CIB at these wavelengths using COBE /FIRAS and Planck High Frequency Instrument (HFI) Data. This work will enable a factor of two improvement in our understanding of the CIB. Planck was not designed to measure the monopole component of sky brightness, so the FIRAS data will be used to recalibrate the zero level of the HFI maps. Correlation of the recalibrated HFI maps with Galactic H I 21-cm line emission will be used to separate the Galactic foreground emission and determine the CIB in the HFI bands from 217 to 857 GHz, or 1380 to 350 microns. The high angular resolution and sensitivity of the HFI data will allow the correlations with H I to be established more accurately and to lower H I column density than is possible with the 7± resolution FIRAS data, resulting in significant improvement in the accuracy of the derived CIB. Correlations of the CIB-subtracted 857 GHz map with FIRAS maps averaged over broad frequency bins will then be used to determine CIB values at frequencies not observed by Planck. Uncertainties in the CIB results are expected to be as low as 14% for the HFI 857 GHz band. Our results will allow more accurate determination of the fraction of the CIB that is resolved by deep source surveys, and a tighter limit to be placed on the contribution to the CIB of any diffuse emission such as emission from intergalactic dust. Possible gray extinction by intergalactic dust may produce significant systematic error in determinations of dark energy parameters from type Ia supernova measurements, and our results will be important for placing a tighter upper limit on such extinction. Our CIB results will also provide tighter constraints on models of the evolution of star-forming galaxies, and will be important in constraining the evolution in density and luminosity of ultraluminous starburst galaxies at high redshift.
NASA Astrophysics Data System (ADS)
Tan, Jonathan
We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.
Direct mapping of local redox current density on a monolith electrode by laser scanning.
Lee, Seung-Woo; Lopez, Jeffrey; Saraf, Ravi F
2013-09-15
An optical method of mapping local redox reaction over a monolith electrode using simple laser scanning is described. As the optical signal is linearly proportional to the maximum redox current that is measured concomitantly by voltammetry, the optical signal quantitatively maps the local redox current density distribution. The method is demonstrated on two types of reactions: (1) a reversible reaction where the redox moieties are ionic, and (2) an irreversible reaction on two different types of enzymes immobilized on the electrode where the reaction moieties are nonionic. To demonstrate the scanning capability, the local redox behavior on a "V-shaped" electrode is studied where the local length scale and, hence, the local current density, is nonuniform. The ability to measure the current density distribution by this method will pave the way for multianalyte analysis on a monolith electrode using a standard three-electrode configuration. The method is called Scanning Electrometer for Electrical Double-layer (SEED). Copyright © 2013 Elsevier B.V. All rights reserved.
Spatial mapping of humeral head bone density.
Alidousti, Hamidreza; Giles, Joshua W; Emery, Roger J H; Jeffers, Jonathan
2017-09-01
Short-stem humeral replacements achieve fixation by anchoring to the metaphyseal trabecular bone. Fixing the implant in high-density bone can provide strong fixation and reduce the risk of loosening. However, there is a lack of data mapping the bone density distribution in the proximal humerus. The aim of the study was to investigate the bone density in proximal humerus. Eight computed tomography scans of healthy cadaveric humeri were used to map bone density distribution in the humeral head. The proximal humeral head was divided into 12 slices parallel to the humeral anatomic neck. Each slice was then divided into 4 concentric circles. The slices below the anatomic neck, where short-stem implants have their fixation features, were further divided into radial sectors. The average bone density for each of these regions was calculated, and regions of interest were compared using a repeated-measures analysis of variance with significance set at P < .05. Average apparent bone density was found to decrease from proximal to distal regions, with the majority of higher bone density proximal to the anatomic neck of the humerus (P < .05). Below the anatomic neck, bone density increases from central to peripheral regions, where cortical bone eventually occupies the space (P < .05). In distal slices below the anatomic neck, a higher bone density distribution in the medial calcar region was also observed. This study indicates that it is advantageous with respect to implant fixation to preserve some bone above the anatomic neck and epiphyseal plate and to use the denser bone at the periphery. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Intelligent inversion method for pre-stack seismic big data based on MapReduce
NASA Astrophysics Data System (ADS)
Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua
2018-01-01
Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.
NASA Astrophysics Data System (ADS)
Akbar, Somaieh; Fathianpour, Nader
2016-12-01
The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; Michael K. Falkowski; Alistair M. S. Smith; Paul E. Gessler; Penelope Morgan
2006-01-01
We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived...
Chatake, Toshiyuki; Fujiwara, Satoru
2016-01-01
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.
Preliminary report on geophysics of the Verde River headwaters region, Arizona
Langenheim, V.E.; Duval, J.S.; Wirt, Laurie; DeWitt, Ed
2000-01-01
This report summarizes the acquisition, data processing, and preliminary interpretation of a high-resolution aeromagnetic and radiometric survey near the confluence of the Big and Little Chino basins in the headwaters of the Verde River, Arizona. The goal of the aeromagnetic study is to improve understanding of the geologic framework as it affects groundwater flow, particularly in relation to the occurrence of springs in the upper Verde River headwaters region. Radiometric data were also collected to map surficial rocks and soils, thus aiding geologic mapping of the basin fill. Additional gravity data were collected to enhance existing coverage. Both aeromagnetic and gravity data indicate a large gradient along the Big Chino fault, a fault with Quaternary movement. Filtered aeromagnetic data show other possible faults within the basin fill and areas where volcanic rocks are shallowly buried. Gravity lows associated with Big Chino and Williamson Valleys indicate potentially significant accumulations of low-density basin fill. The absence of a gravity low associated with Little Chino Valley indicates that high-density rocks are shallow. The radiometric maps show higher radioactivity associated with the Tertiary latites and with the sediments derived from them. The surficial materials on the eastern side of the Big Chino Valley are significantly lower in radioactivity and reflect the materials derived from the limestone and basalt east of the valley. The dividing line between the low radioactivity materials to the east and the higher radioactiviy materials to the west coincides approximately with the major drainage system of the valley, locally known as Big Chino Wash. This feature is remarkably straight and is approximately parallel to the Big Chino Fault. The uranium map shows large areas with concentrations greater than 5 ppm eU, and we expect that these areas will have a significantly higher risk potential for indoor radon.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
NASA Astrophysics Data System (ADS)
Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta
2016-09-01
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes
NASA Astrophysics Data System (ADS)
Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles
2010-05-01
The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.
2012-01-01
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium. PMID:23046547
New method for initial density reconstruction
NASA Astrophysics Data System (ADS)
Shi, Yanlong; Cautun, Marius; Li, Baojiu
2018-01-01
A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms that were very recently put forward in the literature, with the reconstructed density field over ˜80 % (50%) correlated with the initial condition at k ≲0.6 h /Mpc (1.0 h /Mpc ). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.
Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage.
Lee, Jonghoon; Izzah, Nur Kholilatul; Jayakodi, Murukarthick; Perumal, Sampath; Joh, Ho Jun; Lee, Hyeon Ju; Lee, Sang-Choon; Park, Jee Young; Yang, Ki-Woung; Nou, Il-Sup; Seo, Joodeok; Yoo, Jaeheung; Suh, Youngdeok; Ahn, Kyounggu; Lee, Ji Hyun; Choi, Gyung Ja; Yu, Yeisoo; Kim, Heebal; Yang, Tae-Jin
2015-02-03
Black rot is a destructive bacterial disease causing large yield and quality losses in Brassica oleracea. To detect quantitative trait loci (QTL) for black rot resistance, we performed whole-genome resequencing of two cabbage parental lines and genome-wide SNP identification using the recently published B. oleracea genome sequences as reference. Approximately 11.5 Gb of sequencing data was produced from each parental line. Reference genome-guided mapping and SNP calling revealed 674,521 SNPs between the two cabbage lines, with an average of one SNP per 662.5 bp. Among 167 dCAPS markers derived from candidate SNPs, 117 (70.1%) were validated as bona fide SNPs showing polymorphism between the parental lines. We then improved the resolution of a previous genetic map by adding 103 markers including 87 SNP-based dCAPS markers. The new map composed of 368 markers and covers 1467.3 cM with an average interval of 3.88 cM between adjacent markers. We evaluated black rot resistance in the mapping population in three independent inoculation tests using F2:3 progenies and identified one major QTL and three minor QTLs. We report successful utilization of whole-genome resequencing for large-scale SNP identification and development of molecular markers for genetic map construction. In addition, we identified novel QTLs for black rot resistance. The high-density genetic map will promote QTL analysis for other important agricultural traits and marker-assisted breeding of B. oleracea.
A sequencing-based linkage map of cucumber
USDA-ARS?s Scientific Manuscript database
Genetic maps are important tools for molecular breeding, gene cloning, and study of meiotic recombination. In cucumber (Cucumis sativus L.), the marker density, resolution and genome coverage of previously developed genetic maps using PCR-based molecular markers are relatively low. In this study we ...
Snake River Plain Geothermal Play Fairway Analysis - Phase 1 Raster Files
John Shervais
2015-10-09
Snake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.
This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National Inventory of Dams (NID) data. Attributes were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics.(See Supplementary Info for Glossary of Terms) The NID database contains information about the dam??s location, size, purpose, type, last inspection, regulatory facts, and other technical data. Structures on streams reduce the longitudinal and lateral hydrologic connectivity of the system. For example, impoundments above dams slow stream flow, cause deposition of sediment and reduce peak flows. Dams change both the discharge and sediment supply of streams, causing channel incision and bed coarsening downstream. Downstream areas are often sediment deprived, resulting in degradation, i.e., erosion of the stream bed and stream banks. This database was improved upon by locations verified by work from the USGS National Map (Jeff Simley Group). It was observed that some dams, some of them major and which do exist, were not part of the 2009 NID, but were represented in the USGS National Map dataset, and had been in the 2006 NID. Approximately 1,100 such dams were added, based on the USGS National Map lat/long and the 2006 NID attributes (dam height, storage, etc.) Finally, as clean-up, a) about 600 records with duplicate NIDID were removed, and b) about 300 reco
Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma Jj; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco Cam; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric
2016-01-01
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple ( Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species.
