Sample records for improved detection capability

  1. An electromagnetic induction method for underground target detection and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect amore » drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.« less

  2. Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  3. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  4. Feasibility study on the design of a probe for rectal cancer detection

    NASA Technical Reports Server (NTRS)

    Anselm, V. J.; Frazer, R. E.; Lecroisset, D. H.; Roseboro, J. A.; Smokler, M. I.

    1977-01-01

    Rectal examination techniques are considered in terms of detection capability, patient acceptance, and cost reduction. A review of existing clinical techniques are considered in terms of detection capability, patient acceptance, and cost reduction. A review of existing clinical techniques and of relevant aerospace technology included evaluation of the applicability of visual, thermal, ultrasound, and radioisotope modalities of examination. The desired improvements can be obtained by redesigning the proctosigmoidoscope to have reduced size, additional visibility, and the capability of readily providing a color photograph of the entire rectosigmoid mucosa in a single composite view.

  5. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  6. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  7. Advanced Ship Detection For Spaceborne Based Maritime Awareness

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Ferreira, Joao; Carmo, Paulo; Marques, Paulo

    2013-12-01

    In the last years the increase in marine traffic generated the necessity of global monitoring for marine environment management in terms of safety, security and fisheries. The increasing number of new satellite-based Synthetic Aperture Radar (SAR) systems, and the intrinsic capability of the transmitted electromagnetic pulses to interact with the ships and to retrieve its cinematic characteristics, made this instrument particularly fit to improve global maritime awareness through the fusion with cooperative data (AIS, VMS, LRIT). The growing need of global maritime awareness gave a push to the realization of different projects in the European context, each one focused on a different particular objective. Particularly useful is the synergy between the operational and research aspects, being the goal of the last to improve the state of the art in the field of ship detection. Two European projects are the key to strive this synergy: the project MARitime Security Service (MARISS), which implements the operational capability, and the R&D Dolphin projects, which is focused on the deep exploitation of remote sensing data and on the technological development of advanced techniques for ship detection and classification purposes, and Seabilla project, which is also dedicated to improve the current ship detection capability and to fuse all the available information from different data sources for border surveillance optimization. This paper introduces the multipurpose Edisoft Vessel Detection software (EdiVDC) implemented by the EDISOFT company, which comes from the necessity to respect increasingly stringent requirements in terms of ship detection. The EdiVDC software is being operationally used in the framework of the MARISS project and it integrates advanced processing algorithms, developed in the scope of the Dolphin project with the cooperation of ISEL-IT (Instituto de Telecomunicações), and data simulators, developed in the context of the Seabilla project, improving the software capability and introducing new functionalities. In this work we present the functionalities of the software and the main results achieved with different types of SAR data.

  8. Automatic Data Traffic Control on DSM Architecture

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.

  9. Wind profiler signal detection improvements

    NASA Technical Reports Server (NTRS)

    Hart, G. F.; Divis, Dale H.

    1992-01-01

    Research is described on potential improvements to the software used with the NASA 49.25 MHz wind profiler located at Kennedy Space Center. In particular, the analysis and results are provided of a study to (1) identify preferred mathematical techniques for the detection of atmospheric signals that provide wind velocities which are obscured by natural and man-made sources, and (2) to analyze one or more preferred techniques to demonstrate proof of the capability to improve the detection of wind velocities.

  10. Improved dual-loop detection system for collecting real-time truck data

    DOT National Transportation Integrated Search

    2005-02-01

    The WSDOTs dual-loop detectors capability of measuring vehicle lengths makes the dual-loop detection system a potential real-time truck data source for freight movement study. However, a previous study found the WSDOT dual-loop detection system...

  11. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    NASA Astrophysics Data System (ADS)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  12. Explosive detection technology

    NASA Astrophysics Data System (ADS)

    Doremus, Steven; Crownover, Robin

    2017-05-01

    The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.

  13. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema

    Atkinson, David

    2018-05-11

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  14. Advancing Explosives Detection Capabilities: Vapor Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  15. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  16. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    PubMed

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  17. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  18. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    1985-03-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  19. Internal seismological stations for monitoring a comprehensive test ban theory

    NASA Astrophysics Data System (ADS)

    Dahlman, O.; Israelson, H.

    1980-06-01

    Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.

  20. Indoor air quality inspection and analysis system based on gas sensor array

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  1. Market Assessment of Forward-Looking Turbulence Sensing Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Sousa-Poza, Andres

    2001-01-01

    In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.

  2. Intermodal cargo transportation : industry best security practices

    DOT National Transportation Integrated Search

    1999-05-01

    This report is the first product of the initiative, which is aimed at improving industry capabilities to detect and control criminal activity at cargo terminals. More broadly, the focus is on developing and implementing means of improving the overall...

  3. Radioactive threat detection using scintillant-based detectors

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2004-09-01

    An update to the performance of AS&E's Radioactive Threat Detection sensor technology. A model is presented detailing the components of the scintillant-based RTD system employed in AS&E products aimed at detecting radiological WMD. An overview of recent improvements in the sensors, electrical subsystems and software algorithms are presented. The resulting improvements in performance are described and sample results shown from existing systems. Advanced and future capabilities are described with an assessment of their feasibility and their application to Homeland Defense.

  4. Autonomous power expert system advanced development

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.

  5. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  6. Detection of cracks beneath rivet heads via pulsed eddy current technique

    NASA Astrophysics Data System (ADS)

    Giguère, J. S. R.; Lepine, B. A.; Dubois, J. M. S.

    2002-05-01

    Improving the detectability of fatigue cracks under installed fasteners is one of the many goals of the aging aircraft nondestructive evaluation (NDE) community. The pulsed eddy current offers new capabilities to address this requirement. The aim of the paper is to evaluate the potential of this technique for detecting and quantifying notches under installed fasteners.

  7. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  8. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  9. Note: An improved 3D imaging system for electron-electron coincidence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  10. Note: An improved 3D imaging system for electron-electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-01

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  11. Laser Spot Center Detection and Comparison Test

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Xu, Zhengjie; Fu, Deli; Hu, Cong

    2018-04-01

    High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the algorithm is improved on the basis of the circle fitting. The pretreatment is used by circle fitting, and the improved adaptive denoising filter for TV repair technology can effectively improves the accuracy of the spot center position. At the same time, the pretreatment and de-noising can effectively reduce the influence of Gaussian white noise, which enhances the anti-jamming capability.

  12. Application of Composite Indices for Improving Joint Detection Capabilities of Instrumented Roof Bolt Drills in Underground Mining and Construction

    NASA Astrophysics Data System (ADS)

    Liu, Wenpeng; Rostami, Jamal; Elsworth, Derek; Ray, Asok

    2018-03-01

    Roof bolts are the dominant method of ground support in mining and tunneling applications, and the concept of using drilling parameters from the bolter for ground characterization has been studied for a few decades. This refers to the use of drilling data to identify geological features in the ground including joints and voids, as well as rock classification. Rock mass properties, including distribution of joints/voids and strengths of rock layers, are critical factors for proper design of ground support to avoid instability. The goal of this research was to improve the capability and sensitivity of joint detection programs based on the updated pattern recognition algorithms in sensing joints with smaller than 3.175 mm (0.125 in.) aperture while reducing the number of false alarms, and discriminating rock layers with different strengths. A set of concrete blocks with different strengths were used to simulate various rock layers, where the gap between the blocks would represent the joints in laboratory tests. Data obtained from drilling through these blocks were analyzed to improve the reliability and precision of joint detection systems. While drilling parameters can be used to detect the gaps, due to low accuracy of the results, new composite indices have been introduced and used in the analysis to improve the detection rates. This paper briefly discusses ongoing research on joint detection by using drilling parameters collected from a roof bolter in a controlled environment. The performances of the new algorithms for joint detection are also examined by comparing their ability to identify existing joints and reducing false alarms.

  13. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    NASA Astrophysics Data System (ADS)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  14. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  15. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    PubMed

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  16. EBUS-STAT Subscore Analysis to Predict the Efficacy and Assess the Validity of Virtual Reality Simulation for EBUS-TBNA Training Among Experienced Bronchoscopists.

    PubMed

    Scarlata, Simone; Palermo, Patrizio; Candoli, Piero; Tofani, Ariela; Petitti, Tommasangelo; Corbetta, Lorenzo

    2017-04-01

    Linear endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) represents a pivotal innovation in interventional pulmonology; determining the best approach to guarantee systematic and efficient training is expected to become a main issue in the forthcoming years. Virtual reality simulators have been proposed as potential EBUS-TBNA training instruments, to avoid unskilled beginners practicing directly in real-life settings. A validated and perfected simulation program could be used before allowing beginners to practice on patients. Our goal was to test the reliability of the EBUS-Skills and Task Assessment Tool (STAT) and its subscores for measuring the competence of experienced bronchoscopists approaching EBUS-guided TBNA, using only the virtual reality simulator as both a training and an assessment tool. Fifteen experienced bronchoscopists, with poor or no experience in EBUS-TBNA, participated in this study. They were all administered the Italian version of the EBUS-STAT evaluation tool, during a high-fidelity virtual reality simulation. This was followed by a single 7-hour theoretical and practical (on simulators) session on EBUS-TBNA, at the end of which their skills were reassessed by EBUS-STAT. An overall, significant improvement in EBUS-TBNA skills was observed, thereby confirming that (a) virtual reality simulation can facilitate practical learning among practitioners, and (b) EBUS-STAT is capable of detecting these improvements. The test's overall ability to detect differences was negatively influenced by the minimal variation of the scores relating to items 1 and 2, was not influenced by the training, and improved significantly when the 2 items were not considered. Apart from these 2 items, all the remaining subscores were equally capable of revealing improvements in the learner. Lastly, we found that trainees with presimulation EBUS-STAT scores above 79 did not show any significant improvement after virtual reality training, suggesting that this score represents a cutoff value capable of predicting the likelihood that simulation can be beneficial. Virtual reality simulation is capable of providing a practical learning tool for practitioners with previous experience in flexible bronchoscopy, and the EBUS-STAT questionnaire is capable of detecting these changes. A pretraining EBUS-STAT score below 79 is a good indicator of those candidates who will benefit from the simulation training. Further studies are needed to verify whether a modified version of the questionnaire would be capable of improving its performance among experienced bronchoscopists.

  17. Investigations related to evaluation of ultramicrofluorometer

    NASA Technical Reports Server (NTRS)

    Whitcomb, B.

    1981-01-01

    High resolution emission and excitation fluorescent spectra were obtained for several samples in an effort to determine the optimum operational design for the instrument. The instrument was used to determine the required nature of a sample which could be detected, and in so doing, several different sample preparation techniques were considered. Numerous experiments were performed to determine the capabilities of the instrument with regard to the detection of suitably prepared virus specimens. Significant results were obtained in several areas. The fluorescent spectra indicated that substantial changes in the laser might be used advantageously to greatly improve the performance of the instrument. In the existing configuration, the instrument was shown to be capable of detecting the presence of suitably prepared virus samples.

  18. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  19. Analysis of Measurements for Solid State Lidar Development

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1996-01-01

    A Detector Characterization Facility (DCF), capable of measuring 2-micron detection devices and evaluating heterodyne receivers, was developed at the Marshall Space Flight Center. The DCF is capable of providing all the necessary detection parameters for design, development, and calibration of coherent and incoherent solid state laser radar (lidar) systems. The coherent lidars in particular require an accurate knowledge of detector heterodyne quantum efficient, nonlinearity properties, and voltage-current relationship as a function of applied optical power. At present, no detector manufacturer provides these qualities or adequately characterizes their detectors for heterodyne detection operation. In addition, the detector characterization facility measures the detectors DC and AC quantum efficiencies noise equivalent power and frequency response up to several GHz. The DCF is also capable of evaluating various heterodyne detection schemes such as balanced detectors and fiber optic interferometers. The design and analyses of measurements for the DCF were preformed over the previous year and a detailed description of its design and capabilities was provided in the NASA report NAS8-38609/DO77. It should also be noted that the DCF design was further improved to allow for the characterization of diffractive andholographical optical elements and other critical components of coherent lidar systems.

  20. Theoretical limitations of quantification for noncompetitive sandwich immunoassays.

    PubMed

    Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom

    2015-11-01

    Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

  1. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  2. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  3. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  4. The Implementation and Demonstration of Flame Detection and Wireless Communications in a Consumer Appliance to Improve Fire Detection Capabilities

    DTIC Science & Technology

    2007-06-08

    Temperature Detectors (RTDs), thermistors , bimetallic devices, liquid expansion devices, and change-of-state devices. Liquid expansion, change-of...sterilization lamps, halogen lamps, direct or reflected sunlight on the sensor, electrical or welding sparks, radiation sources and high 7 Figure 1, Standard

  5. Detecting Deception in the Military Infosphere: Improving and Integrating Human Detection Capabilities with Automated Tools

    DTIC Science & Technology

    2007-04-25

    the coders. Figure 1 la shows the basic Analyzer screen before any specific template is selected. Eft , *NN __ N O... ............... .. ]. . iiii...eyes and comers of the mouth, and reductions in gesturing or other gross body movements like foot tapping . D-DIMS captures facial and gross body

  6. Fusion solution for soldier wearable gunfire detection systems

    NASA Astrophysics Data System (ADS)

    Cakiades, George; Desai, Sachi; Deligeorges, Socrates; Buckland, Bruce E.; George, Jemin

    2012-06-01

    Currently existing acoustic based Gunfire Detection Systems (GDS) such as soldier wearable, vehicle mounted, and fixed site devices provide enemy detection and localization capabilities to the user. However, the solution to the problem of portability versus performance tradeoff remains elusive. The Data Fusion Module (DFM), described herein, is a sensor/platform agnostic software supplemental tool that addresses this tradeoff problem by leveraging existing soldier networks to enhance GDS performance across a Tactical Combat Unit (TCU). The DFM software enhances performance by leveraging all available acoustic GDS information across the TCU synergistically to calculate highly accurate solutions more consistently than any individual GDS in the TCU. The networked sensor architecture provides additional capabilities addressing the multiple shooter/fire-fight problems in addition to sniper detection/localization. The addition of the fusion solution to the overall Size, Weight and Power & Cost (SWaP&C) is zero to negligible. At the end of the first-year effort, the DFM integrated sensor network's performance was impressive showing improvements upwards of 50% in comparison to a single sensor solution. Further improvements are expected when the networked sensor architecture created in this effort is fully exploited.

  7. Factors influencing variation in physician adenoma detection rates: a theory-based approach for performance improvement.

    PubMed

    Atkins, Louise; Hunkeler, Enid M; Jensen, Christopher D; Michie, Susan; Lee, Jeffrey K; Doubeni, Chyke A; Zauber, Ann G; Levin, Theodore R; Quinn, Virginia P; Corley, Douglas A

    2016-03-01

    Interventions to improve physician adenoma detection rates for colonoscopy have generally not been successful, and there are little data on the factors contributing to variation that may be appropriate targets for intervention. We sought to identify factors that may influence variation in detection rates by using theory-based tools for understanding behavior. We separately studied gastroenterologists and endoscopy nurses at 3 Kaiser Permanente Northern California medical centers to identify potentially modifiable factors relevant to physician adenoma detection rate variability by using structured group interviews (focus groups) and theory-based tools for understanding behavior and eliciting behavior change: the Capability, Opportunity, and Motivation behavior model; the Theoretical Domains Framework; and the Behavior Change Wheel. Nine factors potentially associated with adenoma detection rate variability were identified, including 6 related to capability (uncertainty about which types of polyps to remove, style of endoscopy team leadership, compromised ability to focus during an examination due to distractions, examination technique during withdrawal, difficulty detecting certain types of adenomas, and examiner fatigue and pain), 2 related to opportunity (perceived pressure due to the number of examinations expected per shift and social pressure to finish examinations before scheduled breaks or the end of a shift), and 1 related to motivation (valuing a meticulous examination as the top priority). Examples of potential intervention strategies are provided. By using theory-based tools, this study identified several novel and potentially modifiable factors relating to capability, opportunity, and motivation that may contribute to adenoma detection rate variability and be appropriate targets for future intervention trials. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  8. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    PubMed Central

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  9. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    PubMed

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  10. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  11. Research on capability of detecting ballistic missile by near space infrared system

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  12. Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHELAN, JAMES M.

    2002-05-01

    Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include:more » landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.« less

  13. Evaluation of ultrasonic array imaging algorithms for inspection of a coarse grained material

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Lowe, M. J. S.; Brett, C. R.

    2014-02-01

    Improving the ultrasound inspection capability for coarse grain metals remains of longstanding interest to industry and the NDE research community and is expected to become increasingly important for next generation power plants. A test sample of coarse grained Inconel 625 which is representative of future power plant components has been manufactured to test the detectability of different inspection techniques. Conventional ultrasonic A, B, and C-scans showed the sample to be extraordinarily difficult to inspect due to its scattering behaviour. However, in recent years, array probes and Full Matrix Capture (FMC) imaging algorithms, which extract the maximum amount of information possible, have unlocked exciting possibilities for improvements. This article proposes a robust methodology to evaluate the detection performance of imaging algorithms, applying this to three FMC imaging algorithms; Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the statistics of detection, presenting the detection performance as Probability of Detection (POD) and probability of False Alarm (PFA). The data is captured in pulse-echo mode using 64 element array probes at centre frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very similarly when comparing their flaw detection capabilities on this particular case.

  14. Photoacoustic Imaging for Cancer Detection and Staging

    PubMed Central

    Mehrmohammadi, Mohammad; Yoon, Soon Joon; Yeager, Douglas; Emelianov, Stanislav Y.

    2013-01-01

    Cancer is one of the leading causes of death in the world. Diagnosing a cancer at its early stages of development can decrease the mortality rate significantly and reduce healthcare costs. Over the past two decades, photoacoustic imaging has seen steady growth and has demonstrated notable capabilities to detect cancerous cells and stage cancer. Furthermore, photoacoustic imaging combined with ultrasound imaging and augmented with molecular targeted contrast agents is capable of imaging cancer at the cellular and molecular level, thus opening diverse opportunities to improve diagnosis of tumors, detect circulating tumor cells and identify metastatic lymph nodes. In this paper we introduce the principles of photoacoustic imaging, and review recent developments in photoacoustic imagingas an emerging imaging modality for cancer diagnosis and staging. PMID:24032095

  15. Nano-immunoassay with improved performance for detection of cancer biomarkers

    DOE PAGES

    Krasnoslobodtsev, Alexey V.; Torres, Maria P.; Kaur, Sukhwinder; ...

    2015-01-01

    Nano-immunoassay utilizing surface-enhanced Raman scattering (SERS) effect is a promising analytical technique for the early detection of cancer. In its current standing the assay is capable of discriminating samples of healthy individuals from samples of pancreatic cancer patients. Further improvements in sensitivity and reproducibility will extend practical applications of the SERS-based detection platforms to wider range of problems. In this report, we discuss several strategies designed to improve performance of the SERS-based detection system. We demonstrate that reproducibility of the platform is enhanced by using atomically smooth mica surface as a template for preparation of capture surface in SERS sandwichmore » immunoassay. Furthermore, the assay's stability and sensitivity can be further improved by using either polymer or graphene monolayer as a thin protective layer applied on top of the assay addresses. The protective layer renders the signal to be more stable against photo-induced damage and carbonaceous contamination.« less

  16. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  17. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, Ganapatic R.

    1994-01-01

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  18. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, G.R.

    1994-09-06

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  19. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies.

    PubMed

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S; Moses, William W; Qi, Jinyi

    2018-03-16

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  20. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  1. Analytical SuperSTEM for extraterrestrial materials research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less

  2. A method to improve observations of gamma-ray sources near 10 (15) eV

    NASA Technical Reports Server (NTRS)

    Sommers, P.; Elbert, J. W.

    1985-01-01

    Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.

  3. Impact of upgraded in vivo lung measurement capability on an internal dosimetry program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Aldridge, T.L.

    1985-08-01

    Implementation of high-purity germanium (Ge) detectors in place of sodium iodide (NaI) detectors for in vivo lung measurements of low-energy photon-emitting radionuclides resulted in significant improvement in detection capability and corresponding improvements in the monitoring of potentially exposed workers. Lung activities below those detectable with the NaI system were discovered during the first 18 months of operation. In a number of cases, these activities were estimated to represent intakes resulting in lung doses as high as 25% of the 15 rem/y United States Department of Energy Radiation Protection Standard. Evaluation of these lung activities and their associated intakes was substantiallymore » more time consuming than originally anticipated due to calibration differences between the Ge and NaI systems and to the difficulty of completing some of the follow-up investigations.« less

  4. A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2000-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.

  5. A methodology for evaluating detection performance of ultrasonic array imaging algorithms for coarse-grained materials.

    PubMed

    Van Pamel, Anton; Brett, Colin R; Lowe, Michael J S

    2014-12-01

    Improving the ultrasound inspection capability for coarse-grained metals remains of longstanding interest and is expected to become increasingly important for next-generation electricity power plants. Conventional ultrasonic A-, B-, and C-scans have been found to suffer from strong background noise caused by grain scattering, which can severely limit the detection of defects. However, in recent years, array probes and full matrix capture (FMC) imaging algorithms have unlocked exciting possibilities for improvements. To improve and compare these algorithms, we must rely on robust methodologies to quantify their performance. This article proposes such a methodology to evaluate the detection performance of imaging algorithms. For illustration, the methodology is applied to some example data using three FMC imaging algorithms; total focusing method (TFM), phase-coherent imaging (PCI), and decomposition of the time-reversal operator with multiple scattering filter (DORT MSF). However, it is important to note that this is solely to illustrate the methodology; this article does not attempt the broader investigation of different cases that would be needed to compare the performance of these algorithms in general. The methodology considers the statistics of detection, presenting the detection performance as probability of detection (POD) and probability of false alarm (PFA). A test sample of coarse-grained nickel super alloy, manufactured to represent materials used for future power plant components and containing some simple artificial defects, is used to illustrate the method on the candidate algorithms. The data are captured in pulse-echo mode using 64-element array probes at center frequencies of 1 and 5 MHz. In this particular case, it turns out that all three algorithms are shown to perform very similarly when comparing their flaw detection capabilities.

  6. Improved Cloud Detection Utilizing Defense Meteorological Satellite Program near Infrared Measurements

    DTIC Science & Technology

    1982-01-27

    Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated

  7. Improving the Effectiveness and Acquisition Management of Selected Weapon Systems: A Summary of Major Issues and Recommended Actions.

    DTIC Science & Technology

    1982-05-14

    need for effective training--a situation which will be impaired until the AH-64 combat mission simulator , now under development, becomes available in...antisubmarine warfare system includes the capability to detect, classify, localize, and destroy the enemy. This capability includes multimillion dollar...to simulate combat situations will simulate only air-to-air activity. Air-to-ground and electronic counter countermeasures simulations were deleted

  8. Final Technical Report. Project Boeing SGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas E.

    Boeing and its partner, PJM Interconnection, teamed to bring advanced “defense-grade” technologies for cyber security to the US regional power grid through demonstration in PJM’s energy management environment. Under this cooperative project with the Department of Energy, Boeing and PJM have developed and demonstrated a host of technologies specifically tailored to the needs of PJM and the electric sector as a whole. The team has demonstrated to the energy industry a combination of processes, techniques and technologies that have been successfully implemented in the commercial, defense, and intelligence communities to identify, mitigate and continuously monitor the cyber security of criticalmore » systems. Guided by the results of a Cyber Security Risk-Based Assessment completed in Phase I, the Boeing-PJM team has completed multiple iterations through the Phase II Development and Phase III Deployment phases. Multiple cyber security solutions have been completed across a variety of controls including: Application Security, Enhanced Malware Detection, Security Incident and Event Management (SIEM) Optimization, Continuous Vulnerability Monitoring, SCADA Monitoring/Intrusion Detection, Operational Resiliency, Cyber Range simulations and hands on cyber security personnel training. All of the developed and demonstrated solutions are suitable for replication across the electric sector and/or the energy sector as a whole. Benefits identified include; Improved malware and intrusion detection capability on critical SCADA networks including behavioral-based alerts resulting in improved zero-day threat protection; Improved Security Incident and Event Management system resulting in better threat visibility, thus increasing the likelihood of detecting a serious event; Improved malware detection and zero-day threat response capability; Improved ability to systematically evaluate and secure in house and vendor sourced software applications; Improved ability to continuously monitor and maintain secure configuration of network devices resulting in reduced vulnerabilities for potential exploitation; Improved overall cyber security situational awareness through the integration of multiple discrete security technologies into a single cyber security reporting console; Improved ability to maintain the resiliency of critical systems in the face of a targeted cyber attack of other significant event; Improved ability to model complex networks for penetration testing and advanced training of cyber security personnel« less

  9. Pulsed Acoustic Vortex Sensing System : Volume 2, Studies of Improved PAVSS Processing Techniques

    DOT National Transportation Integrated Search

    1977-06-01

    Avco Corporation's Systems Division designed and developed an engineered Pulsed Acoustic Vortex Sensing System (PAVSS). This system is capable of real-time detection, tracking, recording, and graphic display of aircraft trailing vortices. This volume...

  10. Smart pipeline network : pipe and repair sensor system.

    DOT National Transportation Integrated Search

    2013-07-26

    Leak detection within the national pipeline network has long been recognized as a much-needed : capability to reduce the loss of high value product, improve public safety, and to reduce the : emissions of environmentally damaging substances. : In rec...

  11. A Self Contained Method for Safe and Precise Lunar Landing

    NASA Technical Reports Server (NTRS)

    Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald

    2008-01-01

    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.

  12. Recent trends in high spin sensitivity magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  13. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  14. Upgraded PMI diagnostic capabilities using Accelerator-based In-situ Materials Surveillance (AIMS) on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Kesler, Leigh; Barnard, Harold; Hartwig, Zachary; Sorbom, Brandon; Lanza, Richard; Terry, David; Vieira, Rui; Whyte, Dennis

    2014-10-01

    The AIMS diagnostic was developed to rapidly and non-invasively characterize in-situ plasma material interactions (PMI) in a tokamak. Recent improvements are described which significantly expand this measurement capability on Alcator C-Mod. The detection time at each wall location is reduced from about 10 min to 30 s, via improved hardware and detection geometry. Detectors are in an augmented re-entrant tube to maximize the solid angle between detectors and diagnostic locations. Spatial range is expanded by using beam dynamics simulation to design upgraded B-field power supplies to provide maximal poloidal access, including a ~20° toroidal range in the divertor. Measurement accuracy is improved with angular and energy resolved cross section measurements obtained using a separate 0.9 MeV deuteron ion accelerator. Future improvements include the installation of recessed scintillator tiles as beam targets for calibration of the diagnostic. Additionally, implanted depth marker tiles will enable AIMS to observe the in-situ erosion and deposition of high-Z plasma-facing materials. This work is supported by U.S. DOE Grant No. DE-FG02-94ER54235 and Cooperative Agreement No. DE-FC02-99ER54512.

  15. Quantifying 10 years of Improvements in Earthquake and Tsunami Monitoring in the Caribbean and Adjacent Regions

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Huerfano Moreno, V. A.; McNamara, D. E.; Saurel, J. M.

    2014-12-01

    The magnitude-9.3 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness to the destructive hazard of earthquakes and tsunamis. Post event assessments of global coastline vulnerability highlighted the Caribbean as a region of high hazard and risk and that it was poorly monitored. Nearly 100 tsunamis have been reported for the Caribbean region and Adjacent Regions in the past 500 years and continue to pose a threat for its nations, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North and South America. Significant efforts to improve monitoring capabilities have been undertaken since this time including an expansion of the United States Geological Survey (USGS) Global Seismographic Network (GSN) (McNamara et al., 2006) and establishment of the United Nations Educational, Scientific and Cultural Organization (UNESCO) Intergovernmental Coordination Group (ICG) for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). The minimum performance standards it recommended for initial earthquake locations include: 1) Earthquake detection within 1 minute, 2) Minimum magnitude threshold = M4.5, and 3) Initial hypocenter error of <30 km. In this study, we assess current compliance with performance standards and model improvements in earthquake and tsunami monitoring capabilities in the Caribbean region since the first meeting of the UNESCO ICG-Caribe EWS in 2006. The three measures of network capability modeled in this study are: 1) minimum Mw detection threshold; 2) P-wave detection time of an automatic processing system and; 3) theoretical earthquake location uncertainty. By modeling three measures of seismic network capability, we can optimize the distribution of ICG-Caribe EWS seismic stations and select an international network that will be contributed from existing real-time broadband national networks in the region. Sea level monitoring improvements both offshore and along the coast will also be addressed. With the support of Member States and other countries and organizations it has been possible to significantly expand the sea level network thus reducing the amount of time it now takes to verify tsunamis.

  16. Methodologies for Removing/Desorbing and Transporting Particles from Surfaces to Instrumentation

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Cespedes, Ernesto R.

    2012-12-01

    Explosive trace detection (ETD) continues to be a key technology supporting the fight against terrorist bombing threats. Very selective and sensitive ETD instruments have been developed to detect explosive threats concealed on personnel, in vehicles, in luggage, and in cargo containers, as well as for forensic analysis (e.g. post blast inspection, bomb-maker identification, etc.) in a broad range of homeland security, law enforcement, and military applications. A number of recent studies have highlighted the fact that significant improvements in ETD systems' capabilities will be achieved, not by increasing the selectivity/sensitivity of the sensors, but by improved techniques for particle/vapor sampling, pre-concentration, and transport to the sensors. This review article represents a compilation of studies focused on characterizing the adhesive properties of explosive particles, the methodologies for removing/desorbing these particles from a range of surfaces, and approaches for transporting them to the instrument. The objectives of this review are to summarize fundamental work in explosive particle characterization, to describe experimental work performed in harvesting and transport of these particles, and to highlight those approaches that indicate high potential for improving ETD capabilities.

  17. Feasibility of fast neutron analysis for the detection of explosives buried in soil

    NASA Astrophysics Data System (ADS)

    Faust, A. A.; McFee, J. E.; Bowman, C. L.; Mosquera, C.; Andrews, H. R.; Kovaltchouk, V. D.; Ing, H.

    2011-12-01

    A commercialized thermal neutron analysis (TNA) sensor has been developed to confirm the presence of buried bulk explosives as part of a multi-sensor anti-tank landmine detection system. Continuing improvements to the TNA system have included the use of an electronic pulsed neutron generator that offers the possibility of applying fast neutron analysis (FNA) methods to improve the system's detection capability. This paper describes an investigation into the use of FNA as a complementary component in such a TNA system. The results of a modeling study using simple geometries and a full model of the TNA sensor head are presented, as well as preliminary results from an experimental associated particle imaging (API) system that supports the modeling study results. The investigation has concluded that the pulsed beam FNA approach would not improve the detection performance of a TNA system for landmine or buried IED detection in a confirmation role, and could not be made into a practical stand-alone detection system for buried anti-tank landmines. Detection of buried landmines and IEDs by FNA remains a possibility, however, through the use of the API technique.

  18. Transmission Bearing Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.

  19. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging.

