Sample records for improved detection sensitivity

  1. An improved Abbott ARCHITECT assay for the detection of hepatitis B virus surface antigen (HBsAg).

    PubMed

    Lou, Sheng C; Pearce, Sandra K; Lukaszewska, Teresa X; Taylor, Russell E; Williams, Gregg T; Leary, Thomas P

    2011-05-01

    The sensitive and accurate detection of hepatitis B virus surface antigen (HBsAg) is critical to the identification of infection and the prevention of transfusion transmitted disease. Improvement in HBsAg assay sensitivity is essential to reduce the window to detect an acute HBV infection. Additionally, the sensitive detection of HBsAg mutants that continue to evolve due to vaccine escape, immune selection and an error prone reverse transcriptase is a necessity. A fully automated HBsAg prototype assay on the Abbott ARCHITECT instrument was developed to improve sensitivity and mutant detection. This magnetic microparticle-based assay utilizes anti-HBsAg monoclonal antibodies to capture antigen present in serum or plasma. Captured antigen is then detected using anti-HBsAg antibody conjugated with the chemiluminescent compound, acridinium. The sensitivity of the ARCHITECT HBsAg prototype assay was improved as compared to the current ARCHITECT, PRISM, and competitor HBsAg assays. The enhancement in assay sensitivity was demonstrated by the use of commercially available HBV seroconversion panels. The prototype assay detected more panel members (185 of 383) vs. the current ARCHITECT (171), PRISM (181), or competitor HBsAg assays (73/140 vs. 62/140, respectively). The ARCHITECT prototype assay also efficiently detected all mutants evaluated. Finally, the sensitivity improvement did not compromise the specificity of the assay (99.94%). An improved Abbott ARCHITECT HBsAg prototype assay with enhanced detection of HBsAg and HBsAg mutants, as well as equivalent specificity was developed for the detection, diagnosis, and management of HBV infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Adding retinal photography to screening for diabetic retinopathy: a prospective study in primary care.

    PubMed

    O'Hare, J P; Hopper, A; Madhaven, C; Charny, M; Purewell, T S; Harney, B; Griffiths, J

    1996-03-16

    To evaluate whether adding retinal photography improved community screening for diabetic retinopathy. Mobile screening unit at rural and urban general practices in south west England. 1010 diabetic patients from primary care. Prospective study; patients were examined by ophthalmoscopy by general practitioners or opticians without fundal photographs and again with photographs, and assessments were compared to those of an ophthalmologist. Whether fundal photography improved the sensitivity of detection of retinopathy and referrable diabetic retinopathy, and whether this sensitivity could be improved by including a review of the films by the specialist. Diabetic retinopathy was detected by the ophthalmologist in 205 patients (20.5%) and referrable retinopathy in 49 (4.9%). The sensitivity of the general practitioners and opticians for referrable retinopathy with ophthalmoscopy was 65%, and improved to 84% with retinal photographs. General practitioners' sensitivity in detecting background retinopathy improved with photographs from 22% to 65%; opticians' sensitivity in detecting background retinopathy improved from 43% to 71%. The sensitivity of detecting referrable retinopathy by general practitioners improved from 56% to 80% with photographs; for opticians it improved from 75% to 88%. Combining modalities of screening by providing photography with specialist review of all films in addition to direct ophthalmoscopy through dilated pupils improves assessment and referral for diabetic retinopathy by general practitioners and opticians. With further training and experience, primary care screeners should be able to achieve a sensitivity that will achieve an effective, acceptable, and economical community based screening programme for this condition.

  3. Improved detection sensitivity of γ-aminobutyric acid based on graphene oxide interface on an optical microfiber.

    PubMed

    Zhou, Jun; Huang, Yunyun; Chen, Chaoyan; Xiao, Aoxiang; Guo, Tuan; Guan, Bai-Ou

    2018-05-11

    Interfacing bio-recognition elements to optical materials is a longstanding challenge to manufacture sensitive biosensors and inexpensive diagnostic devices. In this work, a graphene oxide (GO) interface has been constructed between silica microfiber and bio-recognition elements to develop an improved γ-aminobutyric acid (GABA) sensing approach. The GO interface, which was located at the site with the strongest evanescent field on the microfiber surface, improved the detection sensitivity by providing a larger platform for more bio-recognition element immobilization, and amplifying surface refractive index change caused by combination between bio-recognition elements and target molecules. Owing to the interface improvement, the microfiber has a three times improved sensitivity of 1.03 nm/log M for GABA detection, and hence a lowest limit of detection of 2.91 × 10-18 M, which is 7 orders of magnitude higher than that without the GO interface. Moreover, the micrometer-sized footprint and non-radioactive nature enable easy implantation in human brains for in vivo applications.

  4. Brief group training of medical students in focused cardiac ultrasound may improve diagnostic accuracy of physical examination.

    PubMed

    Stokke, Thomas M; Ruddox, Vidar; Sarvari, Sebastian I; Otterstad, Jan E; Aune, Erlend; Edvardsen, Thor