Di Pierro, Erica A; Gianfranceschi, Luca; Di Guardo, Mario; Koehorst-van Putten, Herma JJ; Kruisselbrink, Johannes W; Longhi, Sara; Troggio, Michela; Bianco, Luca; Muranty, Hélène; Pagliarani, Giulia; Tartarini, Stefano; Letschka, Thomas; Lozano Luis, Lidia; Garkava-Gustavsson, Larisa; Micheletti, Diego; Bink, Marco CAM; Voorrips, Roeland E; Aziz, Ebrahimi; Velasco, Riccardo; Laurens, François; van de Weg, W Eric
2016-01-01
Quantitative trait loci (QTL) mapping approaches rely on the correct ordering of molecular markers along the chromosomes, which can be obtained from genetic linkage maps or a reference genome sequence. For apple (Malus domestica Borkh), the genome sequence v1 and v2 could not meet this need; therefore, a novel approach was devised to develop a dense genetic linkage map, providing the most reliable marker-loci order for the highest possible number of markers. The approach was based on four strategies: (i) the use of multiple full-sib families, (ii) the reduction of missing information through the use of HaploBlocks and alternative calling procedures for single-nucleotide polymorphism (SNP) markers, (iii) the construction of a single backcross-type data set including all families, and (iv) a two-step map generation procedure based on the sequential inclusion of markers. The map comprises 15 417 SNP markers, clustered in 3 K HaploBlock markers spanning 1 267 cM, with an average distance between adjacent markers of 0.37 cM and a maximum distance of 3.29 cM. Moreover, chromosome 5 was oriented according to its homoeologous chromosome 10. This map was useful to improve the apple genome sequence, design the Axiom Apple 480 K SNP array and perform multifamily-based QTL studies. Its collinearity with the genome sequences v1 and v3 are reported. To our knowledge, this is the shortest published SNP map in apple, while including the largest number of markers, families and individuals. This result validates our methodology, proving its value for the construction of integrated linkage maps for any outbreeding species. PMID:27917289
Advancing UAS methods for monitoring coastal environments
NASA Astrophysics Data System (ADS)
Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.
2017-12-01
Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition. Concurrently, we test the accuracy of UAS platforms and image analysis tools against traditional high-resolution mapping equipment (GPS and terrestrial lidar) and in situ sampling (density quadrats) to conduct error analysis of UAS orthoimagery and data processing.
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes
Anderson, Lorinda K.; Lai, Ann; Stack, Stephen M.; Rizzon, Carene; Gaut, Brandon S.
2006-01-01
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that ∼1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants. PMID:16339046
A fully traits-based approach to modeling global vegetation distribution.
van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M
2014-09-23
Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.
Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.
2012-01-01
The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].
2012-01-01
Background Tocopherols, which are vitamin E compounds, play an important role in maintaining human health. Compared with other staple foods, maize grains contain high level of tocopherols. Results Two F2 populations (K22/CI7 and K22/Dan340, referred to as POP-1 and POP-2, respectively), which share a common parent (K22), were developed and genotyped using a GoldenGate assay containing 1,536 single nucleotide polymorphism (SNP) markers. An integrated genetic linkage map was constructed using 619 SNP markers, spanning a total of 1649.03 cM of the maize genome with an average interval of 2.67 cM. Seventeen quantitative trait loci (QTLs) for all the traits were detected in the first map and 13 in the second. In these two maps, QTLs for different traits were localized to the same genomic regions and some were co-located with candidate genes in the tocopherol biosynthesis pathway. Single QTL was responsible for 3.03% to 52.75% of the phenotypic variation and the QTLs in sum explained23.4% to 66.52% of the total phenotypic variation. A major QTL (qc5-1/qd5-1) affecting α-tocopherol (αT) was identified on chromosome 5 between the PZA03161.1 and PZA02068.1 in the POP-2. The QTL region was narrowed down from 18.7 Mb to 5.4 Mb by estimating the recombination using high-density markers of the QTL region. This allowed the identification of the candidate gene VTE4 which encodes γ-tocopherol methyltransferase, an enzyme that transforms γ-tocopherol (γT)to αT. Conclusions These results demonstrate that a few QTLs with major effects and several QTLs with medium to minor effects might contribute to the natural variation of tocopherols in maize grain. The high-density markers will help to fine map and identify the QTLs with major effects even in the preliminary segregating populations. Furthermore, this study provides a simple guide line for the breeders to improve traits that minimize the risk of malnutrition, especially in developing countries. PMID:23122295
Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J
2016-06-01
High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. Copyright © 2016 Li et al.
[CT pulmonary density mapping: surgical utility].
Gavezzoli, D; Caputo, P; Manelli, A; Zuccon, W; Faccini, M; Bonandrini, L
2002-04-01
The present paper considers the technique of CT scan maps of pulmonary isodensity, examining lung density differences as a function of the type of disease and considering their significance for the purposes of refined, useful diagnosis in a surgical context. METHODS. The method is used to examine 3 groups of subjects selected on a clinical/anamnestic basis and a further group already admitted for surgery. For each patient we obtained 2 thoracic density scans during the phase of maximum inspiration and expiration. On each scan we constructed 50 isodensity maps, the equivalent of more than 2500 measurements: the preliminary standard was represented by 100 wide windows to produce total "illumination" of the pulmonary fields. The isodensity windows were then codified differently. Subsequently, the density scans were analysed with the technique of scalar decomposition. The CT scan maps of lung isodensity proved useful for certain lung diseases in which early diagnosis, topographic extent of the pathology and the refined definition of the pathological picture provide important solutions as regards the indication and planning of surgical treatment and for the evaluation of the operative risk and prognosis. We consider that the technique is rapidly performed, not complex and inexpensive and is able to supply detailed information on the lung parenchyma such as to be used not only as a routine technique but also in emergencies.
Preliminary Isostatic Gravity Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Biehler, Shawn; McPhee, D.K.; McCabe, C.A.; Watt, J.T.; Anderson, M.L.; Chuchel, B.A.; Stoffer, P.
2007-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in Joshua Tree National Park, southern California. This map will serve as a basis for modeling the shape of basins beneath the Park and in adjacent valleys and also for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure, reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic or structural boundaries. High-density basement rocks exposed within the Eastern Transverse Ranges include crystalline rocks that range in age from Proterozoic to Mesozoic and these rocks are generally present in the mountainous areas of the quadrangle. Alluvial sediments, usually located in the valleys, and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range of densities, but, on average, are less dense than the pre-Cenozoic basement rocks. Basalt within the Park is as dense as crystalline basement, but is generally thin (less than 100 m thick; e.g., Powell, 2003). Isostatic residual gravity values within the map area range from about 44 mGal over Coachella Valley to about 8 mGal between the Mecca Hills and the Orocopia Mountains. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the San Andreas Fault bounding the east side of Coachella Valley and east-west-striking, left-lateral faults, such as the Pinto Mountain, Blue Cut, and Chiriaco Faults (Fig. 1). Gravity gradients also define concealed basin-bounding faults, such as those beneath the Chuckwalla Valley (e.g. Rotstein and others, 1976). These gradients result from juxtaposing dense basement rocks against thick Cenozoic sedimentary rocks.
Appliation of rad-sequencing to linkage mapping in citrus
USDA-ARS?s Scientific Manuscript database
High density linkage maps can be developed for modest cost using high-throughput DNA sequencing to genotype a defined fraction (representation) of the genome. We developed linkage maps in two citrus populations using the RAD (Restriction site Associated DNA) genotyping method which involves restrict...
Krenner, Wolfgang; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V.
2013-01-01
Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes. The confinement of the Ag(111) surface state by a porous organic network is studied with maps obtained under constant-current (CC) as well as open-feedback-loop (OFL) conditions. We show how the CC maps deviate markedly from the physically more meaningful OFL maps. By applying a renormalization procedure to the OFL data we can mimic the spurious effects of the CC mode and thereby rationalize the physical effects evoking the artefacts in the CC maps. PMID:23503526
NASA Astrophysics Data System (ADS)
Akgün, Aykut; Türk, Necdet
2011-09-01
Erosion is one of the most important natural hazard phenomena in the world, and it poses a significant threat to Turkey in terms of land degredation and desertification. To cope with this problem, we must determine which areas are erosion-prone. Many studies have been carried out and different models and methods have been used to this end. In this study, we used a logistic regression to prepare an erosion susceptibility map for the Ayvalık region in Balıkesir (NW Turkey). The following were our assessment parameters: weathering grades of rocks, slope gradient, structural lineament density, drainage density, land cover, stream power index (SPI) and profile curvature. These were processed by Idrisi Kilimanjaro GIS software. We used logistic regression analysis to relate predictor variables to the occurrence or non-occurrence of gully erosion sites within geographic cells, and then we used this relationship to produce a probability map for future erosion sites. The results indicate that lineament density, weathering grades of rocks and drainage density are the most important variables governing erosion susceptibility. Other variables, such as land cover and slope gradient, were revealed as secondary important variables. Highly weathered basalt, andesite, basaltic andesite and lacustrine sediments were the units most susceptible to erosion. In order to calculate the prediction accuracy of the erosion susceptibility map generated, we compared it with the map showing the gully erosion areas. On the basis of this comparison, the area under curvature (AUC) value was found to be 0.81. This result suggests that the erosion susceptibility map we generated is accurate.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
Plouff, Donald
1992-01-01
A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-08-01
The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-01-01
Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. PMID:26430387
NASA Astrophysics Data System (ADS)
Belehaki, Anna; Kutiev, Ivan; Zolesi, Bruno; Tsagouri, Ioanna; Dialetis, Dimitris; Marinov, Pencho; Fidanova, Stefka; Cander, Lili; Pietrella, Marco; Tziotziou, Kostas; Lykiardopoulos, Angelos
2013-04-01
Knowledge of the state of the upper atmosphere, and in particular its ionized part, is very important in several applications affected by space weather, especially the communications and navigation systems that rely on radio transmission. To better classify the ionosphere and forecast its disturbances over Europe, a data and model infrastructure platform called the European Digital Upper Atmosphere Server (DIAS) has been established in the National Observatory of Athens by a European consortium formed around eight ionospheric stations, and funded by the European Commission. The DIAS system operates since 2006 and the basic products that are delivered are real-time and historical ionograms, frequency plots and maps of the ionosphere on the foF2, M(3000)F2, MUF and bottomside electron density, as well as long term and short term forecasting up to 24 hour ahead. The DIAS system supports more than 500 subscribed users, including telecommunication companies, satellite operators, space agencies, radio amateurs, research organizations and the space weather scientific community. In 2012 the system has been upgraded, in close collaboration between the National Observatory of Athens, the Istituto Nazionale di Geofisica e Vulcanologia and the Bulgarian Academy of Sciences, with funding from the ESA/SSA Programme. The first group of new products results from the implementation of the TaD model (Topside Sounder Model assisted by Digisonde) that makes possible the generation of maps of the electron density at heights up to GNSS orbits, and of TEC and partial TEC maps (topside and plasmaspheric) over Europe. The TaD is based on the simple empirical functions for the transition height, the topside electron density scale height and their ratio, based on the Alouette/ISIS database, and models separately the oxygen, hydrogen and helium ions density profiles. The model takes as input the plasma characteristics at the height of maximum electron concentration that are provided in real-time by the DIAS Digisondes. To further improve its accuracy, we adjust the modeled TEC parameter with the GNSS-TEC parameter calculated at the Digisondes location. This adjustment forces the model to correctly reproduce the topside scale height, even in cases when the scale height at hmF2 is not available. This adjustment is very important for the application of TaD in an operational environment. The second group of new products consists of long term prediction and of nowcasting maps of the foF2 parameter that cover the whole European region - including Scandinavia. Long term prediction maps have been extended to 80 deg N applying the CCIR coefficients for the region above 65 deg N, while from 32 to 60 deg N we continue to apply SIRM (Simplified Ionospheric Regional Model), as in the case of middle latitude maps that are released routinely by the DIAS system. Between 60 and 65 deg N there is a buffer zone where an interpolation routine is applied. Nowcasting maps are based on the SIRMUP (SIRM updated in real-time) concept, however, a different effective sunspot number (Reff) is estimated for each latitudinal zone, from which a synthetic Reff is calculated.