    PubMed

    Fozooni, Tahereh; Ravan, Hadi; Sasan, Hosseinali

    2017-12-01

    Due to their unique properties, such as programmability, ligand-binding capability, and flexibility, nucleic acids can serve as analytes and/or recognition elements for biosensing. To improve the sensitivity of nucleic acid-based biosensing and hence the detection of a few copies of target molecule, different modern amplification methodologies, namely target-and-signal-based amplification strategies, have already been developed. These recent signal amplification technologies, which are capable of amplifying the signal intensity without changing the targets' copy number, have resulted in fast, reliable, and sensitive methods for nucleic acid detection. Working in cell-free settings, researchers have been able to optimize a variety of complex and quantitative methods suitable for deploying in live-cell conditions. In this study, a comprehensive review of the signal amplification technologies for the detection of nucleic acids is provided. We classify the signal amplification methodologies into enzymatic and non-enzymatic strategies with a primary focus on the methods that enable us to shift away from in vitro detecting to in vivo imaging. Finally, the future challenges and limitations of detection for cellular conditions are discussed.

  20. The Cliff Reconnaissance Vehicle: a tool to improve astronaut exploration efficiency.

    PubMed

    Souchier, Alain

    2014-05-01

    The close examination of cliff strata on Mars may reveal important information about conditions that existed in the past on that planet. To have access to such difficult-to-reach locations, the Association Planète Mars (France) has, since 2001, been experimenting with designs of manually operated, instrumented vehicles capable of being lowered down the faces of cliffs. The latest tests in the series in which the Cliff Reconnaissance Vehicle (CRV) or Cliffbot was used were conducted as part of the Austrian Space Forum's MARS2013 field analog project in Morocco in February 2013. Experimentation centered on vehicle configuration for maximum all-terrain capabilities; operational procedures, which included use while the operator was wearing an analog space suit; and imaging, mapping, and geological/biological feature detection capabilities. The exercise demonstrated that Cliffbot is capable of examining hard-to-reach rock strata in cliff faces but that it needs further mechanical modification to improve its ability to overcome some particular terrain obstacles and situational awareness by the operator.

  1. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  2. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  3. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  4. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  5. In vivo endoscopic Doppler optical coherence tomography imaging of mouse colon

    NASA Astrophysics Data System (ADS)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Colorectal cancer remains the second deadliest cancer in the United States, despite the high sensitivity and specificity of colonoscopy and sigmoidoscopy. While these standard imaging procedures can accurately detect medium and large polyps, some studies have shown miss rates up to 25% for polyps less than 5 mm in diameter. An imaging modality capable of detecting small lesions could potentially improve patient outcomes. Optical coherence tomography (OCT) has been shown to be a powerful imaging modality for adenoma detection in a mouse model of colorectal cancer. While previous work has focused on analyzing the structural OCT images based on thickening of the mucosa and changes in light attenuation in depth, imaging the microvasculature of the colon may enable earlier detection of polyps. The structure and function of vessels grown to support tumor growth are markedly different from healthy vessels. Doppler OCT is capable of imaging microvessels in vivo. We developed a method of processing raw fringe data from a commercial swept-source OCT system using a lab-built miniature endoscope to extract microvessels. This method can be used to measure vessel count and density and to measure flow velocities. This may improve early detection and aid in the development of new chemopreventive and chemotherapeutic drugs. We present, to the best of our knowledge, the first endoscopic Doppler OCT images of in vivo mouse colon.

  6. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator.

    PubMed

    Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua

    2017-08-25

    As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.

  7. Improving the detectability and imaging capability of ground penetrating radar using novel antenna concepts

    NASA Astrophysics Data System (ADS)

    Koyadan Koroth, Ajith; Bhattacharya, Amitabha

    2017-04-01

    Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve the forward gain. This antenna had the same impedance bandwidth of 10:1 while pattern bandwidth has been raised to 7:1. In antenna 3, a loop loaded bowtie antenna has been designed. This antenna do not employ any kind of resistive loading, yet achieves an impedance bandwidth of 11:1 and also a usable bandwidth of 11:1. The antenna 4 employs concentric offset loops which acts as directors to improve the directivity. This antenna achieved an impedance bandwidth and a pattern bandwidth of 13:1. All the antennas have a maximum size of about 0.3λ at lowest operating frequency. An experimental stepped frequency type GPR has been constructed to study the suitability of the fabricated antennas in detecting buried targets. Four experiments have been conducted viz. 1.) To detect a metallic pipe of 1in diameter, 2.) To detect a metallic pipe of 2in diameter 3.) To detect dry bamboo, 3.) To detect rebar in concrete. The detectability and imaging capability of GPR has been found to be improving from antenna 1 to 4.

  8. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  9. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.

  10. Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry

    DOEpatents

    Vertes, Akos; Walker, Bennett N.; Stolee, Jessica A.; Retterer, Scott T.

    2016-11-08

    The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.

  11. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  12. The Joint Airport Weather Studies Project - Current analysis highlights in the aviation safety context

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.

    1984-01-01

    The principal objective of the Joint Airport Weather Studies Project was to obtain high-resolution velocity, turbulence, and thermodynamic data on a convective outflow called a microburst, an intense downdraft and resulting horizontal outflow near the surface. Data collection occurred during the summer of 1982 near Denver, CO. Data sensors included three pulsed-microwave Doppler and two pulsed CO2 lidar radars, along with 27 Portable Automated Mesonet surface weather stations, the FAA's low-level-wind-shear alert system (LLWSAS), and five instrumented research aircraft. Convective storms occurred on 75 of 91 operational days, with Doppler data being collected on at least 70 microbursts. Analyses reported included a thorough examination of microburst-climatology statistics, the capability of the LLWSAS to detect adequately and accurately the presence of low-altitude wind shear danger to aircraft, the capability of a terminal Doppler radar system development to provide improved wind-shear detection and warning, and progress toward improved wind-shear training for pilots.

  13. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  14. A prototype home robot with an ambient facial interface to improve drug compliance.

    PubMed

    Takacs, Barnabas; Hanak, David

    2008-01-01

    We have developed a prototype home robot to improve drug compliance. The robot is a small mobile device, capable of autonomous behaviour, as well as remotely controlled operation via a wireless datalink. The robot is capable of face detection and also has a display screen to provide facial feedback to help motivate patients and thus increase their level of compliance. An RFID reader can identify tags attached to different objects, such as bottles, for fluid intake monitoring. A tablet dispenser allows drug compliance monitoring. Despite some limitations, experience with the prototype suggests that simple and low-cost robots may soon become feasible for care of people living alone or in isolation.

  15. Study to develop improved methods to detect leakage in fluid systems, phase 2

    NASA Technical Reports Server (NTRS)

    Janus, J. C.; Cimerman, I.

    1971-01-01

    An ultrasonic contact sensor engineering prototype leak detection system was developed and its capabilities under cryogenic operations demonstrated. The results from tests indicate that the transducer performed well on liquid hydrogen plumbing, that flow and valve actuation could be monitored, and that the phase change from gaseous to liquid hydrogen could be detected by the externally mounted transducers. Tests also demonstrate the ability of the system to detect internal leaks past valve seats and to function as a flow meter. Such a system demonstrates that it is not necessary to break into welded systems to locate internal leaks.

  16. Detection of orbital angular momentum using a photonic integrated circuit.

    PubMed

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-06-20

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.

  17. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  18. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  19. Magneto-Radar Hidden Metal Detector

    DOEpatents

    McEwan, Thomas E.

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  20. The Role of Interdisciplinary Earth Science in the Assessment of Regional Land Subsidence Hazards: Toward Sustainable Management of Global Land and Subsurface-Fluid Resources

    NASA Astrophysics Data System (ADS)

    Galloway, D. L.

    2012-12-01

    Land-level lowering or land subsidence is a consequence of many local- and regional-scale physical, chemical or biologic processes affecting soils and geologic materials. The principal processes can be natural or anthropogenic, and include consolidation or compaction, karst or pseudokarst, hydrocompaction of collapsible soils, mining, oxidation of organic soils, erosive piping, tectonism, and volcanism. In terms of affected area, there are two principal regional-scale anthropogenic processes—compaction of compressible subsurface materials owing to the extraction of subsurface fluids (principally groundwater, oil and gas) and oxidation and compaction accompanying drainage of organic soils—which cause significant hazards related to flooding and infrastructure damage that are amenable to resource management measures. The importance of even small magnitude (< 10 mm/yr) subsidence rates in coastal areas is amplified by its contribution to relative sea-level rise compared to estimated rates of rising eustatic sea levels (2-3 mm/yr) attributed to global climate change. Multi- or interdisciplinary [scientific] studies, including those focused on geodetic, geologic, geophysical, hydrologic, hydrogeologic, geomechanical, geochemical, and biologic factors, improve understanding of these subsidence processes. Examples include geodetic measurement and analysis techniques, such as Global Positioning System (GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR), which have advanced our capabilities to detect, measure and monitor land-surface motion at multiple scales. Improved means for simulating aquifer-system and hydrocarbon-reservoir deformation, and the oxidation and compaction of organic soils are leading to refined predictive capabilities. The role of interdisciplinary earth science in improving the characterization of land subsidence attributed to subsurface fluid withdrawals and the oxidation and compaction of organic soils is examined. How these improved capabilities are translating into improved sustainable management of regional land and water resources in a few select areas worldwide are presented. The importance of incorporating these improved capabilities in coherent resource management strategies to control the depletion of resources and attendant hazards also are discussed.

  1. Shallow Water Marine UXO Detection Survey, United States Marine Corps Base, Camp Lejeune, North Carolina

    DTIC Science & Technology

    2011-04-01

    resolution time-domain EM metal detector that is capable of detecting both ferrous and nonferrous metallic objects. The EM61 consists of air-cored...modifications to the Geonics EM61 metal detector . Modifications include higher transmitter power and frequency, faster sampling rates, and flexible...towed array (UUTA) electromagnetic system designed by 3Dgeophysics.com (3Dg) utilizes modified and improved Geonics, Ltd. electromagnetic (EM)61 metal

  2. Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier.

    PubMed

    Beevi, K Sabeena; Nair, Madhu S; Bindu, G R

    2016-08-01

    The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.

  3. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Yanagida, Takayuki; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-01-01

    We synthesized plastic scintillators incorporated with HfO2 nanoparticles as detectors for X-ray synchrotron radiation. Nanoparticles with sizes of less than 10 nm were synthesized with the subcritical hydrothermal method. The detection efficiency of high-energy X-ray photons improved by up to 3.3 times because of the addition of the nanoparticles. Nanosecond time resolution was successfully achieved for all the scintillators. These results indicate that this method is applicable for the preparation of plastic scintillators to detect X-ray synchrotron radiation.

  4. A novel forward and backward scattering wave measurement system for optimizing GPR standoff mine/IED detector

    NASA Astrophysics Data System (ADS)

    Fuse, Yukinori

    2012-06-01

    Standoff detection of mines and improvised explosive devices by ground penetrating radar has advantages in terms of safety and efficiency. However, the reflected signals from buried targets are often disturbed by those from the ground surface, which vary with the antennas angle, making it more difficult to detect at a safe distance. An understanding of the forward and backward scattering wave is thus essential for improving standoff detection capability. We present some experimental results from using our measurement system for such an analysis.

  5. Dynamic Steering for Improved Sensor Autonomy and Catalogue Maintenance

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Gordon, N.; Clarkson, I.; Rutten, M.; Bessell, T.

    A number of international agencies endeavour to maintain catalogues of the man-made resident space objects (RSOs) currently orbiting the Earth. Such catalogues are primarily created to anticipate and avoid destructive collisions involving important space assets such as manned missions and active satellites. An agencys ability to achieve this objective is dependent on the accuracy, reliability and timeliness of the information used to update its catalogue. A primary means for gathering this information is by regularly making direct observations of the tens-of-thousands of currently detectable RSOs via networks of space surveillance sensors. But operational constraints sometimes prevent accurate and timely reacquisition of all known RSOs, which can cause them to become lost to the tracking system. Furthermore, when comprehensive acquisition of new objects does not occur, these objects, in addition to the lost RSOs, result in uncorrelated detections when next observed. Due to the rising number of space-missions and the introduction of newer, more capable space-sensors, the number of uncorrelated targets is at an all-time high. The process of differentiating uncorrelated detections caused by once-acquired now-lost RSOs from newly detected RSOs is a difficult and often labour intensive task. Current methods for overcoming this challenge focus on advancements in orbit propagation and object characterisation to improve prediction accuracy and target identification. In this paper, we describe a complementary approach that incorporates increased awareness of error and failed observations into the RSO tracking solution. Our methodology employs a technique called dynamic steering to improve the autonomy and capability of a space surveillance networks steerable sensors. By co-situating each sensor with a low-cost high-performance computer, the steerable sensor can quickly and intelligently decide how to steer itself. The sensor-system uses a dedicated parallel-processing architecture to enable it to compute a high-fidelity estimate of the targets prior state error distribution in real-time. Negative information, such as when an RSO is targeted for observation but it is not observed, is incorporated to improve the likelihood of reacquiring the target when attempting to observe the target in future. The sensor is consequently capable of improving its utility by planning each observation using a sensor steering solution that is informed by all prior attempts at observing the target. We describe the practical implementation of a single experimental sensor and offer the results of recent field trials. These trials involved reacquisition and constrained Initial Orbit Determination of RSOs, a number of months after prior observation and initial detection. Using the proposed approach, the system is capable of using targeting information that would be unusable by existing space surveillance networks. The system consequently offers a means of enhancing space surveillance for SSA via increased system capacity, a higher degree of autonomy and the ability to reacquire objects whose dynamics are insufficiently modelled to cue a conventional space surveillance system for observation and tracking.

  6. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.

  7. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  8. Health management and controls for earth to orbit propulsion systems

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.

    1992-01-01

    Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.

  9. Direct conversion semiconductor detectors in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  10. Wireless LAN security management with location detection capability in hospitals.

    PubMed

    Tanaka, K; Atarashi, H; Yamaguchi, I; Watanabe, H; Yamamoto, R; Ohe, K

    2012-01-01

    In medical institutions, unauthorized access points and terminals obstruct the stable operation of a large-scale wireless local area network (LAN) system. By establishing a real-time monitoring method to detect such unauthorized wireless devices, we can improve the efficiency of security management. We detected unauthorized wireless devices by using a centralized wireless LAN system and a location detection system at 370 access points at the University of Tokyo Hospital. By storing the detected radio signal strength and location information in a database, we evaluated the risk level from the detection history. We also evaluated the location detection performance in our hospital ward using Wi-Fi tags. The presence of electric waves outside the hospital and those emitted from portable game machines with wireless communication capability was confirmed from the detection result. The location detection performance showed an error margin of approximately 4 m in detection accuracy and approximately 5% in false detection. Therefore, it was effective to consider the radio signal strength as both an index of likelihood at the detection location and an index for the level of risk. We determined the location of wireless devices with high accuracy by filtering the detection results on the basis of radio signal strength and detection history. Results of this study showed that it would be effective to use the developed location database containing radio signal strength and detection history for security management of wireless LAN systems and more general-purpose location detection applications.

  11. Traffic jam driving with NMV avoidance

    NASA Astrophysics Data System (ADS)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  12. Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael

    2017-01-01

    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.

  13. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers

    PubMed Central

    Xue, Shenghui; Qiao, Jingjuan; Pu, Fan; Cameron, Mathew; Yang, Jenny J.

    2014-01-01

    Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd3+ with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd3+ MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications. PMID:23335551

  14. Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.

    2007-01-01

    The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.

  15. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  16. Applying Science and Technology to Combat WMD Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuest, C R; Werne, R W; Colston, B W

    2006-05-04

    Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This papermore » provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.« less

  17. Applying science and technology to combat WMD terrorism

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.; Werne, Roger W.; Colston, Billy W.; Hartmann-Siantar, Christine L.

    2006-05-01

    Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This paper provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.

  18. Environmental Detection of Clandestine Nuclear Weapon Programs

    NASA Astrophysics Data System (ADS)

    Kemp, R. Scott

    2016-06-01

    Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.

  19. Initial experiences in the photoacoustic detection of melanoma metastases in resected lymph nodes

    NASA Astrophysics Data System (ADS)

    Grootendorst, D.; Jose, J.; Van der Jagt, P.; Van der Weg, W.; Nagel, K.; Wouters, M.; Van Boven, H.; Van Leeuwen, T. G.; Steenbergen, W.; Ruers, T.; Manohar, S.

    2011-03-01

    Accurate lymph node analysis is essential to determine the prognosis and treatment of patients suffering from melanoma. The initial results of a tomographic photoacoustic modality to detect melanoma metastases in resected lymph nodes are presented based on phantom models and a human lymph node. The results show melanoma metastases detection is feasible and the setup is capable of distinguishing absorbing structures down to 1 mm. In addition, the use of longer laser wavelengths could result in an image containing a higher contrast ratio. Future research shall be focused on using the melanin characteristics to improve contrast and detection possibilities.

  20. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  1. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  2. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  3. Exploring the Birth and Evolution of the Universe: How Detectors Have Revolutionized Space Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2012-01-01

    The past century has seen tremendous advances in the capability of instruments used for astronomical imaging and spectroscopy. Capabilities of instruments have expanded in many dimensions; the scale of telescopes has grown tremendously, the wavelengths used for astronomy have grown from visible light to the full electromagnetic spectrum, extending from gamma rays to low frequency radio waves. Additional advances have been enabled by the availability of space facilities, which eliminate the effects of the earths atmosphere and magnetosphere, and allow cooling of instruments to avoid instrumental thermal radiation. Even with all these advances, the increase in capability of detection systems has produced truly revolutionary improvements in capability. Today, I will describe the advances in astronomical detection from the photographic plates of the early 20th century to the giant high efficiency focal planes being developed for modern space and ground based astronomical instrument. I will review the demanding performance requirements set by space astronomy, and show how the detector community has risen to the challenge in producing high performance detectors for the Hubble Space Telescope, the Spitzer Space Telescope, and the James Webb Space Telescope, now under development.

  4. Multiscale-Driven approach to detecting change in Synthetic Aperture Radar (SAR) imagery

    NASA Astrophysics Data System (ADS)

    Gens, R.; Hogenson, K.; Ajadi, O. A.; Meyer, F. J.; Myers, A.; Logan, T. A.; Arnoult, K., Jr.

    2017-12-01

    Detecting changes between Synthetic Aperture Radar (SAR) images can be a useful but challenging exercise. SAR with its all-weather capabilities can be an important resource in identifying and estimating the expanse of events such as flooding, river ice breakup, earthquake damage, oil spills, and forest growth, as it can overcome shortcomings of optical methods related to cloud cover. However, detecting change in SAR imagery can be impeded by many factors including speckle, complex scattering responses, low temporal sampling, and difficulty delineating boundaries. In this presentation we use a change detection method based on a multiscale-driven approach. By using information at different resolution levels, we attempt to obtain more accurate change detection maps in both heterogeneous and homogeneous regions. Integrated within the processing flow are processes that 1) improve classification performance by combining Expectation-Maximization algorithms with mathematical morphology, 2) achieve high accuracy in preserving boundaries using measurement level fusion techniques, and 3) combine modern non-local filtering and 2D-discrete stationary wavelet transform to provide robustness against noise. This multiscale-driven approach to change detection has recently been incorporated into the Alaska Satellite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) using radiometrically terrain corrected SAR images. Examples primarily from natural hazards are presented to illustrate the capabilities and limitations of the change detection method.

  5. Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Zerbo, L.

    2013-12-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered into force. In order to achieve a credible and trustworthy Verification System, increased focus is being put on the development of OSI operational capabilities while operating and sustaining the existing monitoring system, increasing the data availability and quality, and completing the remaining facilities of the IMS. Furthermore, as mandated by the Treaty, the CTBTO also seeks to continuously improve its technologies and methods through interaction with the scientific community. Workshops and scientific conferences such as the CTBT Science and Technology Conference series provide venues for exchanging ideas, and mechanisms have been developed for sharing IMS data with researchers who are developing and testing new and innovative methods pertinent to the verification regime. While progress is steady on building up the verification regime, there is also progress in gaining entry into force of the Treaty, which requires the signatures and ratifications of the DPRK, India and Pakistan; it also requires the ratifications of China, Egypt, Iran, Israel and the United States. Thirty-six other States, whose signatures and ratifications are needed for entry into force have already done so.

  6. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  7. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  8. Can Hyperspectral Remote Sensing Detect Species Specific Biochemicals ?

    NASA Astrophysics Data System (ADS)

    Vanderbilt, V. C.; Daughtry, C. S.

    2011-12-01

    Discrimination of a few plants scattered among many plants is a goal common to detection of agricultural weeds, invasive plant species and illegal Cannabis clandestinely grown outdoors, the subject of this research. Remote sensing technology provides an automated, computer based, land cover classification capability that holds promise for improving upon the existing approaches to Cannabis detection. In this research, we investigated whether hyperspectral reflectance of recently harvested, fully turgid Cannabis leaves and buds depends upon the concentration of the psychoactive ingredient Tetrahydrocannabinol (THC) that, if present at sufficient concentration, presumably would allow species-specific identification of Cannabis.

  9. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    PubMed

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  10. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection

    PubMed Central

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications. PMID:26203382

  11. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  12. Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices

    PubMed Central

    Golden, J.P.; Verbarg, J.; Howell, P.B.; Shriver-Lake, L.C.; Ligler, F.S.

    2012-01-01

    A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose–response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. PMID:22960010

  13. Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices.

    PubMed

    Golden, J P; Verbarg, J; Howell, P B; Shriver-Lake, L C; Ligler, F S

    2013-02-15

    A spinning magnetic trap (MagTrap) for automated sample processing was integrated with a microflow cytometer capable of simultaneously detecting multiple targets to provide an automated sample-to-answer diagnosis in 40 min. After target capture on fluorescently coded magnetic microspheres, the magnetic trap automatically concentrated the fluorescently coded microspheres, separated the captured target from the sample matrix, and exposed the bound target sequentially to biotinylated tracer molecules and streptavidin-labeled phycoerythrin. The concentrated microspheres were then hydrodynamically focused in a microflow cytometer capable of 4-color analysis (two wavelengths for microsphere identification, one for light scatter to discriminate single microspheres and one for phycoerythrin bound to the target). A three-fold decrease in sample preparation time and an improved detection limit, independent of target preconcentration, was demonstrated for detection of Escherichia coli 0157:H7 using the MagTrap as compared to manual processing. Simultaneous analysis of positive and negative controls, along with the assay reagents specific for the target, was used to obtain dose-response curves, demonstrating the potential for quantification of pathogen load in buffer and serum. Published by Elsevier B.V.

  14. 75 FR 49949 - Notice of Lodging of Consent Decree Under The Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under The Clean Water Act Notice is... Southern District of Texas. In this action, the United States alleges civil claims under the Clean Water...) improve pipeline operation and integrity management practices, and (3) enhance leak detection capabilities...

  15. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    PubMed

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Covariance descriptor fusion for target detection

    NASA Astrophysics Data System (ADS)

    Cukur, Huseyin; Binol, Hamidullah; Bal, Abdullah; Yavuz, Fatih

    2016-05-01

    Target detection is one of the most important topics for military or civilian applications. In order to address such detection tasks, hyperspectral imaging sensors provide useful images data containing both spatial and spectral information. Target detection has various challenging scenarios for hyperspectral images. To overcome these challenges, covariance descriptor presents many advantages. Detection capability of the conventional covariance descriptor technique can be improved by fusion methods. In this paper, hyperspectral bands are clustered according to inter-bands correlation. Target detection is then realized by fusion of covariance descriptor results based on the band clusters. The proposed combination technique is denoted Covariance Descriptor Fusion (CDF). The efficiency of the CDF is evaluated by applying to hyperspectral imagery to detect man-made objects. The obtained results show that the CDF presents better performance than the conventional covariance descriptor.

  17. An immunity-based anomaly detection system with sensor agents.

    PubMed

    Okamoto, Takeshi; Ishida, Yoshiteru

    2009-01-01

    This paper proposes an immunity-based anomaly detection system with sensor agents based on the specificity and diversity of the immune system. Each agent is specialized to react to the behavior of a specific user. Multiple diverse agents decide whether the behavior is normal or abnormal. Conventional systems have used only a single sensor to detect anomalies, while the immunity-based system makes use of multiple sensors, which leads to improvements in detection accuracy. In addition, we propose an evaluation framework for the anomaly detection system, which is capable of evaluating the differences in detection accuracy between internal and external anomalies. This paper focuses on anomaly detection in user's command sequences on UNIX-like systems. In experiments, the immunity-based system outperformed some of the best conventional systems.

  18. Intraoperative imaging for patient safety and QA: detection of intracranial hemorrhage using C-arm cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schafer, Sebastian; Wang, Adam; Otake, Yoshito; Stayman, J. W.; Zbijewski, Wojciech; Kleinszig, Gerhard; Xia, Xuewei; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2013-03-01

    Intraoperative imaging could improve patient safety and quality assurance (QA) via the detection of subtle complications that might otherwise only be found hours after surgery. Such capability could therefore reduce morbidity and the need for additional intervention. Among the severe adverse events that could be more quickly detected by high-quality intraoperative imaging is acute intracranial hemorrhage (ICH), conventionally assessed using post-operative CT. A mobile C-arm capable of high-quality cone-beam CT (CBCT) in combination with advanced image reconstruction techniques is reported as a means of detecting ICH in the operating room. The system employs an isocentric C-arm with a flat-panel detector in dual gain mode, correction of x-ray scatter and beam-hardening, and a penalized likelihood (PL) iterative reconstruction method. Performance in ICH detection was investigated using a quantitative phantom focusing on (non-contrast-enhanced) blood-brain contrast, an anthropomorphic head phantom, and a porcine model with injection of fresh blood bolus. The visibility of ICH was characterized in terms of contrast-to-noise ratio (CNR) and qualitative evaluation of images by a neurosurgeon. Across a range of size and contrast of the ICH as well as radiation dose from the CBCT scan, the CNR was found to increase from ~2.2-3.7 for conventional filtered backprojection (FBP) to ~3.9-5.4 for PL at equivalent spatial resolution. The porcine model demonstrated superior ICH detectability for PL. The results support the role of high-quality mobile C-arm CBCT employing advanced reconstruction algorithms for detecting subtle complications in the operating room at lower radiation dose and lower cost than intraoperative CT scanners and/or fixedroom C-arms. Such capability could present a potentially valuable aid to patient safety and QA.

  19. DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.

    PubMed

    Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou

    2016-07-07

    In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.

  20. Benefits of a European project on diagnostics of highly pathogenic agents and assessment of potential "dual use" issues.

    PubMed

    Grunow, Roland; Ippolito, G; Jacob, D; Sauer, U; Rohleder, A; Di Caro, A; Iacovino, R

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and "dual use" concerns. The article will give an overview of the project outcomes and discuss the assessment of potential "dual use" issues.

  1. Benefits of a European Project on Diagnostics of Highly Pathogenic Agents and Assessment of Potential “Dual Use” Issues

    PubMed Central

    Grunow, Roland; Ippolito, G.; Jacob, D.; Sauer, U.; Rohleder, A.; Di Caro, A.; Iacovino, R.

    2014-01-01

    Quality assurance exercises and networking on the detection of highly infectious pathogens (QUANDHIP) is a joint action initiative set up in 2011 that has successfully unified the primary objectives of the European Network on Highly Pathogenic Bacteria (ENHPB) and of P4-laboratories (ENP4-Lab) both of which aimed to improve the efficiency, effectiveness, and response capabilities of laboratories directed at protecting the health of European citizens against high consequence bacteria and viruses of significant public health concern. Both networks have established a common collaborative consortium of 37 nationally and internationally recognized institutions with laboratory facilities from 22 European countries. The specific objectives and achievements include the initiation and establishment of a recognized and acceptable quality assurance scheme, including practical external quality assurance exercises, comprising living agents, that aims to improve laboratory performance, accuracy, and detection capabilities in support of patient management and public health responses; recognized training schemes for diagnostics and handling of highly pathogenic agents; international repositories comprising highly pathogenic bacteria and viruses for the development of standardized reference material; a standardized and transparent Biosafety and Biosecurity strategy protecting healthcare personnel and the community in dealing with high consequence pathogens; the design and organization of response capabilities dealing with cross-border events with highly infectious pathogens including the consideration of diagnostic capabilities of individual European laboratories. The project tackled several sensitive issues regarding Biosafety, Biosecurity and “dual use” concerns. The article will give an overview of the project outcomes and discuss the assessment of potential “dual use” issues. PMID:25426479

  2. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  3. The flaw-detected coating and its applications in R&M of aircrafts

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with l<300μm, corresponding to the increment of the sensing layer's resistance at the level of 0.05Ω. Also, ICM resistance measurements correlate with crack length, permitting crack length monitoring. Numerous applications are under evaluation for ICM in difficult-to-access locations on commercial and military aircrafts. The motivation for the permanently flaw-detected coating monitoring is either (i) to replace an existing inspection that requires substantial disassembly and surface preparation (e.g. inside the fuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  4. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    NASA Astrophysics Data System (ADS)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  5. Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew; Carman, M. Leslie; Glenn, Andrew M.; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-09-01

    The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U.S. Department of Energy Office of Nonproliferation Research and Development (NA-22) and by the Defense Threat Reduction Agency (DTRA).

  6. Advance in multi-hit detection and quantization in atom probe tomography.

    PubMed

    Da Costa, G; Wang, H; Duguay, S; Bostel, A; Blavette, D; Deconihout, B

    2012-12-01

    The preferential retention of high evaporation field chemical species at the sample surface in atom-probe tomography (e.g., boron in silicon or in metallic alloys) leads to correlated field evaporation and pronounced pile-up effects on the detector. The latter severely affects the reliability of concentration measurements of current 3D atom probes leading to an under-estimation of the concentrations of the high-field species. The multi-hit capabilities of the position-sensitive time-resolved detector is shown to play a key role. An innovative method based on Fourier space signal processing of signals supplied by an advance delay-line position-sensitive detector is shown to drastically improve the time resolving power of the detector and consequently its capability to detect multiple events. Results show that up to 30 ions on the same evaporation pulse can be detected and properly positioned. The major impact of this new method on the quantization of chemical composition in materials, particularly in highly-doped Si(B) samples is highlighted.

  7. A systems approach for data compression and latency reduction in cortically controlled brain machine interfaces.

    PubMed

    Oweiss, Karim G

    2006-07-01

    This paper suggests a new approach for data compression during extracutaneous transmission of neural signals recorded by high-density microelectrode array in the cortex. The approach is based on exploiting the temporal and spatial characteristics of the neural recordings in order to strip the redundancy and infer the useful information early in the data stream. The proposed signal processing algorithms augment current filtering and amplification capability and may be a viable replacement to on chip spike detection and sorting currently employed to remedy the bandwidth limitations. Temporal processing is devised by exploiting the sparseness capabilities of the discrete wavelet transform, while spatial processing exploits the reduction in the number of physical channels through quasi-periodic eigendecomposition of the data covariance matrix. Our results demonstrate that substantial improvements are obtained in terms of lower transmission bandwidth, reduced latency and optimized processor utilization. We also demonstrate the improvements qualitatively in terms of superior denoising capabilities and higher fidelity of the obtained signals.

  8. Deep neural network-based bandwidth enhancement of photoacoustic data.

    PubMed

    Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K

    2017-11-01

    Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Studies of recognition with multitemporal remote sensor data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Cicone, R. C.

    1975-01-01

    Characteristics of multitemporal data and their use in recognition processing were investigated. Principal emphasis was on satellite data collected by the LANDSAT multispectral scanner and on temporal changes throughout a growing season. The effects of spatial misregistration on recognition performance with multitemporal data were examined. A capability to compute probabilities of detection and false alarm was developed and used with simulated distributions for misregistered pixels. Wheat detection was found to be degraded and false alarms increased by misregistration effects. Multitemporal signature characteristics and multitemporal recognition processing were studied to gain insights into problems associated with this approach and possible improvements. Recognition performance with one multitemporal data set displayed marked improvements over results from single-time data.