    2014-11-01

    Physical examination and auscultation can be challenging for medical students. The aim of this study was to investigate whether a brief session of group training in focused cardiac ultrasound (FCU) with a pocket-sized device would allow medical students to improve their ability to detect clinically relevant cardiac lesions at the bedside. Twenty-one medical students in their clinical curriculum completed 4 hours of FCU training in groups. The students examined patients referred for echocardiography with emphasis on auscultation, followed by FCU. Findings from physical examination and FCU were compared with those from standard echocardiography performed and analyzed by cardiologists. In total, 72 patients were included in the study, and 110 examinations were performed. With a stethoscope, sensitivity to detect clinically relevant (moderate or greater) valvular disease was 29% for mitral regurgitation, 33% for aortic regurgitation, and 67% for aortic stenosis. FCU improved sensitivity to detect mitral regurgitation (69%, P < .001). However, sensitivity to detect aortic regurgitation (43%) and aortic stenosis (70%) did not improve significantly. Specificity was ≥89% for all valvular diagnoses by both methods. For nonvalvular diagnoses, FCU's sensitivity to detect moderate or greater left ventricular dysfunction (90%) was excellent, detection of right ventricular dysfunction (79%) was good, while detection of dilated left atrium (53%), dilated right atrium (49%), pericardial effusion (40%), and dilated aortic root (25%) was less accurate. Specificity varied from 57% to 94%. After brief group training in FCU, medical students could detect mitral regurgitation significantly better compared with physical examination, whereas detection of aortic regurgitation and aortic stenosis did not improve. Left ventricular dysfunction was detected with high sensitivity. More extensive training is advised. Copyright © 2014 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  5. Improved computer-aided detection of small polyps in CT colonography using interpolation for curvature estimationa

    PubMed Central

    Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.

    2011-01-01

    Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029

  6. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity,more » which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.« less

  7. Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure.

    PubMed

    Li, Hongwei; Wu, Kunjie; Xu, Zeyang; Wang, Zhongwu; Meng, Yancheng; Li, Liqiang

    2018-06-20

    High-sensitivity pressure sensors are crucial for the ultrasensitive touch technology and E-skin, especially at the tiny-pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to 200 kPa -1 and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa -1 using short-channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 μs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny-pressure range, including light-emitting diode switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

  8. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    PubMed

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.

  9. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance

    PubMed Central

    Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.

    2016-01-01

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189

  10. A novel molecular diagnostic tool for improved sensitivity and reliability detection of “Candidatus Liberibacter asiaticus”, bacterium associated with huanglongbing (HLB) bacterium Candidatus Liberibacter.

    USDA-ARS?s Scientific Manuscript database

    Sensitive and accurate detection is a prerequisite for efficient management and regulatory responses to prevent the introduction and spread of HLB-associated “Candidatus Liberibacter species to unaffected areas. To improve the current detection limit of HLB-associated “Ca. Liberibacter” spp, we deve...

  11. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

    PubMed Central

    Jermyn, Michael; Gosselin, Yoann; Valdes, Pablo A.; Sibai, Mira; Kolste, Kolbein; Mercier, Jeanne; Angulo, Leticia; Roberts, David W.; Paulsen, Keith D.; Petrecca, Kevin; Daigle, Olivier; Wilson, Brian C.; Leblond, Frederic

    2015-01-01

    In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX sensitivity in wide-field fluorescence imaging may improve the residual tumor detection during surgery with consequent impact on survival. PMID:26713218

  12. Direct questioning is more effective than patient-initiated report for the detection of sexually transmitted infections in a primary care HIV clinic in Western Kenya.

    PubMed

    Woo, Victoria Gah Hay; Cohen, Craig R; Bukusi, Elizabeth A; Huchko, Megan J

    2013-02-01

    In resource-limited settings, detection of sexually transmitted infections (STIs) often relies on self-reported symptoms to initiate management. We found self-report demonstrated poor sensitivity for STI detection. Adding clinician-initiated questions about symptoms improved detection rates. Vaginal examination further increased sensitivity. Including clinician-initiated screening in resource-limited settings would improve management of treatable STIs.

  13. Recent trends in high spin sensitivity magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  14. Allergy and parasites reevaluated: wide-scale induction of chronic urticaria by the ubiquitous fish-nematode Anisakis simplex in an endemic region.

    PubMed

    Daschner, A; Vega de la Osada, F; Pascual, C Y

    2005-01-01

    The ubiquitous fish-nematode Anisakis simplex produces acute urticaria or angioedema in the course of gastro-allergic anisakiasis. We studied the relationship between this nematode and chronic urticaria (CU), as well as the clinical usefulness of measuring specific IgG4 in A. simplex-sensitized patients with CU. First, the prevalence of sensitization to A. simplex was estimated in 135 consecutive CU patients and the result was compared with known data about sensitization in a healthy population. Then, clinical response to a 2-month diet without fish was analyzed in 76 CU patients. The improvement rate in patients with and without sensitization to A. simplex was compared. Finally, the improvement rate, other clinical data and specific immunoglobulins in sensitized patients with and without detectable specific IgG4 were compared. a) The A. simplex sensitization rate in CU patients was 52.6 % compared with a known prevalence of between 16 and 20 % in our region. b) Of 65 sensitized patients, 52 experienced clinical improvement after the diet compared with only three of 11 patients without sensitization to A. simplex (p = 0.001). c) Of 43 patients with detectable specific IgG4, 38 showed clinical improvement compared with only 14 of 22 patients without detectable IgG4 (p = 0.02). Eight of nine patients with previous fish-associated cutaneous symptoms had detectable specific IgG4 compared with 15 of 32 patients who reported no previous fish-associated symptoms or acute urticaria (p = 0.03). Our results indicate that A. simplex is a possibly widespread etiologic agent able to induce CU. This parasite model constitutes the first report that associates an infectious agent with CU on a large scale. The detection of IgG4 antibodies reflects a previous acute parasitic infection and a temporary diet without fish improves symptoms in most patients with detectable specific IgG4.

  15. SiPM electro-optical detection system noise suppression method

    NASA Astrophysics Data System (ADS)

    Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng

    2014-11-01

    In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.

  16. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  17. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  18. Improved Detection of Botulinum Neurotoxin Serotype A by Endopep-MS through Peptide Substrate Modification

    PubMed Central

    Wang, Dongxia; Baudys, Jakub; Ye, Yiming; Rees, Jon C.; Barr, John R.; Pirkle, James L.; Kalb, Suzanne R.