Habitat and fish population in the deep-sea Oculina coral ecosystem of the western Atlantic
2005-01-01
In this paper, we describe results from mapping studies conducted in 2001 and improvements to reef fish populations that have occurred in the last few years. We find that less than 10% of the area contains intact Oculina coral thickets, which we continue to attribute primarily to trawling. In addition, we find increased grouper density and male abundance inside the protected area, suggesting population recovery, and the appearance of juvenile speckled hind Epinephelus drummondhayi (family Serranidae), suggesting nursery function for this and possibly other commercially important species.
Geophysical study of the San Juan Mountains batholith complex, southwestern Colorado
Drenth, Benjamin J.; Keller, G. Randy; Thompson, Ren A.
2012-01-01
One of the largest and most pronounced gravity lows over North America is over the rugged San Juan Mountains of southwestern Colorado (USA). The mountain range is coincident with the San Juan volcanic field (SJVF), the largest erosional remnant of a widespread mid-Cenozoic volcanic field that spanned much of the southern Rocky Mountains. A buried, low-density silicic batholith complex related to the volcanic field has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was based on gravity data processed with standard techniques that are problematic in the SJVF region. The combination of high-relief topography, topography with low densities, and the use of a common reduction density of 2670 kg/m3produces spurious large-amplitude gravity lows that may distort the geophysical signature of deeper features such as a batholith complex. We applied an unconventional processing procedure that uses geologically appropriate densities for the uppermost crust and digital topography to mostly remove the effect of the low-density units that underlie the topography associated with the SJVF. This approach resulted in a gravity map that provides an improved representation of deeper sources, including reducing the amplitude of the anomaly attributed to a batholith complex. We also reinterpreted vintage seismic refraction data that indicate the presence of low-velocity zones under the SJVF. Assuming that the source of the gravity low on the improved gravity anomaly map is the same as the source of the low seismic velocities, integrated modeling corroborates the interpretation of a batholith complex and then defines the dimensions and overall density contrast of the complex. Models show that the thickness of the batholith complex varies laterally to a significant degree, with the greatest thickness (∼20 km) under the western SJVF, and lesser thicknesses (<10 km) under the eastern SJVF. The largest group of nested calderas on the surface of the SJVF, the central caldera cluster, is not correlated with the thickest part of the batholith complex. This result is consistent with petrologic interpretations from recent studies that the batholith complex continued to be modified after cessation of volcanism and therefore is not necessarily representative of synvolcanic magma chambers. The total volume of the batholith complex is estimated to be 82,000–130,000 km3. The formation of such a large felsic batholith complex would inevitably involve production of a considerably greater volume of residuum, which could be present in the lower crust or uppermost mantle. The interpreted vertically averaged density contrast (–60 to –110 kg/m3), density (2590–2640 kg/m3), and seismic expression of the batholith complex are consistent with results of geophysical studies of other large batholiths in the western United States.
NASA Astrophysics Data System (ADS)
Voss, M.; Blundell, B.
2015-12-01
Characterization of urban environments is a high priority for the U.S. Army as battlespaces have transitioned from the predominantly open spaces of the 20th century to urban areas where soldiers have reduced situational awareness due to the diversity and density of their surroundings. Creating high-resolution urban terrain geospatial information will improve mission planning and soldier effectiveness. In this effort, super-resolution true-color imagery was collected with an Altivan NOVA unmanned aerial system over the Muscatatuck Urban Training Center near Butlerville, Indiana on September 16, 2014. Multispectral texture analysis using different algorithms was conducted for urban surface characterization at a variety of scales. Training samples extracted from the true-color and texture images. These data were processed using a variety of meta-algorithms with a decision tree classifier to create a high-resolution urban features map. In addition to improving accuracy over traditional image classification methods, this technique allowed the determination of the most significant textural scales in creating urban terrain maps for tactical exploitation.
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.
Han, Xi; Ghoroi, Chinmay; Davé, Rajesh
2013-02-14
Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.
Longitudinal density monitor for the LHC
NASA Astrophysics Data System (ADS)
Jeff, A.; Andersen, M.; Boccardi, A.; Bozyigit, S.; Bravin, E.; Lefevre, T.; Rabiller, A.; Roncarolo, F.; Welsch, C. P.; Fisher, A. S.
2012-03-01
The longitudinal density monitor (LDM) is primarily intended for the measurement of the particle population in nominally empty rf buckets. These so-called satellite or ghost bunches can cause problems for machine protection as well as influencing the luminosity calibration of the LHC. The high dynamic range of the system allows measurement of ghost bunches with as little as 0.01% of the main bunch population at the same time as characterization of the main bunches. The LDM is a single-photon counting system using visible synchrotron light. The photon detector is a silicon avalanche photodiode operated in Geiger mode, which allows the longitudinal distribution of the LHC beams to be measured with a resolution of 90 ps. Results from the LDM are presented, including a proposed method for constructing a 3-dimensional beam density map by scanning the LDM sensor in the transverse plane. In addition, we present a scheme to improve the sensitivity of the system by using an optical switching technique.
Improving Protocols for Protein Mapping through Proper Comparison to Crystallography Data
Lexa, Katrina W.; Carlson, Heather A.
2013-01-01
Computational approaches to fragment-based drug design (FBDD) can complement experiments and facilitate the identification of potential hot spots along the protein surface. However, the evaluation of computational methods for mapping binding sites frequently focuses upon the ability to reproduce crystallographic coordinates to within a low RMSD threshold. This dependency on the deposited coordinate data overlooks the original electron density from the experiment, thus techniques may be developed based upon subjective - or even erroneous - atomic coordinates. This can become a significant drawback in applications to systems where the location of hot spots is unknown. Based on comparison to crystallographic density, we previously showed that mixed-solvent molecular dynamics (MixMD) accurately identifies the active site for HEWL, with acetonitrile as an organic solvent. Here, we concentrated on the influence of protic solvent on simulation and refined the optimal MixMD approach for extrapolation of the method to systems without established sites. Our results establish an accurate approach for comparing simulations to experiment. We have outlined the most efficient strategy for MixMD, based on simulation length and number of runs. The development outlined here makes MixMD a robust method which should prove useful across a broad range of target structures. Lastly, our results with MixMD match experimental data so well that consistency between simulations and density may be a useful way to aid the identification of probes vs waters during the refinement of future MSCS crystallographic structures. PMID:23327200
Mapping Mangrove Density from Rapideye Data in Central America
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2017-06-01
Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men
Gliemann, Lasse; Schmidt, Jakob Friis; Olesen, Jesper; Biensø, Rasmus Sjørup; Peronard, Sebastian Louis; Grandjean, Simon Udsen; Mortensen, Stefan Peter; Nyberg, Michael; Bangsbo, Jens; Pilegaard, Henriette; Hellsten, Ylva
2013-01-01
Ageing is thought to be associated with decreased vascular function partly due to oxidative stress. Resveratrol is a polyphenol, which in animal studies has been shown to decrease atherosclerosis, and improve cardiovascular health and physical capacity, in part through its effects on Sirtuin 1 signalling and through an improved antioxidant capacity. We tested the hypothesis that resveratrol supplementation enhances training-induced improvements in cardiovascular health parameters in aged men. Twenty-seven healthy physically inactive aged men (age: 65 ± 1 years; body mass index: 25.4 ± 0.7 kg m−2; mean arterial pressure (MAP): 95.8 ± 2.2 mmHg; maximal oxygen uptake: 2488 ± 72 ml O2 min−1) were randomized into 8 weeks of either daily intake of either 250 mg trans-resveratrol (n= 14) or of placebo (n= 13) concomitant with high-intensity exercise training. Exercise training led to a 45% greater (P < 0.05) increase in maximal oxygen uptake in the placebo group than in the resveratrol group and to a decrease in MAP in the placebo group only (−4.8 ± 1.7 mmHg; P < 0.05). The interstitial level of vasodilator prostacyclin was lower in the resveratrol than in the placebo group after training (980 ± 90 vs. 1174 ± 121 pg ml−1; P < 0.02) and muscle thromboxane synthase was higher in the resveratrol group after training (P < 0.05). Resveratrol administration also abolished the positive effects of exercise on low-density lipoprotein, total cholesterol/high-density lipoprotein ratio and triglyceride concentrations in blood (P < 0.05). Resveratrol did not alter the effect of exercise training on the atherosclerosis marker vascular cell adhesion molecule 1 (VCAM-1). Sirtuin 1 protein levels were not affected by resveratrol supplementation. These findings indicate that, whereas exercise training effectively improves several cardiovascular health parameters in aged men, concomitant resveratrol supplementation can blunt these effects. PMID:23878368
NASA Astrophysics Data System (ADS)
Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.