  10. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  11. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Riaz, Farhan; Saeed, Omer; Hassan, Ali; Khan, Muazzam; Alam, Muhammad S.

    2017-05-01

    A fully invariant system helps in resolving difficulties in object detection when camera or object orientation and position are unknown. In this paper, the proposed correlation filter based mechanism provides the capability to suppress noise, clutter and occlusion. Minimum Average Correlation Energy (MACE) filter yields sharp correlation peaks while considering the controlled correlation peak value. Difference of Gaussian (DOG) Wavelet has been added at the preprocessing stage in proposed filter design that facilitates target detection in orientation variant cluttered environment. Logarithmic transformation is combined with a DOG composite minimum average correlation energy filter (WMACE), capable of producing sharp correlation peaks despite any kind of geometric distortion of target object. The proposed filter has shown improved performance over some of the other variant correlation filters which are discussed in the result section.

  12. Artificial intelligence for breast cancer screening: Opportunity or hype?

    PubMed

    Houssami, Nehmat; Lee, Christoph I; Buist, Diana S M; Tao, Dacheng

    2017-12-01

    Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice 'smarter' or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  14. Method for oil pipeline leak detection based on distributed fiber optic technology

    NASA Astrophysics Data System (ADS)

    Chen, Huabo; Tu, Yaqing; Luo, Ting

    1998-08-01

    Pipeline leak detection is a difficult problem to solve up to now. Some traditional leak detection methods have such problems as high rate of false alarm or missing detection, low location estimate capability. For the problems given above, a method for oil pipeline leak detection based on distributed optical fiber sensor with special coating is presented. The fiber's coating interacts with hydrocarbon molecules in oil, which alters the refractive indexed of the coating. Therefore the light-guiding properties of the fiber are modified. Thus pipeline leak location can be determined by OTDR. Oil pipeline lead detection system is designed based on the principle. The system has some features like real time, multi-point detection at the same time and high location accuracy. In the end, some factors that probably influence detection are analyzed and primary improving actions are given.

  15. Development of an ultra-sensitive Simoa assay to enable GDF11 detection: a comparison across bioanalytical platforms.

    PubMed

    Myzithras, Maria; Li, Hua; Bigwarfe, Tammy; Waltz, Erica; Gupta, Priyanka; Low, Sarah; Hayes, David B; MacDonnell, Scott; Ahlberg, Jennifer; Franti, Michael; Roberts, Simon

    2016-03-01

    Four bioanalytical platforms were evaluated to optimize sensitivity and enable detection of recombinant human GDF11 in biological matrices; ELISA, Meso Scale Discovery, Gyrolab xP Workstation and Simoa HD-1. Results & methodology: After completion of custom assay development, the single-molecule ELISA (Simoa) achieved the greatest sensitivity with a lower limit of quantitation of 0.1 ng/ml, an improvement of 100-fold over the next sensitive platform (MSD). This improvement was essential to enable detection of GDF11 in biological samples, and without the technology the sensitivity achieved on the other platforms would not have been sufficient. Other factors such as ease of use, cost, assay time and automation capability can also be considered when developing custom immunoassays, based on the requirements of the bioanalyst.

  16. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  17. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  18. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  19. DNA origami nanopores: developments, challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Hernández-Ainsa, Silvia; Keyser, Ulrich F.

    2014-11-01

    DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.

  20. New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: a comparison between near-IR diode lasers and mid-IR quantum cascade lasers.

    PubMed

    Grossel, Agnès; Zeninari, Virginie; Joly, Lilian; Parvitte, Bertrand; Courtois, Daniel; Durry, Georges

    2006-04-01

    Atmospheric methane was detected by combining a photoacoustic (PA) sensor with several lasers emitting in both the near- and mid-infrared spectral ranges to check the achievable detection limits. The PA spectrometer is based on differential Helmholtz resonance. Near-infrared telecommunication-type laser diodes of increasing power, from Sensors Unlimited Inc. and Anritsu, were first used to scan the 2 nu(3) band of CH(4) near 1.65 microm. The best achieved detection limit is 0.15 ppm of methane at atmospheric pressure and with a 1s integration time. The PA sensor was then operated in conjunction with a quantum cascade laser from Alpes Lasers emitting near 7.9 microm on the nu(4) band of CH(4). The achieved detection limit is then of 3 ppb. The dramatic improvement in the detection limit obtained with the QC laser is due to the stronger optical power as well as to the capability of reaching the fundamental bands of methane lying in the mid-infrared spectral range.

  1. The Temporal Morphology of Infrasound Propagation

    NASA Astrophysics Data System (ADS)

    Drob, Douglas P.; Garcés, Milton; Hedlin, Michael; Brachet, Nicolas

    2010-05-01

    Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (D rob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the atmosphere and infrasound propagation models. The statistical behaviors or occurrence frequency of various propagation configurations are discussed. Representative examples of some of these propagation configuration states are also shown.

  2. A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification.

    PubMed

    Huang, Yishun; Xu, Wanlin; Liu, Guoyuan; Tian, Leilei

    2017-03-09

    A rolling-circle-amplification method was developed to produce DNA hydrogels with horseradish-peroxidase-like catalytic capability. The catalytic hydrogel exhibits highly improved stability at elevated temperatures or during a long-term storage. Integrated with glucose oxidase, the complex hydrogel can be applied to the sensitive and reliable detection of glucose.

  3. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  4. Designing teams of unattended ground sensors using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ayse S.; McQuay, Brian N.; Wu, Annie S.; Sciortino, John C., Jr.

    2004-04-01

    Improvements in sensor capabilities have driven the need for automated sensor allocation and management systems. Such systems provide a penalty-free test environment and valuable input to human operators by offering candidate solutions. These abilities lead, in turn, to savings in manpower and time. Determining an optimal team of cooperating sensors for military operations is a challenging task. There is a tradeoff between the desire to decrease the cost and the need to increase the sensing capabilities of a sensor suite. This work focuses on unattended ground sensor networks consisting of teams of small, inexpensive sensors. Given a possible configuration of enemy radar, our goal isto generate sensor suites that monitor as many enemy radar as possible while minimizing cost. In previous work, we have shown that genetic algorithms (GAs) can be used to evolve successful teams of sensors for this problem. This work extends our previous work in two ways: we use an improved simulator containing a more accurate model of radar and sensor capabilities for out fitness evaluations and we introduce two new genetic operators, insertion and deletion, that are expected to improve the GA's fine tuning abilities. Empirical results show that our GA approach produces near optimal results under a variety of enemy radar configurations using sensors with varying capabilities. Detection percentage remains stable regardless of changes in the enemy radar placements.

  5. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  6. Endoscopic detection of murine colonic dysplasia using a novel fluorescence-labeled peptide

    NASA Astrophysics Data System (ADS)

    Miller, Sharon J.; Joshi, Bishnu P.; Gaustad, Adam; Fearon, Eric R.; Wang, Thomas D.

    2011-03-01

    Current endoscopic screening does not detect all pre-malignant (dysplastic) colorectal mucosa, thus requiring the development of more sensitive, targeted techniques to improve detection. The presented work utilizes phage display to identify a novel peptide binder to colorectal dysplasia in a CPC;Apc mouse model. A wide-field, small animal endoscope capable of fluorescence excitation (450-475 nm) identified polyps via white light and also collected fluorescence images (510 nm barrier filter) of peptide binding. The peptide bound ~2-fold greater to the colonic adenomas when compared to the control peptide. We have imaged fluorescence-labeled peptide binding in vivo that is specific towards distal colonic adenomas.

  7. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  8. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    PubMed

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  9. Latest advances in molecular imaging instrumentation.

    PubMed

    Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S

    2008-06-01

    This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.

  10. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  11. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  12. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  13. Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Milton Nance; McKnight, Timothy E; Melechko, Anatoli Vasilievich

    2012-01-01

    Neural chips, which are capable of simultaneous, multi-site neural recording and stimulation, have been used to detect and modulate neural activity for almost 30 years. As a neural interface, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information ofmore » neuroplasticity. This novel nano-neuron interface can potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single cell level and even inside the cell.« less

  14. Improved repetition rate mixed isotope CO2 TEA laser

    NASA Astrophysics Data System (ADS)

    Cohn, D. B.

    2014-09-01

    A compact CO2 TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the 12C16O2 isotope. With mixed 12C16O2 plus 13C16O2 isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Related work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.

  15. Object detection in MOUT: evaluation of a hybrid approach for confirmation and rejection of object detection hypotheses

    NASA Astrophysics Data System (ADS)

    Manger, Daniel; Metzler, Jürgen

    2014-03-01

    Military Operations in Urban Terrain (MOUT) require the capability to perceive and to analyze the situation around a patrol in order to recognize potential threats. A permanent monitoring of the surrounding area is essential in order to appropriately react to the given situation, where one relevant task is the detection of objects that can pose a threat. Especially the robust detection of persons is important, as in MOUT scenarios threats usually arise from persons. This task can be supported by image processing systems. However, depending on the scenario, person detection in MOUT can be challenging, e.g. persons are often occluded in complex outdoor scenes and the person detection also suffers from low image resolution. Furthermore, there are several requirements on person detection systems for MOUT such as the detection of non-moving persons, as they can be a part of an ambush. Existing detectors therefore have to operate on single images with low thresholds for detection in order to not miss any person. This, in turn, leads to a comparatively high number of false positive detections which renders an automatic vision-based threat detection system ineffective. In this paper, a hybrid detection approach is presented. A combination of a discriminative and a generative model is examined. The objective is to increase the accuracy of existing detectors by integrating a separate hypotheses confirmation and rejection step which is built by a discriminative and generative model. This enables the overall detection system to make use of both the discriminative power and the capability to detect partly hidden objects with the models. The approach is evaluated on benchmark data sets generated from real-world image sequences captured during MOUT exercises. The extension shows a significant improvement of the false positive detection rate.

  16. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  17. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

    PubMed

    Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin

    2017-02-10

    Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.

  18. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    PubMed

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  19. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    PubMed Central

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  20. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper.

    PubMed

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong

    2017-06-10

    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved.

  1. Acoustic Emission and Echo Signal Compensation Techniques Applied to an Ultrasonic Logging-While-Drilling Caliper

    PubMed Central

    Yao, Yongchao; Ju, Xiaodong; Lu, Junqiang; Men, Baiyong

    2017-01-01

    A logging-while-drilling (LWD) caliper is a tool used for the real-time measurement of a borehole diameter in oil drilling engineering. This study introduces the mechanical structure and working principle of a new LWD caliper based on ultrasonic distance measurement (UDM). The detection range is a major performance index of a UDM system. This index is determined by the blind zone length and remote reflecting interface detection capability of the system. To reduce the blind zone length and detect near the reflecting interface, a full bridge acoustic emission technique based on bootstrap gate driver (BGD) and metal-oxide-semiconductor field effect transistor (MOSFET) is designed by analyzing the working principle and impedance characteristics of a given piezoelectric transducer. To detect the remote reflecting interface and reduce the dynamic range of the received echo signals, the relationships between the echo amplitude and propagation distance of ultrasonic waves are determined. A signal compensation technique based on time-varying amplification theory, which can automatically change the gain according to the echo arrival time is designed. Lastly, the aforementioned techniques and corresponding circuits are experimentally verified. Results show that the blind zone length in the UDM system of the LWD caliper is significantly reduced and the capability to detect the remote reflecting interface is considerably improved. PMID:28604603

  2. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  3. Emerging Cytokine Biosensors with Optical Detection Modalities and Nanomaterial-Enabled Signal Enhancement

    PubMed Central

    Singh, Manpreet; Truong, Johnson; Reeves, W. Brian; Hahm, Jong-in

    2017-01-01

    Protein biomarkers, especially cytokines, play a pivotal role in the diagnosis and treatment of a wide spectrum of diseases. Therefore, a critical need for advanced cytokine sensors has been rapidly growing and will continue to expand to promote clinical testing, new biomarker development, and disease studies. In particular, sensors employing transduction principles of various optical modalities have emerged as the most common means of detection. In typical cytokine assays which are based on the binding affinities between the analytes of cytokines and their specific antibodies, optical schemes represent the most widely used mechanisms, with some serving as the gold standard against which all existing and new sensors are benchmarked. With recent advancements in nanoscience and nanotechnology, many of the recently emerging technologies for cytokine detection exploit various forms of nanomaterials for improved sensing capabilities. Nanomaterials have been demonstrated to exhibit exceptional optical properties unique to their reduced dimensionality. Novel sensing approaches based on the newly identified properties of nanomaterials have shown drastically improved performances in both the qualitative and quantitative analyses of cytokines. This article brings together the fundamentals in the literature that are central to different optical modalities developed for cytokine detection. Recent advancements in the applications of novel technologies are also discussed in terms of those that enable highly sensitive and multiplexed cytokine quantification spanning a wide dynamic range. For each highlighted optical technique, its current detection capabilities as well as associated challenges are discussed. Lastly, an outlook for nanomaterial-based cytokine sensors is provided from the perspective of optimizing the technologies for sensitivity and multiplexity as well as promoting widespread adaptations of the emerging optical techniques by lowering high thresholds currently present in the new approaches. PMID:28241443

  4. Development of a low-noise amplifier for neutron detection in harsh environment

    NASA Astrophysics Data System (ADS)

    Angelone, M.; Cardarelli, R.; Paolozzi, L.; Pillon, M.

    2014-10-01

    A fast matching charge amplifier for neutron spectroscopy in harsh environment has been developed and tested at the JET Tokamak. This front-end circuit is capable to operate at a distance up to 100 meters from a sensor without increasing its equivalent noise charge. Further improvements are possible by exploiting the intrinsic performance of silicon-germanium bipolar junction transistors.

  5. Monitoring as a Means to Focus Research and Conservation - The Grassland Bird Monitoring Example

    Treesearch

    Brenda Dale; Michael Norton; Constance Downes; Brian Collins

    2005-01-01

    One recommendation of the Canadian Landbird Monitoring Strategy of Partners in Flight-Canada is to improve monitoring capability for rapidly declining grassland birds. In Canada, we lack statistical power for many grassland species because they are detected in small numbers, on a low number of routes, or show high year-to-year variability. In developing a Grassland...

  6. Low Voltage Low Light Imager and Photodetector

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.

  7. Motion-Based System Identification and Fault Detection and Isolation Technologies for Thruster Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward; Sutter, David W.; Berkovitz, Dustin; Betts, Bradley J.; Kong, Edmund; delMundo, Rommel; Lages, Christopher R.; Mah, Robert W.; Papasin, Richard

    2003-01-01

    By analyzing the motions of a thruster-controlled spacecraft, it is possible to provide on-line (1) thruster fault detection and isolation (FDI), and (2) vehicle mass- and thruster-property identification (ID). Technologies developed recently at NASA Ames have significantly improved the speed and accuracy of these ID and FDI capabilities, making them feasible for application to a broad class of spacecraft. Since these technologies use existing sensors, the improved system robustness and performance that comes with the thruster fault tolerance and system ID can be achieved through a software-only implementation. This contrasts with the added cost, mass, and hardware complexity commonly required by FDI. Originally developed in partnership with NASA - Johnson Space Center to provide thruster FDI capability for the X-38 during re-entry, these technologies are most recently being applied to the MIT SPHERES experimental spacecraft to fly on the International Space Station in 2004. The model-based FDI uses a maximum-likelihood calculation at its core, while the ID is based upon recursive least squares estimation. Flight test results from the SPHERES implementation, as flown aboard the NASA KC-1 35A 0-g simulator aircraft in November 2003 are presented.

  8. Temporally Adaptive Sampling: A Case Study in Rare Species Survey Design with Marbled Salamanders (Ambystoma opacum)

    PubMed Central

    Charney, Noah D.; Kubel, Jacob E.; Eiseman, Charles S.

    2015-01-01

    Improving detection rates for elusive species with clumped distributions is often accomplished through adaptive sampling designs. This approach can be extended to include species with temporally variable detection probabilities. By concentrating survey effort in years when the focal species are most abundant or visible, overall detection rates can be improved. This requires either long-term monitoring at a few locations where the species are known to occur or models capable of predicting population trends using climatic and demographic data. For marbled salamanders (Ambystoma opacum) in Massachusetts, we demonstrate that annual variation in detection probability of larvae is regionally correlated. In our data, the difference in survey success between years was far more important than the difference among the three survey methods we employed: diurnal surveys, nocturnal surveys, and dipnet surveys. Based on these data, we simulate future surveys to locate unknown populations under a temporally adaptive sampling framework. In the simulations, when pond dynamics are correlated over the focal region, the temporally adaptive design improved mean survey success by as much as 26% over a non-adaptive sampling design. Employing a temporally adaptive strategy costs very little, is simple, and has the potential to substantially improve the efficient use of scarce conservation funds. PMID:25799224

  9. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins.

    PubMed

    Chen, Quansheng; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF4:Yb/Ho/Gd and NaYF4:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF4 nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001-0.1 ng ml(-1) with the limit of detection (LOD) of 0.001 ng ml(-1). Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Some new features of Direct Analysis in Real Time mass spectrometry utilizing the desorption at an angle option.

    PubMed

    Chernetsova, Elena S; Revelsky, Alexander I; Morlock, Gertrud E

    2011-08-30

    The present study is a first step towards the unexplored capabilities of Direct Analysis in Real Time (DART) mass spectrometry (MS) arising from the possibility of the desorption at an angle: scanning analysis of surfaces, including the coupling of thin-layer chromatography (TLC) with DART-MS, and a more sensitive analysis due to the preliminary concentration of analytes dissolved in large volumes of liquids on glass surfaces. In order to select the most favorable conditions for DART-MS analysis, proper positioning of samples is important. Therefore, a simple and cheap technique for the visualization of the impact region of the DART gas stream onto a substrate was developed. A filter paper or TLC plate, previously loaded with the analyte, was immersed in a derivatization solution. On this substrate, owing to the impact of the hot DART gas, reaction of the analyte to a colored product occurred. An improved capability of detection of DART-MS for the analysis of liquids was demonstrated by applying large volumes of model solutions of coumaphos into small glass vessels and drying these solutions prior to DART-MS analysis under ambient conditions. This allowed the introduction of, by up to more than two orders of magnitude, increased quantities of analyte compared with the conventional DART-MS analysis of liquids. Through this improved detectability, the capabilities of DART-MS in trace analysis could be strengthened. Copyright © 2011 John Wiley & Sons, Ltd.

  11. The Goes-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.

  12. Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness

    NASA Astrophysics Data System (ADS)

    Hardy, Tyler J.; Cain, Stephen C.

    2016-05-01

    The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.

  13. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  14. Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Lequan Yu; Hao Chen; Qi Dou; Jing Qin; Pheng Ann Heng

    2017-01-01

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer prevention and diagnosis. Traditional manual screening is time consuming, operator dependent, and error prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intraclass variations in polyp size, color, shape, and texture, and low interclass variations between polyps and hard mimics. In this paper, we propose a novel offline and online three-dimensional (3-D) deep learning integration framework by leveraging the 3-D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with the previous methods employing hand-crafted features or 2-D convolutional neural network, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  15. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  16. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  17. Recent Efforts to Improve the Near Real Time Forest Disturbance Monitoring Capabilities of the ForWarn System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald

    2013-01-01

    This presentation discusses the development of anew method for computing NDVI temporal composites from near real time eMODIS data This research is being conducted to improve forest change products used in the ForWarn system for monitoring regional forest disturbances in the United States. ForWarn provides nation-wide NDVI-based forest disturbance detection products that are refreshed every 8 days. Current eMODIS and historical MOD13 24 day NDVI data are used to compute the disturbance detection products. The eMODIS 24 day NDVI data re-aggregated from 7 day NDVI products. The 24 day eMODIS NDVIs are generally cloud free, but do not necessarily use the freshest quality data. To shorten the disturbance detection time, a method has been developed that performs adaptive length/maximum value compositing of eMODIS NDVI, along with cloud and shadow "noise" mitigation. Tests indicate that this method can reduce detection rates by 8-16 days for known recent disturbance events, depending on the cloud frequencies and disturbance type. The noise mitigation in these tests, though imperfect, helped to improve quality of the resulting NDVI and forest change products.

  18. Overview of IMS infrasound station and engineering projects

    NASA Astrophysics Data System (ADS)

    Marty, J.; Doury, B.; Kramer, A.; Martysevich, P.

    2015-12-01

    The Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBTO) has a continuous interest in enhancing its capability in acoustic source detection, localization and characterization. The infrasound component of the International Monitoring System (IMS) constitutes the only worldwide ground-based infrasound network. It consists of sixty stations, among which forty-eight are already certified and continuously transmit data to the International Data Centre (IDC) in Vienna, Austria. Each infrasound station is composed of an array of infrasound sensors capable of measuring micro-pressure changes produced at ground level by infrasonic waves. The characteristics of infrasonic waves are computed in near real-time by IDC automatic detection software and are used as an input to IDC source categorization and localization algorithms. The PTS is continuously working towards the completion and sustainment of the IMS infrasound network. The objective of this presentation is to review the main activities performed in the IMS infrasound network over the last five years. This includes construction, installation, certification, major upgrade and revalidation activities. Major technology development projects to improve the reliability and robustness of IMS infrasound stations as well as their compliance with IMS Operational Manual requirements will also be presented. This includes advances in array geometry, wind noise reduction, system calibration, meteorological data as well as power and communication infrastructures. Finally the impact of all these changes on the overall detection capability of the IMS infrasound network will be highlighted.

  19. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  20. Linear array optical edge sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1987-01-01

    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.

  1. An incremental anomaly detection model for virtual machines.

    PubMed

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform.

  2. An incremental anomaly detection model for virtual machines

    PubMed Central

    Zhang, Hancui; Chen, Shuyu; Liu, Jun; Zhou, Zhen; Wu, Tianshu

    2017-01-01

    Self-Organizing Map (SOM) algorithm as an unsupervised learning method has been applied in anomaly detection due to its capabilities of self-organizing and automatic anomaly prediction. However, because of the algorithm is initialized in random, it takes a long time to train a detection model. Besides, the Cloud platforms with large scale virtual machines are prone to performance anomalies due to their high dynamic and resource sharing characters, which makes the algorithm present a low accuracy and a low scalability. To address these problems, an Improved Incremental Self-Organizing Map (IISOM) model is proposed for anomaly detection of virtual machines. In this model, a heuristic-based initialization algorithm and a Weighted Euclidean Distance (WED) algorithm are introduced into SOM to speed up the training process and improve model quality. Meanwhile, a neighborhood-based searching algorithm is presented to accelerate the detection time by taking into account the large scale and high dynamic features of virtual machines on cloud platform. To demonstrate the effectiveness, experiments on a common benchmark KDD Cup dataset and a real dataset have been performed. Results suggest that IISOM has advantages in accuracy and convergence velocity of anomaly detection for virtual machines on cloud platform. PMID:29117245

  3. Microcantilever sensor

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    1998-01-01

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.

  4. Microcantilever sensor

    DOEpatents

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  5. Advanced plastic scintillators for fast neutron discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  6. Research of the absorbance detection and fluorescence detection for multifunctional nutrition analyzer

    NASA Astrophysics Data System (ADS)

    Ni, Zhengyuan; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda

    2017-10-01

    The research of the multifunctional analyzer which integrates absorbance detection, fluorescence detection, time-resolved fluorescence detection, biochemical luminescence detection methods, can make efficient detection and analysis for a variety of human body nutrients. This article focuses on the absorbance detection and fluorescence detection system. The two systems are modular in design and controlled by embedded system, to achieve automatic measurement according to user settings. In the optical path design, the application of confocal design can improve the optical signal acquisition capability, and reduce the interference. A photon counter is used for detection, and a high performance counter module is designed to measure the output of photon counter. In the experiment, we use neutral density filters and potassium dichromate solution to test the absorbance detection system, and use fluorescein isothiocyanate FITC for fluorescence detection system performance test. The experimental results show that the absorbance detection system has a detection range of 0 4OD, and has good linearity in the detection range, while the fluorescence detection system has a high sensitivity of 1pmol/L concentration.

  7. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic.

    PubMed

    Henriques, R B; Nedzelskiy, I S; Malaquias, A; Fernandes, H

    2012-10-01

    The tokamak ISTTOK havy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10(7) V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  8. Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.

    PubMed

    Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2017-03-04

    Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.

  9. A dynamic bead-based microarray for parallel DNA detection

    NASA Astrophysics Data System (ADS)

    Sochol, R. D.; Casavant, B. P.; Dueck, M. E.; Lee, L. P.; Lin, L.

    2011-05-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening.

  10. An Introduction to Exoplanets and the Kepler Mission

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2014-01-01

    A quarter century ago, the only planets known to humanity were the familiar objects that orbit our Sun. But improved observational techniques allowed astronomers to begin detecting planets around other stars in the 1990s. The first extrasolar planets (often referred to as exoplanets) to be discovered were quite exotic and unfamiliar objects. Most were giant objects that are hundreds of times as massive as the Earth and orbit so close to their star that they are hotter than pizza ovens. But as observational capabilities improved, smaller and cooler planets were found. The most capable planet-hunting tool developed to date is NASA's Kepler telescope, which was launched in 2009. Kepler has found that planets similar in size to our Earth are quite abundant within our galaxy. Results of Kepler's research will be summarized and placed into context within the new and growing discipline of exoplanet studies.

  11. Processing of Cryo-EM Movie Data.

    PubMed

    Ripstein, Z A; Rubinstein, J L

    2016-01-01

    Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.

  12. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  13. Initial Results: An Ultra-Low-Background Germanium Crystal Array

    DTIC Science & Technology

    2010-09-01

    data (focused on γ -γ coincidence signatures) (Smith et al., 2004) and the Multi- Isotope Coincidence Analysis code (MICA) (Warren et al., 2006). The...The follow-on “CASCADES” project aims to develop a multicoincidence data- analysis package and make robust fission-product demonstration measurements...sensitivity. This effort is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications, e.g., nuclear treaty

  14. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less

  15. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  16. Mitigation of volcanic hazards to aviation: The need for real-time integration of multiple data sources (Invited)

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.

    2009-12-01

    The successful mitigation of volcanic hazards to aviation requires rapid interpretation and coordination of data from multiple sources, and communication of information products to a variety of end users. This community of information providers and information users include volcano observatories, volcanic ash advisory centers, meteorological watch offices, air traffic control centers, airline dispatch and military flight operations centers, and pilots. Each of these entities has capabilities and needs that are unique to their situations that evolve over a range of time spans. Prior to an eruption, information about probable eruption scenarios are needed in order to allow for contingency planning. Once a hazardous eruption begins, the immediate questions are where, when, how high, and how long will the eruption last? Following the initial detection of an eruption, the need for information changes to forecasting the movement of the volcanic cloud, determining whether ground operations will be affected by ash fall, and estimating how long the drifting volcanic cloud will remain hazardous. A variety of tools have been developed and/or improved over the past several years that provide additional data sources about volcanic hazards that is pertinent to the aviation sector. These include seismic and pressure sensors, ground-based radar and lidar, web cameras, ash dispersion models, and more sensitive satellite sensors that are capable of better detecting volcanic ash, gases and aerosols. Along with these improved capabilities come increased challenges in rapidly assimilating the available data sources, which come from a variety of data providers. In this presentation, examples from the recent large eruptions of Okmok, Kasatochi, and Sarychev Peak volcanoes will be used to demonstrate the challenges faced by hazard response agencies. These eruptions produced volcanic clouds that were dispersed over large regions of the Northern Hemisphere and were observed by pilots and detected by various satellite sensors for several weeks. The disruption to aviation caused by these eruptions further emphasizes the need to improve the real-time characterization of volcanic clouds (altitude, composition, particle size, and concentration) and to better understand the impacts of volcanic ash, gases and aerosols on aircraft, flight crews, and passengers.

  17. Towards Enhanced Underwater Lidar Detection via Source Separation

    NASA Astrophysics Data System (ADS)

    Illig, David W.

    Interest in underwater optical sensors has grown as technologies enabling autonomous underwater vehicles have been developed. Propagation of light through water is complicated by the dual challenges of absorption and scattering. While absorption can be reduced by operating in the blue-green region of the visible spectrum, reducing scattering is a more significant challenge. Collection of scattered light negatively impacts underwater optical ranging, imaging, and communications applications. This thesis concentrates on the ranging application, where scattering reduces operating range as well as range accuracy. The focus of this thesis is on the problem of backscatter, which can create a "clutter" return that may obscure submerged target(s) of interest. The main contributions of this thesis are explorations of signal processing approaches to increase the separation between the target and backscatter returns. Increasing this separation allows detection of weak targets in the presence of strong scatter, increasing both operating range and range accuracy. Simulation and experimental results will be presented for a variety of approaches as functions of water clarity and target position. This work provides several novel contributions to the underwater lidar field: 1. Quantification of temporal separation approaches: While temporal separation has been studied extensively, this work provides a quantitative assessment of the extent to which both high frequency modulation and spatial filter approaches improve the separation between target and backscatter. 2. Development and assessment of frequency separation: This work includes the first frequency-based separation approach for underwater lidar, in which the channel frequency response is measured with a wideband waveform. Transforming to the time-domain gives a channel impulse response, in which target and backscatter returns may appear in unique range bins and thus be separated. 3. Development and assessment of statistical separation: The first investigations of statistical separation approaches for underwater lidar are presented. By demonstrating that target and backscatter returns have different statistical properties, a new separation axis is opened. This work investigates and quantifies performance of three statistical separation approaches. 4. Application of detection theory to underwater lidar: While many similar applications use detection theory to assess performance, less development has occurred in the underwater lidar field. This work applies these concepts to statistical separation approaches, providing another perspective in which to assess performance. In addition, by using detection theory approaches, statistical metrics can be used to associate a level of confidence in each ranging measurement. 5. Preliminary investigation of forward scatter suppression: If backscatter is sufficiently suppressed, forward scattering becomes a performance-limiting factor. This work presents a proof-of-concept demonstration of the potential for statistical separation approaches to suppress both forward and backward scatter. These results provide a demonstration of the capability that signal processing has to improve separation between target and backscatter. Separation capability improves in the transition from temporal to frequency to statistical separation approaches, with the statistical separation approaches improving target detection sensitivity by as much as 30 dB. Ranging and detection results demonstrate the enhanced performance this would allow in ranging applications. This increased performance is an important step in moving underwater lidar capability towards the requirements of the next generation of sensors.

  18. Air elimination capability in rapid infusion systems.

    PubMed

    Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G

    2011-11-01

    Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  19. Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber

    PubMed Central

    Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.

    2011-01-01

    We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712

  20. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  1. Strengthening global health security capacity--Vietnam demonstration project, 2013.