    2015-01-01

    Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to man. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype specific antibodies and detecting the unique and serotype specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity five fold with toxin spiked into buffer solution or different biological matrices. PMID:23017875

  19. THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing

    PubMed Central

    Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E.; Ritchie, David A.; Vitiello, Miriam Serena; De Natale, Paolo

    2013-01-01

    We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range. PMID:23478601

  20. THz QCL-based cryogen-free spectrometer for in situ trace gas sensing.

    PubMed

    Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam Serena; De Natale, Paolo

    2013-03-11

    We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.

  1. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

    PubMed Central

    Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura

    2015-01-01

    Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727

  2. Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers

    PubMed Central

    Pasteran, Fernando; Gonzalez, Lisandro J.; Albornoz, Ezequiel; Bahr, Guillermo; Vila, Alejandro J.

    2015-01-01

    Accurate detection of carbapenemase-producing Gram-negative bacilli is of utmost importance for the control of nosocomial spread and the initiation of appropriate antimicrobial therapy. The modified Hodge test (MHT), a carbapenem inactivation assay, has shown poor sensitivity in detecting the worldwide spread of New Delhi metallo-β-lactamase (NDM). Recent studies demonstrated that NDM is a lipoprotein anchored to the outer membrane in Gram-negative bacteria, unlike all other known carbapenemases. Here we report that membrane anchoring of β-lactamases precludes detection of carbapenemase activity by the MHT. We also show that this limitation can be overcome by the addition of Triton X-100 during the test, which allows detection of NDM. We propose an improved version of the assay, called the Triton Hodge test (THT), which allows detection of membrane-bound carbapenemases with the addition of this nonionic surfactant. This test was challenged with a panel of 185 clinical isolates (145 carrying known carbapenemase-encoding genes and 40 carbapenemase nonproducers). The THT displayed test sensitivity of >90% against NDM-producing clinical isolates, while improving performance against other carbapenemases. Ertapenem provided the highest sensitivity (97 to 100%, depending on the type of carbapenemase), followed by meropenem (92.5 to 100%). Test specificity was not affected by the addition of Triton (87.5% and 92.5% with ertapenem and meropenem, respectively). This simple inexpensive test confers a large improvement to the sensitivity of the MHT for the detection of NDM and other carbapenemases. PMID:26719442

  3. Development of an ultra-sensitive Simoa assay to enable GDF11 detection: a comparison across bioanalytical platforms.

    PubMed

    Myzithras, Maria; Li, Hua; Bigwarfe, Tammy; Waltz, Erica; Gupta, Priyanka; Low, Sarah; Hayes, David B; MacDonnell, Scott; Ahlberg, Jennifer; Franti, Michael; Roberts, Simon

    2016-03-01

    Four bioanalytical platforms were evaluated to optimize sensitivity and enable detection of recombinant human GDF11 in biological matrices; ELISA, Meso Scale Discovery, Gyrolab xP Workstation and Simoa HD-1. Results & methodology: After completion of custom assay development, the single-molecule ELISA (Simoa) achieved the greatest sensitivity with a lower limit of quantitation of 0.1 ng/ml, an improvement of 100-fold over the next sensitive platform (MSD). This improvement was essential to enable detection of GDF11 in biological samples, and without the technology the sensitivity achieved on the other platforms would not have been sufficient. Other factors such as ease of use, cost, assay time and automation capability can also be considered when developing custom immunoassays, based on the requirements of the bioanalyst.

  4. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  5. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities

    PubMed Central

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442

  6. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    PubMed

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  7. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    PubMed

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  8. Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Kseniya; Samsonova, Jeanne; Osipov, Alexander

    2018-06-01

    Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).

  9. Recent approaches in sensitive enantioseparations by CE.

    PubMed

    Sánchez-Hernández, Laura; Castro-Puyana, María; Marina, María Luisa; Crego, Antonio L

    2012-01-01

    The latest strategies and instrumental improvements for enhancing the detection sensitivity in chiral analysis by CE are reviewed in this work. Following the previous reviews by García-Ruiz et al. (Electrophoresis 2006, 27, 195-212) and Sánchez-Hernández et al. (Electrophoresis 2008, 29, 237-251; Electrophoresis 2010, 31, 28-43), this review includes those papers that were published during the period from June 2009 to May 2011. These works describe the use of offline and online sample treatment techniques, online sample preconcentration techniques based on electrophoretic principles, and alternative detection systems to UV-Vis to increase the detection sensitivity. The application of the above-mentioned strategies, either alone or combined, to improve the sensitivity in the enantiomeric analysis of a broad range of samples, such as pharmaceutical, biological, food and environmental samples, enables to decrease the limits of detection up to 10⁻¹² M. The use of microchips to achieve sensitive chiral separations is also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  11. Multispectral photoacoustic tomography for detection of small tumors inside biological tissues

    NASA Astrophysics Data System (ADS)

    Hirasawa, Takeshi; Okawa, Shinpei; Tsujita, Kazuhiro; Kushibiki, Toshihiro; Fujita, Masanori; Urano, Yasuteru; Ishihara, Miya

    2018-02-01

    Visualization of small tumors inside biological tissue is important in cancer treatment because that promotes accurate surgical resection and enables therapeutic effect monitoring. For sensitive detection of tumor, we have been developing photoacoustic (PA) imaging technique to visualize tumor-specific contrast agents, and have already succeeded to image a subcutaneous tumor of a mouse using the contrast agents. To image tumors inside biological tissues, extension of imaging depth and improvement of sensitivity were required. In this study, to extend imaging depth, we developed a PA tomography (PAT) system that can image entire cross section of mice. To improve sensitivity, we discussed the use of the P(VDF-TrFE) linear array acoustic sensor that can detect PA signals with wide ranges of frequencies. Because PA signals produced from low absorbance optical absorbers shifts to low frequency, we hypothesized that the detection of low frequency PA signals improves sensitivity to low absorbance optical absorbers. We developed a PAT system with both a PZT linear array acoustic sensor and the P(VDF-TrFE) sensor, and performed experiment using tissue-mimicking phantoms to evaluate lower detection limits of absorbance. As a result, PAT images calculated from low frequency components of PA signals detected by the P(VDF-TrFE) sensor could visualize optical absorbers with lower absorbance.