2013-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
Remote Sensing of Ionosphere by IONOLAB Group
NASA Astrophysics Data System (ADS)
Arikan, Feza
2016-07-01
Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state/temporal transition. IONOLAB group contributes to remote sensing of upper atmosphere, ionosphere and plasmasphere with continuing TUBITAK projects. IONOLAB group is open to joint research and collaboration with researchers from all disciplines that investigate the challenges of ionosphere and space weather. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
NASA Astrophysics Data System (ADS)
Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang
2017-05-01
This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruner, Deborah Watkins, E-mail: deborah.w.bruner@emory.edu; Pugh, Stephanie L.; Yeager, Katherine A.
Purpose: To assess how accrual to clinical trials is related to US minority population density relative to clinical trial site location and distance traveled to Radiation Therapy Oncology Group (RTOG) clinical trial sites. Methods and Materials: Data included member site address and ZIP codes, patient accrual, and patient race or ethnicity and ZIP code. Geographic Information System maps were developed for overall, Latino, and African American accrual to trials by population density. The Kruskal-Wallis test was used to assess differences in distance traveled by site, type of trial, and race or ethnicity. Results: From 2006 to 2009, 6168 patients enrolledmore » on RTOG trials. The RTOG US site distribution is generally concordant with overall population density. Sites with highest accrual are located throughout the United States and parts of Canada and do not cluster, nor does highest minority accrual cluster in areas of highest US minority population density. Of the 4913 US patients with complete data, patients traveled a median of 11.6 miles to participate in clinical trials. Whites traveled statistically longer distances (12.9 miles; P<.0001) to participate, followed by Latinos (8.22 miles) and African Americans (5.85 miles). Patients were willing to drive longer distances to academic sites than community sites, and there was a trend toward significantly longer median travel for therapeutic versus cancer control or metastatic trials. Conclusions: Location matters, but only to a degree, for minority compared with nonminority participation in clinical trials. Geographic Information System tools help identify gaps in geographic access and travel burden for clinical trials participation. Strategies that emerged using these tools are discussed.« less
Soil property maps of Africa at 250 m resolution
NASA Astrophysics Data System (ADS)
Kempen, Bas; Hengl, Tomislav; Heuvelink, Gerard B. M.; Leenaars, Johan G. B.; Walsh, Markus G.; MacMillan, Robert A.; Mendes de Jesus, Jorge S.; Shepherd, Keith; Sila, Andrew; Desta, Lulseged T.; Tondoh, Jérôme E.
2015-04-01
Vast areas of arable land in sub-Saharan Africa suffer from low soil fertility and physical soil constraints, and significant amounts of nutrients are lost yearly due to unsustainable soil management practices. At the same time it is expected that agriculture in Africa must intensify to meet the growing demand for food and fiber the next decades. Protection and sustainable management of Africa's soil resources is crucial to achieve this. In this context, comprehensive, accurate and up-to-date soil information is an essential input to any agricultural or environmental management or policy and decision-making model. In Africa, detailed soil information has been fragmented and limited to specific zones of interest for decades. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. AfSIS builds on recent advances in digital soil mapping, infrared spectroscopy, remote sensing, (geo)statistics, and integrated soil fertility management to improve the way soils are evaluated, mapped, and monitored. Over the period 2008-2014, the AfSIS project has compiled two soil profile data sets (about 28,000 unique locations): the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site (new soil samples) database -- the two data sets represent the most comprehensive soil sample database of the African continent to date. In addition a large set of high-resolution environmental data layers (covariates) was assembled. The point data were used in the AfSIS project to generate a set of maps of key soil properties for the African continent at 250 m spatial resolution: sand, silt and clay fractions, bulk density, organic carbon, total nitrogen, pH, cation-exchange capacity, exchangeable bases (Ca, K, Mg, Na), exchangeable acidity, and Al content. These properties were mapped for six depth intervals up to 2 m: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. Random forests modelling was used to relate the soil profile observations to a set covariates, that included global soil class and property maps, MODIS imagery and a DEM, in a 3D mapping framework. The model residuals were interpolated by 3D kriging, after which the kriging predictions were added to the random forests predictions to obtain the soil property predictions. The model predictions were validated with 5-fold cross-validation. The random forests models explained between 37% (exch. Na) and 85% (Al content) of the variation in the data. Results also show that globally predicted soil classes help improve continental scale mapping of the soil nutrients and are often among the most important predictors. We conclude that the first mapping results look promising. We used an automated modelling framework that enables re-computing the maps as new data becomes arrives, hereby gradually improving the maps. We showed that global maps of soil classes and properties produced with models that were predominantly calibrated on areas with plentiful observations can be used to improve the accuracy of predictions in regions with less plentiful data, such as Africa.
NASA Astrophysics Data System (ADS)
Hoseini, F.; Darvishsefat, A. A.; Zargham, N.
2012-07-01
In order to investigate the capability of satellite images for Pistachio forests density mapping, IRS-P6-LISS IV data were analyzed in an area of 500 ha in Iran. After geometric correction, suitable training areas were determined based on fieldwork. Suitable spectral transformations like NDVI, PVI and PCA were performed. A ground truth map included of 34 plots (each plot 1 ha) were prepared. Hard and soft supervised classifications were performed with 5 density classes (0-5%, 5-10%, 10-15%, 15-20% and > 20%). Because of low separability of classes, some classes were merged and classifications were repeated with 3 classes. Finally, the highest overall accuracy and kappa coefficient of 70% and 0.44, respectively, were obtained with three classes (0-5%, 5-20%, and > 20%) by fuzzy classifier. Considering the low kappa value obtained, it could be concluded that the result of the classification was not desirable. Therefore, this approach is not appropriate for operational mapping of these valuable Pistachio forests.
Global 3-D ionospheric electron density reanalysis based on multisource data assimilation
NASA Astrophysics Data System (ADS)
Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Hunt, Douglas C.; Wang, Wenbin; Solomon, Stanley C.; Burns, Alan G.; Bilitza, Dieter; Liu, Jann-Yenq; Wan, Weixing; Wickert, Jens
2012-09-01
We report preliminary results of a global 3-D ionospheric electron density reanalysis demonstration study during 2002-2011 based on multisource data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground-based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 h in universal time, 5° in latitude, 10° in longitude, and ˜30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content derived from the international GNSS service global ionospheric maps, the observed electron density profiles from the Poker Flat Incoherent Scatter Radar during 2007-2010, and foF2 observed by the global ionosonde network during 2002-2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.
Zhao, Shuzhi; Li, Yangding; Li, Min; Wang, Ruonan; Bi, Yanzhi; Zhang, Yajuan; Lu, Xiaoqi; Yu, Dahua; Yang, Likun; Yuan, Kai
2018-06-20
Studying the neural correlates of craving to smoke is of great importance to improve treatment outcomes in smoking addiction. According to previous studies, the critical roles of striatum and frontal brain regions had been revealed in addiction. However, few studies focused on the hub of brain regions in the 12 h abstinence induced craving in young smokers. Thirty-one young male smokers were enrolled in the present study. A within-subject experiment design was carried out to compare functional connectivity density between 12-h smoking abstinence and smoking satiety conditions during resting state in young adult smokers by using functional connectivity density mapping (FCDM). Then, the functional connectivity density changes during smoking abstinence versus satiety were further used to examine correlations with abstinence-induced changes in subjective craving. We found young adult smokers in abstinence state (vs satiety) had higher local functional connectivity density (lFCD) and global functional connectivity density (gFCD) in brain regions including striatal subregions (i.e., bilateral caudate and putamen), frontal regions (i.e., anterior cingulate cortex (ACC) and orbital frontal cortex (OFC)) and bilateral insula. We also found higher lFCD during smoking abstinence (vs satiety) in bilateral thalamus. Additionally, the lFCD changes of the left ACC, bilateral caudate and right OFC were positively correlated with the changes in craving induced by abstinence (i.e., abstinence minus satiety) in young adult smokers. The present findings improve the understanding of the effects of acute smoking abstinence on the hubs of brain gray matter in the abstinence-induces craving and may contribute new insights into the neural mechanism of abstinence-induced craving in young smokers in smoking addiction.
Density-Aware Clustering Based on Aggregated Heat Kernel and Its Transformation
Huang, Hao; Yoo, Shinjae; Yu, Dantong; ...
2015-06-01
Current spectral clustering algorithms suffer from the sensitivity to existing noise, and parameter scaling, and may not be aware of different density distributions across clusters. If these problems are left untreated, the consequent clustering results cannot accurately represent true data patterns, in particular, for complex real world datasets with heterogeneous densities. This paper aims to solve these problems by proposing a diffusion-based Aggregated Heat Kernel (AHK) to improve the clustering stability, and a Local Density Affinity Transformation (LDAT) to correct the bias originating from different cluster densities. AHK statistically\\ models the heat diffusion traces along the entire time scale, somore » it ensures robustness during clustering process, while LDAT probabilistically reveals local density of each instance and suppresses the local density bias in the affinity matrix. Our proposed framework integrates these two techniques systematically. As a result, not only does it provide an advanced noise-resisting and density-aware spectral mapping to the original dataset, but also demonstrates the stability during the processing of tuning the scaling parameter (which usually controls the range of neighborhood). Furthermore, our framework works well with the majority of similarity kernels, which ensures its applicability to many types of data and problem domains. The systematic experiments on different applications show that our proposed algorithms outperform state-of-the-art clustering algorithms for the data with heterogeneous density distributions, and achieve robust clustering performance with respect to tuning the scaling parameter and handling various levels and types of noise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J
2017-02-13
Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral nutrients that will serve as important resources to enable marker-assisted selection (MAS) for nutritional quality traits in pea breeding programs.
Spatially associated clump populations in Rosette from CO and dust maps
NASA Astrophysics Data System (ADS)
Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.
2018-04-01
Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.
We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less
Method for the Preparation of Hazard Map in Urban Area Using Soil Depth and Groundwater Level
NASA Astrophysics Data System (ADS)
Kim, Sung-Wook; Choi, Eun-Kyeong; Cho, Jin Woo; Lee, Ju-Hyoung
2017-04-01
The hazard maps for predicting collapse on natural slopes consists of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as distance to drainage, drainage density, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of collapse of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual collapse points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage. Keywords: hazard map, urban area, soil depth, ground water level Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.