    PubMed

    Tran, Phu Dac; Vu, Long Ngoc; Nguyen, Hien Tran; Phan, Lan Trong; Lowe, Wayne; McConnell, Michelle S; Iademarco, Michael F; Partridge, Jeffrey M; Kile, James C; Do, Trang; Nadol, Patrick J; Bui, Hien; Vu, Diep; Bond, Kyle; Nelson, David B; Anderson, Lauren; Hunt, Kenneth V; Smith, Nicole; Giannone, Paul; Klena, John; Beauvais, Denise; Becknell, Kristi; Tappero, Jordan W; Dowell, Scott F; Rzeszotarski, Peter; Chu, May; Kinkade, Carl

    2014-01-31

    Over the past decade, Vietnam has successfully responded to global health security (GHS) challenges, including domestic elimination of severe acute respiratory syndrome (SARS) and rapid public health responses to human infections with influenza A(H5N1) virus. However, new threats such as Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A(H7N9) present continued challenges, reinforcing the need to improve the global capacity to prevent, detect, and respond to public health threats. In June 2012, Vietnam, along with many other nations, obtained a 2-year extension for meeting core surveillance and response requirements of the 2005 International Health Regulations (IHR). During March-September 2013, CDC and the Vietnamese Ministry of Health (MoH) collaborated on a GHS demonstration project to improve public health emergency detection and response capacity. The project aimed to demonstrate, in a short period, that enhancements to Vietnam's health system in surveillance and early detection of and response to diseases and outbreaks could contribute to meeting the IHR core capacities, consistent with the Asia Pacific Strategy for Emerging Diseases. Work focused on enhancements to three interrelated priority areas and included achievements in 1) establishing an emergency operations center (EOC) at the General Department of Preventive Medicine with training of personnel for public health emergency management; 2) improving the nationwide laboratory system, including enhanced testing capability for several priority pathogens (i.e., those in Vietnam most likely to contribute to public health emergencies of international concern); and 3) creating an emergency response information systems platform, including a demonstration of real-time reporting capability. Lessons learned included awareness that integrated functions within the health system for GHS require careful planning, stakeholder buy-in, and intradepartmental and interdepartmental coordination and communication.

  2. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  3. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.

  4. Monitoring Fires from Space: a case study in transitioning from research to applications

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.

  5. Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.

    2015-01-01

    Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.

  6. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  7. Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad

    2013-05-01

    Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.

  8. Connecting a cognitive architecture to robotic perception

    NASA Astrophysics Data System (ADS)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  9. Improved relocatable over-the-horizon radar detection and tracking using the maximum likelihood adaptive neural system algorithm

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.

    1998-07-01

    An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.

  10. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  11. Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.

    2013-05-01

    The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.

  12. Target Detection Routine (TADER). User’s Guide.

    DTIC Science & Technology

    1987-09-01

    o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set

  13. Intelligent Prediction of Fan Rotation Stall in Power Plants Based on Pressure Sensor Data Measured In-Situ

    PubMed Central

    Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu

    2014-01-01

    Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057

  14. Detection, Location, and Characterization of Hydroacoustic Signals Using Seafloor Cable Networks Offshore Japan

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sugioka, H.; Watanabe, T.

    2008-12-01

    The hydroacoustic monitoring by the International Monitoring System for CTBT (Comprehensive Nuclear- Test-Ban Treaty) verification system utilizes hydrophone stations (6) and seismic stations (5 and called T- phase stations) for worldwide detection. Some conspicuous signals of natural origin include those from earthquakes, volcanic eruptions, or whale calls. Among artificial sources are non-nuclear explosions and airgun shots. It is important for the IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressure and seismic sensors) may be utilized to increase the capability of IMS. We use these data to compare some selected event parameters with those by IMS. In particular, there have been several unconventional acoustic signals in the western Pacific,which were also captured by IMS hydrophones across the Pacific in the time period of 2007-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals.

  15. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo.

    PubMed

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K; Lin, Charles P; Niedre, Mark

    2012-03-01

    Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform.

    PubMed

    Duarte-Galvan, Carlos; Romero-Troncoso, Rene de J; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G; Fernandez-Jaramillo, Arturo A; Contreras-Medina, Luis M; Carrillo-Serrano, Roberto V; Millan-Almaraz, Jesus R

    2014-10-09

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  17. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  18. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15 mm thick crystals can provide similar or better performance than that achieved by a detector using 20 mm thick crystals.

  19. A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef.

    PubMed

    He, Xiaohua; Kong, Qiulian; Patfield, Stephanie; Skinner, Craig; Rasooly, Reuven

    2016-01-01

    Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none of them are capable of recognizing all subtypes of Stxs, which include three subtypes of Stx1 and seven subtypes of Stx2. New monoclonal and polyclonal antibodies against Stx1 and Stx2 were developed. A universal sandwich ELISA capable of detecting all known subtypes of Stx1 and Stx2 was established using a pool of newly developed antibodies. To precisely monitor the sensitivity of the assay for each subtype of Stxs, recombinant toxoids were created and used as standards in ELISAs. Because of the high affinity of the antibodies incorporated, the ELISA assay is highly sensitive with a limit of detection for the different subtypes of Stx1a and Stx2a between 10 and 50 pg/mL in phosphate buffered saline (PBS). The assay was also able to identify STEC based on the production of Stxs using the supernatants of culture fluids or even single colonies on agar plates without lengthy enrichment in liquid medium. When applied to ground beef samples, this newly developed ELISA was capable of distinguishing beef samples spiked with a single bacterial cell. A highly sensitive and universal assay for all subtypes of Stx1 and Stx2 was developed. It has significantly improved upon the current technologies by avoiding false negative results due to the narrow detection range of the assay. The assay developed in this study can be useful for prompt detection of new and emerging serotypes and screening ground beef samples for contamination of STEC at an early stage in the food supply chain, thus avoiding the need for possible recall.

  20. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    NASA Astrophysics Data System (ADS)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  1. Advanced definition study for the determination of atmospheric ozone using the satellite eclipse technique

    NASA Technical Reports Server (NTRS)

    Emmons, R.; Preski, R. J.; Kierstead, F. H., Jr.; Doll, F. C.; Wight, D. T.; Romick, D. C.

    1973-01-01

    A study was made to evaluate the potential for remote ground-based measurement of upper atmospheric ozone by determining the absorption ratio of selected narrow bands of sunlight as reflected by satellites while passing into eclipse, using the NASA Mobile Satellite Photometric Observatory (MOSPO). Equipment modifications to provide optimum performance were analyzed and recommendations were made for improvements to the system to accomplish this. These included new sensor tubes, pulse counting detection circuitry, filters, beam splitters and associated optical revision, along with an automatic tracking capability plus corresponding operational techniques which should extend the overall measurement capability to include use of satellites down to 5th magnitude.

  2. Unsupervised Anomaly Detection Based on Clustering and Multiple One-Class SVM

    NASA Astrophysics Data System (ADS)

    Song, Jungsuk; Takakura, Hiroki; Okabe, Yasuo; Kwon, Yongjin

    Intrusion detection system (IDS) has played an important role as a device to defend our networks from cyber attacks. However, since it is unable to detect unknown attacks, i.e., 0-day attacks, the ultimate challenge in intrusion detection field is how we can exactly identify such an attack by an automated manner. Over the past few years, several studies on solving these problems have been made on anomaly detection using unsupervised learning techniques such as clustering, one-class support vector machine (SVM), etc. Although they enable one to construct intrusion detection models at low cost and effort, and have capability to detect unforeseen attacks, they still have mainly two problems in intrusion detection: a low detection rate and a high false positive rate. In this paper, we propose a new anomaly detection method based on clustering and multiple one-class SVM in order to improve the detection rate while maintaining a low false positive rate. We evaluated our method using KDD Cup 1999 data set. Evaluation results show that our approach outperforms the existing algorithms reported in the literature; especially in detection of unknown attacks.

  3. Smart bricks for strain sensing and crack detection in masonry structures

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  4. VERSE: a novel approach to detect virus integration in host genomes through reference genome customization.

    PubMed

    Wang, Qingguo; Jia, Peilin; Zhao, Zhongming

    2015-01-01

    Fueled by widespread applications of high-throughput next generation sequencing (NGS) technologies and urgent need to counter threats of pathogenic viruses, large-scale studies were conducted recently to investigate virus integration in host genomes (for example, human tumor genomes) that may cause carcinogenesis or other diseases. A limiting factor in these studies, however, is rapid virus evolution and resulting polymorphisms, which prevent reads from aligning readily to commonly used virus reference genomes, and, accordingly, make virus integration sites difficult to detect. Another confounding factor is host genomic instability as a result of virus insertions. To tackle these challenges and improve our capability to identify cryptic virus-host fusions, we present a new approach that detects Virus intEgration sites through iterative Reference SEquence customization (VERSE). To the best of our knowledge, VERSE is the first approach to improve detection through customizing reference genomes. Using 19 human tumors and cancer cell lines as test data, we demonstrated that VERSE substantially enhanced the sensitivity of virus integration site detection. VERSE is implemented in the open source package VirusFinder 2 that is available at http://bioinfo.mc.vanderbilt.edu/VirusFinder/.

  5. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Electrokinetic Stringency Control in Self-Assembled Monolayer-based Biosensors for Multiplex Urinary Tract Infection Diagnosis

    PubMed Central

    Liu, Tingting; Sin, Mandy L. Y.; Pyne, Jeff D.; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2013-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. PMID:23891989

  7. Improved repetition rate mixed isotope CO{sub 2} TEA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, D. B., E-mail: dbctechnology@earthlink.net

    2014-09-15

    A compact CO{sub 2} TEA laser has been developed for remote chemical detection that operates at a repetition rate of 250 Hz. It emits 700 mJ/pulse at 10.6 μm in a multimode beam with the {sup 12}C{sup 16}O{sub 2} isotope. With mixed {sup 12}C{sup 16}O{sub 2} plus {sup 13}C{sup 16}O{sub 2} isotopes it emits multiple lines in both isotope manifolds to improve detection of a broad range of chemicals. In particular, output pulse energies are 110 mJ/pulse at 9.77 μm, 250 mJ/pulse at 10 μm, and 550 mJ/pulse at 11.15 μm, useful for detection of the chemical agents Sarin, Tabun, and VX. Relatedmore » work shows capability for long term sealed operation with a catalyst and an agile tuner at a wavelength shift rate of 200 Hz.« less

  8. Practical Considerations for Optic Nerve Estimation in Telemedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Aykac, Deniz; Chaum, Edward

    The projected increase in diabetes in the United States and worldwide has created a need for broad-based, inexpensive screening for diabetic retinopathy (DR), an eye disease which can lead to vision impairment. A telemedicine network with retina cameras and automated quality control, physiological feature location, and lesion / anomaly detection is a low-cost way of achieving broad-based screening. In this work we report on the effect of quality estimation on an optic nerve (ON) detection method with a confidence metric. We report on an improvement of the fusion technique using a data set from an ophthalmologists practice then show themore » results of the method as a function of image quality on a set of images from an on-line telemedicine network collected in Spring 2009 and another broad-based screening program. We show that the fusion method, combined with quality estimation processing, can improve detection performance and also provide a method for utilizing a physician-in-the-loop for images that may exceed the capabilities of automated processing.« less

  9. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique.

    PubMed

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-07

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  10. From TRMM to GPM: How well can heavy rainfall be detected from space?

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis K.; Pai, D. S.; AghaKouchak, Amir

    2016-02-01

    In this study, we investigate the capabilities of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting and estimating heavy rainfall across India. First, the study analyzes TMPA data products over a 17-year period (1998-2014). While TMPA and reference gauge-based observations show similar mean monthly variations of conditional heavy rainfall events, the multi-satellite product systematically overestimates its inter-annual variations. Categorical as well as volumetric skill scores reveal that TMPA over-detects heavy rainfall events (above 75th percentile of reference data), but it shows reasonable performance in capturing the volume of heavy rain across the country. An initial assessment of the GPM-based multi-satellite IMERG precipitation estimates for the southwest monsoon season shows notable improvements over TMPA in capturing heavy rainfall over India. The recently released IMERG shows promising results to help improve modeling of hydrological extremes (e.g., floods and landslides) using satellite observations.

  11. Improving Visual Survey Capabilities for Marine Mammal Studies

    DTIC Science & Technology

    2015-09-30

    pedastals, and wooden disks were shipped to Mount Desert Rock Island off the Maine coast for installation on the upper floor of the lighthouse there...ESTCP) and Navy Living Marine Resources (LMR) Program. This project will demonstrate and evaluate real-time passive acoustic detection...Four custom wooden disks were fabricated by the WHOI carpenter shop to provide a shelf for observers to rest their arms. Two sets of binoculars

  12. Minimum Detectable Dose as a Measure of Bioassay Programme Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.

    2003-01-01

    This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programs for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well-established analytical statistic minimum detectable amount (MDA) as the starting point and assumes MDA detection at a prescribed time post intake. The resulting dose can then be used as an indication of the adequacy or capability of the program for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate themore » effectiveness of different types of monitoring programs. The inclusion of cost factors for bioassay measurements can allow optimisation.« less

  13. Minimum detectable dose as a measure of bioassay programme capability.

    PubMed

    Carbaugh, E H

    2003-01-01

    This paper suggests that minimum detectable dose (MDD) be used to describe the capability of bioassay programmes for which intakes are expected to be rare. This allows expression of the capability in units that correspond directly to primary dose limits. The concept uses the well established analytical statistic minimum detectable amount (MDA) as the starting point, and assumes MDA detection at a prescribed time post-intake. The resulting dose can then be used as an indication of the adequacy or capability of the programme for demonstrating compliance with the performance criteria. MDDs can be readily tabulated or plotted to demonstrate the effectiveness of different types of monitoring programmes. The inclusion of cost factors for bioassay measurements can allow optimisation.

  14. Unattended Sensor System With CLYC Detectors

    NASA Astrophysics Data System (ADS)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.; Hoff, Jonathan E.; Knudson, Christa K.; Landgren, Peter C.; Lee, Samantha F.; McDonald, Benjamin S.; Pfund, David M.; Redding, Rebecca L.; Smart, John E.; Taubman, Matthew S.; Torres-Torres, Carlos R.; Wiseman, Clinton G.

    2016-06-01

    We have developed an unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.7 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterization results, and compare the performance to stock NaI:Tl and 3He detectors.

  15. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  16. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  17. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  18. Unattended Sensor System With CLYC Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myjak, Mitchell J.; Becker, Eric M.; Gilbert, Andrew J.

    2016-06-01

    We have developed a next-generation unattended sensor for detecting anomalous radiation sources. The system combines several technologies to reduce size and weight, increase battery lifetime, and improve decision-making capabilities. Sixteen Cs2LiYCl6:Ce (CLYC) scintillators allow for gamma-ray spectroscopy and neutron detection in the same volume. Low-power electronics for readout, high voltage bias, and digital processing reduce the total operating power to 1.3 W. Computationally efficient analysis algorithms perform spectral anomaly detection and isotope identification. When an alarm occurs, the system transmits alarm information over a cellular modem. In this paper, we describe the overall design of the unattended sensor, present characterizationmore » results, and compare the performance to stock NaI:Tl and 3He detectors.« less

  19. Microcontroller-based real-time QRS detection.

    PubMed

    Sun, Y; Suppappola, S; Wrublewski, T A

    1992-01-01

    The authors describe the design of a system for real-time detection of QRS complexes in the electrocardiogram based on a single-chip microcontroller (Motorola 68HC811). A systematic analysis of the instrumentation requirements for QRS detection and of the various design techniques is also given. Detection algorithms using different nonlinear transforms for the enhancement of QRS complexes are evaluated by using the ECG database of the American Heart Association. The results show that the nonlinear transform involving multiplication of three adjacent, sign-consistent differences in the time domain gives a good performance and a quick response. When implemented with an appropriate sampling rate, this algorithm is also capable of rejecting pacemaker spikes. The eight-bit single-chip microcontroller provides sufficient throughput and shows a satisfactory performance. Implementation of multiple detection algorithms in the same system improves flexibility and reliability. The low chip count in the design also favors maintainability and cost-effectiveness.

  20. Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    PubMed Central

    Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim

    2015-01-01

    Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273

  1. High-power VCSELs for smart munitions

    NASA Astrophysics Data System (ADS)

    Geske, Jon; MacDougal, Michael; Cole, Garrett; Snyder, Donald

    2006-08-01

    The next generation of low-cost smart munitions will be capable of autonomously detecting and identifying targets aided partly by the ability to image targets with compact and robust scanning rangefinder and LADAR capabilities. These imaging systems will utilize arrays of high performance, low-cost semiconductor diode lasers capable of achieving high peak powers in pulses ranging from 5 to 25 nanoseconds in duration. Aerius Photonics is developing high-power Vertical-Cavity Surface-Emitting Lasers (VCSELs) to meet the needs of these smart munitions applications. The authors will report the results of Aerius' development program in which peak pulsed powers exceeding 60 Watts were demonstrated from single VCSEL emitters. These compact packaged emitters achieved pulse energies in excess of 1.5 micro-joules with multi kilo-hertz pulse repetition frequencies. The progress of the ongoing effort toward extending this performance to arrays of VCSEL emitters and toward further improving laser slope efficiency will be reported.

  2. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  3. Electrical test prediction using hybrid metrology and machine learning

    NASA Astrophysics Data System (ADS)

    Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti

    2017-03-01

    Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology is the practice of combining information from multiple sources in order to enable or improve the measurement of one or more critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and thickness that can have second-order effects on the electrical resistance of the test structures. By accounting for such effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test measurements is achieved. Using both types of solution incorporation of fast reference-based machine learning on nonOCD-compatible test structures, and hybrid metrology combining OCD with XRF technology improvement in BEOL cycle time learning could be accomplished through improved prediction capability.

  4. Improving the Multi-Wavelength Capability of Chandra Large Programs

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio

    2017-09-01

    In order to fully exploit the joint Chandra/JWST/HST ventures to detect faint sources, we urgently need an advanced matching algorithm between optical/NIR and X-ray catalogs/images. This will be of paramount importance in bridging the gap between upcoming optical/NIR facilities (JWST) and later X-ray ones (Athena, Lynx). We propose to develop an advanced and automated tool to improve the identification of Chandra X-ray counterparts detected in deep optical/NIR fields based on T-PHOT, a software widely used in the community. The developed code will include more than 20 years in advancements of X-ray data analysis and will be released to the public. Finally, we will release an updated catalog of X-ray sources in the CANDELS regions: a leap forward in our endeavor of charting the Universe.

  5. Public health surveillance and infectious disease detection.

    PubMed

    Morse, Stephen S

    2012-03-01

    Emerging infectious diseases, such as HIV/AIDS, SARS, and pandemic influenza, and the anthrax attacks of 2001, have demonstrated that we remain vulnerable to health threats caused by infectious diseases. The importance of strengthening global public health surveillance to provide early warning has been the primary recommendation of expert groups for at least the past 2 decades. However, despite improvements in the past decade, public health surveillance capabilities remain limited and fragmented, with uneven global coverage. Recent initiatives provide hope of addressing this issue, and new technological and conceptual advances could, for the first time, place capability for global surveillance within reach. Such advances include the revised International Health Regulations (IHR 2005) and the use of new data sources and methods to improve global coverage, sensitivity, and timeliness, which show promise for providing capabilities to extend and complement the existing infrastructure. One example is syndromic surveillance, using nontraditional and often automated data sources. Over the past 20 years, other initiatives, including ProMED-mail, GPHIN, and HealthMap, have demonstrated new mechanisms for acquiring surveillance data. In 2009 the U.S. Agency for International Development (USAID) began the Emerging Pandemic Threats (EPT) program, which includes the PREDICT project, to build global capacity for surveillance of novel infections that have pandemic potential (originating in wildlife and at the animal-human interface) and to develop a framework for risk assessment. Improved understanding of factors driving infectious disease emergence and new technological capabilities in modeling, diagnostics and pathogen identification, and communications, such as using the increasing global coverage of cellphones for public health surveillance, can further enhance global surveillance.

  6. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  7. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  8. Smart sensing surveillance video system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2016-05-01

    An intelligent video surveillance system is able to detect and identify abnormal and alarming situations by analyzing object movement. The Smart Sensing Surveillance Video (S3V) System is proposed to minimize video processing and transmission, thus allowing a fixed number of cameras to be connected on the system, and making it suitable for its applications in remote battlefield, tactical, and civilian applications including border surveillance, special force operations, airfield protection, perimeter and building protection, and etc. The S3V System would be more effective if equipped with visual understanding capabilities to detect, analyze, and recognize objects, track motions, and predict intentions. In addition, alarm detection is performed on the basis of parameters of the moving objects and their trajectories, and is performed using semantic reasoning and ontologies. The S3V System capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  9. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  10. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E [Livermore, CA; Beauchamp, Brock R [San Ramon, CA; Mauger, G Joseph [Livermore, CA; Nelson, Karl E [Livermore, CA; Mercer, Michael B [Manteca, CA; Pletcher, David C [Sacramento, CA; Riot, Vincent J [Berkeley, CA; Schek, James L [Tracy, CA; Knapp, David A [Livermore, CA

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  11. Improving diagnostic capability for HPV disease internationally within the NIH-NIAID-Division of AIDS Clinical Trial Networks

    PubMed Central

    Godfrey, Catherine C.; Michelow, Pamela M.; Godard, Mandana; Sahasrabuddhe, Vikrant V.; Darden, Janice; Firnhaber, Cynthia S.; Wetherall, Neal T.; Bremer, James; Coombs, Robert W.; Wilkin, Timothy

    2014-01-01

    Objectives To evaluate an external quality assurance (EQA) program for the laboratory diagnosis of human papillomavirus (HPV) disease that was established to improve international research capability within the Division of AIDS at the National Institute of Allergy and Infectious Disease–supported Adult AIDS Clinical Trials Group network. Methods A three-component EQA scheme was devised comprising assessments of diagnostic accuracy of cytotechnologists and pathologists using available EQA packages, review of quality and accuracy of clinical slides from local sites by an outside expert, and HPV DNA detection using the commercially available HPV test kit. Results Seven laboratories and 17 pathologists in Africa, India, and South America participated. EQA scores were suboptimal for standard packages in three of seven laboratories. There was good agreement between the local laboratory and the central reader 70% of the time (90% confidence interval, 42%-98%). Performance on the College of American Pathologists’ HPV DNA testing panel was successful in all laboratories tested. Conclusions The prequalifying EQA round identified correctable issues that will improve the laboratory diagnosis of HPV related cervical disease at the international sites and will provide a mechanism for ongoing education and continuous quality improvement. PMID:24225757

  12. A review on several key problems of standoff trace explosives detection by optical-related technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Cheng; Xiao, Wenjian; Qin, Mengze; Liu, Xianhong

    2016-01-01

    To prevent tragic disasters caused by terror acts and warfare threats, security check personnel must be capable of discovering, distinguishing and eliminating the explosives at multiple circumstances. Standoff technology for the remote detection of explosives and their traces on contaminated surfaces is a research field that has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area, the improvement of standoff trace explosives detection by optical-related technology. This paper provides a consolidation of information relating to recent advances in several key problems of, without being limited to one specific research area or explosive type. Working laser wavelength of detection system is discussed. Generation and collection of explosives spectra signal are summarized. Techniques for analysing explosives spectra signal are summed up.

  13. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  14. Real-Time Integration of Positioning and Accelerometer Data for Early Earthquake Warning on Canada's West Coast

    NASA Astrophysics Data System (ADS)

    Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.

    2017-12-01

    Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.

  15. Improved space object detection using short-exposure image data with daylight background.

    PubMed

    Becker, David; Cain, Stephen

    2018-05-10

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.

  16. Resident training in microbiology.

    PubMed

    Haller, Barbara L

    2007-06-01

    To meet the challenges of diagnosis and management of infectious diseases, clinical pathology residents must receive comprehensive training in microbiology, learn to think critically, develop problem-solving skills, and take active roles as laboratory consultants. Residents well trained in clinical microbiology become capable laboratory professionals, developing cost-effective testing strategies, decreasing risk for medical errors, and improving patient care. Newer methods for diagnosing infectious disease, such as real-time polymerase chain reaction, microarrays for pathogen detection, and rapid assays for antigen or antibody detection, have become standard. Knowledge of infectious disease principles, drug therapeutic options, and drug resistance is also important. Suggestions for training and for assessing resident competency in clinical microbiology are presented.

  17. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  18. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  19. Testing the Delayed Gamma Capability in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Robert A.; Fensin, Michael L.; McKinney, Gregg W.

    The mission of the Domestic Nuclear Detection Office is to quickly and reliably detect unauthorized attempts to import or transport special nuclear material for use against the United States. Developing detection equipment to meet this objective requires accurate simulation of both the detectable signature and detection mechanism. A delayed particle capability was initially added to MCNPX 2.6.A in 2005 to sample the radioactive fission product parents and emit decay particles resulting from the decay chain. To meet the objectives of detection scenario modeling, the capability was designed to sample a particular time for emitting particular multiplicity of a particular energy.more » Because the sampling process of selecting both time and energy is interdependent, to linearize the time and emission sampling, atom densities are computed at several discrete time steps, and the time-integrated production is computed by multiplying the atom density by the decay constant and time step size to produce a cumulative distribution function for sampling the emission time, energy, and multiplicity. The delayed particle capability was initially given a time-bin structure to help reasonably reproduce, from a qualitative sense, a fission benchmark by Beddingfield, which examined the delayed gamma emission. This original benchmark was only qualitative and did not contain the magnitudes of the actual measured data but did contain relative graphical representation of the spectra. A better benchmark with measured data was later provided by Hunt, Mozin, Reedy, Selpel, and Tobin at the Idaho Accelerator Center; however, because of the complexity of the benchmark setup, sizable systematic errors were expected in the modeling, and initial results compared to MCNPX 2.7.0 showed errors outside of statistical fluctuation. Presented in this paper is a more simplified approach to benchmarking, utilizing closed form analytic solutions to the granddaughter equations for particular sets of decay systems. We examine five different decay chains (two-stage decay to stable) and show the predictability of the MCNP6 delayed gamma feature. Results do show that while the default delayed gamma calculations available in the MCNP6 1.0 release can give accurate results for some isotopes (e.g., 137Ba), the percent differences between the closed form analytic solutions and the MCNP6 calculations were often >40% ( 28Mg, 28Al, 42K, 47Ca, 47Sc, 60Co). With the MCNP6 1.1 Beta release, the tenth entry on the DBCN card allows improved calculation within <5% as compared to the closed form analytic solutions for immediate parent emissions and transient equilibrium systems. While the tenth entry on the DBCN card for MCNP6 1.1 gives much better results for transient equilibrium systems and parent emissions in general, it does little to improve daughter emissions of secular equilibrium systems. Finally, hypotheses were presented as to why daughter emissions of secular equilibrium systems might be mispredicted in some cases and not in others.« less

  20. Structural health management of aerospace hotspots under fatigue loading

    NASA Astrophysics Data System (ADS)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a number of factors, such as actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio and sensing radius. Advanced information processing methodologies are discussed for damage diagnosis. A new, instantaneous approach for damage detection, localization and quantification is proposed for applications to practical problems associated with changes in reference states under different environmental and operational conditions. Such an approach improves feature extraction for state awareness, resulting in robust life prediction capabilities.

  1. Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Le Pichon, Alexis; Kim, Kwangsu; Shin, In-Cheol

    2017-08-01

    The Korea Infrasound Network (KIN) is a dense seismoacoustic array network consisting of eight small-aperture arrays with an average interarray spacing of ∼100 km. The processing of the KIN historical recordings over 10 yr in the 0.05-5 Hz frequency band shows that the dominant sources of signals are microbaroms and human activities. The number of detections correlates well with the seasonal and daily variability of the stratospheric wind dynamics. The quantification of the spatiotemporal variability of the KIN detection performance is simulated using a frequency-dependent semi-empirical propagation modelling technique. The average detection thresholds predicted for the region of interest by using both the KIN arrays and the International Monitoring System (IMS) infrasound station network at a given frequency of 1.6 Hz are estimated to be 5.6 and 10.0 Pa for two- and three-station coverage, respectively, which was about three times lower than the thresholds predicted by using only the IMS stations. The network performance is significantly enhanced from May to August, with detection thresholds being one order of magnitude lower than the rest of the year due to prevailing steady stratospheric winds. To validate the simulations, the amplitudes of ground-truth repeated surface mining explosions at an open-pit limestone mine were measured over a 19-month period. Focusing on the spatiotemporal variability of the stratospheric winds which control to first order where infrasound signals are expected to be detected, the predicted detectable signal amplitude at the mine and the detection capability at one KIN array located at a distance of 175 km are found to be in good agreement with the observations from the measurement campaign. The detection threshold in summer is ∼2 Pa and increases up to ∼300 Pa in winter. Compared with the low and stable thresholds in summer, the high temporal variability of the KIN performance is well predicted throughout the year. Simulations show that the performance of the global infrasound network of the IMS is significantly improved by adding KIN. This study shows the usefulness of dense regional networks to enhance detection capability in regions of interest in the context of future verification of the Comprehensive Nuclear-Test-Ban Treaty.

  2. Network capability estimation. Vela network evaluation and automatic processing research. Technical report. [NETWORTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snell, N.S.

    1976-09-24

    NETWORTH is a computer program which calculates the detection and location capability of seismic networks. A modified version of NETWORTH has been developed. This program has been used to evaluate the effect of station 'downtime', the signal amplitude variance, and the station detection threshold upon network detection capability. In this version all parameters may be changed separately for individual stations. The capability of using signal amplitude corrections has been added. The function of amplitude corrections is to remove possible bias in the magnitude estimate due to inhomogeneous signal attenuation. These corrections may be applied to individual stations, individual epicenters, ormore » individual station/epicenter combinations. An option has been added to calculate the effect of station 'downtime' upon network capability. This study indicates that, if capability loss due to detection errors can be minimized, then station detection threshold and station reliability will be the fundamental limits to network performance. A baseline network of thirteen stations has been performed. These stations are as follows: Alaskan Long Period Array, (ALPA); Ankara, (ANK); Chiang Mai, (CHG); Korean Seismic Research Station, (KSRS); Large Aperture Seismic Array, (LASA); Mashhad, (MSH); Mundaring, (MUN); Norwegian Seismic Array, (NORSAR); New Delhi, (NWDEL); Red Knife, Ontario, (RK-ON); Shillong, (SHL); Taipei, (TAP); and White Horse, Yukon, (WH-YK).« less

  3. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    PubMed Central

    Ronkainen, Niina J.; Okon, Stanley L.

    2014-01-01

    Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700

  4. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  5. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification.

    PubMed

    Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2011-03-15

    Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Airborne Particulate Threat Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less

  7. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  8. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  9. Standoff chemical D and Id with extended LWIR hyperspectral imaging spectroradiometer

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2013-05-01

    Standoff detection and identification (D and Id) of unknown volatile chemicals such as chemical pollutants and consequences of industrial incidents has been increasingly desired for first responders and for environmental monitoring. On site gas detection sensors are commercially available and several of them can even detect more than one chemical species, however only few of them have the capabilities of detecting a wide variety of gases at long and safe distances. The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system. The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.

  10. Atmospheric control on ground and space based early warning system for hazard linked to ash injection into the atmosphere

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis

    2014-05-01

    Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind' or 'defened' by adverse atmospheric conditions. According to its location, each volcanic zone will be associated with a threshold value (minimum VEI detectable) depending on the seasonality of the wind velocity profile in the region and the cloud cover.

  11. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through foliage in a scene with targets behind vegetation are presented. The optimum detection of targets occurs here at a slightly higher total photon count rate probability because a number of pixel have no obscuration in front the target in their field of view.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jesus

    Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less

  13. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  14. New optical method for enhanced detection of colon cancer by capsule endoscopy

    NASA Astrophysics Data System (ADS)

    AnkriEqually Contributed, Rinat; Peretz, Dolev; Motiei, Menachem; Sella-Tavor, Osnat; Popovtzer, Rachela

    2013-09-01

    PillCam®COLON capsule endoscopy (CE), a non-invasive diagnostic tool of the digestive tract, has dramatically changed the diagnostic approach and has become an attractive alternative to the conventional colonoscopy for early detection of colorectal cancer. However, despite the significant progress and non-invasive detection capability, studies have shown that its sensitivity and specificity is lower than that of conventional colonoscopy. This work presents a new optical detection method, specifically tailored to colon cancer detection and based on the well-known optical properties of immune-conjugated gold nanorods (GNRs). We show, on a colon cancer model implanted in a chick chorioallantoic membrane (CAM), that this detection method enables conclusive differentiation between cancerous and normal tissues, where neither the distance between the light source and the intestinal wall, nor the background signal, affects the monitored signal. This optical method, which can easily be integrated in CE, is expected to reduce false positive and false negative results and improve identification of tumors and micro metastases.