  12. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  13. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  14. Lamb waves increase sensitivity in nondestructive testing

    NASA Technical Reports Server (NTRS)

    Di Novi, R.

    1967-01-01

    Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.

  15. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  16. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  17. Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Carbapenemase Producers.

    PubMed

    Pasteran, Fernando; Gonzalez, Lisandro J; Albornoz, Ezequiel; Bahr, Guillermo; Vila, Alejandro J; Corso, Alejandra

    2016-03-01

    Accurate detection of carbapenemase-producing Gram-negative bacilli is of utmost importance for the control of nosocomial spread and the initiation of appropriate antimicrobial therapy. The modified Hodge test (MHT), a carbapenem inactivation assay, has shown poor sensitivity in detecting the worldwide spread of New Delhi metallo-β-lactamase (NDM). Recent studies demonstrated that NDM is a lipoprotein anchored to the outer membrane in Gram-negative bacteria, unlike all other known carbapenemases. Here we report that membrane anchoring of β-lactamases precludes detection of carbapenemase activity by the MHT. We also show that this limitation can be overcome by the addition of Triton X-100 during the test, which allows detection of NDM. We propose an improved version of the assay, called the Triton Hodge test (THT), which allows detection of membrane-bound carbapenemases with the addition of this nonionic surfactant. This test was challenged with a panel of 185 clinical isolates (145 carrying known carbapenemase-encoding genes and 40 carbapenemase nonproducers). The THT displayed test sensitivity of >90% against NDM-producing clinical isolates, while improving performance against other carbapenemases. Ertapenem provided the highest sensitivity (97 to 100%, depending on the type of carbapenemase), followed by meropenem (92.5 to 100%). Test specificity was not affected by the addition of Triton (87.5% and 92.5% with ertapenem and meropenem, respectively). This simple inexpensive test confers a large improvement to the sensitivity of the MHT for the detection of NDM and other carbapenemases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    PubMed

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  19. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules.

    PubMed

    Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi

    2015-08-04

    It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.

  20. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    PubMed

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  1. Enhancing Time-Series Detection Algorithms for Automated Biosurveillance

    PubMed Central

    Burkom, Howard; Xing, Jian; English, Roseanne; Bloom, Steven; Cox, Kenneth; Pavlin, Julie A.

    2009-01-01

    BioSense is a US national system that uses data from health information systems for automated disease surveillance. We studied 4 time-series algorithm modifications designed to improve sensitivity for detecting artificially added data. To test these modified algorithms, we used reports of daily syndrome visits from 308 Department of Defense (DoD) facilities and 340 hospital emergency departments (EDs). At a constant alert rate of 1%, sensitivity was improved for both datasets by using a minimum standard deviation (SD) of 1.0, a 14–28 day baseline duration for calculating mean and SD, and an adjustment for total clinic visits as a surrogate denominator. Stratifying baseline days into weekdays versus weekends to account for day-of-week effects increased sensitivity for the DoD data but not for the ED data. These enhanced methods may increase sensitivity without increasing the alert rate and may improve the ability to detect outbreaks by using automated surveillance system data. PMID:19331728

  2. Improvement of the ESR detection of irradiated food containing cellulose employing a simple extraction method

    NASA Astrophysics Data System (ADS)

    Delincée, Henry; Soika, Christiane

    2002-03-01

    Fruit may be irradiated at rather low doses, below 1 kGy in combination treatments or for quarantine purposes. To improve the ESR detection sensitivity of irradiated fruit de Jesus et al. (Int. J. Food Sci. Technol. 34 (1999) 173.) proposed extracting the fruit pulp with 80% ethanol and measuring the residue with ESR using low power (0.25 mW) for detection of 'cellulosic' radicals. An improvement in ESR sensitivity using the extraction procedure could be confirmed in this paper for strawberries and papayas. In most cases, a radiation dose of 0.5 kGy could be detected in both fruits even after 2-3 weeks storage. In addition, some herbs and spices were also tested, but only for a few of them the ESR detection of the 'cellulosic' signal was improved by previous alcoholic extraction. As an alternative to ESR measurements, other detection methods like DNA Comet Assay and thermoluminescence were also tested.

  3. Genotypic, Phenotypic and Clinical Validation of GeneXpert in Extra-Pulmonary and Pulmonary Tuberculosis in India

    PubMed Central

    Singh, Urvashi B.; Pandey, Pooja; Mehta, Girija; Bhatnagar, Anuj K.; Mohan, Anant; Goyal, Vinay; Ahuja, Vineet; Ramachandran, Ranjani; Sachdeva, Kuldeep S.; Samantaray, Jyotish C.