Agriculture/forestry hydrology
NASA Technical Reports Server (NTRS)
Vanderoord, W. J. (Principal Investigator)
1977-01-01
The author has identified the following significant results. The main vegetation units of the lower Mekong basin and the land development conditions were mapped by interpretation of LANDSAT 1 data. By interpretation of various shades of gray on satellite images, it was possible to map the density of the vegetation cover. Study of seasonal variations makes it possible to distinguish between mainly deciduous forests. In the Mekong basin area, these are generally related to the vegetation cover density.
Nanoscale temperature mapping in operating microelectronic devices
Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...
2015-02-05
We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki K. M.
2015-02-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than +/-0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan
Tanaka, Hiroyuki K. M.
2015-01-01
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km2. We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities. PMID:25660352
Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan.
Tanaka, Hiroyuki K M
2015-02-09
While the benefits of determining the bulk density distribution of a landmass are evident, established experimental techniques reliant on gravity measurements cannot uniquely determine the underground density distribution. We address this problem by taking advantage of traffic tunnels densely distributed throughout the country. Cosmic ray muon flux is measured in the tunnels to determine the average density of each rock overburden. After analyzing the data collected from 146 observation points in Miura, South-Boso and South-Izu Peninsula, Japan as an example, we mapped out the shallow density distribution of an area of 1340 km(2). We find a good agreement between muographically determined density distribution and geologic features as described in existing geological studies. The average shallow density distribution below each peninsula was determined with a great accuracy (less than ±0.8%). We also observed a significant reduction in density along fault lines and interpreted that as due to the presence of multiple cracks caused by mechanical stress during recurrent seismic events. We show that this new type of muography technique can be applied to estimate the terrain density and porosity distribution, thus determining more precise Bouguer reduction densities.
Cierco-Ayrolles, Christine; Dejean, Sébastien; Legarra, Andrés; Gilbert, Hélène; Druet, Tom; Ytournel, Florence; Estivals, Delphine; Oumouhou, Naïma; Mangin, Brigitte
2010-10-22
Since 2001, the use of more and more dense maps has made researchers aware that combining linkage and linkage disequilibrium enhances the feasibility of fine-mapping genes of interest. So, various method types have been derived to include concepts of population genetics in the analyses. One major drawback of many of these methods is their computational cost, which is very significant when many markers are considered. Recent advances in technology, such as SNP genotyping, have made it possible to deal with huge amount of data. Thus the challenge that remains is to find accurate and efficient methods that are not too time consuming. The study reported here specifically focuses on the half-sib family animal design. Our objective was to determine whether modelling of linkage disequilibrium evolution improved the mapping accuracy of a quantitative trait locus of agricultural interest in these populations. We compared two methods of fine-mapping. The first one was an association analysis. In this method, we did not model linkage disequilibrium evolution. Therefore, the modelling of the evolution of linkage disequilibrium was a deterministic process; it was complete at time 0 and remained complete during the following generations. In the second method, the modelling of the evolution of population allele frequencies was derived from a Wright-Fisher model. We simulated a wide range of scenarios adapted to animal populations and compared these two methods for each scenario. Our results indicated that the improvement produced by probabilistic modelling of linkage disequilibrium evolution was not significant. Both methods led to similar results concerning the location accuracy of quantitative trait loci which appeared to be mainly improved by using four flanking markers instead of two. Therefore, in animal half-sib designs, modelling linkage disequilibrium evolution using a Wright-Fisher model does not significantly improve the accuracy of the QTL location when compared to a simpler method assuming complete and constant linkage between the QTL and the marker alleles. Finally, given the high marker density available nowadays, the simpler method should be preferred as it gives accurate results in a reasonable computing time.
Density and Reproductive Success of California Towhees
Kathryn L. Purcell; Jared Verner
1998-01-01
Models of habitat selection commonly asume that higher-quality source habitats will be occupied at higher densities than sink habitats. We examined an apparent sink habitat for California Towhees (Pipilo crissalis) in which densities are greater than in nearby source habitats. We estimated territory density using spot-mapping and monitored nests of towhees in grazed...
Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.
2015-01-01
High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569
Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien
2016-01-01
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l’Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l’Oyapock. The final cross-validated model integrated two landscape variables—dense forest surface and built surface—together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner. PMID:27749938
Adde, Antoine; Roux, Emmanuel; Mangeas, Morgan; Dessay, Nadine; Nacher, Mathieu; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien
2016-01-01
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de l'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables-dense forest surface and built surface-together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.
Surface density mapping of natural tissue by a scanning haptic microscope (SHM).
Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide
2013-02-01
To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.
Mapping Seabird Sensitivity to Offshore Wind Farms
Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan
2014-01-01
We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739
Study on the mapping of dark matter clustering from real space to redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less
Mapping seabird sensitivity to offshore wind farms.
Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan
2014-01-01
We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.
THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Lazarian, A.
2016-08-10
Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less
An integrated pan-tropical biomass map using multiple reference datasets.
Avitabile, Valerio; Herold, Martin; Heuvelink, Gerard B M; Lewis, Simon L; Phillips, Oliver L; Asner, Gregory P; Armston, John; Ashton, Peter S; Banin, Lindsay; Bayol, Nicolas; Berry, Nicholas J; Boeckx, Pascal; de Jong, Bernardus H J; DeVries, Ben; Girardin, Cecile A J; Kearsley, Elizabeth; Lindsell, Jeremy A; Lopez-Gonzalez, Gabriela; Lucas, Richard; Malhi, Yadvinder; Morel, Alexandra; Mitchard, Edward T A; Nagy, Laszlo; Qie, Lan; Quinones, Marcela J; Ryan, Casey M; Ferry, Slik J W; Sunderland, Terry; Laurin, Gaia Vaglio; Gatti, Roberto Cazzolla; Valentini, Riccardo; Verbeeck, Hans; Wijaya, Arief; Willcock, Simon
2016-04-01
We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets. © 2015 John Wiley & Sons Ltd.
Using a Mach-Zehnder interferometer to deduce nitrogen density mapping
NASA Astrophysics Data System (ADS)
Boudaoud, F.; Lemerini, M.
2015-07-01
This work presents an optical method using the Mach-Zehnder interferometer. We especially diagnose a pure nitrogen gas subjected to a point to plane corona discharge, and visualize the density spatial map. The interelectrode distance equals 6 mm and the variation of the optical path has been measured at different pressures: 220 Torr, 400 Torr, and 760 Torr. The interferograms are recorded with a CCD camera, and the numerical analysis of these interferograms is assured by the inverse Abel transformation. The nitrogen density is extracted through the Gladstone-Dale relation. The obtained results are in close agreement with values available in the literature.
NASA Technical Reports Server (NTRS)
Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.
1972-01-01
Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.
N'Diaye, Amidou; Haile, Jemanesh K; Cory, Aron T; Clarke, Fran R; Clarke, John M; Knox, Ron E; Pozniak, Curtis J
2017-01-01
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype-based analysis over single marker analysis to detect loci associated with colour traits in durum wheat.
NASA Technical Reports Server (NTRS)
Xie, Hong Na; Odstrcil, Dusan; Mays, L.; Cyr, O. C. St.; Gopalswamy, N.; Cremades, H.
2012-01-01
The 2010 April 03 solar event was studied using observations from STEREO SECCHI, SOHO LASCO, and Wind kilometric Type II data (kmTII) combined with WSA-Cone-ENLIL model simulations performed at the Community Coordinated Modeling Center (CCMC). In particular, we identified the origin of the coronal mass ejection (CME) using STEREO EUVI and SOHO EIT images. A flux-rope model was fit to the SECCHI A and B, and LASCO images to determine the CMEs direction, size, and actual speed. J-maps from STEREO COR2HI-1HI-2 and simulations fromCCMC were used to study the formation and evolution of the shock in the inner heliosphere. In addition, we also studied the time-distance profile of the shock propagation from kmTII radio burst observations. The J-maps together with in-situ datafrom the Wind spacecraft provided an opportunity to validate the simulation results andthe kmTII prediction. Here we report on a comparison of two methods of predictinginterplanetary shock arrival time: the ENLIL model and the kmTII method; andinvestigate whether or not using the ENLIL model density improves the kmTIIprediction. We found that the ENLIL model predicted the kinematics of shock evolutionwell. The shock arrival times (SAT) and linear-fit shock velocities in the ENLILmodel agreed well with those measurements in the J-maps along both the CME leading edge and the Sun-Earth line. The ENLIL model also reproduced most of the largescale structures of the shock propagation and gave the SAT prediction at Earth with an error of 17 hours. The kmTII method predicted the SAT at Earth with an error of 15 hours when using n0 4.16 cm3, the ENLIL model plasma density near Earth; but itimproved to 2 hours when using n0 6.64 cm3, the model density near the CMEleading edge at 1 AU.
Mapping the integrated Sachs-Wolfe effect
NASA Astrophysics Data System (ADS)
Manzotti, A.; Dodelson, S.
2014-12-01
On large scales, the anisotropies in the cosmic microwave background (CMB) reflect not only the primordial density field but also the energy gain when photons traverse decaying gravitational potentials of large scale structure, what is called the integrated Sachs-Wolfe (ISW) effect. Decomposing the anisotropy signal into a primordial piece and an ISW component, the main secondary effect on large scales, is more urgent than ever as cosmologists strive to understand the Universe on those scales. We present a likelihood technique for extracting the ISW signal combining measurements of the CMB, the distribution of galaxies, and maps of gravitational lensing. We test this technique with simulated data showing that we can successfully reconstruct the ISW map using all the data sets together. Then we present the ISW map obtained from a combination of real data: the NRAO VLA sky survey (NVSS) galaxy survey, temperature anisotropies, and lensing maps made by the Planck satellite. This map shows that, with the data sets used and assuming linear physics, there is no evidence, from the reconstructed ISW signal in the Cold Spot region, for an entirely ISW origin of this large scale anomaly in the CMB. However a large scale structure origin from low redshift voids outside the NVSS redshift range is still possible. Finally we show that future surveys, thanks to a better large scale lensing reconstruction will be able to improve the reconstruction signal to noise which is now mainly coming from galaxy surveys.
Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin
2013-01-01
The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.
NASA Technical Reports Server (NTRS)
Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.
1989-01-01
Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.
Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population.
Ding, Junqiang; Zhang, Luyan; Chen, Jiafa; Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu
2015-01-01
Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize.