  15. Application of electrically invisible antennas to the modulated scatterer technique

    NASA Astrophysics Data System (ADS)

    Crocker, Dylan Andrew

    The Modulated Scatterer Technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers consist of dipole antennas centrally loaded with a lumped element capable of modulation (commonly a PIN diode). By modulating the load element, the signal scattered from the MST scatterer is also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the modulation depth of scatterers commonly used in MST, the concept of electrically invisible antennas is applied to the design of these scatterers and is the focus of this work. Electrical invisibility of linear antennas, such as loaded dipoles, can be achieved by loading a scatterer in such a way that, when illuminated by an electromagnetic wave, the integral of the current induced along the length of the scatterer (and hence the scattered field as well) approaches zero. By designing a scatterer to be capable of modulation between visible (scattering) and invisible (minimum scattering) states, the modulation depth may be improved. This thesis presents simulations and measurements of new MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (i.e., a PIN diode). Further, the scattering during the forward bias state remains the same as that of a traditional MST scatterer, resulting in an increase in modulation depth. This new MST scatterer design technique may also have application in improving the performance of similar sensors such as radio frequency identification (RFID) tags.

  16. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  17. The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2010-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  18. [Transformation of antimicrobial peptide fusion gene of cecropin B and rabbit NP-1 to Houttuynia cordata].

    PubMed

    Dong, Yan; Zhang, Ying; Yi, Lang; Lai, Huili; Zhang, Yaming; Zhou, Lian; Wang, Peixun

    2010-07-01

    To transform the antimicrobial peptide fusion gene of cecropin B and rabbit NP-1(CN) into Houttuynia cordata to improve its antimicrobic capability. The fusion gene of CN designed and synthesized artificially was recombined with expression vector pBI121. The recombined vector was transformed to Agrobacterium tumefaciens LBA4404, by which CN gene was transformed to the explants of H. cordata. The transgenic regeneration plantlets were selected by kanamycin and rapid screening PCR. The transgenic plants were identified by PCR-Southern of genomic DNA and RT-PCR. The disease resistances were detected by antibacterial zone trail of leaf extracts to E. coli K12 and infection by Rhizoctonia solani. Gene of interesting CN was inserted into genomic DNA and expressed in transformed H, cordata, whose resistance to E. coli K12 and Rh. solani was stronger than that of the non-transformed control. The fusion gene CN can improve antimicrobic capability of transformed H. cordata.

  19. Status, quality and specific needs of Zika virus (ZIKV) diagnostic capacity and capability in National Reference Laboratories for arboviruses in 30 EU/EEA countries, May 2016

    PubMed Central

    Mögling, Ramona; Zeller, Hervé; Revez, Joana; Koopmans, Marion; Reusken, Chantal

    2017-01-01

    With international travel, Zika virus (ZIKV) is introduced to Europe regularly. A country's ability to robustly detect ZIKV introduction and local transmission is important to minimise the risk for a ZIKV outbreak. Therefore, sufficient expertise and diagnostic capacity and capability are required in European laboratories. To assess the capacity, quality, operational specifics (guidelines and algorithms), technical and interpretation issues and other possible difficulties that were related to ZIKV diagnostics in European countries, a questionnaire was conducted among national reference laboratories in 30 countries in the European Union/European Economic Area (EU/EEA) in May 2016. While the coverage and capacity of ZIKV diagnostics in the EU/EEA national reference laboratories were found to be adequate, the assessment of the quality and needs indicated several crucial points of improvement that will need support at national and EU/EEA level to improve ZIKV preparedness, response and EU/EEA ZIKV surveillance activities. PMID:28920574

  20. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.

    PubMed

    Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi

    2017-11-01

    A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.

  1. Proteomics: Determining Impacts on Health From Energy, Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin

    Meet PNNL Cancer Biologist Karin Rodland. Karin sees a day when people no longer die from cancer. On this day, we will have the ability to detect the deadly disease early, well before tumors metastasize and spread. When masses are detected while still small and localized, they can be completely surgically removed. Karin is leveraging PNNL’s capabilities in analytical chemistry and proteomics—or the study of proteins, their structures and functions—in a search for cancer biomarkers that may reveal cancer at its earliest stages. PNNL researchers conduct studies and experiments to understand biological systems to advance DOE’s energy and environment missions.more » Our research contributes to bioenergy and bioremediation, as well as enabling the early detection of disease and improving therapies.« less

  2. Detection of the Impact of Ice Crystal Accretion in an Aircraft Engine Compression System During Dynamic Operation

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Simon, Donald L.; Guo, Ten-Huei

    2014-01-01

    The accretion of ice in the compression system of commercial gas turbine engines operating in high ice water content conditions is a safety issue being studied by the aviation community. While most of the research focuses on the underlying physics of ice accretion and the meteorological conditions in which accretion can occur, a systems-level perspective on the topic lends itself to potential near-term operational improvements. Here a detection algorithm is developed which has the capability to detect the impact of ice accretion in the Low Pressure Compressor of an aircraft engine during steady flight as well as during changes in altitude. Unfortunately, the algorithm as implemented was not able to distinguish throttle changes from ice accretion and thus more work remains to be done.

  3. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  4. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  5. Passive Euro-American terahertz camera (PEAT-CAM): passive indoor THz imaging at video rates for security applications

    NASA Astrophysics Data System (ADS)

    Luukanen, Arttu; Grönberg, Leif; Helistö, Panu; Penttilä, Jari S.; Seppä, Heikki; Sipola, Hannu; Dietlein, Charles R.; Grossman, Erich N.

    2007-04-01

    The objective of this program is to demonstrate a system capable of passive indoors detection and identification of concealed threat items hidden underneath the clothing of non-cooperative subjects from a stand-off distance of several meters. To meet this difficult task, we are constructing an imaging system utilising superconducting ultrawideband antenna-coupled microbolometers, coupled to innovative room temperature read-out electronics, and operated within a cryogen-free pulse tube refrigerator. Previously, we have demonstrated that these devices are capable of a Noise Equivalent Temperature Difference (NETD) of 125 mK over a pre-detection bandwidth from 0.2-1 THz using a post-detection integration time of 30 ms. Further improvements on our devices are reducing this number to a few tens of mK. Such an exquisite sensitivity is necessary in order to achieve the undoubtedly stringent requirements for low false positive alarm rate combined with high probability of detection dictated by the application. Our technological approach allows for excellent per frame NETD (objective 0.5 K or below at 30 Hz frame rate), and is also amenable to multispectral (colour) imagery that enhances the discrimination of innocuous objects against real threats. In the paper we present results obtained with an 8-pixel subarray from our linear array of 128 pixels constructed using a modular approach. Two-dimensional imaging will be achieved by the use of conical scanning.

  6. The Chandra Source Catalog 2.0

    NASA Astrophysics Data System (ADS)

    Evans, Ian N.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Miller, Joseph; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    The current version of the Chandra Source Catalog (CSC) continues to be well utilized by the astronomical community. Usage over the past year has continued to average more than 15,000 searches per month. Version 1.1 of the CSC, released in 2010, includes properties and data for 158,071 detections, corresponding to 106,586 distinct X-ray sources on the sky. The second major release of the catalog, CSC 2.0, will be made available to the user community in early 2018, and preliminary lists of detections and sources are available now. Release 2.0 will roughly triple the size of the current version of the catalog to an estimated 375,000 detections, corresponding to ~315,000 unique X-ray sources. Compared to release 1.1, the limiting sensitivity for compact sources in CSC 2.0 is significantly enhanced. This improvement is achieved by using a two-stage approach that involves stacking (co-adding) multiple observations of the same field prior to source detection, and then using an improved source detection approach that enables us to detect point source down to ~5 net counts on-axis for exposures shorter than ~15 ks. In addition to enhanced source detection capabilities, improvements to the Bayesian aperture photometry code included in release 2.0 provides robust photometric probability density functions (PDFs) in crowded fields even for low count detections. All post-aperture photometry properties (e.g., hardness ratios, source variability) work directly from the PDFs in release 2.0. CSC 2.0 also adds a Bayesian Blocks analysis of the multi-band aperture photometry PDFs to identify multiple observations of the same source that have similar photometric properties, and therefore can be analyzed simultaneously to improve S/N.We briefly describe these and other updates that significantly enhance the scientific utility of CSC 2.0 when compared to the earlier catalog release.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  7. Shrink-induced silica multiscale structures for enhanced fluorescence from DNA microarrays.

    PubMed

    Sharma, Himanshu; Wood, Jennifer B; Lin, Sophia; Corn, Robert M; Khine, Michelle

    2014-09-23

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30-45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays.

  8. Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays

    PubMed Central

    2015-01-01

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785

  9. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  10. On the Use of a Low-Cost Thermal Sensor to Improve Kinect People Detection in a Mobile Robot

    PubMed Central

    Susperregi, Loreto; Sierra, Basilio; Castrillón, Modesto; Lorenzo, Javier; Martínez-Otzeta, Jose María; Lazkano, Elena

    2013-01-01

    Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform. The set of sensors is set up combining the rich data source offered by a Kinect sensor, which provides vision and depth at low cost, and a thermopile array sensor. Experimental results carried out with a mobile platform in a manufacturing shop floor and in a science museum have shown that the false positive rate achieved using any single cue is drastically reduced. The performance of our algorithm improves other well-known approaches, such as C4 and histogram of oriented gradients (HOG). PMID:24172285

  11. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  12. Merging Sounder and Imager Data for Improved Cloud Depiction on SNPP and JPSS.

    NASA Astrophysics Data System (ADS)

    Heidinger, A. K.; Holz, R.; Li, Y.; Platnick, S. E.; Wanzong, S.

    2017-12-01

    Under the NOAA GOES-R Algorithm Working Group (AWG) Program, NOAA supports the development of an Infrared (IR) Optimal Estimation (OE) Cloud Height Algorithm (ACHA). ACHA is an enterprise solution that supports many geostationary and polar orbiting imager sensors. ACHA is operational at NOAA on SNPP VIIRS and has been adopted as the cloud height algorithm for the NASA NPP Atmospheric Suite of products. Being an OE algorithm, ACHA is flexible and capable of using additional observations and constraints. We have modified ACHA to use sounder (CriS) observations to improve the cloud detection, typing and height estimation. Specifically, these improvements include retrievals in multi-layer scenarios and improved performance in polar regions. This presentation will describe the process for merging VIIRS and CrIS and a demonstration of the improvements.

  13. Damage Detection Sensor System for Aerospace and Multiple Applications

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro

    2017-01-01

    NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.

  14. Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2013-01-01

    Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601

  15. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves

    NASA Astrophysics Data System (ADS)

    Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.

    2007-04-01

    Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.

  16. Forecast Verification: Identification of small changes in weather forecasting skill

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.; Jensen, T. L.

    2017-12-01

    Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.

  17. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  18. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  19. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  20. Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Hai, Pengfei; Zhou, Yong; Zhang, Ruiying; Ma, Jun; Li, Yang; Shao, Jin-Yu; Wang, Lihong V.

    2017-04-01

    Circulating tumor cell (CTC) clusters, arising from multicellular groupings in a primary tumor, greatly elevate the metastatic potential of cancer compared with single CTCs. High-throughput detection and quantification of CTC clusters are important for understanding the tumor metastatic process and improving cancer therapy. Here, we applied a linear-array-based photoacoustic tomography (LA-PAT) system and improved the image reconstruction for label-free high-throughput CTC cluster detection and quantification in vivo. The feasibility was first demonstrated by imaging CTC cluster ex vivo. The relationship between the contrast-to-noise ratios (CNRs) and the number of cells in melanoma tumor cell clusters was investigated and verified. Melanoma CTC clusters with a minimum of four cells could be detected, and the number of cells could be computed from the CNR. Finally, we demonstrated imaging of injected melanoma CTC clusters in rats in vivo. Similarly, the number of cells in the melanoma CTC clusters could be quantified. The data showed that larger CTC clusters had faster clearance rates in the bloodstream, which agreed with the literature. The results demonstrated the capability of LA-PAT to detect and quantify melanoma CTC clusters in vivo and showed its potential for tumor metastasis study and cancer therapy.

  1. Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays.

    PubMed

    Gao, Wanlei; Wang, Wentao; Yao, Shihua; Wu, Shan; Zhang, Honglian; Zhang, Jishen; Jing, Fengxiang; Mao, Hongju; Jin, Qinghui; Cong, Hui; Jia, Chunping; Zhang, Guojun; Zhao, Jianlong

    2017-03-15

    Assay of multiple serum tumor markers such as carcinoembryonic antigen (CEA), cytokeratin 19 fragment antigen (CYFRA21-1), and neuron specific enolase (NSE), is important for the early diagnosis of lung cancer. Dickkopf-1 (DKK1), a novel serological and histochemical biomarker, was recently reported to be preferentially expressed in lung cancer. Four target proteins were sandwiched by capture antibodies attached to microarrays and detection antibodies carried on modified gold nanoparticles. Optical signals generated by the sandwich structures were amplified by gold deposition with HAuCl 4 and H 2 O 2 , and were observable by microscopy or the naked eye. The four tumor markers were subsequently measured in 106 lung cancer patients and 42 healthy persons. The assay was capable of detecting multiple biomarkers in serum sample at concentration of <1 ng mL -1 in 1 h. Combined detection of the four tumor markers highly improved the sensitivity (to 87.74%) for diagnosis of lung cancer compared with sensitivity of single markers. A rapid, highly sensitive co-detection method for multiple biomarkers based on gold nanoparticles and microarrays was developed. In clinical use, it would be expected to improve the early diagnosis of lung cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improvements to the CERES Cloud Detection Algorithm using Himawari 8 Data and Validation using CALIPSO and CATS Lidar Observations

    NASA Astrophysics Data System (ADS)

    Trepte, Q.; Minnis, P.; Palikonda, R.; Yost, C. R.; Rodier, S. D.; Trepte, C. R.; McGill, M. J.

    2016-12-01

    Geostationary satellites provide continuous cloud and meteorological observations important for weather forecasting and for understanding climate processes. The Himawari-8 satellite represents a new generation of measurement capabilities with significantly improved resolution and enhanced spectral information. The satellite was launched in October 2014 by the Japanese Meteorological Agency and is centered at 140° E to provide coverage over eastern Asia and the western Pacific region. A cloud detection algorithm was developed as part of the CERES Cloud Mask algorithm using the Advanced Himawari Imager (AHI), a 16 channel multi-spectral imager. The algorithm was originally designed for use with Meteosat Second Generation (MSG) data and has been adapted for Himawari-8 AHI measurements. This paper will describe the improvements in the Himawari cloud mask including daytime ocean low cloud and aerosol discrimination, nighttime thin cirrus detection, and Australian desert and coastal cloud detection. The statistics from matched CERES Himawari cloud mask results with CALIPSO lidar data and with new observations from the CATS lidar will also be presented. A feature of the CATS instrument on board the International Space Station is that it gives information at different solar viewing times to examine the diurnal variation of clouds and this provides an ability to evaluate the performance of the cloud mask for different sun angles.

  3. A laboratory investigation of the reflective properties of simulated, optically thick clouds

    NASA Technical Reports Server (NTRS)

    Mckee, T. B.; Cox, S. K.

    1982-01-01

    The Cloud Field Optical Simulator project includes work in the following areas: (1) improvement in the shape of the desired (visible) spectral response of the measurement, (2) selection of two usable materials for cloud simulation, (3) a means of assigning a visible optical depth to the simulated clouds, and (4) confirmation that the apparatus is capable of detecting basic finite cloud characteristics. A brief description of the accomplishments in each of these areas is presented.

  4. Development of a Guided-Wave Technology Capable of the Detection of Open Cracks and Microcracks in Embedded Trunnion Anchor Rods

    DTIC Science & Technology

    2014-04-01

    piezoelectric material is reported to potentially produce gains up to a factor of 8 over commercially available, high-performance PZT materials...Narrow-band signal (70-200 cycles) Concentrates energy in desired propagation mode and improves response of PZT transducer. High output/sensitivity PZT ...of Mechanical Engineering, Imperial College. Christoph, P., Q-Y Kim, J. Qu, and L. J. Jacobs. 2009. Evaluation of fatigue damage using non-linear

  5. Studying Nuclear Structure at the extremes with S3

    NASA Astrophysics Data System (ADS)

    Piot, Julien

    2018-05-01

    The in-depth study of the regions of Superheavy elements and the proton drip line around 100Sn are two major challenges of today's Nuclear Physics. Performing detailed spectroscopic studies on these nuclei requires a significant improvement of our detection capabilities. The Super-Separator-Spectrometer S3 is part of the SPIRAL2 facility at GANIL. Its aim is to use the high stable beam currents provided by the new LINAC to reach rare isotopes by fusion-evaporation.

  6. Physical Constraints on Seismic Waves from Chemical and Nuclear Explosions

    DTIC Science & Technology

    1992-04-22

    AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE , MASSACHUSETTS 01731-5000 92-23124 9 2 8 1 9 5 9 IIII!I!I l1!j lIII ii SPONSORED BY Defense Advanced...in good agreement with seismic yield esti- improve the detection capabilities of new systems. Given mates [Sykes and Ekstrom, 1989]. (1990) reports...nuclear ,eismology. physical model for spall; (4) Determination of energy balance in Many questions still remain, particularly those associated with the

  7. Promising New Photon Detection Concepts for High-Resolution Clinical and Preclinical PET

    PubMed Central

    Levin, Craig S.

    2013-01-01

    The ability of PET to visualize and quantify regions of low concentration of PET tracer representing subtle cellular and molecular signatures of disease depends on relatively complex biochemical, biologic, and physiologic factors that are challenging to control, as well as on instrumentation performance parameters that are, in principle, still possible to improve on. Thus, advances to the latter can somewhat offset barriers of the former. PET system performance parameters such as spatial resolution, contrast resolution, and photon sensitivity contribute significantly to PET’s ability to visualize and quantify lower concentrations of signal in the presence of background. In this report we present some technology innovations under investigation toward improving these PET system performance parameters. We focus particularly on a promising advance known as 3-dimensional position-sensitive detectors, which are detectors capable of distinguishing and measuring the position, energy, and arrival time of individual interactions of multi-interaction photon events in 3 dimensions. If successful, these new strategies enable enhancements such as the detection of fewer diseased cells in tissue or the ability to characterize lower-abundance molecular targets within cells. Translating these advanced capabilities to the clinic might allow expansion of PET’s roles in disease management, perhaps to earlier stages of disease. In preclinical research, such enhancements enable more sensitive and accurate studies of disease biology in living subjects. PMID:22302960

  8. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

    PubMed

    Grewal, Dilraj S; Tanna, Angelo P

    2013-03-01

    With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.

  9. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  10. Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Ponnaluru, Gopi Krishna

    2006-01-01

    The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.

  11. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Noel

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LESmore » to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.« less

  12. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  13. Single photon ranging system using two wavelengths laser and analysis of precision

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian

    2013-09-01

    The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.

  14. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  15. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  16. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  17. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Pushkarsky, Michael; Webber, Michael; Patel, C. Kumar N.

    2005-03-01

    We provide a general technique for evaluating the performance of an optical sensor for the detection of chemical warfare agents (CWAs) in realistic environments and present data from a simulation model based on a field deployed discretely tunable 13CO2 laser photoacoustic spectrometer (L-PAS). Results of our calculations show the sensor performance in terms of usable sensor sensitivity as a function of probability of false positives (PFP). The false positives arise from the presence of many other gases in the ambient air that could be interferents. Using the L-PAS as it exists today, we can achieve a detection threshold of about 4 ppb for the CWAs while maintaining a PFP of less than 1:106. Our simulation permits us to vary a number of parameters in the model to provide guidance for performance improvement. We find that by using a larger density of laser lines (such as those obtained through the use of tunable semiconductor lasers), improving the detector noise and maintaining the accuracy of laser frequency determination, optical detection schemes can make possible CWA sensors having sub-ppb detection capability with <1:108 PFP. We also describe the results of a preliminary experiment that verifies the results of the simulation model. Finally, we discuss the use of continuously tunable quantum cascade lasers in L-PAS for CWA and TIC detection.

  18. Mid-infrared coincidence measurements based on intracavity frequency conversion

    NASA Astrophysics Data System (ADS)

    Piccione, S.; Mancinelli, M.; Trenti, A.; Fontana, G.; Dam, J.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.

    2018-02-01

    In the last years, the Mid Infrared (MIR) spectral region has attracted the attention of many areas of science and technology, opening the way to important applications, such as molecular imaging, remote sensing, free- space communication and environmental monitoring. However, the development of new sources of light, such as quantum cascade laser, was not followed by an adequate improvement in the MIR detection system, able to exceed the current challenges. Here we demonstrate the single-photon counting capability of a new detection system, based on efficient up-converter modules, by proving the correlated nature of twin photons pairs at about 3.1μm, opening the way to the extension of quantum optics experiments in the MIR.

  19. Orthorectified High Resolution Multispectral Imagery for Application to Change Detection and Analysis

    NASA Technical Reports Server (NTRS)

    Benkelman, Cody A.

    1997-01-01

    The project team has outlined several technical objectives which will allow the companies to improve on their current capabilities. These include modifications to the imaging system, enabling it to operate more cost effectively and with greater ease of use, automation of the post-processing software to mosaic and orthorectify the image scenes collected, and the addition of radiometric calibration to greatly aid in the ability to perform accurate change detection. Business objectives include fine tuning of the market plan plus specification of future product requirements, expansion of sales activities (including identification of necessary additional resources required to meet stated revenue objectives), development of a product distribution plan, and implementation of a world wide sales effort.

  20. Thermal Inspection of Composite Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.

  1. The Galilean satellites.

    PubMed

    Showman, A P; Malhotra, R

    1999-10-01

    NASA's Galileo mission to Jupiter and improved Earth-based observing capabilities have allowed major advances in our understanding of Jupiter's moons Io, Europa, Ganymede, and Callisto over the past few years. Particularly exciting findings include the evidence for internal liquid water oceans in Callisto and Europa, detection of a strong intrinsic magnetic field within Ganymede, discovery of high-temperature silicate volcanism on Io, discovery of tenuous oxygen atmospheres at Europa and Ganymede and a tenuous carbon dioxide atmosphere at Callisto, and detection of condensed oxygen on Ganymede. Modeling of landforms seen at resolutions up to 100 times as high as those of Voyager supports the suggestion that tidal heating has played an important role for Io and Europa.

  2. Numerical and experimental simulation of linear shear piezoelectric phased arrays for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui

    2017-04-01

    A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.

  3. Extreme ultraviolet patterned mask inspection performance of advanced projection electron microscope system for 11nm half-pitch generation

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji

    2016-03-01

    Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.

  4. Portable microfluidic platform for real-time, high sensitive detection and identification of trichloroethylene and other organochloride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Erik

    In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less

  5. Escherichia coli's water load affects zebrafish (Danio rerio) behavior.

    PubMed

    Amorim, João; Fernandes, Miguel; Abreu, Isabel; Tavares, Fernando; Oliva-Teles, Luis

    2018-05-01

    Traditional physico-chemical sensors are becoming an obsolete tool for environmental quality assessment. Biomonitoring techniques, such as biological early warning systems present the advantage of being sensitivity, fast, non-invasive and ecologically relevant. In this work, we applied a video tracking system, developed with zebrafish (Danio rerio), to detect microbiological contamination in water. Using the fishs' behavior response, the system was able to detect the presence of a non-pathogenic environmental strain of Escherichia coli, at three different levels of contamination: 600, 1800 and 5000 CFU/100 mL (colony forming units/100 mL). Data was collected during 50 min of exposure and analyzed with the artificial neural networks Self-organizing Map and Multi-layer Perceptron. The behavior of exposed fish was more erratic, with pronounced and rapid changes on movement direction and with significant less exploratory activity. The accuracy, sensitivity and specificity values regarding the detection capability (distinction between presence or absence of contamination) ranged from 89 to 100%. Regarding the classification capability (distinction between experimental conditions), the values ranged from 67 to 89%. This research may be a valuable contribution to improve water monitoring and management strategies, by taking as reference the effects on biosensors, without a biased anthropocentric perspective. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Development of fast-timing microchannel plate photomultiplier

    NASA Astrophysics Data System (ADS)

    Xie, Junqi

    2017-09-01

    Planar microchannel plate photomultipliers (MCP-PMTs) with bialkali photocathodes are able to achieve single photon detection with excellent time (picosecond) and spatial (millimeter) resolution. They have recently drawn great interests in experiments requiring time of flight (TOF) measurement and/or Cherenkov imaging. The Argonne MCP-PMT detector group has recently designed and fabricated 6 cm × 6 cm MCP-PMTs. Atomic layer deposition (ALD) method is used to grow resistive and secondary emission layers to functionalize the glass capillary array. Initial characterization indicates that these MCP-PMTs exhibits a transit-time spread of 57 psec at single photoelectron detection mode and of 27 psec at multi photoelectron mode ( 100 photoelectrons). The MCP-PMTs were also tested at Fermilab test beam facility for its particle detection performance and rate capability, showing high rate capability up to 75 kHz/cm2 , higher than the requirement for future electron-ion collider (EIC) experiment. A recent magnetic field test at ANL g-2 magnetic facility shows that the gain of MCP-PMT does not degrade until 0.75 Tesla, comparable to the current commercially available MCP-PMTs. Further improvement of its magnetic field performance is currently under developing by reducing the MCP pore size and spacing between inside components. The progress on the MCP-PMT development at ANL will be presented and discussed in the presentation.

  7. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  8. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  9. FALLOUT DOSAGE AND MONITORING

    PubMed Central

    Kinsman, Simon

    1960-01-01

    At present there are a large number of people capable of conducting the task of surface and area radiation monitoring including external monitoring of personnel. Once the extent and the intensity of radioactivity in an area is determined, good use of personnel can be made without too much risk. This is fortunate for the medical profession whose personnel can devote their talents to casualty care during or following nuclear warfare. Most individuals who know how to detect and measure the extent of radioactive contamination are also capable of conducting personnel decontamination operations and would do so if necessary. Consequently the spread of contamination can be minimized by adequate decontamination and the medical personnel can treat casualties who are relatively free of external radioactive contamination. The appropriate use of trained manpower and radiation detection equipment which are available in California combined with sufficient rehearsals prior to a nuclear war will greatly reduce any casualty damage due to radioactive fallout. The chances of survival of individuals can be greatly improved with a little knowledge of protection from radioactive contamination and of salvage of food and water. PMID:14409247

  10. Evolutionary Design of a Robotic Material Defect Detection System

    NASA Technical Reports Server (NTRS)

    Ballard, Gary; Howsman, Tom; Craft, Mike; ONeil, Daniel; Steincamp, Jim; Howell, Joe T. (Technical Monitor)

    2002-01-01

    During the post-flight inspection of SSME engines, several inaccessible regions must be disassembled to inspect for defects such as cracks, scratches, gouges, etc. An improvement to the inspection process would be the design and development of very small robots capable of penetrating these inaccessible regions and detecting the defects. The goal of this research was to utilize an evolutionary design approach for the robotic detection of these types of defects. A simulation and visualization tool was developed prior to receiving the hardware as a development test bed. A small, commercial off-the-shelf (COTS) robot was selected from several candidates as the proof of concept robot. The basic approach to detect the defects was to utilize Cadmium Sulfide (CdS) sensors to detect changes in contrast of an illuminated surface. A neural network, optimally designed utilizing a genetic algorithm, was employed to detect the presence of the defects (cracks). By utilization of the COTS robot and US sensors, the research successfully demonstrated that an evolutionarily designed neural network can detect the presence of surface defects.

  11. Detection of Salmonella enterica Serovar Typhimurium by Using a Rapid, Array-Based Immunosensor

    PubMed Central

    Taitt, Chris Rowe; Shubin, Yura S.; Angel, Roselina; Ligler, Frances S.

    2004-01-01

    The multianalyte array biosensor (MAAB) is a rapid analysis instrument capable of detecting multiple analytes simultaneously. Rapid (15-min), single-analyte sandwich immunoassays were developed for the detection of Salmonella enterica serovar Typhimurium, with a detection limit of 8 × 104 CFU/ml; the limit of detection was improved 10-fold by lengthening the assay protocol to 1 h. S. enterica serovar Typhimurium was also detected in the following spiked foodstuffs, with minimal sample preparation: sausage, cantaloupe, whole liquid egg, alfalfa sprouts, and chicken carcass rinse. Cross-reactivity tests were performed with Escherichia coli and Campylobacter jejuni. To determine whether the MAAB has potential as a screening tool for the diagnosis of asymptomatic Salmonella infection of poultry, chicken excretal samples from a private, noncommercial farm and from university poultry facilities were tested. While the private farm excreta gave rise to signals significantly above the buffer blanks, none of the university samples tested positive for S. enterica serovar Typhimurium without spiking; dose-response curves of spiked excretal samples from university-raised poultry gave limits of detection of 8 × 103 CFU/g. PMID:14711637

  12. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  13. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments and near perimeters and borders. The S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE®) standards. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  14. Landsat-8: Science and product vision for terrestrial global change research

    USGS Publications Warehouse

    Roy, David P.; Wulder, M.A.; Loveland, Thomas R.; Woodcock, C.E.; Allen, R. G.; Anderson, M. C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A.; Schaaf, Crystal B.; Schott, J.R.; Sheng, Y.; Vermote, E. F.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Hipple, J. D.; Hostert, Patrick; Huntington, J.; Justice, C.O.; Kilic, A.; Kovalskyy, Valeriy; Lee, Z. P.; Lymburner, Leo; Masek, J.G.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, James; Wynne, R.H.; Zhu, Z.

    2014-01-01

    Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of Landsat 8 capabilities and the steps ahead in support of priorities identified by the team. Preliminary evaluation of Landsat 8 capabilities and identification of new science and applications opportunities are described with respect to calibration and radiometric characterization; surface reflectance; surface albedo; surface temperature, evapotranspiration and drought; agriculture; land cover, condition, disturbance and change; fresh and coastal water; and snow and ice. Insights into the development of derived ‘higher-level’ Landsat products are provided in recognition of the growing need for consistently processed, moderate spatial resolution, large area, long-term terrestrial data records for resource management and for climate and global change studies. The paper concludes with future prospects, emphasizing the opportunities for land imaging constellations by combining Landsat data with data collected from other international sensing systems, and consideration of successor Landsat mission requirements.

  15. A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.

    PubMed

    Zhang, Ye; Luo, Shihua; Situ, Bo; Chai, Zhixin; Li, Bo; Liu, Jumei; Zheng, Lei

    2018-04-15

    Rare cancer cells in body fluid could be useful biomarkers for noninvasive diagnosis of cancer. However, detection of these rare cells is currently challenging. In this work, a binding-induced dual catalytic hairpin assembly (DCHA) electrochemical cytosensor was developed for highly selective and sensitive detection of cancer cells. The fuel probe, released by hybridization between the capture probe and catalytic hairpin assembly (CHA) products of target cell-responsive reaction, initiated dual CHA recycling, leading to multiple CHA products. Furthermore, the hybridization between fuel probe and capture probe decreased non-specific CHA products, improving the signal-to-noise ratio and detection sensitivity. Under the optimal conditions, the developed cytosensor was able to detect cells down to 30 cells mL -1 (S/N = 3) with a linear range from 50 to 100,000 cells mL -1 and was capable of distinguishing target cells from normal cells in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.