    2016-01-01

    Background Newer molecular diagnostics have brought paradigm shift in early diagnosis of tuberculosis [TB]. WHO recommended use of GeneXpert MTB/RIF [Xpert] for Extra-pulmonary [EP] TB; critics have since questioned its efficiency. Methods The present study was designed to assess the performance of GeneXpert in 761 extra-pulmonary and 384 pulmonary specimens from patients clinically suspected of TB and compare with Phenotypic, Genotypic and Composite reference standards [CRS]. Results Comparison of GeneXpert results to CRS, demonstrated sensitivity of 100% and 90.68%, specificity of 100% and 99.62% for pulmonary and extra-pulmonary samples. On comparison with culture, sensitivity for Rifampicin [Rif] resistance detection was 87.5% and 81.82% respectively, while specificity was 100% for both pulmonary and extra-pulmonary TB. On comparison to sequencing of rpoB gene [Rif resistance determining region, RRDR], sensitivity was respectively 93.33% and 90% while specificity was 100% in both pulmonary and extra-pulmonary TB. GeneXpert assay missed 533CCG mutation in one sputum and dual mutation [517 & 519] in one pus sample, detected by sequencing. Sequencing picked dual mutation [529, 530] in a sputum sample sensitive to Rif, demonstrating, not all RRDR mutations lead to resistance. Conclusions Current study reports observations in a patient care setting in a high burden region, from a large collection of pulmonary and extra-pulmonary samples and puts to rest questions regarding sensitivity, specificity, detection of infrequent mutations and mutations responsible for low-level Rif resistance by GeneXpert. Improvements in the assay could offer further improvement in sensitivity of detection in different patient samples; nevertheless it may be difficult to improve sensitivity of Rif resistance detection if only one gene is targeted. Assay specificity was high both for TB detection and Rif resistance detection. Despite a few misses, the assay offers major boost to early diagnosis of TB and MDR-TB, in difficult to diagnose pauci-bacillary TB. PMID:26894283

  4. Sensitivity of photoacoustic microscopy

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158

  5. Improved thermal neutron activation sensor for detection of bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Faust, Anthony A.; Andrews, H. Robert; Clifford, Edward T. H.; Mosquera, Cristian M.

    2012-06-01

    Defence R&D Canada - Suffield and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives since 1994. First generation sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on the ILDS teleoperated, vehicle-mounted, multi-sensor anti-tank landmine detection systems. The first generation TNA could detect anti-tank mines buried 10 cm or less in no more than a minute, but deeper mines and those significantly displaced horizontally required considerably longer times. Mines as deep as 30 cm could be detected with long counting times (1000 s). The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. This improved sensitivity can translate to either decreased counting times, decreased minimum detectable explosive quantities, increased maximum sensor-to-target displacement, or a trade off among all three. Experiments to characterize the performance of the latest generation TNA in detecting buried landmines and IEDs hidden in culverts were conducted during 2011. This paper describes the second generation system. The experimental setup and methodology are detailed and preliminary comparisons between the performance of first and second generation systems are presented.

  6. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    PubMed

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  7. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  8. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes.

    PubMed

    Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy

    2017-03-15

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced Dopamine Detection Sensitivity by PEDOT/Graphene Oxide Coating on in vivo Carbon Fiber Electrodes

    PubMed Central

    Taylor, I. Mitch; Robbins, Elaine M.; Catt, Kasey A.; Cody, Patrick A.; Weaver, Cassandra L.; Cui, Xinyan Tracy

    2016-01-01

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA’s oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. PMID:27268013

  10. Sensitivity and accuracy of hybrid fluorescence-mediated tomography in deep tissue regions.

    PubMed

    Rosenhain, Stefanie; Al Rawashdeh, Wa'el; Kiessling, Fabian; Gremse, Felix

    2017-09-01

    Fluorescence-mediated tomography (FMT) enables noninvasive assessment of the three-dimensional distribution of near-infrared fluorescence in mice. The combination with micro-computed tomography (µCT) provides anatomical data, enabling improved fluorescence reconstruction and image analysis. The aim of our study was to assess sensitivity and accuracy of µCT-FMT under realistic in vivo conditions in deeply-seated regions. Accordingly, we acquired fluorescence reflectance images (FRI) and µCT-FMT scans of mice which were prepared with rectal insertions with different amounts of fluorescent dye. Default and high-sensitivity scans were acquired and background signal was analyzed for three FMT channels (670 nm, 745 nm, and 790 nm). Analysis was performed for the original and an improved FMT reconstruction using the µCT data. While FRI and the original FMT reconstruction could detect 100 pmol, the improved FMT reconstruction could detect 10 pmol and significantly improved signal localization. By using a finer sampling grid and increasing the exposure time, the sensitivity could be further improved to detect 0.5 pmol. Background signal was highest in the 670 nm channel and most prominent in the gastro-intestinal tract and in organs with high relative amounts of blood. In conclusion, we show that µCT-FMT allows sensitive and accurate assessment of fluorescence in deep tissue regions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    PubMed

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  12. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.

    PubMed

    Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi

    2009-08-01

    KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.

  13. Whole-animal imaging of bacterial infection using endoscopic excitation of β-lactamase (BlaC)-specific fluorogenic probe

    NASA Astrophysics Data System (ADS)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-03-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.

  14. Recent approaches for enhancing sensitivity in enantioseparations by CE.

    PubMed

    Sánchez-Hernández, Laura; García-Ruiz, Carmen; Luisa Marina, María; Luis Crego, Antonio

    2010-01-01

    This article reviews the latest methodological and instrumental improvements for enhancing sensitivity in chiral analysis by CE. The review covers literature from March 2007 until May 2009, that is, the works published after the appearance of the latest review article on the same topic by Sánchez-Hernández et al. [Electrophoresis 2008, 29, 237-251]. Off-line and on-line sample treatment techniques, on-line sample preconcentration strategies based on electrophoretic and chromatographic principles, and alternative detection systems to the widely employed UV/Vis detection in CE are the most relevant approaches discussed for improving sensitivity. Microchip technologies are also included since they can open up great possibilities to achieve sensitive and fast enantiomeric separations.

  15. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    PubMed

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2018-01-01

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p < .001; specificity remained high (>.90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  16. Nano-immunoassay with improved performance for detection of cancer biomarkers

    DOE PAGES

    Krasnoslobodtsev, Alexey V.; Torres, Maria P.; Kaur, Sukhwinder; ...