Genomic Dissection of Leaf Angle in Maize (Zea mays L.) Using a Four-Way Cross Mapping Population
Li, Xiantang; Li, Yongming; Cheng, Hongliang; Huang, Rongrong; Zhou, Bo; Li, Zhimin; Wang, Jiankang; Wu, Jianyu
2015-01-01
Increasing grain yield by the selection for optimal plant architecture has been the key focus in modern maize breeding. As a result, leaf angle, an important determinant of plant architecture, has been significantly improved to adapt to the ever-increasing plant density in maize production over the past several decades. To extend our understanding on the genetic mechanisms of leaf angle in maize, we developed the first four-way cross mapping population, consisting of 277 lines derived from four maize inbred lines with varied leaf angles. The four-way cross mapping population together with the four parental lines were evaluated for leaf angle in two environments. In this study, we reported linkage maps built in the population and quantitative trait loci (QTL) on leaf angle detected by inclusive composite interval mapping (ICIM). ICIM applies a two-step strategy to effectively separate the cofactor selection from the interval mapping, which controls the background additive and dominant effects at the same time. A total of 14 leaf angle QTL were identified, four of which were further validated in near-isogenic lines (NILs). Seven of the 14 leaf angle QTL were found to overlap with the published leaf angle QTL or genes, and the remaining QTL were unique to the four-way population. This study represents the first example of QTL mapping using a four-way cross population in maize, and demonstrates that the use of specially designed four-way cross is effective in uncovering the basis of complex and polygenetic trait like leaf angle in maize. PMID:26509792
High-density diffuse optical tomography of term infant visual cortex in the nursery
NASA Astrophysics Data System (ADS)
Liao, Steve M.; Ferradal, Silvina L.; White, Brian R.; Gregg, Nicholas; Inder, Terrie E.; Culver, Joseph P.
2012-08-01
Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.
Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk
NASA Astrophysics Data System (ADS)
Holmberg, M. K. G.; Shebanits, O.; Wahlund, J.-E.; Morooka, M. W.; Vigren, E.; André, N.; Garnier, P.; Persoon, A. M.; Génot, V.; Gilbert, L. K.
2017-12-01
We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS=60,268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, nmax, is shown to be located at ˜4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of nmax is due to that the hot electron impact ionization rate peaks at ˜4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.
NASA Astrophysics Data System (ADS)
Freire, Sérgio; Aubrecht, Christoph
2010-05-01
The recent 7.0 M earthquake that caused severe damage and destruction in parts of Haiti struck close to 5 PM (local time), at a moment when many people were not in their residences, instead being in their workplaces, schools, or churches. Community vulnerability assessment to seismic hazard relying solely on the location and density of resident-based census population, as is commonly the case, would grossly misrepresent the real situation. In particular in the context of global (climate) change, risk analysis is a research field increasingly gaining in importance whereas risk is usually defined as a function of hazard probability and vulnerability. Assessment and mapping of human vulnerability has however generally been lagging behind hazard analysis efforts. Central to the concept of vulnerability is the issue of human exposure. Analysis of exposure is often spatially tied to administrative units or reference objects such as buildings, spanning scales from the regional level to local studies for small areas. Due to human activities and mobility, the spatial distribution of population is time-dependent, especially in metropolitan areas. Accurately estimating population exposure is a key component of catastrophe loss modeling, one element of effective risk analysis and emergency management. Therefore, accounting for the spatio-temporal dynamics of human vulnerability correlates with recent recommendations to improve vulnerability analyses. Earthquakes are the prototype for a major disaster, being low-probability, rapid-onset, high-consequence events. Lisbon, Portugal, is subject to a high risk of earthquake, which can strike at any day and time, as confirmed by modern history (e.g. December 2009). The recently-approved Special Emergency and Civil Protection Plan (PEERS) is based on a Seismic Intensity map, and only contemplates resident population from the census as proxy for human exposure. In the present work we map and analyze the spatio-temporal distribution of population in the daily cycle to re-assess exposure to earthquake hazard in the Lisbon Metropolitan Area, home to almost three million people. New high-resolution (50 m grids) daytime and nighttime population distribution maps are developed using dasymetric mapping. The modeling approach uses areal interpolation to combine best-available census data and statistics with land use and land cover data. Mobility statistics are considered for mapping daytime distribution, and empirical parameters used for interpolation are obtained from a previous effort in high resolution population mapping of part of the study area. Finally, the population distribution maps are combined with the Seismic Hazard Intensity map to: (1) quantify and compare human exposure to seismic intensity levels in the daytime and nighttime periods, and (2) derive nighttime and daytime overall Earthquake Risk maps. This novel approach yields previously unavailable spatio-temporal population distribution information for the study area, enabling refined and more accurate earthquake risk mapping and assessment. Additionally, such population exposure datasets can be combined with different hazard maps to improve spatio-temporal assessment and risk mapping for any type of hazard, natural or man-made. We believe this improved characterization of vulnerability and risk can benefit all phases of the disaster management process where human exposure has to be considered, namely in emergency planning, risk mitigation, preparedness, and response to an event.
Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.
2013-01-01
A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.
Livingstone, Donald; Stack, Conrad; Mustiga, Guiliana M; Rodezno, Dayana C; Suarez, Carmen; Amores, Freddy; Feltus, Frank A; Mockaitis, Keithanne; Cornejo, Omar E; Motamayor, Juan C
2017-01-01
Cacao ( Theobroma cacao L.) is an important cash crop in tropical regions around the world and has a rich agronomic history in South America. As a key component in the cosmetic and confectionary industries, millions of people worldwide use products made from cacao, ranging from shampoo to chocolate. An Illumina Infinity II array was created using 13,530 SNPs identified within a small diversity panel of cacao. Of these SNPs, 12,643 derive from variation within annotated cacao genes. The genotypes of 3,072 trees were obtained, including two mapping populations from Ecuador. High-density linkage maps for these two populations were generated and compared to the cacao genome assembly. Phenotypic data from these populations were combined with the linkage maps to identify the QTLs for yield and disease resistance.
Jin, Ya; Bu, Shujie; Zhang, Jun; Yuan, Qi; Manabe, Takashi; Tan, Wen
2014-07-01
A human plasma sample was subjected to nondenaturing micro 2DE and a gel area (5 mm × 18 mm) that includes high-density lipoprotein (HDL) was cut into 1 mm × 1 mm squares, then the proteins in the 90 gel pieces were analyzed by quantitative LC-MS/MS. Grid-cutting of the gel was employed to; (i) ensure the total analysis of the proteins in the area, (ii) standardize the conditions of analysis by LC-MS/MS, (iii) reconstruct the protein distribution patterns from the quantity data. Totally 154 proteins were assigned in the 90 gel pieces and the quantity distribution of each was reconstructed as a color density pattern (a native protein map). The map of apolipoprotein (Apo) A-I showed a wide apparent mass distribution characteristic to HDL and was compared with the maps of the other 153 proteins. Eleven proteins showed maps of wide distribution that overlapped with the map of Apo A-I, and all have been reported to be the components of HDL. Further, seven minor proteins associated with HDL were detected at the gel positions of high Apo A-I quantity. These results for the first time visualized the localization of HDL apolipoproteins on a nondenaturing 2DE gel and strongly suggested their interactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reis, Claudia; De-Deus, Gustavo; Marins, Juliana; Fidel, Sandra; Fidel, Rivail; Paciornik, Sidnei
2012-08-01
To introduce a mapping method to characterize large dentin surfaces using digital microscopy and to discuss the advantages and possible applications of the method. Twenty unerupted third molars were sectioned transversally exposing coronal dentin surfaces. The microscopic mosaic method was used to generate a large field image with the resolution necessary to measure characteristics of dentin tubules. The AxioVision 4.7 software was used to control a motorized optical microscope and the process of acquiring approximately 400 small images to generate each dentin mosaic. An image analysis routine measured the number of tubules (NT) and the ratio between the total area of tubules and the area of the mosaic - the area fraction (AF) - of each mosaic. An automatic procedure transformed the mosaic image into a color map, providing a direct visual representation of tubule density through colors. The dentin maps were used for a comparative qualitative analysis of tubule density distribution of each sample. The results for NT (92450 to 196029 tubules/sample) and AF (4.12% to 11.10%) demonstrated a wide variation among dentin samples. The maps confirmed the microstructure variety, also revealing strong local variations in tubule density within each sample. The mapping method was able to perform dentin morphology characterization and is a valuable tool for producing a baseline for dentin adhesion studies. The method could be also useful in determining the real contribution of dentin structures to the final adhesion quality.
EU-Norsewind Using Envisat ASAR And Other Data For Offshore Wind Atlas
NASA Astrophysics Data System (ADS)
Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete
2010-04-01
The EU project NORSEWIND - short for Northern Seas Wind Index Database - www.norsewind.eu has the aim to produce state-of-the-art wind atlas for the Baltic, Irish and North Seas using ground-based lidar, meteorological masts, satellite data and mesoscale modelling. So far CLS and Risø DTU have collected Envisat ASAR images for the area of interest and the first results: maps of wind statistics, Weibull scale and shape parameters, mean and energy density are presented. The results will be compared to a distributed network of high-quality in-situ observations and mesoscale model results during 2009-2011 as the in-situ data and model results become available. Wind energy is proportional with wind speed to the third power, thus even small improvements on wind speed mapping are important in this project. One challenge is to arrive at hub-height winds ~100 m above sea level.
Response phase mapping of nonlinear joint dynamics using continuous scanning LDV measurement method
NASA Astrophysics Data System (ADS)
Di Maio, D.; Bozzo, A.; Peyret, Nicolas
2016-06-01
This study aims to present a novel work aimed at locating discrete nonlinearities in mechanical assemblies. The long term objective is to develop a new metric for detecting and locating nonlinearities using Scanning LDV systems (SLDV). This new metric will help to improve the modal updating, or validation, of mechanical assemblies presenting discrete and sparse nonlinearities. It is well established that SLDV systems can scan vibrating structures with high density of measurement points and produc e highly defined Operational Deflection Shapes (ODSs). This paper will present some insights on how to use response phase mapping for locating nonlinearities of a bolted flange. This type of structure presents two types of nonlinearities, which are geometr ical and frictional joints. The interest is focussed on the frictional joints and, therefore, the ability to locate which joint s are responsible for nonlinearity is seen highly valuable for the model validation activities.
Bistatic LIDAR experiment proposed for the shuttle/tethered satellite system missions
NASA Technical Reports Server (NTRS)
Mccomas, D. J.; Spense, H. E.; Karl, R. R.; Horak, H. G.; Wilkerson, T. D.