    PubMed

    Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-12-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.

  17. Fuzzy Clustering Applied to ROI Detection in Helical Thoracic CT Scans with a New Proposal and Variants

    PubMed Central

    Castro, Alfonso; Boveda, Carmen; Arcay, Bernardino; Sanjurjo, Pedro

    2016-01-01

    The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies. The algorithms were evaluated using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium). PMID:27517049

  18. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  19. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  20. Enhancement of the Wear Particle Monitoring Capability of Oil Debris Sensors Using a Maximal Overlap Discrete Wavelet Transform with Optimal Decomposition Depth

    PubMed Central

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-01-01

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730

  1. Enhancement of the wear particle monitoring capability of oil debris sensors using a maximal overlap discrete wavelet transform with optimal decomposition depth.

    PubMed

    Li, Chuan; Peng, Juan; Liang, Ming

    2014-03-28

    Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.

  2. Microtubular conductometric biosensor for ethanol detection.

    PubMed

    Ajay, A K; Srivastava, Divesh N

    2007-09-30

    A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.

  3. A comparison of force and acoustic emission sensors in monitoring precision cylindrical grinding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Marsh, Eric R.; Couey, Jeremiah A.; Knapp, Byron R.; Vallance, R. R.

    2005-05-01

    Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5 to 25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from rotor motion. Four experiments compare this force-sensing approach to acoustic emission (AE) in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are preferable to acoustic emission in precision grinding since the force sensor offers improved contact sensitivity, higher resolution, and is capable of detecting events occurring within a single revolution of the grinding wheel.

  4. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  5. Cybersecurity Awareness in the Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean; Franklin, Lyndsey; Le Blanc, Katya L.

    2016-07-10

    We report on a series of interviews and observations conducted with control room dispatchers in a bulk electrical system. These dispatchers must react quickly to incidents as they happen in order to ensure the reliability and safe operation of the power grid. They do not have the time to evaluate incidents for signs of cyber-attack as part of their initial response. Cyber-attack detection involves multiple personnel from a variety of roles at both local and regional levels. Smart grid technology will improve detection and defense capabilities of the future grid, however, the current infrastructure remains a mixture of old andmore » new equipment which will continue to operate for some time. Thus, research still needs to focus on strategies for the detection of malicious activity on current infrastructure as well as protection and remediation.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  7. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  8. Integrated System Health Management: Foundational Concepts, Approach, and Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    2009-01-01

    A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.

  9. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor array. In addition, this paper will outline recent efforts to produce sensors capable of making real-time measurements at temperatures up to 850 C, and discuss previous results demonstrating capability to monitor carbon fiber temperature changes within a composite material.

  10. Application of electrically invisible antennas to the Modulated Scatterer Technique

    DOE PAGES

    Crocker, Dylan A.; Donnell, Kristen M.

    2015-09-16

    The modulated scatterer technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers are dipoles centrally loaded with an element capable of modulation (e.g., a p-i-n diode). By modulating the load element, signals scattered from the MST scatterer are also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (MD; a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve themore » MD, the concept of electrically invisible antennas is applied to the design of MST scatterers. Our paper presents simulations and measurements of MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (a p-i-n diode in this case), while producing detectable scattering during the forward bias state (i.e., operate in an electrically visible state). Furthermore, the results using the new design show significant improvement to the MD of the scattered signal as compared with a traditional MST scatterer (i.e., dipole centrally loaded with a p-i-n diode).« less

  11. Model based approach to UXO imaging using the time domain electromagnetic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavely, E.M.

    1999-04-01

    Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detectormore » modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.« less

  12. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    PubMed

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  13. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  14. Unmanned Ground Vehicle Perception Using Thermal Infrared Cameras

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Huertas, Andres; Matthies, Larry; Bajracharya, Max; Assad, Christopher; Brennan, Shane; Bellut, Paolo; Sherwin, Gary

    2011-01-01

    TIR cameras can be used for day/night Unmanned Ground Vehicle (UGV) autonomous navigation when stealth is required. The quality of uncooled TIR cameras has significantly improved over the last decade, making them a viable option at low speed Limiting factors for stereo ranging with uncooled LWIR cameras are image blur and low texture scenes TIR perception capabilities JPL has explored includes: (1) single and dual band TIR terrain classification (2) obstacle detection (pedestrian, vehicle, tree trunks, ditches, and water) (3) perception thru obscurants

  15. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Abstracts of Phase 1 Awards

    DTIC Science & Technology

    1990-01-01

    THERE WILL BE A CONTINUING NEED FOR A SENSITIVE, RAPID, AND ECONOMICAL TESTING PROCEDURE CAPABLE OF DETECTING DEFECTS AND PROVIDING FEEDBACK FOR QUALITY...SOLUTIONS. THE DKF METHOD PROVIDES OPTIMAL OR NEAR-OPTIMAL ACCURACY, REDUCE PROCESSING BURDEN, AND IMPROVE FAULT TOLERANCE. THE DKF/MMAE ( DMAE ) TECHNIQUES...DEVICES FOR B-SiC IS TO BE ABLE TO CONSISTENTLY PRODUCE INTRINSIC FILMS WITH VERY LOW DEFECTS AND TO DEVELOP SCHOTTKY AND OHMIC CONTACT MATERIALS THAT WILL

  16. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  17. Deep Learning for Real-Time Capable Object Detection and Localization on Mobile Platforms

    NASA Astrophysics Data System (ADS)

    Particke, F.; Kolbenschlag, R.; Hiller, M.; Patiño-Studencki, L.; Thielecke, J.

    2017-10-01

    Industry 4.0 is one of the most formative terms in current times. Subject of research are particularly smart and autonomous mobile platforms, which enormously lighten the workload and optimize production processes. In order to interact with humans, the platforms need an in-depth knowledge of the environment. Hence, it is required to detect a variety of static and non-static objects. Goal of this paper is to propose an accurate and real-time capable object detection and localization approach for the use on mobile platforms. A method is introduced to use the powerful detection capabilities of a neural network for the localization of objects. Therefore, detection information of a neural network is combined with depth information from a RGB-D camera, which is mounted on a mobile platform. As detection network, YOLO Version 2 (YOLOv2) is used on a mobile robot. In order to find the detected object in the depth image, the bounding boxes, predicted by YOLOv2, are mapped to the corresponding regions in the depth image. This provides a powerful and extremely fast approach for establishing a real-time-capable Object Locator. In the evaluation part, the localization approach turns out to be very accurate. Nevertheless, it is dependent on the detected object itself and some additional parameters, which are analysed in this paper.

  18. Improving visibility of rear surface cracks during inductive thermography of metal plates using Autoencoder

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping

    2018-06-01

    Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.

  19. Integrating Machine Learning into Space Operations

    NASA Astrophysics Data System (ADS)

    Kelly, K. G.

    There are significant challenges with managing activities in space, which for the scope of this paper are primarily the identification of objects in orbit, maintaining accurate estimates of the orbits of those objects, detecting changes to those orbits, warning of possible collisions between objects and detection of anomalous behavior. The challenges come from the large amounts of data to be processed, which is often incomplete and noisy, limitations on the ability to influence objects in space and the overall strategic importance of space to national interests. The focus of this paper is on defining an approach to leverage the improved capabilities that are possible using state of the art machine learning in a way that empowers operations personnel without sacrificing the security and mission assurance associated with manual operations performed by trained personnel. There has been significant research in the development of algorithms and techniques for applying machine learning in this domain, but deploying new techniques into such a mission critical domain is difficult and time consuming. Establishing a common framework could improve the efficiency with which new techniques are integrated into operations and the overall effectiveness at providing improvements.

  20. Comparative study of three screening tests, two microbiological tube tests, and a multi-sulphonamide ELISA kit for the detection of antimicrobial and sulphonamide residues in eggs.

    PubMed

    Gaudin, V; Hedou, C; Rault, A; Sanders, P; Verdon, E

    2009-04-01

    The screening of antimicrobial residues in eggs is an especially important subject. Three different commercial kits for the screening of sulphonamides and other antimicrobials in eggs were validated in accordance with Decision 2002/657/EC: one enzyme-linked immunoabsorbant assay (ELISA) kit multi-sulphonamides (from RAISIO Diagnostics) and two microbiological tests (a Premi test from DSM and an Explorer kit from Zeu-Inmunotec). The false-positive rates were lower than 2% for all kits. The detection capabilities (CCbeta) have to be as low as possible for banned substances and lower than the maximum residue limit (MRL) when MRLs have been set. The sensitivity of the Premi test was better than that of the Explorer test, probably because of the dilution of the eggs before the Explorer test was used. The CCbeta values towards most of the tested sulphonamides were satisfactory with the Premi test (< or = 100 microg kg(-1)). Performance in a proficiency test for the detection of sulphonamides in eggs with the Premi test confirmed these results. The detection capabilities of tetracycline and doxycycline were at the level of the MRL or twice the MRL maximum. The detection capabilities for chlortetracycline and oxytetracycline were higher (four to six times the MRL). The detection capabilities for amoxicillin, neomycin, tylosin and erythromycin were lower than their respective MRLs. Detection capabilities for sulphonamides were much lower for the ELISA kit than for microbiological tests. The ELISA kit could be recommended for the targeted screening of sulphonamides in eggs. On the other hand, the Explorer and Premi tests could be used as wide screening tests allowing the detection of most of the antimicrobial families.

  1. Endoscopic innovations to increase the adenoma detection rate during colonoscopy

    PubMed Central

    Dik, Vincent K; Moons, Leon MG; Siersema, Peter D

    2014-01-01

    Up to a quarter of polyps and adenomas are missed during colonoscopy due to poor visualization behind folds and the inner curves of flexures, and the presence of flat lesions that are difficult to detect. These numbers may however be conservative because they mainly come from back-to-back studies performed with standard colonoscopes, which are unable to visualize the entire mucosal surface. In the past several years, new endoscopic techniques have been introduced to improve the detection of polyps and adenomas. The introduction of high definition colonoscopes and visual image enhancement technologies have been suggested to lead to better recognition of flat and small lesions, but the absolute increase in diagnostic yield seems limited. Cap assisted colonoscopy and water-exchange colonoscopy are methods to facilitate cecal intubation and increase patients comfort, but show only a marginal or no benefit on polyp and adenoma detection. Retroflexion is routinely used in the rectum for the inspection of the dentate line, but withdrawal in retroflexion in the colon is in general not recommended due to the risk of perforation. In contrast, colonoscopy with the Third-Eye Retroscope® may result in considerable lower miss rates compared to standard colonoscopy, but this technique is not practical in case of polypectomy and is more time consuming. The recently introduced Full Spectrum Endoscopy™ colonoscopes maintains the technical capabilities of standard colonoscopes and provides a much wider view of 330 degrees compared to the 170 degrees with standard colonoscopes. Remarkable lower adenoma miss rates with this new technique were recently demonstrated in the first randomized study. Nonetheless, more studies are required to determine the exact additional diagnostic yield in clinical practice. Optimizing the efficacy of colorectal cancer screening and surveillance requires high definition colonoscopes with improved virtual chromoendoscopy technology that visualize the whole colon mucosa while maintaining optimal washing, suction and therapeutic capabilities, and keeping the procedural time as low and patient discomfort as optimal as possible. PMID:24605019

  2. External quality assessment for Avian Influenza A (H7N9) Virus detection using armored RNA.

    PubMed

    Sun, Yu; Jia, Tingting; Sun, Yanli; Han, Yanxi; Wang, Lunan; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Li, Jinming

    2013-12-01

    An external quality assessment (EQA) program for the molecular detection of avian influenza A (H7N9) virus was implemented by the National Center for Clinical Laboratories (NCCL) of China in June 2013. Virus-like particles (VLPs) that contained full-length RNA sequences of the hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP) genes from the H7N9 virus (armored RNAs) were constructed. The EQA panel, comprising 6 samples with different concentrations of armored RNAs positive for H7N9 viruses and four H7N9-negative samples (including one sample positive for only the MP gene of the H7N9 virus), was distributed to 79 laboratories in China that carry out the molecular detection of H7N9 viruses. The overall performances of the data sets were classified according to the results for the H7 and N9 genes. Consequently, we received 80 data sets (one participating group provided two sets of results) which were generated using commercial (n = 60) or in-house (n = 17) reverse transcription-quantitative PCR (qRT-PCR) kits and a commercial assay that employed isothermal amplification method (n = 3). The results revealed that the majority (82.5%) of the data sets correctly identified the H7N9 virus, while 17.5% of the data sets needed improvements in their diagnostic capabilities. These "improvable" data sets were derived mostly from false-negative results for the N9 gene at relatively low concentrations. The false-negative rate was 5.6%, and the false-positive rate was 0.6%. In addition, we observed varied diagnostic capabilities between the different commercially available kits and the in-house-developed assays, with the assay manufactured by BioPerfectus Technologies (Jiangsu, China) performing better than the others. Overall, the majority of laboratories have reliable diagnostic capacities for the detection of H7N9 virus.

  3. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; Yang, Dongfang; Han, Xiangna; Cai, Junhui; Liu, Haiying; He, Weiwei

    2016-03-01

    Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors.Nanostructured enzyme mimics are of great interest as promising alternatives to artificial enzymes for biomedical and catalytic applications. Studying the chemical interactions between antioxidants and nano-enzymes may result in a better understanding of the antioxidant capability of antioxidants and may help improve the function of artificial enzymes to better mimic natural enzymes. In this study, using Co3O4 nanoparticles (NPs) as peroxidase mimics to catalyze the oxidation of chromophoric substrates by H2O2, we developed a platform that acts as a biosensor for hydrogen peroxide and glucose and that can study the inhibitory effects of natural antioxidants on peroxidase mimics. This method can be applied specifically to glucose detection in real samples. Three natural antioxidants, gallic acid (GA), tannic acid (TA), and ascorbic acid (AA), were compared for their antioxidant capabilities. We found that these three antioxidants efficiently inhibit peroxidase-like activity with concentration dependence. The antioxidants showed different efficiencies, in the following order: tannic acid > gallic acid > ascorbic acid. They also showed distinct modes of inhibition based on different interaction mechanisms. This study serves as a proof-of-concept that nano-enzyme mimics can be used to evaluate antioxidant capabilities and to screen enzyme inhibitors. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c6nr00860g

  4. An Epidemiological Network Model for Disease Outbreak Detection

    PubMed Central

    Reis, Ben Y; Kohane, Isaac S; Mandl, Kenneth D

    2007-01-01

    Background Advanced disease-surveillance systems have been deployed worldwide to provide early detection of infectious disease outbreaks and bioterrorist attacks. New methods that improve the overall detection capabilities of these systems can have a broad practical impact. Furthermore, most current generation surveillance systems are vulnerable to dramatic and unpredictable shifts in the health-care data that they monitor. These shifts can occur during major public events, such as the Olympics, as a result of population surges and public closures. Shifts can also occur during epidemics and pandemics as a result of quarantines, the worried-well flooding emergency departments or, conversely, the public staying away from hospitals for fear of nosocomial infection. Most surveillance systems are not robust to such shifts in health-care utilization, either because they do not adjust baselines and alert-thresholds to new utilization levels, or because the utilization shifts themselves may trigger an alarm. As a result, public-health crises and major public events threaten to undermine health-surveillance systems at the very times they are needed most. Methods and Findings To address this challenge, we introduce a class of epidemiological network models that monitor the relationships among different health-care data streams instead of monitoring the data streams themselves. By extracting the extra information present in the relationships between the data streams, these models have the potential to improve the detection capabilities of a system. Furthermore, the models' relational nature has the potential to increase a system's robustness to unpredictable baseline shifts. We implemented these models and evaluated their effectiveness using historical emergency department data from five hospitals in a single metropolitan area, recorded over a period of 4.5 y by the Automated Epidemiological Geotemporal Integrated Surveillance real-time public health–surveillance system, developed by the Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology on behalf of the Massachusetts Department of Public Health. We performed experiments with semi-synthetic outbreaks of different magnitudes and simulated baseline shifts of different types and magnitudes. The results show that the network models provide better detection of localized outbreaks, and greater robustness to unpredictable shifts than a reference time-series modeling approach. Conclusions The integrated network models of epidemiological data streams and their interrelationships have the potential to improve current surveillance efforts, providing better localized outbreak detection under normal circumstances, as well as more robust performance in the face of shifts in health-care utilization during epidemics and major public events. PMID:17593895

  5. Photoacoustic characterization of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  6. Exploring cosmic origins with CORE: Inflation

    NASA Astrophysics Data System (ADS)

    Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal < 1 level. For all the models explored, CORE alone will improve significantly on the present constraints on the physics of inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  7. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  8. Evaluation of immunomagnetic separation for the detection of Salmonella in surface waters by polymerase chain reaction.

    PubMed

    Hsu, Chao-Yu; Hsu, Bing-Mu; Chang, Tien-Yu; Hsu, Tsui-Kang; Shen, Shu-Min; Chiu, Yi-Chou; Wang, Hung-Jen; Ji, Wen-Tsai; Fan, Cheng-Wei; Chen, Jyh-Larng

    2014-09-19

    Salmonella spp. is associated with fecal pollution and capable of surviving for long periods in aquatic environments. Instead of the traditional, time-consuming biochemical detection, polymerase chain reaction (PCR) allows rapid identification of Salmonella directly concentrated from water samples. However, prevalence of Salmonella may be underestimated because of the vulnerability of PCR to various environmental chemicals like humic acid, compounded by the fact that various DNA polymerases have different susceptibility to humic acid. Because immunomagnetic separation (IMS) theoretically could isolate Salmonella from other microbes and facilitate removal of aquatic PCR inhibitors of different sizes, this study aims to compare the efficiency of conventional PCR combined with immunomagnetic separation (IMS) for Salmonella detection within a moderately polluted watershed. In our study, the positive rate was increased from 17.6% to 47% with nearly ten-fold improvement in the detection limit. These results suggest the sensitivity of Salmonella detection could be enhanced by IMS, particularly in low quality surface waters. Due to its effects on clearance of aquatic pollutants, IMS may be suitable for most DNA polymerases for Salmonella detection.

  9. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    PubMed

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  10. Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that there is 95% confidence that the POD is greater than 90% (90/95 POD). Design of experiments for validating probability of detection capability of nondestructive evaluation (NDE) systems (DOEPOD) is a methodology that is implemented via software to serve as a diagnostic tool providing detailed analysis of POD test data, guidance on establishing data distribution requirements, and resolving test issues. DOEPOD demands utilization of observance of occurrences. The DOEPOD capability has been developed to provide an efficient and accurate methodology that yields observed POD and confidence bounds for both Hit-Miss or signal amplitude testing. DOEPOD does not assume prescribed POD logarithmic or similar functions with assumed adequacy over a wide range of flaw sizes and inspection system technologies, so that multi-parameter curve fitting or model optimization approaches to generate a POD curve are not required. DOEPOD applications for supporting inspector qualifications is included.

  11. An improved, rapid competitive ELISA using a novel conserved 3B epitope for the detection of serum antibodies to foot-and-mouth disease virus.

    PubMed

    Chung, Chungwon J; Clavijo, Alfonso; Bounpheng, Mangkey A; Uddowla, Sabena; Sayed, Abu; Dancho, Brooke; Olesen, Ian C; Pacheco, Juan; Kamicker, Barbara J; Brake, David A; Bandaranayaka-Mudiyanselage, Carey L; Lee, Stephen S; Rai, Devendra K; Rieder, Elizabeth

    2018-06-01

    The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20-25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent-free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.

  12. Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

    PubMed

    Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham

    2017-06-21

    A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

  13. TMD detection and tracking using improved AWACS sensors

    NASA Astrophysics Data System (ADS)

    Petersen, Steve; Kinashi, Yasuhiro; Leslie, Daniel

    1995-01-01

    This paper identifies an UOES (User Operational Evaluation Systems) version of an airborne surveillance sensor funded by the BMDO (Ballistic Missile Defense Organization). The sensors will be integrated into an operational AWACS E-3 upgrade program. This BMDO program initiative is called Extended Airborne Global Launch Evaluator, or EAGLE. Initial Operational Capability (IOC) of the EAGLE system will be ready in time to support the THAAD/GBR UOES capability. This airborne system, when developed, will consist of a passive infrared surveillance sensor (IRSS) with an active laser-ranger, on board an upgraded AWACS E3 aircraft to operate effectively in the TMD (theater missile defense) mission. The objective for the EAGLE is to field, in a reasonably short time and at a relatively low cost, a cueing sensor capability in regional conflicts to augment the existing space-based surveillance systems. With autonomous surveillance capability to search a wide-sector field, the EAGLE can detect and track boosting TBM's shortly after launch or as they break the clouds. Its passive IR sensor can also detect and track warm hardbody targets. Together with its laser-ranger, it is able to determine, immediately after the booster burn-out, very precise target state vectors that are accurate enough to predict their eventual impact points, to cue fire control radars, and to engage the weapons, if needed. Its primary TMD mission is to provide precise cueing of fire control radars to initiate the active defense weapon systems. Accurate cues from the EAGLE will off load radar resources to enable earlier detection of the targets at longer extended ranges, thereby increasing the interceptor battlespace for potentially more effective defense engagements and opportunities. It can also provide a precise early warning message to enable immediate TBM attack assessment and appropriate selection of defense engagement options by the battle manager. The functions of the sensor suite can be distributed, such that it can be tasked independently to observe the threat intercept, while providing continuous surveillance of new TBM launches, to support the kill assessment function for shoot-look-shoot opportunities. Another potential function that can be performed by the EAGLE is the estimation of TMD launch points (LPE) for counterforce support. This technical paper provides an expanded discussion of the EAGLE's mission roles, specific system functions, and its detection and tracking performance capability. The paper also addresses the sensor and the laser subsystem design characteristics and operational modes required to accomplish all its functions. Initial analyses indicate that the impact of scattering and absorption of the IR signatures and laser signals will be minimal on the performance of the system. Recent satellite data provides measurement of atmospheric extinction.

  14. Using the surface charge profiler for in-line monitoring of doping concentration in silicon epitaxial wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Tower, Joshua P.; Kamieniecki, Emil; Nguyen, M. C.; Danel, Adrien

    1999-08-01

    The Surface Charge Profiler (SCP) has been introduced for monitoring and development of silicon epitaxial processes. The SCP measures the near-surface doping concentration and offers advantages that lead to yield enhancement in several ways. First, non-destructive measurement technology enables in-line process monitoring, eliminating the need to sacrifice production wafers for resistivity measurements. Additionally, the full-wafer mapping capability helps in development of improved epitaxial growth processes and early detection of reactor problems. As examples, we present the use of SCP to study the effects of susceptor degradation in barrel reactors and to study autodoping for development of improved dopant uniformity.

  15. Oil detection in RADARSAT-2 quad-polarization imagery: implications for ScanSAR performance

    NASA Astrophysics Data System (ADS)

    Cheng, Angela; Arkett, Matt; Zagon, Tom; De Abreu, Roger; Mueller, Derek; Vachon, Paris; Wolfe, John

    2011-11-01

    Environment Canada's Integrated Satellite Tracking of Pollution (ISTOP) program uses RADARSAT-2 data to vector pollution surveillance assets to areas where oil discharges/spills are suspected in support of enforcement and/or cleanup efforts. RADARSAT-2's new imaging capabilities and ground system promises significant improvement's in ISTOP's ability to detect and report on oil pollution. Of specific interest is the potential of dual polarization ScanSAR data acquired with VV polarization to improve the detection of oil pollution compared to data acquired with HH polarization, and with VH polarization to concurrently detect ship targets. A series of 101 RADARSAT-2 fine quad images were acquired over Coal Oil Point, near Santa Barbara, California where a seep field naturally releases hydrocarbons. The oil and gas releases in this region are visible on the sea surface and have been well documented allowing for the remote sensing of a constant source of oil at a fixed location. Although the make-up of the oil seep field could be different from that of oil spills, it provides a representative target that can be routinely imaged under a variety of wind conditions. Results derived from the fine quad imagery with a lower noise floor were adjusted to mimic the noise floor limitations of ScanSAR. In this study it was found that VV performed better than HH for oil detection, especially at higher incidence angles.

  16. Impedance-based structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Pitchford, Corey; Grisso, Benjamin L.; Inman, Daniel J.

    2007-04-01

    Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind turbine technology must be improved before the potential of wind power can be fully realized. Wind turbine blades are one of the key components in improving this technology. Blade failure is very costly because it can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful damage detection system incorporated into wind turbines could extend blade life and allow for less conservative designs. A damage detection method which has shown promise on a wide variety of structures is impedance-based structural health monitoring. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recently, advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. This paper investigates the feasibility of implementing such an onboard system inside of turbine blades as an in-field method of damage detection. Viability of onboard detection is accomplished by running a series of tests to verify the capability of the method on an actual wind turbine blade section from an experimental carbon/glass/balsa composite blade developed at Sandia National Laboratories.

  17. Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach

    NASA Astrophysics Data System (ADS)

    Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele

    2012-09-01

    The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.

  18. Bayesian superresolution

    NASA Astrophysics Data System (ADS)

    Isakson, Steve Wesley

    2001-12-01

    Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.

  19. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  20. Dead-time compensation for a logarithmic display rate meter

    DOEpatents

    Larson, John A.; Krueger, Frederick P.

    1988-09-20

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events.

  1. Dead-time compensation for a logarithmic display rate meter

    DOEpatents

    Larson, J.A.; Krueger, F.P.

    1987-10-05

    An improved circuit is provided for application to a radiation survey meter that uses a detector that is subject to dead time. The circuit compensates for dead time over a wide range of count rates by producing a dead-time pulse for each detected event, a live-time pulse that spans the interval between dead-time pulses, and circuits that average the value of these pulses over time. The logarithm of each of these values is obtained and the logarithms are subtracted to provide a signal that is proportional to a count rate that is corrected for the effects of dead time. The circuit produces a meter indication and is also capable of producing an audible indication of detected events. 5 figs.

  2. Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Namkung, Min

    2004-01-01

    In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.

  3. Human portable preconcentrator system

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.; Hannum, David W.; Puissant, James G.; Varley, Nathan R.

    2003-08-12

    A preconcentrator system and apparatus suited to human portable use wherein sample potentially containing a target chemical substance is drawn into a chamber and through a pervious screen. The screen is adapted to capture target chemicals and then, upon heating, to release those chemicals into the chamber. Chemicals captured and then released in this fashion are then carried to a portable chemical detection device such as a portable ion mobility spectrometer. In the preferred embodiment, the means for drawing sample into the chamber comprises a reversible fan which, when operated in reverse direction, creates a backpressure that facilitates evolution of captured target chemicals into the chamber when the screen is heated. The screen can be positioned directly in front of the detector prior to heating to improve detection capability.

  4. Evaluation of Current Planetary Boundary Layer Retrieval Capabilities from Space

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Schaefer, Alexander J.; Blaisdell, John; Yorks, John

    2016-01-01

    The PBL over land remains a significant gap in our water and energy cycle understanding from space. This work combines unique NASA satellite and model products to demonstrate the ability of current sensors (advanced IR sounding and lidar) to retrieve PBL properties and in turn their potential to be used globally to evaluate and improve weather and climate prediction models. While incremental progress has been made in recent AIRS retrieval versions, insufficient vertical resolution remains in terms of detecting PBL properties. Lidar shows promise in terms of detecting vertical gradients (and PBLh) in the lower troposphere, but daytime conditions over land remain a challenge due to noise, and their coverage is limited to approximately 2 weeks or longer return times.

  5. Ultrasonic flowmeters offer oil line leak-detection potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettrich, U.

    1995-04-01

    Ultrasonic flowmeters (USFM) installed on Transalpine Pipeline Co.`s (TAL) crude-oil system have proven to be a cost-effective flow measurement technique and beneficial in batch identification and leak detection. Through close examination, TAL has determined that clamp-on USFMs offer cost-saving advantages in installation, maintenance and operation. USFMs do not disturb pig passage. The technique also provides sound velocity capabilities, which can be used for liquid identification and batch tracking. The instruments have a repeatability of better than 0.25% and achieve an accuracy of better than 1%, depending on the flow profiles predictability. Using USFMs with multiple beams probably will improve accuracymore » further and it should be possible to find leaks even smaller than 1% of flow.« less

  6. Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.

    PubMed

    Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef

    2017-01-01

    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.

  7. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition

    NASA Astrophysics Data System (ADS)

    Adhikary, Prakriti; Biswas, Anirban; Mandal, Dipankar

    2016-12-01

    Composite nanofibers of Eu3+ doped poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))/graphene are prepared by the electrospinning technique for the fabrication of ultrasensitive wearable piezoelectric nanogenerators (WPNGs) where the post-poling technique is not necessary. It is found that the complete conversion of the piezoelectric β-phase and the improvement of the degree of crystallinity is governed by the incorporation of Eu3+ and graphene sheets into P(VDF-HFP) nanofibers. The flexible nanocomposite fibers are associated with a hypersensitive electronic transition that results in an intense red light emission, and WPNGs also have the capability of detecting external pressure as low as ~23 Pa with a higher degree of acoustic sensitivity, ~11 V Pa-1, than has ever been previously reported. This means that ultrasensitive WPNGs can be utilized to recognize human voices, which suggests they could be a potential tool in the biomedical and national security sectors. The capacitor’s ability to charge from abundant environmental vibrations, such as music, wind, body motion, etc, drives WPNGs as a power source for portable electronics. This fact may open up the prospect of using the Eu3+ doped P(VDF-HFP)/graphene composite electrospun nanofibers, with their multifunctional properties such as vibration sensitivity, wearability, red light emission capability and piezoelectric energy harvesting, for various promising applications in portable electronics, health care monitoring, noise detection and security monitoring.

  8. Gas electron multiplier (GEM) enhanced ionization chamber for fluorescence detector

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Kuczewski, A.

    2007-11-01

    Detecting dilute elements in thin materials using extended X-ray absorption fluorescence spectroscopy (EXAFS) method requires a detector capable of high count rate and low noise. For detection of dilute elements, the fluorescence signal amplitude is often overcome by the presence of noise or background interference. In this paper we have used a gas ionization chamber enhanced by a gas electron multiplier (GEM) to amplify the primary ionized electrons due to the X-ray fluorescence of a dilute element. The GEM provides an essentially noise free electron amplification of the signal primary photoelectrons. It provides a larger output current prior to the electronic amplification, allowing a lower gain amplifier with lower electronic circuit noise contribution and hence improved S/ N ratio. In addition, since the signal is produced only by electrons, and not from ion motion, the detector is capable of recording rapidly changing signals. Iron in an arbitrary tree leaf was used as a test sample. This sample was measured using our detector SUBRSAB, and also with Lytle and passivated implanted planar silicon (PIPS) detectors. An improvement in the signal amplitude by a factor of 20 and a factor of 2 are recorded for the proposed detector with respect to the Lytle and PIPS detectors, respectively. Although the gain in signal over the PIPS detector is small for this detector, its lack of sensitivity to light and its low and temperature-independent dark current are further advantages.

  9. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition.