    2015-01-01

    Nano-immunoassay utilizing surface-enhanced Raman scattering (SERS) effect is a promising analytical technique for the early detection of cancer. In its current standing the assay is capable of discriminating samples of healthy individuals from samples of pancreatic cancer patients. Further improvements in sensitivity and reproducibility will extend practical applications of the SERS-based detection platforms to wider range of problems. In this report, we discuss several strategies designed to improve performance of the SERS-based detection system. We demonstrate that reproducibility of the platform is enhanced by using atomically smooth mica surface as a template for preparation of capture surface in SERS sandwichmore » immunoassay. Furthermore, the assay's stability and sensitivity can be further improved by using either polymer or graphene monolayer as a thin protective layer applied on top of the assay addresses. The protective layer renders the signal to be more stable against photo-induced damage and carbonaceous contamination.« less

  17. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    PubMed

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.

  19. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    PubMed

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  20. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1985-01-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  1. NORAD's PARCS small satellite tests (1976 and 1978)

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    1985-03-01

    NORAD sponsored small satellite tests in 1976 and 1978. The purpose of the tests was to use their more sensitive radar to determine the number of Earth orbiting objects which are not part of the official catalogue. Both tests used the PARCS radar. The characteristics of this radar are given. The detection capability of NORAD's operational system is estimated and compared to the PARC's radar sensitivity during these tests. The tests only slightly improved the detection capability, and the largest improvements were at the lowest and highest regions of its sensitivity range. The major conclusion of the test is that 17.7% of the objects detected were uncorrelated (i.e., not in the official catalogue). However, perhaps most significant is the altitutde and size distribution of detected objects are illustrated. The 1978 results are also summarized. This test concluded that at least 7% of the objects detected were not in the official catalogue. Another 6% of the detected objects were not tracked well enough to determine their status. Again, a large percentage of the detected objects at lower altitudes were not in the catalogue.

  2. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  3. Training in Contrast Detection Improves Motion Perception of Sinewave Gratings in Amblyopia

    PubMed Central

    Hou, Fang; Huang, Chang-bing; Tao, Liming; Feng, Lixia; Zhou, Yifeng; Lu, Zhong-Lin

    2011-01-01

    Purpose. One critical concern about using perceptual learning to treat amblyopia is whether training with one particular stimulus and task generalizes to other stimuli and tasks. In the spatial domain, it has been found that the bandwidth of contrast sensitivity improvement is much broader in amblyopes than in normals. Because previous studies suggested the local motion deficits in amblyopia are explained by the spatial vision deficits, the hypothesis for this study was that training in the spatial domain could benefit motion perception of sinewave gratings. Methods. Nine adult amblyopes (mean age, 22.1 ± 5.6 years) were trained in a contrast detection task in the amblyopic eye for 10 days. Visual acuity, spatial contrast sensitivity functions, and temporal modulation transfer functions (MTF) for sinewave motion detection and discrimination were measured for each eye before and after training. Eight adult amblyopes (mean age, 22.6 ± 6.7 years) served as control subjects. Results. In the amblyopic eye, training improved (1) contrast sensitivity by 6.6 dB (or 113.8%) across spatial frequencies, with a bandwidth of 4.4 octaves; (2) sensitivity of motion detection and discrimination by 3.2 dB (or 44.5%) and 3.7 dB (or 53.1%) across temporal frequencies, with bandwidths of 3.9 and 3.1 octaves, respectively; (3) visual acuity by 3.2 dB (or 44.5%). The fellow eye also showed a small amount of improvement in contrast sensitivities and no significant change in motion perception. Control subjects who received no training demonstrated no obvious improvement in any measure. Conclusions. The results demonstrate substantial plasticity in the amblyopic visual system, and provide additional empirical support for perceptual learning as a potential treatment for amblyopia. PMID:21693615

  4. ELISA-PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications.

    PubMed

    Tong, Qing-He; Tao, Tao; Xie, Li-Qi; Lu, Hao-Jie

    2016-06-15

    Detection of low-abundance proteins and their post-translational modifications (PTMs) remains a great challenge. A conventional enzyme-linked immunosorbent assay (ELISA) is not sensitive enough to detect low-abundance PTMs and suffers from nonspecific detection. Herein, a rapid, highly sensitive and specific platform integrating ELISA with a proximity ligation assay (PLA), termed ELISA-PLA, was developed. Using ELISA-PLA, the specificity was improved by the simultaneous and proximate recognition of targets through multiple probes, and the sensitivity was significantly improved by rolling circle amplification (RCA). For GFP, the limit of detection (LOD) was decreased by two orders of magnitude compared to that of ELISA. Using site-specific phospho-antibody and pan-specific phospho-antibody, ELISA-PLA was successfully applied to quantify the phosphorylation dynamics of ERK1/2 and the overall tyrosine phosphorylation level of ERK1/2, respectively. ELISA-PLA was also used to quantify the O-GlcNAcylation of AKT, c-Fos, CREB and STAT3, which is faster and more sensitive than the conventional immunoprecipitation and western blotting (IP-WB) method. As a result, the sample consumption of ELISA-PLA was reduced 40-fold compared to IP-WB. Therefore, ELISA-PLA could be a promising platform for the rapid, sensitive and specific detection of proteins and PTMs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe

    NASA Astrophysics Data System (ADS)

    Mathejczyk, Julia Eva; Pauli, Jutta; Dullin, Christian; Resch-Genger, Ute; Alves, Frauke; Napp, Joanna

    2012-07-01

    We investigated the potential of the pH-sensitive dye, CypHer5E, conjugated to Herceptin (pH-Her) for the sensitive detection of breast tumors in mice using noninvasive time-domain near-infrared fluorescence imaging and different methods of data analysis. First, the fluorescence properties of pH-Her were analyzed as function of pH and/or dye-to-protein ratio, and binding specificity was confirmed in cell-based assays. Subsequently, the performance of pH-Her in nude mice bearing orthotopic HER2-positive (KPL-4) and HER2-negative (MDA-MB-231) breast carcinoma xenografts was compared to that of an always-on fluorescent conjugate Alexa Fluor 647-Herceptin (Alexa-Her). Subtraction of autofluorescence and lifetime (LT)-gated image analyses were performed for background fluorescence suppression. In mice bearing HER2-positive tumors, autofluorescence subtraction together with the selective fluorescence enhancement of pH-Her solely in the tumor's acidic environment provided high contrast-to-noise ratios (CNRs). This led to an improved sensitivity of tumor detection compared to Alexa-Her. In contrast, LT-gated imaging using LTs determined in model systems did not improve tumor-detection sensitivity in vivo for either probe. In conclusion, pH-Her is suitable for sensitive in vivo monitoring of HER2-expressing breast tumors with imaging in the intensity domain and represents a promising tool for detection of weak fluorescent signals deriving from small tumors or metastases.