1986-01-01
A new experiment concept has been proposed for the shuttle/tethered satellite system missions, which can provide high resolution, global density mappings of certain ionospheric species. The technique utilizes bistatic LIDAR to take advantage of the unique dual platform configuration offered by these missions. A tuned, shuttle-based laser is used to excite a column of the atmosphere adjacent to the tethered satellite, while triangulating photometic detectors on the satellite are employed to measure the fluorescence from sections of the column. The fluorescent intensity at the detectors is increased about six decades over both ground-based and monostatic shuttle-based LIDAR sounding of the same region. In addition, the orbital motion of the Shuttle provides for quasi-global mapping unattainable with ground-based observations. Since this technique provides such vastly improved resolution on a synoptic scale, many important middle atmospheric studies, heretofore untenable, may soon be addressed.
Real-time stereo matching using orthogonal reliability-based dynamic programming.
Gong, Minglun; Yang, Yee-Hong
2007-03-01
A novel algorithm is presented in this paper for estimating reliable stereo matches in real time. Based on the dynamic programming-based technique we previously proposed, the new algorithm can generate semi-dense disparity maps using as few as two dynamic programming passes. The iterative best path tracing process used in traditional dynamic programming is replaced by a local minimum searching process, making the algorithm suitable for parallel execution. Most computations are implemented on programmable graphics hardware, which improves the processing speed and makes real-time estimation possible. The experiments on the four new Middlebury stereo datasets show that, on an ATI Radeon X800 card, the presented algorithm can produce reliable matches for 60% approximately 80% of pixels at the rate of 10 approximately 20 frames per second. If needed, the algorithm can be configured for generating full density disparity maps.
High density genetic linkage map and bin mapping for disease resistance QTLs in peanut
USDA-ARS?s Scientific Manuscript database
Mapping and identification of QTLs are important for efficient marker-assisted breeding and for analysis of the molecular mechanisms regulating traits. Diseases, such as early and late leaf spots, Tomato spotted wilt virus (TSWV), cause significant loses to peanut growers. Our goal is to develop a h...
Area change reporting using the desktop FIADB
Patrick D. Miles; Mark H. Hansen
2012-01-01
The estimation of area change between two FIA inventories is complicated by the "mapping" of subplots. Subplots can be subdivided or mapped into forest and nonforest conditions, and forest conditions can be further mapped based on distinct changes in reserved status, owner group, forest type, stand-size class, regeneration status, and stand density. The...
USDA-ARS?s Scientific Manuscript database
New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...
Gupta, Shefali; Kumar, Tapan; Verma, Subodh; Bharadwaj, Chellapilla; Bhatia, Sabhyata
2015-11-01
Seed weight and plant height are important agronomic traits and contribute to seed yield. The objective of this study was to identify QTLs underlying these traits using an intra-specific mapping population of chickpea. A F11 population of 177 recombinant inbred lines derived from a cross between SBD377 (100-seed weight--48 g and plant height--53 cm) and BGD112 (100-seed weight--15 g and plant height--65 cm) was used. A total of 367 novel EST-derived functional markers were developed which included 187 EST-SSRs, 130 potential intron polymorphisms (PIPs) and 50 expressed sequence tag polymorphisms (ESTPs). Along with these, 590 previously published markers including 385 EST-based markers and 205 genomic SSRs were utilized. Of the 957 markers tested for analysis of parental polymorphism between the two parents of the mapping population, 135 (14.64%) were found to be polymorphic. Of these, 131 polymorphic markers could be mapped to the 8 linkage groups. The linkage map had a total length of 1140.54 cM with an average marker density of 8.7 cM. The map was further used for QTL identification using composite interval mapping method (CIM). Two QTLs each for seed weight, qSW-1 and qSW-2 (explaining 11.54 and 19.24% of phenotypic variance, respectively) and plant height, qPH-1 and qPH-2 (explaining 13.98 and 12.17% of phenotypic variance, respectively) were detected. The novel set of genic markers, the intra-specific linkage map and the QTLs identified in the present study will serve as valuable genomic resources in improving the chickpea seed yield using marker-assisted selection (MAS) strategies.
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826
Caesarean Section--A Density-Equalizing Mapping Study to Depict Its Global Research Architecture.
Brüggmann, Dörthe; Löhlein, Lena-Katharina; Louwen, Frank; Quarcoo, David; Jaque, Jenny; Klingelhöfer, Doris; Groneberg, David A
2015-11-17
Caesarean section (CS) is a common surgical procedure. Although it has been performed in a modern context for about 100 years, there is no concise analysis of the international architecture of caesarean section research output available so far. Therefore, the present study characterizes the global pattern of the related publications by using the NewQIS (New Quality and Quantity Indices in Science) platform, which combines scientometric methods with density equalizing mapping algorithms. The Web of Science was used as a database. 12,608 publications were identified that originated from 131 countries. The leading nations concerning research activity, overall citations and country-specific h-Index were the USA and the United Kingdom. Relation of the research activity to epidemiologic data indicated that Scandinavian countries including Sweden and Finland were leading the field, whereas, in relation to economic data, countries such as Israel and Ireland led. Semi-qualitative indices such as country-specific citation rates ranked Sweden, Norway and Finland in the top positions. International caesarean section research output continues to grow annually in an era where caesarean section rates increased dramatically over the past decades. With regard to increasing employment of scientometric indicators in performance assessment, these findings should provide useful information for those tasked with the improvement of scientific achievements.
NASA Astrophysics Data System (ADS)
Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.
2012-11-01
Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.
Caesarean Section—A Density-Equalizing Mapping Study to Depict Its Global Research Architecture
Brüggmann, Dörthe; Löhlein, Lena-Katharina; Louwen, Frank; Quarcoo, David; Jaque, Jenny; Klingelhöfer, Doris; Groneberg, David A.
2015-01-01
Caesarean section (CS) is a common surgical procedure. Although it has been performed in a modern context for about 100 years, there is no concise analysis of the international architecture of caesarean section research output available so far. Therefore, the present study characterizes the global pattern of the related publications by using the NewQIS (New Quality and Quantity Indices in Science) platform, which combines scientometric methods with density equalizing mapping algorithms. The Web of Science was used as a database. 12,608 publications were identified that originated from 131 countries. The leading nations concerning research activity, overall citations and country-specific h-Index were the USA and the United Kingdom. Relation of the research activity to epidemiologic data indicated that Scandinavian countries including Sweden and Finland were leading the field, whereas, in relation to economic data, countries such as Israel and Ireland led. Semi-qualitative indices such as country-specific citation rates ranked Sweden, Norway and Finland in the top positions. International caesarean section research output continues to grow annually in an era where caesarean section rates increased dramatically over the past decades. With regard to increasing employment of scientometric indicators in performance assessment, these findings should provide useful information for those tasked with the improvement of scientific achievements. PMID:26593932
NASA Technical Reports Server (NTRS)
Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.
2012-01-01
This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.
Zeemering, Stef; Bonizzi, Pietro; Maesen, Bart; Peeters, Ralf; Schotten, Ulrich
2015-01-01
Spatiotemporal complexity of atrial fibrillation (AF) patterns is often quantified by annotated intracardiac contact mapping. We introduce a new approach that applies recurrence plot (RP) construction followed by recurrence quantification analysis (RQA) to epicardial atrial electrograms, recorded with a high-density grid of electrodes. In 32 patients with no history of AF (aAF, n=11), paroxysmal AF (PAF, n=12) and persistent AF (persAF, n=9), RPs were constructed using a phase space electrogram embedding dimension equal to the estimated AF cycle length. Spatial information was incorporated by 1) averaging the recurrence over all electrodes, and 2) by applying principal component analysis (PCA) to the matrix of embedded electrograms and selecting the first principal component as a representation of spatial diversity. Standard RQA parameters were computed on the constructed RPs and correlated to the number of fibrillation waves per AF cycle (NW). Averaged RP RQA parameters showed no correlation with NW. Correlations improved when applying PCA, with maximum correlation achieved between RP threshold and NW (RR1%, r=0.68, p <; 0.001) and RP determinism (DET, r=-0.64, p <; 0.001). All studied RQA parameters based on the PCA RP were able to discriminate between persAF and aAF/PAF (DET persAF 0.40 ± 0.11 vs. 0.59 ± 0.14/0.62 ± 0.16, p <; 0.01). RP construction and RQA combined with PCA provide a quick and reliable tool to visualize dynamical behaviour and to assess the complexity of contact mapping patterns in AF.
Monolayer-crystal streptavidin support films provide an internal standard of cryo-EM image quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Bong-Gyoon; Watson, Zoe; Cate, Jamie H. D.
Analysis of images of biotinylated Escherichia coli 70S ribosome particles, bound to streptavidin affinity grids, demonstrates that the image-quality of particles can be predicted by the image-quality of the monolayer crystalline support film. Also, the quality of the Thon rings is a good predictor of the image-quality of particles, but only when images of the streptavidin crystals extend to relatively high resolution. When the estimated resolution of streptavidin was 5 Å or worse, for example, the ribosomal density map obtained from 22,697 particles went to only 9.5 Å, while the resolution of the map reached 4.0 Å for the samemore » number of particles, when the estimated resolution of streptavidin crystal was 4 Å or better. It thus is easy to tell which images in a data set ought to be retained for further work, based on the highest resolution seen for Bragg peaks in the computed Fourier transforms of the streptavidin component. The refined density map obtained from 57,826 particles obtained in this way extended to 3.6 Å, a marked improvement over the value of 3.9 Å obtained previously from a subset of 52,433 particles obtained from the same initial data set of 101,213 particles after 3-D classification. These results are consistent with the hypothesis that interaction with the air-water interface can damage particles when the sample becomes too thin. Finally, streptavidin monolayer crystals appear to provide a good indication of when that is the case.« less
Mercury Slovenian soils: High, medium and low sample density geochemical maps
NASA Astrophysics Data System (ADS)
Gosar, Mateja; Šajn, Robert; Teršič, Tamara
2017-04-01
Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.
Wild boar mapping using population-density statistics: From polygons to high resolution raster maps.