    PubMed

    Adhikary, Prakriti; Biswas, Anirban; Mandal, Dipankar

    2016-12-09

    Composite nanofibers of Eu 3+ doped poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))/graphene are prepared by the electrospinning technique for the fabrication of ultrasensitive wearable piezoelectric nanogenerators (WPNGs) where the post-poling technique is not necessary. It is found that the complete conversion of the piezoelectric β-phase and the improvement of the degree of crystallinity is governed by the incorporation of Eu 3+ and graphene sheets into P(VDF-HFP) nanofibers. The flexible nanocomposite fibers are associated with a hypersensitive electronic transition that results in an intense red light emission, and WPNGs also have the capability of detecting external pressure as low as ~23 Pa with a higher degree of acoustic sensitivity, ~11 V Pa -1 , than has ever been previously reported. This means that ultrasensitive WPNGs can be utilized to recognize human voices, which suggests they could be a potential tool in the biomedical and national security sectors. The capacitor's ability to charge from abundant environmental vibrations, such as music, wind, body motion, etc, drives WPNGs as a power source for portable electronics. This fact may open up the prospect of using the Eu 3+ doped P(VDF-HFP)/graphene composite electrospun nanofibers, with their multifunctional properties such as vibration sensitivity, wearability, red light emission capability and piezoelectric energy harvesting, for various promising applications in portable electronics, health care monitoring, noise detection and security monitoring.

  10. Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors.

    PubMed

    Wang, Rui; Li, Tao; Shao, Xiumei; Li, Xue; Huang, Xiaqi; Shao, Jinhai; Chen, Yifang; Gong, Haimei

    2015-07-08

    There are currently growing needs for polarimetric imaging in infrared wavelengths for broad applications in bioscience, communications and agriculture, etc. Subwavelength metallic gratings are capable of separating transverse magnetic (TM) mode from transverse electric (TE) mode to form polarized light, offering a reliable approach for the detection in polarization way. This work aims to design and fabricate subwavelength gold gratings as polarizers for InP-based InGaAs sensors in 1.0-1.6 μm. The polarization capability of gold gratings on InP substrate with pitches in the range of 200-1200 nm (fixed duty cycle of 0.5) has been systematically studied by both theoretical modeling with a finite-difference time-domain (FDTD) simulator and spectral measurements. Gratings with 200 nm lines/space in 100-nm-thick gold have been fabricated by electron beam lithography (EBL). It was found that subwavelength gold gratings directly integrated on InP cannot be applied as good polarizers, because of the existence of SPP modes in the detection wavelengths. An effective solution has been found by sandwiching the Au/InP bilayer using a 200 nm SiO2 layer, leading to significant improvement in both TM transmission and extinction ratio. At 1.35 μm, the improvement factors are 8 and 10, respectively. Therefore, it is concluded that the Au/SiO2/InP trilayer should be a promising candidate of near-infrared polarizers for the InP-based InGaAs sensors.

  11. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  12. Assessment of Satellite Capabilities to Detect Impacts of Oil and Natural Gas Activity by Analysis of SONGNEX 2015 Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Thayer, M. P.; Keutsch, F. N.; Wolfe, G.; St Clair, J. M.; Hanisco, T. F.; Aikin, K. C.; Brown, S. S.; Dubé, W.; Eilerman, S. J.; Gilman, J.; De Gouw, J. A.; Koss, A.; Lerner, B. M.; Neuman, J. A.; Peischl, J.; Ryerson, T. B.; Thompson, C. R.; Veres, P. R.; Warneke, C.; Washenfelder, R. A.; Wild, R. J.; Womack, C.; Yuan, B.; Zarzana, K. J.

    2017-12-01

    In the last decade, the rate of domestic energy production from oil and natural gas has grown dramatically, resulting in increased concurrent emissions of methane and other volatile organic compounds (VOCs). Products of VOC oxidation and radical cycling, such as tropospheric ozone (O3) and secondary organic aerosols (SOA), have detrimental impacts on human health and climate. The ability to monitor these emissions and their impact on atmospheric composition from remote-sensing platforms will benefit public health by improving air quality forecasts and identifying localized drivers of tropospheric pollution. New satellite-based instruments, such as TROPOMI (October 2017 launch) and TEMPO (2019-2021 projected launch), will be capable of measuring chemical species related to energy drilling and production on unprecedented spatial and temporal scales, however there is need for improved assessments of their capabilities with respect to specific applications. We use chemical and physical parameters measured via aircraft in the boundary layer and free troposphere during the Shale Oil and Natural Gas Nexus (SONGNEX 2015) field campaign to view chemical enhancements over tight oil and shale gas basins from a satellite perspective. Our in-situ data are used to calculate the planetary boundary layer contributions to the column densities for formaldehyde, glyoxal, O3, and NO2. We assess the spatial resolution and chemical precisions necessary to resolve various chemical features, and compare these limits to TEMPO and TROPOMI capabilities to show the degree to which their retrievals will be able to discern the signatures of oil and natural gas activity.

  13. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks

    PubMed Central

    Alanazi, Adwan; Elleithy, Khaled

    2016-01-01

    Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048

  14. An Optimized Hidden Node Detection Paradigm for Improving the Coverage and Network Efficiency in Wireless Multimedia Sensor Networks.

    PubMed

    Alanazi, Adwan; Elleithy, Khaled

    2016-09-07

    Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.

  15. a Landsat Time-Series Stacks Model for Detection of Cropland Change

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, J.; Zhang, J.

    2017-09-01

    Global, timely, accurate and cost-effective cropland monitoring with a fine spatial resolution will dramatically improve our understanding of the effects of agriculture on greenhouse gases emissions, food safety, and human health. Time-series remote sensing imagery have been shown particularly potential to describe land cover dynamics. The traditional change detection techniques are often not capable of detecting land cover changes within time series that are severely influenced by seasonal difference, which are more likely to generate pseuso changes. Here,we introduced and tested LTSM ( Landsat time-series stacks model), an improved Continuous Change Detection and Classification (CCDC) proposed previously approach to extract spectral trajectories of land surface change using a dense Landsat time-series stacks (LTS). The method is expected to eliminate pseudo changes caused by phenology driven by seasonal patterns. The main idea of the method is that using all available Landsat 8 images within a year, LTSM consisting of two term harmonic function are estimated iteratively for each pixel in each spectral band .LTSM can defines change area by differencing the predicted and observed Landsat images. The LTSM approach was compared with change vector analysis (CVA) method. The results indicated that the LTSM method correctly detected the "true change" without overestimating the "false" one, while CVA pointed out "true change" pixels with a large number of "false changes". The detection of change areas achieved an overall accuracy of 92.37 %, with a kappa coefficient of 0.676.

  16. Resonant fiber optic gyro based on a sinusoidal wave modulation and square wave demodulation technique.

    PubMed

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2016-04-20

    New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.

  17. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  18. NASA-STD-6001B Test 7: Impact of Test Methodology and Detection Advancements on the Obsolescence of Historical Offgas Data

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Woods, Brenton; Harper, Susana A.; Beeson, Harold D.; Perez, Horacio; Ryder, Valerie; Tapia, Alma S.; Pedley, Michael D.

    2017-01-01

    NASA-STD-6001B states "all nonmetals tested in accordance with NASA-STD-6001 should be retested every 10 years or as required by the responsible program/project." The retesting of materials helps ensure the most accurate data are used in material selection. Manufacturer formulas and processes can change over time, sometimes without an update to product number and material information. Material performance in certain NASA-STD-6001 tests can be particularly vulnerable to these changes, such as material offgas (Test 7). In addition, Test 7 analysis techniques at NASA White Sands Test Facility were dramatically enhanced in the early 1990s, resulting in improved detection capabilities. Low level formaldehyde identification was improved again in 2004. Understanding the limitations in offgas analysis data prior to 1990 puts into question the validity and current applicability of that data. Case studies on Super Koropon (Registered trademark) and Aeroglaze (Registered trademark) topcoat highlight the importance of material retesting.

  19. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  20. Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo

    2018-01-01

    The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.

  1. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar.

    PubMed

    Hu, Xikun; Jin, Tian

    2016-11-30

    The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.

  2. UWB radar technique for arc detection in coaxial cables

    NASA Astrophysics Data System (ADS)

    Salvador, Sara; Maggiora, Riccardo

    2010-11-01

    UWB signals constituted by a sequence of chips (properly chosen to reduce side lobes and to improve detection accuracy) are transmitted along the transmission lines at a specified Pulse Repetition Frequency (PRF) and their echoes are received by means of directional couplers. The core of the receiver is an ultra high-speed correlator implemented in a Digital Signal Processor (DSP). When a target (arc) is detected, its position and its ``radar cross section'' are calculated to be able to provide the arc position along the transmission line and to be able to classify the type of detected arc. The ``background scattering'' is routinely extracted from the received signal at any pulse. This permits to be resilient to the background structure of transmission lines (bends, junctions, windows, etc.). Thanks to the localization feature, segmentation is also possible for creating sensed and non- sensed zones (for example, to be insensitive to antenna load variations). A complete test bed has been installed using standard coaxial cables (RG58) to demonstrate the system capabilities.

  3. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  4. VLSI Design of SVM-Based Seizure Detection System With On-Chip Learning Capability.

    PubMed

    Feng, Lichen; Li, Zunchao; Wang, Yuanfa

    2018-02-01

    Portable automatic seizure detection system is very convenient for epilepsy patients to carry. In order to make the system on-chip trainable with high efficiency and attain high detection accuracy, this paper presents a very large scale integration (VLSI) design based on the nonlinear support vector machine (SVM). The proposed design mainly consists of a feature extraction (FE) module and an SVM module. The FE module performs the three-level Daubechies discrete wavelet transform to fit the physiological bands of the electroencephalogram (EEG) signal and extracts the time-frequency domain features reflecting the nonstationary signal properties. The SVM module integrates the modified sequential minimal optimization algorithm with the table-driven-based Gaussian kernel to enable efficient on-chip learning. The presented design is verified on an Altera Cyclone II field-programmable gate array and tested using the two publicly available EEG datasets. Experiment results show that the designed VLSI system improves the detection accuracy and training efficiency.

  5. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging.

    PubMed

    Gurton, Kristan P; Felton, Melvin

    2012-09-24

    We report results of an ongoing study designed to assess the ability for enhanced detection of recently buried land-mines and/or improvised explosive devices (IED) devices using passive long-wave infrared (LWIR) polarimetric imaging. Polarimetric results are presented for a series of field tests conducted at various locations and soil types. Well-calibrated Stokes images, S0, S1, S2, and the degree-of-linear-polarization (DoLP) are recorded for different line-of-sight (LOS) slant paths at varying distances. Results span a three-year time period in which three different LWIR polarimetric camera systems are used. All three polarimetric imaging platforms used a spinning-achromatic-retarder (SAR) design capable of achieving high polarimetric frame rates and good radiometric throughput without the loss of spatial resolution inherent in other optical designs. Receiver-operating-characteristic (ROC) analysis and a standardized contrast parameter are used to compare detectability between conventional LWIR thermal and polarimetric imagery. Results suggest improved detectability, regardless of geographic location or soil type.

  6. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study ofmore » a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO 2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO 2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.« less

  7. Advances in explosives analysis—part II: photon and neutron methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-07

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. Our review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. In Part II, we review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  8. High Mobility Group Box 1 Protein as an Auxiliary Biomarker for Dengue Diagnosis

    PubMed Central

    Allonso, Diego; Vázquez, Susana; Guzmán, Maria G.; Mohana-Borges, Ronaldo

    2013-01-01

    Despite the availability of many methods for rapid and early diagnosis of dengue, there is still a need to develop new approaches that not only combine low cost, specificity, and sensitivity, but also are capable of accurately detecting secondary infection in the early stages of the disease. We report the potential of the high mobility group box 1 protein as an auxiliary biomarker for early dengue diagnosis. We tested a 205-sample serum panel that included negative and positive samples from primary and secondary dengue cases, as well as samples from patients with dengue-like symptoms. We observed that high mobility group box 1 protein was generally detected only in dengue-positive samples for persons with primary and secondary infections. These results highlight the possibility of using this endogenous molecule as an auxiliary biomarker to aid in dengue detection and improve current methods for early diagnosis of dengue. PMID:23269659

  9. Parts per Million Powder X-ray Diffraction

    DOE PAGES

    Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...

    2015-10-14

    Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less

  10. Particle swarm optimization algorithm based parameters estimation and control of epileptiform spikes in a neural mass model

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan

    2016-07-01

    This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.

  11. Advances in explosives analysis—part I. animal, chemical, ion, and mechanical methods

    DOE PAGES

    Brown, Kathryn E.; Greenfield, Margo T.; McGrane, Shawn D.; ...

    2015-10-13

    The number and capability of explosives detection and analysis methods have increased substantially since the publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis (Moore and Goodpaster, Anal Bioanal Chem 395(2):245–246, 2009). We review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Moreover, Part I, reviews methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers,more » electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. Part II will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.« less

  12. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-08-21

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.

  13. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  14. Predictions for Swift Follow-up Observations of Advanced LIGO/Virgo Gravitational Wave Sources

    NASA Astrophysics Data System (ADS)

    Racusin, Judith; Evans, Phil; Connaughton, Valerie

    2015-04-01

    The likely detection of gravitational waves associated with the inspiral of neutron star binaries by the upcoming advanced LIGO/Virgo observatories will be complemented by searches for electromagnetic counterparts over large areas of the sky by Swift and other observatories. As short gamma-ray bursts (GRB) are the most likely electromagnetic counterpart candidates to these sources, we can make predictions based upon the last decade of GRB observations by Swift and Fermi. Swift is uniquely capable of accurately localizing new transients rapidly over large areas of the sky in single and tiled pointings, enabling ground-based follow-up. We describe simulations of the detectability of short GRB afterglows by Swift given existing and hypothetical tiling schemes with realistic observing conditions and delays, which guide the optimal observing strategy and improvements provided by coincident detection with observatories such as Fermi-GBM.

  15. Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Parker, F. Raymond

    2014-01-01

    Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.

  16. An integrated strategy combining DNA walking and NGS to detect GMOs.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The recognition of extraterrestrial artificial signals

    NASA Technical Reports Server (NTRS)

    Seeger, C. L.

    1980-01-01

    Considerations in the design of receivers for the detection and recognition of artificial microwave signals of extraterrestrial origin are discussed. Following a review of the objectives of SETI and the probable reception and detection characteristics of extraterrestrial signals, means for the improvement of the sensitivity, signal-to-noise ratios and on-line data processing capabilities of SETI receivers are indicated. The characteristics of the signals likely to be present at the output of an ultra-low-noise microwave receiver are then examined, including the system background noise, terrestrial radiations, astrophysical radiations, accidental artificial radiations of terrestrial origin, and intentional radiations produced by humans and by extraterrestrial intelligence. The classes of extraterrestrial signals likely to be detected, beacons and leakage signals, are considered, and options in the specification of gating and thresholding for a high-spectral resolution, high-time-resolution signal discriminator are indicated. Possible tests for the nonhuman origin of a received signal are also pointed out.

  18. Integrated multisensor perimeter detection systems

    NASA Astrophysics Data System (ADS)

    Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.

    2007-10-01

    The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.

  19. Improvements in Virtual Sensors: Using Spatial Information to Estimate Remote Sensing Spectra

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Srivastava, Ashok N.; Stroeve, Julienne

    2005-01-01

    Various instruments are used to create images of the Earth and other objects in the universe in a diverse set of wavelength bands with the aim of understanding natural phenomena. Sometimes these instruments are built in a phased approach, with additional measurement capabilities added in later phases. In other cases, technology may mature to the point that the instrument offers new measurement capabilities that were not planned in the original design of the instrument. In still other cases, high resolution spectral measurements may be too costly to perform on a large sample and therefore lower resolution spectral instruments are used to take the majority of measurements. Many applied science questions that are relevant to the earth science remote sensing community require analysis of enormous amounts of data that were generated by instruments with disparate measurement capabilities. In past work [1], we addressed this problem using Virtual Sensors: a method that uses models trained on spectrally rich (high spectral resolution) data to "fill in" unmeasured spectral channels in spectrally poor (low spectral resolution) data. We demonstrated this method by using models trained on the high spectral resolution Terra MODIS instrument to estimate what the equivalent of the MODIS 1.6 micron channel would be for the NOAA AVHRR2 instrument. The scientific motivation for the simulation of the 1.6 micron channel is to improve the ability of the AVHRR2 sensor to detect clouds over snow and ice. This work contains preliminary experiments demonstrating that the use of spatial information can improve our ability to estimate these spectra.

  20. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.

    PubMed

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2016-12-01

    In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.

  1. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  2. Assessing organizational readiness for depression care quality improvement: relative commitment and implementation capability.

    PubMed

    Rubenstein, Lisa V; Danz, Marjorie S; Crain, A Lauren; Glasgow, Russell E; Whitebird, Robin R; Solberg, Leif I

    2014-12-02

    Depression is a major cause of morbidity and cost in primary care patient populations. Successful depression improvement models, however, are complex. Based on organizational readiness theory, a practice's commitment to change and its capability to carry out the change are both important predictors of initiating improvement. We empirically explored the links between relative commitment (i.e., the intention to move forward within the following year) and implementation capability. The DIAMOND initiative administered organizational surveys to medical and quality improvement leaders from each of 83 primary care practices in Minnesota. Surveys preceded initiation of activities directed at implementation of a collaborative care model for improving depression care. To assess implementation capability, we developed composites of survey items for five types of organizational factors postulated to be collaborative care barriers and facilitators. To assess relative commitment for each practice, we averaged leader ratings on an identical survey question assessing practice priorities. We used multivariable regression analyses to assess the extent to which implementation capability predicted relative commitment. We explored whether relative commitment or implementation capability measures were associated with earlier initiation of DIAMOND improvements. All five implementation capability measures independently predicted practice leaders' relative commitment to improving depression care in the following year. These included the following: quality improvement culture and attitudes (p = 0.003), depression culture and attitudes (p <0.001), prior depression quality improvement activities (p <0.001), advanced access and tracking capabilities (p = 0.03), and depression collaborative care features in place (p = 0.03). Higher relative commitment (p = 0.002) and prior depression quality improvement activities appeared to be associated with earlier participation in the DIAMOND initiative. The study supports the concept of organizational readiness to improve quality of care and the use of practice leader surveys to assess it. Practice leaders' relative commitment to depression care improvement may be a useful measure of the likelihood that a practice is ready to initiate evidence-based depression care changes. A comprehensive organizational assessment of implementation capability for depression care improvement may identify specific barriers or facilitators to readiness that require targeted attention from implementers.

  3. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.

    PubMed

    Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-07-13

    The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.

  4. Developing open source, self-contained disease surveillance software applications for use in resource-limited settings

    PubMed Central

    2012-01-01

    Background Emerging public health threats often originate in resource-limited countries. In recognition of this fact, the World Health Organization issued revised International Health Regulations in 2005, which call for significantly increased reporting and response capabilities for all signatory nations. Electronic biosurveillance systems can improve the timeliness of public health data collection, aid in the early detection of and response to disease outbreaks, and enhance situational awareness. Methods As components of its Suite for Automated Global bioSurveillance (SAGES) program, The Johns Hopkins University Applied Physics Laboratory developed two open-source, electronic biosurveillance systems for use in resource-limited settings. OpenESSENCE provides web-based data entry, analysis, and reporting. ESSENCE Desktop Edition provides similar capabilities for settings without internet access. Both systems may be configured to collect data using locally available cell phone technologies. Results ESSENCE Desktop Edition has been deployed for two years in the Republic of the Philippines. Local health clinics have rapidly adopted the new technology to provide daily reporting, thus eliminating the two-to-three week data lag of the previous paper-based system. Conclusions OpenESSENCE and ESSENCE Desktop Edition are two open-source software products with the capability of significantly improving disease surveillance in a wide range of resource-limited settings. These products, and other emerging surveillance technologies, can assist resource-limited countries compliance with the revised International Health Regulations. PMID:22950686

  5. Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.

    PubMed

    Berti, Francesca; Todros, Silvia; Lakshmi, Dhana; Whitcombe, Michael J; Chianella, Iva; Ferroni, Matteo; Piletsky, Sergey A; Turner, Anthony P F; Marrazza, Giovanna

    2010-10-15

    Recent advances in nanotechnology have allowed significant progress in utilising cutting-edge techniques associated with nanomaterials and nano-fabrication to expand the scope and capability of biosensors to a new level of novelty and functionality. The aim of this work was the development and characterisation of conductive polyaniline (PANI) nanostructures for applications in electrochemical biosensing. We explore a simple, inexpensive and fast route to grow PANI nanotubes, arranged in an ordered structure directly on an electrode surface, by electrochemical polymerisation using alumina nanoporous membranes as a 'nano-mould'. The deposited nanostructures have been characterised electrochemically and morphologically prior to grafting with a molecularly imprinted polymer (MIP) receptor in order to create a model sensor for catechol detection. In this way, PANI nanostructures resulted in a conductive nanowire system which allowed direct electrical connection between the electrode and the synthetic receptor (MIP). To our knowledge, this is the first example of integration between molecularly imprinted polymers and PANI nanostructured electrodes. The advantages of using nanostructures in this particular biosensing application have been evaluated by comparing the analytical performance of the sensor with an analogous non-nanostructured MIP-sensor for catechol detection that was previously developed. A significantly lower limit of detection for catechol has been obtained (29 nM, one order of magnitude), thus demonstrating that the nanostructures are capable of improving the analytical performance of the sensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  7. Improved integrated sniper location system

    NASA Astrophysics Data System (ADS)

    Figler, Burton D.; Spera, Timothy J.

    1999-01-01

    In July of 1995, Lockheed Martin IR Imaging Systems, of Lexington, Massachusetts began the development of an integrated sniper location system for the Defense Advanced Research Projects Agency and for the Department of the Navy's Naval Command Control & Ocean Surveillance Center, RDTE Division in San Diego, California. The I-SLS integrates acoustic and uncooled infrared sensing technologies to provide an affordable and highly effective sniper detection and location capability. This system, its performance and results from field tests at Camp Pendleton, California, in October 1996 were described in a paper presented at the November 1996 SPIE Photonics East Symposium1 on Enabling Technologies for Law Enforcement and Security. The I-SLS combines an acoustic warning system with an uncooled infrared warning system. The acoustic warning system has been developed by SenTech, Inc., of Lexington, Massachusetts. This acoustic warning system provides sniper detection and coarse location information based upon the muzzle blast of the sniper's weapon and/or upon the shock wave produced by the sniper's bullet, if the bullet is supersonic. The uncooled infrared warning system provides sniper detection and fine location information based upon the weapon's muzzle flash. In addition, the uncooled infrared warning system can provide thermal imagery that can be used to accurately locate and identify the sniper. Combining these two technologies improves detection probability, reduces false alarm rate and increases utility. In the two years since the last report of the integrated sniper location system, improvements have been made and a second field demonstration was planned. In this paper, we describe the integrated sniper location system modifications in preparation for the new field demonstration. In addition, fundamental improvements in the uncooled infrared sensor technology continue to be made. These improvements include higher sensitivity (lower minimum resolvable temperature), higher spatial resolution, and smaller size. This paper will describe the implementation and status of these improvements.

  8. UltraSensitive Mycotoxin Detection by STING Sensors

    PubMed Central

    Actis, Paolo; Jejelowo, Olufisayo; Pourmand, Nader

    2010-01-01

    Signal Transduction by Ion Nano Gating (STING) technology is a label-free biosensor capable of identifying DNA and proteins. Based on a functionalized quartz nanopipette, the STING sensor includes specific recognition elements for analyte discrimination based on size, shape and charge density. A key feature of this technology is that it doesn't require any nanofabrication facility; each nanopipette can be easily, reproducibly, and inexpensively fabricated and tailored at the bench, thus reducing the cost and the turnaround time. Here, we show that STING sensors are capable of the ultrasensitive detection of HT-2 toxin with a detection limit of 100 fg/ml and compare the STING capabilities with respect to conventional sandwich assay techniques. PMID:20829024

  9. Cassette bacteria detection system. [for monitoring the sterility of regenerated water in spacecraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, fabrication, and testing of an automatic bacteria detection system, with a zero-g capability, based on the filter-capable approach, and intended for monitoring the sterility of regenerated water in spacecraft is discussed. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. High signals for the incubated water sample indicate the presence of viable organisms.

  10. Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography.

    PubMed

    Dai, Meng; Wang, Liang; Xu, Canhua; Li, Lianfeng; Gao, Guodong; Dong, Xiuzhen

    2010-09-01

    Subarachnoid hemorrhage (SAH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although the present medical imaging techniques generally have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring SAH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of SAH modeled on eight piglets in real time, with the subsequent process being monitored continuously. The experimental SAH model was introduced by one-time injection of 5 ml fresh autologous arterial blood into the cisterna magna. Results showed that resistivity variations within the brain caused by the added blood could be detected using the EIT method and may be associated not only with the resistivity difference among brain tissues, but also with variations of cerebrospinal fluid dynamics. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for SAH after the improvement of electrode design, anisotropic realistic modeling and instrumentation.

  11. Normal-inverse bimodule operation Hadamard transform ion mobility spectrometry.

    PubMed

    Hong, Yan; Huang, Chaoqun; Liu, Sheng; Xia, Lei; Shen, Chengyin; Chu, Yannan

    2018-10-31

    In order to suppress or eliminate the spurious peaks and improve signal-to-noise ratio (SNR) of Hadamard transform ion mobility spectrometry (HT-IMS), a normal-inverse bimodule operation Hadamard transform - ion mobility spectrometry (NIBOHT-IMS) technique was developed. In this novel technique, a normal and inverse pseudo random binary sequence (PRBS) was produced in sequential order by an ion gate controller and utilized to control the ion gate of IMS, and then the normal HT-IMS mobility spectrum and the inverse HT-IMS mobility spectrum were obtained. A NIBOHT-IMS mobility spectrum was gained by subtracting the inverse HT-IMS mobility spectrum from normal HT-IMS mobility spectrum. Experimental results demonstrate that the NIBOHT-IMS technique can significantly suppress or eliminate the spurious peaks, and enhance the SNR by measuring the reactant ions. Furthermore, the gas CHCl 3 and CH 2 Br 2 were measured for evaluating the capability of detecting real sample. The results show that the NIBOHT-IMS technique is able to eliminate the spurious peaks and improve the SNR notably not only for the detection of larger ion signals but also for the detection of small ion signals. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Production of beta-gamma coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

    NASA Astrophysics Data System (ADS)

    Haas, Derek Anderson

    Radioactive xenon gas is a fission product released in the detonation of nuclear devices that can be detected in atmospheric samples far from the detonation site. In order to improve the capabilities of radioxenon detection systems, this work produces beta-gamma coincidence spectra of individual isotopes of radioxenon. Previous methods of radioxenon production consisted of the removal of mixed isotope samples of radioxenon gas released from fission of contained fissile materials such as 235U. In order to produce individual samples of the gas, isotopically enriched stable xenon gas is irradiated with neutrons. The detection of the individual isotopes is also modeled using Monte Carlo simulations to produce spectra. The experiment shows that samples of 131mXe, 133 Xe, and 135Xe with a purity greater than 99% can be produced, and that a sample of 133mXe can be produced with a relatively low amount of 133Xe background. These spectra are compared to models and used as essential library data for the Spectral Deconvolution Analysis Tool (SDAT) to analyze atmospheric samples of radioxenon for evidence of nuclear events.

  13. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  14. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  16. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  17. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  18. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  19. The Mini-CAPTAIN Neutron Run and Future CAPTAIN Program

    NASA Astrophysics Data System (ADS)

    Cooper, Robert; CAPTAIN Collaboration

    2016-09-01

    The Cryogenic Apparatus for Precision Tests of Argon Interaction with Neutrinos (CAPTAIN) is an experimental program to measure critical neutrino interaction cross sections in argon for the DUNE long-baseline program. These cross sections are important for understanding and improving the energy resolution of measurements for neutrino oscillations and supernova detection in argon. The full CAPTAIN detector is a 5-ton fiducial volume liquid argon (LAr) time-projection chamber (TPC) with an independently triggered photon detection system (PDS) for fast-timing capabilities on accelerators. To test the full CAPTAIN concept, the 1-ton fiducial volume mini-CAPTAIN detector has been deployed. Mini-CAPTAIN is another LAr TPC with PDS. It was recently deployed to the Weapons Neutron Research (WNR) facility at Los Alamos National Laboratory to measure high-energy neutron interactions in argon. The WNR is a pulsed accelerator capable of delivering neutrons up to 800 MeV in energy. In this talk, I will report on the analysis of the first time-of-flight tagged, high-energy neutron response in liquid argon from our February 2016 run. I will also highlight a second neutron run at the WNR scheduled for Summer 2017 and discuss the implications these data have on the future CAPTAIN program.

  20. Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.

    PubMed

    Yu, Zhe; McKnight, Timothy E; Ericson, M Nance; Melechko, Anatoli V; Simpson, Michael L; Morrison, Barclay

    2012-05-01

    Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell. The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Lessons learned in the execution of advanced x-ray material discrimination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Young, Sharene

    2017-05-01

    Advanced X-ray Material Discrimination (AXMD) or BAA 13-05 was a broad agency announcement which was initiated in order to develop solutions to the following problem. The emergence of improvised explosive threats and their use by terrorists has placed many challenges on the aviation security screening layers. EDS and AT X-ray equipment have been presented with considerable challenges in developing a broad detection capability for improvised explosive threats during security screening of checked bags and carry-on items. Technologies are needed that increase the measurement or mathematical discrimination between improvised explosive threats and stream-of-commerce clutter in checked baggage and carry-on items. Conventional EDS utilizes two basic discriminating signatures: effective atomic number and density of screened objects. R and D is needed to identify additional discriminating signatures between improvised explosive threats and stream-of commerce clutter to improve detection capability with reduced false alarm rates. DHS S and T EXD along with stakeholders at the TSA, TSL, and the UK Home Office have been successful in funding efforts to address and potentially provide operational solutions which can be deployed as part of the Next Generation of X-ray Technologies.

  2. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments.

    PubMed

    Ramon Soria, Pablo; Arrue, Begoña C; Ollero, Anibal

    2017-01-07

    The article presents a vision system for the autonomous grasping of objects with Unmanned Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends their applications, as they are capable of accessing places that are difficult to reach or even unreachable for human beings. This work is focused on the grasping of known objects based on feature models. The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm. The algorithm learns a feature-based model in an offline stage, then it is used online for detection of the targeted object and estimation of its position. This feature-based model was proved to be robust to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage, providing 3D information and helping to filter features in the online stage. An experimental system was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic arm is designed with three degrees of freedom and is lightweight due to payload limitations of the UAV. The system has been validated with different objects, both indoors and outdoors.

  3. Final report for LDRD project 11-0029 : high-interest event detection in large-scale multi-modal data sets : proof of concept.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrer, Brandon Robinson

    2011-09-01

    Events of interest to data analysts are sometimes difficult to characterize in detail. Rather, they consist of anomalies, events that are unpredicted, unusual, or otherwise incongruent. The purpose of this LDRD was to test the hypothesis that a biologically-inspired anomaly detection algorithm could be used to detect contextual, multi-modal anomalies. There currently is no other solution to this problem, but the existence of a solution would have a great national security impact. The technical focus of this research was the application of a brain-emulating cognition and control architecture (BECCA) to the problem of anomaly detection. One aspect of BECCA inmore » particular was discovered to be critical to improved anomaly detection capabilities: it's feature creator. During the course of this project the feature creator was developed and tested against multiple data types. Development direction was drawn from psychological and neurophysiological measurements. Major technical achievements include the creation of hierarchical feature sets created from both audio and imagery data.« less

  4. Optical heterogeneous bioassay for the detection of the inflammatory biomarker suPAR

    NASA Astrophysics Data System (ADS)

    Tombelli, S.; Trono, C.; Adinolfi, B.; Chiavaioli, F.; Giannetti, A.; Eugen-Olsen, J.; Bernini, R.; Grimaldi, I. A.; Persichetti, G.; Testa, G.; Baldini, F.