  6. Lyme Borreliosis--the Utility of Improved Real-Time PCR Assay in the Detection of Borrelia burgdorferi Infections.

    PubMed

    Bil-Lula, Iwona; Matuszek, Patryk; Pfeiffer, Thomas; Woźniak, Mieczysław

    2015-01-01

    Infections of Borrelia burgdorferi sensu lato reveal clinical manifestations affecting numerous organs and tissues. The standard diagnostic procedure of these infections is quite simple if a positive history of tick exposure or typical erythema migrans appears. Lack of unequivocal clinical symptoms creates the necessity for further evaluation with laboratory tests. This study discusses the utility of a novel, improved, well-optimized, sensitive and highly specific quantitative real-time PCR assay for the diagnostics of infections caused by Borrelia burgdorferi sensu lato. We designed an improved, specific, highly sensitive real-time quantitative polymerase chain reaction (RQ-PCR) assay for the detection and quantification of all Borrelia burgdorferi genotypes. A wide validation effort was undertaken to ensure confidence in the highly sensitive and specific detection of B. burgdorferi. Due to high sensitivity and great specificity, as low as 1.6×10² copies of Borrelia per mL of whole blood could be detected. As much as 12 (3%) negative ELISA IgM results, 14 (2.8%) negative results of Line blot IgM, 11 (3.1%) and 7 (2.7%) of negative ELISA IgG and Line blot IgG results, respectively, were positive in real-time PCR. The data in this study confirms the high positive predictive value of real-time PCR test in the detection of Borrelia infections.

  7. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  8. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  9. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  10. Object memory and change detection: dissociation as a function of visual and conceptual similarity.

    PubMed

    Yeh, Yei-Yu; Yang, Cheng-Ta

    2008-01-01

    People often fail to detect a change between two visual scenes, a phenomenon referred to as change blindness. This study investigates how a post-change object's similarity to the pre-change object influences memory of the pre-change object and affects change detection. The results of Experiment 1 showed that similarity lowered detection sensitivity but did not affect the speed of identifying the pre-change object, suggesting that similarity between the pre- and post-change objects does not degrade the pre-change representation. Identification speed for the pre-change object was faster than naming the new object regardless of detection accuracy. Similarity also decreased detection sensitivity in Experiment 2 but improved the recognition of the pre-change object under both correct detection and detection failure. The similarity effect on recognition was greatly reduced when 20% of each pre-change stimulus was masked by random dots in Experiment 3. Together the results suggest that the level of pre-change representation under detection failure is equivalent to the level under correct detection and that the pre-change representation is almost complete. Similarity lowers detection sensitivity but improves explicit access in recognition. Dissociation arises between recognition and change detection as the two judgments rely on the match-to-mismatch signal and mismatch-to-match signal, respectively.

  11. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  12. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  13. Integrated digital error suppression for improved detection of circulating tumor DNA

    PubMed Central

    Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.

    2016-01-01

    High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799

  14. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    NASA Astrophysics Data System (ADS)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  15. Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers?

    PubMed

    Blackmon, Kevin N; Florin, Charles; Bogoni, Luca; McCain, Joshua W; Koonce, James D; Lee, Heon; Bastarrika, Gorka; Thilo, Christian; Costello, Philip; Salganicoff, Marcos; Joseph Schoepf, U

    2011-06-01

    To evaluate the effect of a computer-aided detection (CAD) algorithm on the performance of novice readers for detection of pulmonary embolism (PE) at CT pulmonary angiography (CTPA). We included CTPA examinations of 79 patients (50 female, 52 ± 18 years). Studies were evaluated by two independent inexperienced readers who marked all vessels containing PE. After 3 months all studies were reevaluated by the same two readers, this time aided by CAD prototype. A consensus read by three expert radiologists served as the reference standard. Statistical analysis used χ(2) and McNemar testing. Expert consensus revealed 119 PEs in 32 studies. For PE detection, the sensitivity of CAD alone was 78%. Inexperienced readers' initial interpretations had an average per-PE sensitivity of 50%, which improved to 71% (p < 0.001) with CAD as a second reader. False positives increased from 0.18 to 0.25 per study (p = 0.03). Per-study, the readers initially detected 27/32 positive studies (84%); with CAD this number increased to 29.5 studies (92%; p = 0.125). Our results suggest that CAD significantly improves the sensitivity of PE detection for inexperienced readers with a small but appreciable increase in the rate of false positives.