Pittiglio, Claudia; Khomenko, Sergei; Beltran-Alcrudo, Daniel
2018-01-01
The wild boar is an important crop raider as well as a reservoir and agent of spread of swine diseases. Due to increasing densities and expanding ranges worldwide, the related economic losses in livestock and agricultural sectors are significant and on the rise. Its management and control would strongly benefit from accurate and detailed spatial information on species distribution and abundance, which are often available only for small areas. Data are commonly available at aggregated administrative units with little or no information about the distribution of the species within the unit. In this paper, a four-step geostatistical downscaling approach is presented and used to disaggregate wild boar population density statistics from administrative units of different shape and size (polygons) to 5 km resolution raster maps by incorporating auxiliary fine scale environmental variables. 1) First a stratification method was used to define homogeneous bioclimatic regions for the analysis; 2) Under a geostatistical framework, the wild boar densities at administrative units, i.e. subnational areas, were decomposed into trend and residual components for each bioclimatic region. Quantitative relationships between wild boar data and environmental variables were estimated through multiple regression and used to derive trend components at 5 km spatial resolution. Next, the residual components (i.e., the differences between the trend components and the original wild boar data at administrative units) were downscaled at 5 km resolution using area-to-point kriging. The trend and residual components obtained at 5 km resolution were finally added to generate fine scale wild boar estimates for each bioclimatic region. 3) These maps were then mosaicked to produce a final output map of predicted wild boar densities across most of Eurasia. 4) Model accuracy was assessed at each different step using input as well as independent data. We discuss advantages and limits of the method and its potential application in animal health.
Wild boar mapping using population-density statistics: From polygons to high resolution raster maps
Pittiglio, Claudia; Khomenko, Sergei
2018-01-01
The wild boar is an important crop raider as well as a reservoir and agent of spread of swine diseases. Due to increasing densities and expanding ranges worldwide, the related economic losses in livestock and agricultural sectors are significant and on the rise. Its management and control would strongly benefit from accurate and detailed spatial information on species distribution and abundance, which are often available only for small areas. Data are commonly available at aggregated administrative units with little or no information about the distribution of the species within the unit. In this paper, a four-step geostatistical downscaling approach is presented and used to disaggregate wild boar population density statistics from administrative units of different shape and size (polygons) to 5 km resolution raster maps by incorporating auxiliary fine scale environmental variables. 1) First a stratification method was used to define homogeneous bioclimatic regions for the analysis; 2) Under a geostatistical framework, the wild boar densities at administrative units, i.e. subnational areas, were decomposed into trend and residual components for each bioclimatic region. Quantitative relationships between wild boar data and environmental variables were estimated through multiple regression and used to derive trend components at 5 km spatial resolution. Next, the residual components (i.e., the differences between the trend components and the original wild boar data at administrative units) were downscaled at 5 km resolution using area-to-point kriging. The trend and residual components obtained at 5 km resolution were finally added to generate fine scale wild boar estimates for each bioclimatic region. 3) These maps were then mosaicked to produce a final output map of predicted wild boar densities across most of Eurasia. 4) Model accuracy was assessed at each different step using input as well as independent data. We discuss advantages and limits of the method and its potential application in animal health. PMID:29768413
An atomic model of brome mosaic virus using direct electron detection and real-space optimization.
Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah
2014-09-04
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate
NASA Astrophysics Data System (ADS)
Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.
2009-12-01
We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in other more local high-resolution tomographic studies, but covers the whole range of the European Plate. We also obtain three-dimensional mantle density structure by inversion of GRACE Bouguer anomalies locally adjusting density and the scaling relation between seismic wave speeds and density. We validate the new comprehensive model through comparison of recorded seismograms with numerical simulations based on SPECFEM3D. This work is a contribution towards the definition of a reference earth model for Europe. To this extent, in order to improve model dissemination and comparison, we propose the adoption of a common exchange format for tomographic earth models based on JSON, a lightweight data-interchange format supported by most high-level programming languages. We provide tools for manipulating and visualising models, described in this standard format, in Google Earth and GEON IDV.
The Buccaneer software for automated model building. 1. Tracing protein chains.
Cowtan, Kevin
2006-09-01
A new technique for the automated tracing of protein chains in experimental electron-density maps is described. The technique relies on the repeated application of an oriented electron-density likelihood target function to identify likely C(alpha) positions. This function is applied both in the location of a few promising ;seed' positions in the map and to grow those initial C(alpha) positions into extended chain fragments. Techniques for assembling the chain fragments into an initial chain trace are discussed.
Carlos Alberto Silva; Andrew Thomas Hudak; Carine Klauberg; Lee Alexandre Vierling; Carlos Gonzalez‑Benecke; Samuel de Padua Chaves Carvalho; Luiz Carlos Estraviz Rodriguez; Adrian Cardil
2017-01-01
LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses mâ 2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations...
Planning applications in east central Florida. [St. Johns National Wildlife Refuge
NASA Technical Reports Server (NTRS)
Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator); Millard, J. J.
1975-01-01
The author has identified the following significant results. St. Johns National Wildlife Refuge, a 4000 acre marsh, was established primarily to protect the Dusky Seaside Sparrow. A vegetation map of the refuge based on ground observations and color infrared photography was made. The preferred habitat of this sparrow is high-to-medium density spartina (a marsh grass) with no trees nearby. An increase in spartina density corresponds to an increase in marsh wetness. A thematic map shows the birds habitat preferences.
Digital mining claim density map for federal lands in Nevada: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Nevada as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Utah: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Utah as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Wyoming: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Colorado: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in California: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in California as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in New Mexico: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in New Mexico as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Washington: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Arizona: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Arizona as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Structure analysis of simulated molecular clouds with the Δ-variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
Structure analysis of simulated molecular clouds with the Δ-variance
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
2015-05-27
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
NASA Astrophysics Data System (ADS)
Kelly, R.; Andrews, T.; Dietze, M.
2015-12-01
Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.
Vision 20/20: Mammographic breast density and its clinical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Kwan-Hoong, E-mail: ngkh@ummc.edu.my; Lau, Susie
2015-12-15
Breast density is a strong predictor of the failure of mammography screening to detect breast cancer and is a strong predictor of the risk of developing breast cancer. The many imaging options that are now available for imaging dense breasts show great promise, but there is still the question of determining which women are “dense” and what imaging modality is suitable for individual women. To date, mammographic breast density has been classified according to the Breast Imaging-Reporting and Data System (BI-RADS) categories from visual assessment, but this is known to be very subjective. Despite many research reports, the authors believemore » there has been a lack of physics-led and evidence-based arguments about what breast density actually is, how it should be measured, and how it should be used. In this paper, the authors attempt to start correcting this situation by reviewing the history of breast density research and the debates generated by the advocacy movement. The authors review the development of breast density estimation from pattern analysis to area-based analysis, and the current automated volumetric breast density (VBD) analysis. This is followed by a discussion on seeking the ground truth of VBD and mapping volumetric methods to BI-RADS density categories. The authors expect great improvement in VBD measurements that will satisfy the needs of radiologists, epidemiologists, surgeons, and physicists. The authors believe that they are now witnessing a paradigm shift toward personalized breast screening, which is going to see many more cancers being detected early, with the use of automated density measurement tools as an important component.« less
Li, Min; Li, Yujuan; Wang, Ying; Ma, Xiangjian; Zhang, Yuan; Tan, Feng; Wu, Rongling
2016-01-01
As a salt-tolerant arbor tree species, Salix matsudana plays an important role in afforestation and greening in the coastal areas of China. To select superior Salix varieties that adapt to wide saline areas, it is of paramount importance to understand and identify the mechanisms of salt-tolerance at the level of the whole genome. Here, we describe a high-density genetic linkage map of S. matsudana that represents a good coverage of the Salix genome. An intraspecific F1 hybrid population was established by crossing the salt-sensitive “Yanjiang” variety as the female parent with the salt-tolerant “9901” variety as the male parent. This population, along with its parents, was genotyped by specific length amplified fragment sequencing (SLAF-seq), leading to 277,333 high-quality SLAF markers. By marker analysis, we found that both the parents and offspring were tetraploid. The mean sequencing depth was 53.20-fold for “Yanjiang”, 47.41-fold for “9901”, and 11.02-fold for the offspring. Of the SLAF markers detected, 42,321 are polymorphic with sufficient quality for map construction. The final genetic map was constructed using 6,737 SLAF markers, covering 38 linkage groups (LGs). The genetic map spanned 5,497.45 cM in length, with an average distance of 0.82 cM. As a first high-density genetic map of S. matsudana constructed from salt tolerance-varying varieties, this study will provide a foundation for mapping quantitative trait loci that modulate salt tolerance and resistance in Salix and provide important references for molecular breeding of this important forest tree. PMID:27327501
Knoll, Michaela; Ciaccia, Ettore; Dekeling, René; Kvadsheim, Petter; Liddell, Kate; Gunnarsson, Stig-Lennart; Ludwig, Stefan; Nissen, Ivor; Lorenzen, Dirk; Kreimeyer, Roman; Pavan, Gianni; Meneghetti, Nello; Nordlund, Nina; Benders, Frank; van der Zwan, Timo; van Zon, Tim; Fraser, Leanne; Johansson, Torbjörn; Garmelius, Martin
2016-01-01
Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities.
Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R
2009-03-01
The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.
NASA Astrophysics Data System (ADS)
Brus, Dick J.; van den Akker, Jan J. H.
2018-02-01
Although soil compaction is widely recognized as a soil threat to soil resources, reliable estimates of the acreage of overcompacted soil and of the level of soil compaction parameters are not available. In the Netherlands data on subsoil compaction were collected at 128 locations selected by stratified random sampling. A map showing the risk of subsoil compaction in five classes was used for stratification. Measurements of bulk density, porosity, clay content and organic matter content were used to compute the relative bulk density and relative porosity, both expressed as a fraction of a threshold value. A subsoil was classified as overcompacted if either the relative bulk density exceeded 1 or the relative porosity was below 1. The sample data were used to estimate the means of the two subsoil compaction parameters and the overcompacted areal fraction. The estimated global means of relative bulk density and relative porosity were 0.946 and 1.090, respectively. The estimated areal fraction of the Netherlands with overcompacted subsoils was 43 %. The estimates per risk map unit showed two groups of map units: a low-risk
group (units 1 and 2, covering only 4.6 % of the total area) and a high-risk
group (units 3, 4 and 5). The estimated areal fraction of overcompacted subsoil was 0 % in the low-risk unit and 47 % in the high-risk unit. The map contains no information about where overcompacted subsoils occur. This was caused by the poor association of the risk map units 3, 4 and 5 with the subsoil compaction parameters and subsoil overcompaction. This can be explained by the lack of time for recuperation.