    2015-03-01

    Soluble urokinase plasminogen activator receptor (suPAR) is an inflammatory protein present in blood and a marker of disease presence, severity and prognosis. A heterogeneous sandwich assay is proposed for quantifying suPAR by employing a capture antibody from rat and a biotinylated detection antibody from mouse. Optical detection was achieved by a successive exposure of the biotinylated sandwich to streptavidin labelled with ATTO647N. The heterogeneous assay was implemented on a multichannel polymethylmetacrylate (PMMA) optical biochip, potentially capable of the simultaneous detection of more than one analyte. Capture antibody was immobilized on the PMMA surface of the microfluidic channel and the assay was performed with the following protocol: i) surface blocking with BSA, ii) incubation with suPAR or PBS, iii) incubation with biotinylated suPAR detection Ab and iv) incubation with streptavidin-ATTO647N. Promising preliminary results were obtained with this protocol. Moreover, an improved optical setup is proposed which avoids the mechanical scanning of the chip and consequently the in-series fluorescence excitation and read out, allowing the simultaneous measurement of the fluorescence on all the channels of the microfluidic chip.

  5. Utilizing Intrinsic Properties of Polyaniline to Detect Nucleic Acid Hybridization through UV-Enhanced Electrostatic Interaction.

    PubMed

    Sengupta, Partha Pratim; Gloria, Jared N; Amato, Dahlia N; Amato, Douglas V; Patton, Derek L; Murali, Beddhu; Flynt, Alex S

    2015-10-12

    Detection of specific RNA or DNA molecules by hybridization to "probe" nucleic acids via complementary base-pairing is a powerful method for analysis of biological systems. Here we describe a strategy for transducing hybridization events through modulating intrinsic properties of the electroconductive polymer polyaniline (PANI). When DNA-based probes electrostatically interact with PANI, its fluorescence properties are increased, a phenomenon that can be enhanced by UV irradiation. Hybridization of target nucleic acids results in dissociation of probes causing PANI fluorescence to return to basal levels. By monitoring restoration of base PANI fluorescence as little as 10(-11) M (10 pM) of target oligonucleotides could be detected within 15 min of hybridization. Detection of complementary oligos was specific, with introduction of a single mismatch failing to form a target-probe duplex that would dissociate from PANI. Furthermore, this approach is robust and is capable of detecting specific RNAs in extracts from animals. This sensor system improves on previously reported strategies by transducing highly specific probe dissociation events through intrinsic properties of a conducting polymer without the need for additional labels.

  6. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  7. Statistical Tests of Reliability of NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.

    1987-01-01

    Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.

  8. Current and Future Applications of Multispectral (RGB) Satellite Imagery for Weather Analysis and Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; LaFontaine, Frank; McGrath, Kevin; Smith, Matt

    2013-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low ]Earth orbits. The NASA Short ]term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA fs Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channels available from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) aboard METEOSAT ]9. This broader suite includes products that discriminate between air mass types associated with synoptic ]scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES ]R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar ]Orbiting Partnership (S ]NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross ]track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites. New applications from VIIRS extend multispectral composites available from MODIS and SEVIRI while adding new capabilities through incorporation of additional CrIS channels or information from the Near Constant Contrast or gDay ]Night Band h, which provides moonlit reflectance from clouds and detection of fires or city lights. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and recent applications within the operational forecasting environment

  9. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.

  10. Short National Early Warning Score - Developing a Modified Early Warning Score.

    PubMed

    Luís, Leandro; Nunes, Carla

    2017-12-11

    Early Warning Score (EWS) systems have been developed for detecting hospital patients clinical deterioration. Many studies show that a National Early Warning Score (NEWS) performs well in discriminating survival from death in acute medical and surgical hospital wards. NEWS is validated for Portugal and is available for use. A simpler EWS system may help to reduce the risk of error, as well as increase clinician compliance with the tool. The aim of the study was to evaluate whether a simplified NEWS model will improve use and data collection. We evaluated the ability of single and aggregated parameters from the NEWS model to detect patients' clinical deterioration in the 24h prior to an outcome. There were 2 possible outcomes: Survival vs Unanticipated intensive care unit admission or death. We used binary logistic regression models and Receiver Operating Characteristic Curves (ROC) to evaluate the parameters' performance in discriminating among the outcomes for a sample of patients from 6 Portuguese hospital wards. NEWS presented an excellent discriminating capability (Area under the Curve of ROC (AUCROC)=0.944). Temperature and systolic blood pressure (SBP) parameters did not contribute significantly to the model. We developed two different models, one without temperature, and the other by removing temperature and SBP (M2). Both models had an excellent discriminating capability (AUCROC: 0.965; 0.903, respectively) and a good predictive power in the optimum threshold of the ROC curve. The 3 models revealed similar discriminant capabilities. Although the use of SBP is not clearly evident in the identification of clinical deterioration, it is recognized as an important vital sign. We recommend the use of the first new model, as its simplicity may help to improve adherence and use by health care workers. Copyright © 2017 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  11. SiD Linear Collider Detector R&D, DOE Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James E.; Demarteau, Marcel

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Siliconmore » detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and are described in this report.« less

  12. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  13. Detection, location, and characterization of hydroacoustic signals using seafloor cable networks offshore Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Sugioka, H.; Suyehiro, K.; Shinohara, M.

    2009-12-01

    The hydroacoustic monitoring by the International Monitoring System (IMS) for Comprehensive Nuclear-Test-Treaty (CTBT) verification system utilize hydrophone stations and seismic stations called T-phase stations for worldwide detection. Some signals of natural origin include those from earthquakes, submarine volcanic eruptions, or whale calls. Among artificial sources there are non-nuclear explosions and air-gun shots. It is important for IMS system to detect and locate hydroacoustic events with sufficient accuracy and correctly characterize the signals and identify the source. As there are a number of seafloor cable networks operated offshore Japanese islands basically facing the Pacific Ocean for monitoring regional seismicity, the data from these stations (pressures, hydrophones and seismic sensors) may be utilized to verify and increase the capability of the IMS. We use these data to compare some selected event parameters with those by Pacific in the time period of 2004-present. These anomalous examples and also dynamite shots used for seismic crustal structure studies and other natural sources will be presented in order to help improve the IMS verification capabilities for detection, location and characterization of anomalous signals. The seafloor cable networks composed of three hydrophones and six seismometers and a temporal dense seismic array detected and located hydroacoustic events offshore Japanese island on 12th of March in 2008, which had been reported by the IMS. We detected not only the reverberated hydroacoustic waves between the sea surface and the sea bottom but also the seismic waves going through the crust associated with the events. The determined source of the seismic waves is almost coincident with the one of hydroacoustic waves, suggesting that the seismic waves are converted very close to the origin of the hydroacoustic source. We also detected very similar signals on 16th of March in 2009 to the ones associated with the event of 12th of March in 2008.

  14. A Prognostic Methodology for Precipitation Phase Detection using GPM Microwave Observations —With Focus on Snow Cover

    NASA Astrophysics Data System (ADS)

    Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.

    2017-12-01

    Improving satellite retrieval of precipitation requires increased understanding of its passive microwave signature over different land surfaces. Passive microwave signals over snow-covered surfaces are notoriously difficult to interpret because they record both emission from the land below and absorption/scattering from the liquid/ice crystals. Using data from the Global Precipitation Measurement (GPM) core satellite, we demonstrate that the microwave brightness temperatures of rain and snowfall shifts from a scattering to an emission regime from summer to winter, due to expansion of the less emissive snow cover underneath. We present evidence that the combination of low- (10-19 GHz) and high-frequency (89-166 GHz) channels provides the maximum amount of information for snowfall detection. The study also examines a prognostic nearest neighbor matching method for the detection of precipitation and its phase from passive microwave observations using GPM data. The nearest neighbor uses the weighted Euclidean distance metric to search through an a priori database that is populated with coincident GPM radiometer and radar data as well as ancillary snow cover fraction. The results demonstrate prognostic capabilities of the proposed method in detection of terrestrial snowfall. At the global scale, the average probability of hit and false alarm reaches to 0.80 and remains below 0.10, respectively. Surprisingly, the results show that the snow cover may help to better detect precipitation as the detection rate of terrestrial precipitation is increased from 0.75 (no snow cover) to 0.84 (snow-covered surfaces). For solid precipitation, this increased rate of detection is larger than its liquid counterpart by almost 8%. The main reasons are found to be related to the multi-frequency capabilities of the nearest neighbor matching that can properly isolate the atmospheric signal from the background emission and the fact that the precipitation can exhibit an emission-like (warmer than surface) signature over fresh snow cover.

  15. Explosive detection using high-volume vapor sampling and analysis by trained canines and ultra-trace detection equipment

    NASA Astrophysics Data System (ADS)

    Fisher, Mark; Sikes, John; Prather, Mark

    2004-09-01

    The dog's nose is an effective, highly-mobile sampling system, while the canine olfactory organs are an extremely sensitive detector. Having been trained to detect a wide variety of substances with exceptional results, canines are widely regarded as the 'gold standard' in chemical vapor detection. Historically, attempts to mimic the ability of dogs to detect vapors of explosives using electronic 'dogs noses' has proven difficult. However, recent advances in technology have resulted in development of detection (i.e., sampling and sensor) systems with performance that is rapidly approaching that of trained canines. The Nomadics Fido was the first sensor to demonstrate under field conditions the detection of landmines with performance approaching that of canines. More recently, comparative testing of Fido against canines has revealed that electronic vapor detection, when coupled with effective sampling methods, can produce results comparable to that of highly-trained canines. The results of these comparative tests will be presented, as will recent test results in which explosives hidden in cargo were detected using Fido with a high-volume sampling technique. Finally, the use of canines along with electronic sensors will be discussed as a means of improving the performance and expanding the capabilities of both methods.

  16. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    PubMed Central

    Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.

    2017-01-01

    Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328

  17. Advanced Self-Calibrating, Self-Repairing Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Eckhoff, Anthony J. (Inventor); Angel, Lucena R. (Inventor); Perotti, Jose M. (Inventor)

    2002-01-01

    An improved self-calibrating and self-repairing Data Acquisition System (DAS) for use in inaccessible areas, such as onboard spacecraft, and capable of autonomously performing required system health checks, failure detection. When required, self-repair is implemented utilizing a "spare parts/tool box" system. The available number of spare components primarily depends upon each component's predicted reliability which may be determined using Mean Time Between Failures (MTBF) analysis. Failing or degrading components are electronically removed and disabled to reduce power consumption, before being electronically replaced with spare components.

  18. Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions

    DOEpatents

    Beattie, Kenneth L.

    1998-01-01

    An improved microfabricated apparatus for conducting a multiplicity of individual and simultaneous binding reactions is described. The apparatus comprises a substrate on which are located discrete and isolated sites for binding reactions. The apparatus is characterized by discrete and isolated regions that extend through said substrate and terminate on a second surface thereof such that when a test sample is allowed to the substrate, it is capable of penetrating through each such region during the course of said binding reaction. The apparatus is especially useful for sequencing by hybridization of DNA molecules.

  19. Testing and failure analysis to improve screening techniques for hermetically sealed metallized film capacitors for low energy applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Effective screening techniques are evaluated for detecting insulation resistance degradation and failure in hermetically sealed metallized film capacitors used in applications where low capacitor voltage and energy levels are common to the circuitry. A special test and monitoring system capable of rapidly scanning all test capacitors and recording faults and/or failures is examined. Tests include temperature cycling and storage as well as low, medium, and high voltage life tests. Polysulfone film capacitors are more heat stable and reliable than polycarbonate film units.

  20. Melioidosis Diagnostic Workshop, 20131

    PubMed Central

    AuCoin, David; Baccam, Prasith; Baggett, Henry C.; Baird, Rob; Bhengsri, Saithip; Blaney, David D.; Brett, Paul J.; Brooks, Timothy J.G.; Brown, Katherine A.; Chantratita, Narisara; Cheng, Allen C.; Dance, David A.B.; Decuypere, Saskia; Defenbaugh, Dawn; Gee, Jay E.; Houghton, Raymond; Jorakate, Possawat; Lertmemongkolchai, Ganjana; Limmathurotsakul, Direk; Merlin, Toby L.; Mukhopadhyay, Chiranjay; Norton, Robert; Peacock, Sharon J.; Rolim, Dionne B.; Simpson, Andrew J.; Steinmetz, Ivo; Stoddard, Robyn A.; Stokes, Martha M.; Sue, David; Tuanyok, Apichai; Whistler, Toni; Wuthiekanun, Vanaporn; Walke, Henry T.

    2015-01-01

    Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions. PMID:25626057

  1. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  2. Comparative assessment of amphibious hearing in pinnipeds.

    PubMed

    Reichmuth, Colleen; Holt, Marla M; Mulsow, Jason; Sills, Jillian M; Southall, Brandon L

    2013-06-01

    Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.

  3. Multi-Scenario Use Case based Demonstration of Buildings Cybersecurity Framework Webtool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gourisetti, Sri Nikhil G.; Mylrea, Michael E.; Gervais, Easton L.

    The purpose of this paper is to demonstrate the cybersecurity and software capabilities of Buildings Cybersecurity Framework (BCF) webtool. The webtool is designed based on BCF document and existing NIST standards. It’s capabilities and features are depicted through a building usecase with four different investment scenarios geared towards improving the cybersecurity posture of the building. BCF webtool also facilitates implementation of the goals outlined in Presidential Executive Order (EO) on Strengthening the Cybersecurity of Federal Networks and Critical Infrastructure (May 2017. In realization of the EO goals, BCF includes five core elements: Identify, Protect, Detect, Respond, and Recover, to helpmore » determine various policy and process level vulnerabilities and provide mitigation strategies. With the BCF webtool, an organization can perform a cybersecurity self-assessment; determine the current cybersecurity posture; define investment based goals to achieve a target state; connect the cybersecurity posture with business processes, functions, and continuity; and finally, develop plans to answer critical organizational cybersecurity questions. In this paper, the webtool and its core capabilities are depicted by performing an extensive comparative assessment over four different scenarios.« less

  4. A universal DNA-based protein detection system.

    PubMed

    Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan

    2013-09-25

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.

  5. A Universal DNA-Based Protein Detection System

    PubMed Central

    Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan

    2014-01-01

    Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265

  6. LLNL electro-optical mine detection program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.; Aimonetti, W.; Barth, M.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem ofmore » sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.« less

  7. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria.

    PubMed

    Lucchi, Naomi W; Demas, Allison; Narayanan, Jothikumar; Sumari, Deborah; Kabanywanyi, Abdunoor; Kachur, S Patrick; Barnwell, John W; Udhayakumar, Venkatachalam

    2010-10-29

    Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.

  8. Enhanced Deployment Strategy for Role-based Hierarchical Application Agents in Wireless Sensor Networks with Established Clusterheads

    NASA Astrophysics Data System (ADS)

    Gendreau, Audrey

    Efficient self-organizing virtual clusterheads that supervise data collection based on their wireless connectivity, risk, and overhead costs, are an important element of Wireless Sensor Networks (WSNs). This function is especially critical during deployment when system resources are allocated to a subsequent application. In the presented research, a model used to deploy intrusion detection capability on a Local Area Network (LAN), in the literature, was extended to develop a role-based hierarchical agent deployment algorithm for a WSN. The resulting model took into consideration the monitoring capability, risk, deployment distribution cost, and monitoring cost associated with each node. Changing the original LAN methodology approach to model a cluster-based sensor network depended on the ability to duplicate a specific parameter that represented the monitoring capability. Furthermore, other parameters derived from a LAN can elevate costs and risk of deployment, as well as jeopardize the success of an application on a WSN. A key component of the approach presented in this research was to reduce the costs when established clusterheads in the network were found to be capable of hosting additional detection agents. In addition, another cost savings component of the study addressed the reduction of vulnerabilities associated with deployment of agents to high volume nodes. The effectiveness of the presented method was validated by comparing it against a type of a power-based scheme that used each node's remaining energy as the deployment value. While available energy is directly related to the model used in the presented method, the study deliberately sought out nodes that were identified with having superior monitoring capability, cost less to create and sustain, and are at low-risk of an attack. This work investigated improving the efficiency of an intrusion detection system (IDS) by using the proposed model to deploy monitoring agents after a temperature sensing application had established the network traffic flow to the sink. The same scenario was repeated using a power-based IDS to compare it against the proposed model. To identify a clusterhead's ability to host monitoring agents after the temperature sensing application terminated, the deployed IDS utilized the communication history and other network factors in order to rank the nodes. Similarly, using the node's communication history, the deployed power-based IDS ranked nodes based on their remaining power. For each individual scenario, and after the IDS application was deployed, the temperature sensing application was run for a second time. This time, to monitor the temperature sensing agents as the data flowed towards the sink, the network traffic was rerouted through the new intrusion detection clusterheads. Consequently, if the clusterheads were shared, the re-routing step was not preformed. Experimental results in this research demonstrated the effectiveness of applying a robust deployment metric to improve upon the energy efficiency of a deployed application in a multi-application WSN. It was found that in the scenarios with the intrusion detection application that utilized the proposed model resulted in more remaining energy than in the scenarios that implemented the power-based IDS. The algorithm especially had a positive impact on the small, dense, and more homogeneous networks. This finding was reinforced by the smaller percentage of new clusterheads that was selected. Essentially, the energy cost of the route to the sink was reduced because the network traffic was rerouted through fewer new clusterheads. Additionally, it was found that the intrusion detection topology that used the proposed approach formed smaller and more connected sets of clusterheads than the power-based IDS. As a consequence, this proposed approach essentially achieved the research objective for enhancing energy use in a multi-application WSN.

  9. Thermodynamic framework to assess low abundance DNA mutation detection by hybridization

    PubMed Central

    Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef

    2017-01-01

    The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229

  10. iCATSI: multi-pixel imaging differential spectroradiometer for standoff detection and quantification of chemical threats

    NASA Astrophysics Data System (ADS)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2011-11-01

    Homeland security and first responders are often faced with safety situations involving the identification of unknown volatile chemicals. Examples include industrial fires, chemical warfare, industrial leak, etc. The Improved Compact ATmospheric Sounding Interferometer (iCATSI) sensor has been developed to investigate the standoff detection and identification of toxic industrial chemicals (TICs), chemical warfare agents (CWA) and other chemicals. iCATSI is a combination of the CATSI instrument, a standoff differential FTIR optimised for the characterization of chemicals and the MR-i, the hyperspectral imaging spectroradiometer of ABB Bomem based on the proven MR spectroradiometers. The instrument is equipped with a dual-input telescope to perform optical background subtraction. The resulting signal is the difference between the spectral radiance entering each input port. With that method, the signal from the background is automatically removed from the signal of the target of interest. The iCATSI sensor is able to detect, spectrally resolve and identify 5 meters plumes up to 5 km range. The instrument is capable of sensing in the VLWIR (cut-off near 14 μm) to support research related to standoff chemical detection. In one of its configurations, iCATSI produces three 24 × 16 spectral images per second from 5.5 to 14 μm at a spectral resolution of 16 cm-1. In another configuration, iCATSI produces from two to four spectral images per second of 256 × 256 pixels from 8 to 13 μm with the same spectral resolution. Overview of the capabilities of the instrument and results from tests and field trials will be presented.

  11. Neutron Resonance Radiography for Explosives Detection: Technical Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raas, W L; Blackburn, B; Boyd, E

    2005-11-09

    Fast Neutron Resonance Radiography (NRR) has recently become a focus of investigation as a supplement to conventional x-ray systems as a non-invasive, non-destructive means of detecting explosive material concealed in checked luggage or cargo containers at airports. Using fast (1-6 MeV) neutrons produced by the D(d,n){sup 3}He reaction, NRR provides both an imaging capability and the ability to determine the chemical composition of materials in baggage or cargo. Elemental discrimination is achieved by exploiting the resonance features of the neutron cross-section for oxygen, nitrogen, carbon, and hydrogen. Simulations have shown the effectiveness of multiple-element NRR through Monte Carlo transport methods;more » this work is focused on the development of a prototype system that will incorporate an accelerator-based neutron source and a neutron detection and imaging system to demonstrate the realistic capabilities of NRR in distinguishing the elemental components of concealed objects. Preliminary experiments have exposed significant technical difficulties unapparent in simulations, including the presence of image contamination from gamma ray production, the detection of low-fluence fast neutrons in a gamma field, and the mechanical difficulties inherent in the use of thin foil windows for gas cell confinement. To mitigate these concerns, a new gas target has been developed to simultaneously reduce gamma ray production and increase structural integrity in high flux gas targets. Development of a neutron imaging system and neutron counting based on characteristic neutron pulse shapes have been investigated as a means of improving signal to noise ratios, reducing irradiation times, and increasing the accuracy of elemental determination.« less

  12. Imaging of Keratoconic and normal human cornea with a Brillouin imaging system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien; Shao, Peng; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun (Andy)

    2016-03-01

    Keratoconus is a degenerative disorder of the eye characterized by human cornea thinning and morphological change to a more conical shape. Current diagnosis of this disease relies on topographic imaging of the cornea. Early and differential diagnosis is difficult. In keratoconus, mechanical properties are found to be compromised. A clinically available invasive technique capable of measuring the mechanical properties of the cornea is of significant importance for understanding the mechanism of keratoconus development and improve detection and intervention in keratoconus. The capability of Brillouin imaging to detect local longitudinal modulus in human cornea has been demonstrated previously. We report our non-contact, non-invasive, clinically viable Brillouin imaging system engineered to evaluate mechanical properties human cornea in vivo. The system takes advantage of a highly dispersive 2-stage virtually imaged phased array (VIPA) to detect weak Brillouin scattering signal from biological samples. With a 1.5-mW light beam from a 780-nm single-wavelength laser source, the system is able to detect Brillouin frequency shift of a single point in human cornea less than 0.3 second, at a 5μm/30μm lateral/axial resolution. Sensitivity of the system was quantified to be ~ 10 MHz. A-scans at different sample locations on a human cornea with a motorized human interface. We imaged both normal and keratoconic human corneas with this system. Whereas no significantly difference were observed outside keratocnic cones compared with normal cornea, a highly statistically significantly decrease was found in the cone regions.

  13. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    PubMed

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  14. Improved Detection of Local Earthquakes in the Vienna Basin (Austria), using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Apoloner, Maria-Theresia; Caffagni, Enrico; Bokelmann, Götz

    2016-04-01

    The Vienna Basin in Eastern Austria is densely populated and highly-developed; it is also a region of low to moderate seismicity, yet the seismological network coverage is relatively sparse. This demands improving our capability of earthquake detection by testing new methods, enlarging the existing local earthquake catalogue. This contributes to imaging tectonic fault zones for better understanding seismic hazard, also through improved earthquake statistics (b-value, magnitude of completeness). Detection of low-magnitude earthquakes or events for which the highest amplitudes slightly exceed the signal-to-noise-ratio (SNR), may be possible by using standard methods like the short-term over long-term average (STA/LTA). However, due to sparse network coverage and high background noise, such a technique may not detect all potentially recoverable events. Yet, earthquakes originating from the same source region and relatively close to each other, should be characterized by similarity in seismic waveforms, at a given station. Therefore, waveform similarity can be exploited by using specific techniques such as correlation-template based (also known as matched filtering) or subspace detection methods (based on the subspace theory). Matching techniques basically require a reference or template event, usually characterized by high waveform coherence in the array receivers, and high SNR, which is cross-correlated with the continuous data. Instead, subspace detection methods overcome in principle the necessity of defining template events as single events, but use a subspace extracted from multiple events. This approach theoretically should be more robust in detecting signals that exhibit a strong variability (e.g. because of source or magnitude). In this study we scan the continuous data recorded in the Vienna Basin with a subspace detector to identify additional events. This will allow us to estimate the increase of the seismicity rate in the local earthquake catalogue, therefore providing an evaluation of network performance and efficiency of the method.

  15. Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications

    NASA Astrophysics Data System (ADS)

    de Andrés, A. I.; Esteban, Ó.; Embid, M.

    2017-08-01

    Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.

  16. Analysis of geostationary satellite-derived cloud parameters associated with environments with high ice water content

    NASA Astrophysics Data System (ADS)

    de Laat, Adrianus; Defer, Eric; Delanoë, Julien; Dezitter, Fabien; Gounou, Amanda; Grandin, Alice; Guignard, Anthony; Fokke Meirink, Jan; Moisselin, Jean-Marc; Parol, Frédéric

    2017-04-01

    We present an evaluation of the ability of passive broadband geostationary satellite measurements to detect high ice water content (IWC > 1 g m-3) as part of the European High Altitude Ice Crystals (HAIC) project for detection of upper-atmospheric high IWC, which can be a hazard for aviation. We developed a high IWC mask based on measurements of cloud properties using the Cloud Physical Properties (CPP) algorithm applied to the geostationary Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Evaluation of the high IWC mask with satellite measurements of active remote sensors of cloud properties (CLOUDSAT/CALIPSO combined in the DARDAR (raDAR-liDAR) product) reveals that the high IWC mask is capable of detecting high IWC values > 1 g m-3 in the DARDAR profiles with a probability of detection of 60-80 %. The best CPP predictors of high IWC were the condensed water path, cloud optical thickness, cloud phase, and cloud top height. The evaluation of the high IWC mask against DARDAR provided indications that the MSG-CPP high IWC mask is more sensitive to cloud ice or cloud water in the upper part of the cloud, which is relevant for aviation purposes. Biases in the CPP results were also identified, in particular a solar zenith angle (SZA) dependence that reduces the performance of the high IWC mask for SZAs > 60°. Verification statistics show that for the detection of high IWC a trade-off has to be made between better detection of high IWC scenes and more false detections, i.e., scenes identified by the high IWC mask that do not contain IWC > 1 g m-3. However, the large majority of these detections still contain IWC values between 0.1 and 1 g m-3. Comparison of the high IWC mask against results from the Rapidly Developing Thunderstorm (RDT) algorithm applied to the same geostationary SEVIRI data showed that there are similarities and differences with the high IWC mask: the RDT algorithm is very capable of detecting young/new convective cells and areas, whereas the high IWC mask appears to be better capable of detecting more mature and ageing convection as well as cirrus remnants. The lack of detailed understanding of what causes aviation hazards related to high IWC, as well as the lack of clearly defined user requirements, hampers further tuning of the high IWC mask. Future evaluation of the high IWC mask against field campaign data, as well as obtaining user feedback and user requirements from the aviation industry, should provide more information on the performance of the MSG-CPP high IWC mask and contribute to improving the practical use of the high IWC mask.

  17. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a blind clinical study that screened real patient urine samples (n=70) for opiates in collaboration with Strong Memorial Hospital Clinical Toxicology Laboratory. PSI sensor results showed improved clinical specificity over current commercial opiate immunoassay techniques and therefore, identified potential for a reduction in false-negative and false-positive screening results. Here, we demonstrate for the first time, successful clinical capability of a PSi sensor to detect opiates as a model target in real-world patient samples. The final part of this thesis explores novel sensor designs to leverage the tunable optical properties of PSi photonic devices and facilitate colorimetric readout of molecular recognition events by the unaided eye. Such a design is ideal for uncomplicated diagnostic screening at point-of-care as no instrumentation is needed for result readout. The photonic PSi transducers were integrated with target analyte-responsive hydrogels (TRAP-gels) that upon exposure to a target solution would swell and dissolute, inducing material property changes that were optically detected by the incorporated PSi transducer. This strategy extends target detection throughout the 3-ll internal volume of the PSi, improving upon current techniques that limit detection to the surface area (2-ll) of PSi. Work to acheive this approach involved design of TRAP-gel networks, polymer synthesis and characterization techniques, and optical characterization of the hybrid hydrogel-PSi material sensor. Successful implementation of a hybrid sensor design was exhibited for a. model chemical target (reducing agent), in which visual colorimetric change from red to green was observed for above-threshold exposure to the chemical target. In addition, initial proof-of-concept of an opiate responsive TRAP-gel is also demonstrated where cross-links are formed between antibody-antigen interactions and exposure to opiates induces bulk gel dissolution.

  18. On developing thermal cave detection techniques for earth, the moon and mars

    USGS Publications Warehouse

    Wynne, J. Judson; Titus, Timothy N.; Chong Diaz, Guillermo

    2008-01-01

    The purpose of this study is to (1) demonstrate the viability of detecting terrestrial caves at thermal-infrared wavelengths, (2) improve our understanding of terrestrial cave thermal behavior, (3) identify times of day when cave openings have the maximum thermal contrast with the surrounding surface regolith, and (4) further our understanding of how to detect caves on Earth, the Moon and Mars. We monitored the thermal behavior of two caves in the Atacama Desert of northern Chile. Through this work, we identified times when temperature contrasts between entrance and surface were greatest, thus enabling us to suggest optimal overflight times. The largest thermal contrast for both caves occurred during mid-day. One cave demonstrated thermal behavior at the entrance suggestive of cold-trapping, while the second cave demonstrated temperature shifts suggestive of airflow. We also collected thermograms without knowing optimal detection times; these images suggest both caves may also be detectable during off-peak times. We suggest cave detection using thermal remote sensing on Earth and other planetary objects will be limited by (1) capturing imagery in the appropriate thermal wavelength, (2) the size of cave entrance vs. the sensor's spatial resolution, (3) the viewing angle of the platform in relation to the slope trajectory of the cave entrance, (4) the strength of the thermal signal associated with the cave entrance, and (5) the time of day and season of thermal image capture. Through this and other studies, we will begin to identify the range of conditions under which caves are detectable in the thermal infrared and thus improve our detection capabilities of these features on Earth, the Moon and Mars. ?? 2008 Elsevier B.V.

  19. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review.

    PubMed

    Huang, Xiaolin; Aguilar, Zoraida P; Xu, Hengyi; Lai, Weihua; Xiong, Yonghua

    2016-01-15

    Membrane-based lateral flow immunochromatographic strip (LFICS) is widely used in various fields because of its simplicity, rapidity (detection within 10min), and low cost. However, early designs of membrane-based LFICS for preliminary screening only provide qualitative ("yes/no" signal) or semi-quantitative results without quantitative information. These designs often suffer from low-signal intensity and poor sensitivity and are only capable of single analyte detection, not simultaneous multiple detections. The performance of existing techniques used for detection using LFICS has been considerably improved by incorporating different kinds of nanoparticles (NPs) as reporters. NPs can serve as alternative labels and improve analytical sensitivity or limit of detection of LFICS because of their unique properties, such as optical absorption, fluorescence spectra, and magnetic properties. The controlled manipulation of NPs allows simultaneous or multiple detections by using membrane-based LFICS. In this review, we discuss how colored (e.g., colloidal gold, carbon, and colloidal selenium NPs), luminescent (e.g., quantum dots, up-converting phosphor NPs, and dye-doped NPs), and magnetic NPs are integrated into membrane-based LFICS for the detection of target analytes. Gold NPs are also featured because of their wide applications. Different types and unique properties of NPs are briefly explained. This review focuses on examples of NP-based LFICS to illustrate novel concepts in various devices with potential applications as screening tools. This review also highlights the superiority of NP-based approaches over existing conventional strategies for clinical analysis, food safety, and environmental monitoring. This paper is concluded by a short section on future research trends regarding NP-based LFICS. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    PubMed

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

Top