  16. Molecular diagnosis in clinical parasitology: when and why?

    PubMed

    Wong, Samson S Y; Fung, Kitty S C; Chau, Sandy; Poon, Rosana W S; Wong, Sally C Y; Yuen, Kwok-Yung

    2014-11-01

    Microscopic detection and morphological identification of parasites from clinical specimens are the gold standards for the laboratory diagnosis of parasitic infections. The limitations of such diagnostic assays include insufficient sensitivity and operator dependence. Immunoassays for parasitic antigens are not available for most parasitic infections and have not significantly improved the sensitivity of laboratory detection. Advances in molecular detection by nucleic acid amplification may improve the detection in asymptomatic infections with low parasitic burden. Rapidly accumulating genomic data on parasites allow the design of polymerase chain reaction (PCR) primers directed towards multi-copy gene targets, such as the ribosomal and mitochondrial genes, which further improve the sensitivity. Parasitic cell or its free circulating parasitic DNA can be shed from parasites into blood and excreta which may allow its detection without the whole parasite being present within the portion of clinical sample used for DNA extraction. Multiplex nucleic acid amplification technology allows the simultaneous detection of many parasitic species within a single clinical specimen. In addition to improved sensitivity, nucleic acid amplification with sequencing can help to differentiate different parasitic species at different stages with similar morphology, detect and speciate parasites from fixed histopathological sections and identify anti-parasitic drug resistance. The use of consensus primer and PCR sequencing may even help to identify novel parasitic species. The key limitation of molecular detection is the technological expertise and expense which are usually lacking in the field setting at highly endemic areas. However, such tests can be useful for screening important parasitic infections in asymptomatic patients, donors or recipients coming from endemic areas in the settings of transfusion service or tertiary institutions with transplantation service. Such tests can also be used for monitoring these recipients or highly immunosuppressed patients, so that early preemptive treatment can be given for reactivated parasitic infections while the parasitic burden is still low. © 2014 by the Society for Experimental Biology and Medicine.

  17. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  18. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein.

    PubMed

    Li, Ya; Li, Yanqing; Zhao, Junli; Zheng, Xiaojing; Mao, Qinwen; Xia, Haibin

    2016-12-01

    Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.

  19. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  20. Accurate Detection of Streptococcus pyogenes at the Point of Care Using the cobas Liat Strep A Nucleic Acid Test.

    PubMed

    Wang, Fangnian; Tian, Yu; Chen, Lingjun; Luo, Robert; Sickler, Joanna; Liesenfeld, Oliver; Chen, Shuqi

    2017-10-01

    The performance of a polymerase chain reaction-based point-of-care assay, the cobas Strep A Nucleic Acid Test for use on the cobas Liat System (cobas Liat Strep A assay), for the detection of group A Streptococcus bacteria was evaluated in primary care settings. Throat swab specimens from 427 patients were tested with the cobas Liat Strep A assay and a rapid antigen detection test (RADT) by existing medical staff at 5 primary care clinics, and results were compared with bacterial culture. The cobas Liat Strep A assay demonstrated equivalent sensitivity (97.7%) and specificity (93.3%) to reference culture with a 15-minute turnaround time. In comparison to RADTs, the cobas Liat Strep A assay showed improved sensitivity (97.7% Liat vs 84.5% RADT). The Clinical Laboratory Improvement Amendments-waived cobas Liat Strep A assay demonstrated the ease of use and improved turnaround time of RADTs along with the sensitivity of culture.

  1. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  2. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, Ganapatic R.

    1994-01-01

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  3. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, G.R.

    1994-09-06

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  4. Hand-held optical imager (Gen-2): improved instrumentation and target detectability

    PubMed Central

    Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard

    2012-01-01

    Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163

  5. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles.

    PubMed

    Alizadeh Zeinabad, Hojjat; Ghourchian, Hedayatollah; Falahati, Mojtaba; Fathipour, Morteza; Azizi, Marzieh; Boutorabi, Seyed Mehdi

    2018-06-29

    Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml -1 , the linear range from 5 pg ml -1 to 1 ng ml -1 and the detection limit of 1.34 pg ml -1 , at a signal-to-noise ratio of 3.

  6. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alizadeh Zeinabad, Hojjat; Ghourchian, Hedayatollah; Falahati, Mojtaba; Fathipour, Morteza; Azizi, Marzieh; Boutorabi, Seyed Mehdi

    2018-06-01

    Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml–1, the linear range from 5 pg ml‑1 to 1 ng ml–1 and the detection limit of 1.34 pg ml‑1, at a signal-to-noise ratio of 3.

  7. Handheld echocardiography versus auscultation for detection of rheumatic heart disease.

    PubMed

    Godown, Justin; Lu, Jimmy C; Beaton, Andrea; Sable, Craig; Mirembe, Grace; Sanya, Richard; Aliku, Twalib; Yu, Sunkyung; Lwabi, Peter; Webb, Catherine L; Ensing, Gregory J

    2015-04-01

    Rheumatic heart disease (RHD) remains a major public health concern in developing countries, and routine screening has the potential to improve outcomes. Standard portable echocardiography (STAND) is far more sensitive than auscultation for the detection of RHD but remains cost-prohibitive in resource-limited settings. Handheld echocardiography (HAND) is a lower-cost alternative. The purpose of this study was to assess the incremental value of HAND over auscultation to identify RHD. RHD screening was completed for schoolchildren in Gulu, Uganda, by using STAND performed by experienced echocardiographers. Any child with mitral or aortic regurgitation or stenosis plus a randomly selected group of children with normal STAND findings underwent HAND and auscultation. STAND and HAND studies were interpreted by 6 experienced cardiologists using the 2012 World Heart Federation criteria. Sensitivity and specificity of HAND and auscultation for the detection of RHD and pathologic mitral or aortic regurgitation were calculated by using STAND as the gold standard. Of 4773 children who underwent screening with STAND, a subgroup of 1317 children underwent HAND and auscultation. Auscultation had uniformly poor sensitivity for the detection of RHD or valve disease. Sensitivity was significantly improved by using HAND compared with auscultation for the detection of definite RHD (97.8% vs 22.2%), borderline or definite RHD (78.4% vs 16.4%), and pathologic aortic insufficiency (81.8% vs 13.6%). Auscultation alone is a poor screening test for RHD. HAND significantly improves detection of RHD and may be a cost-effective screening strategy for RHD in resource-limited settings. Copyright © 2015 by the American Academy of Pediatrics.

  8. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang Sunney

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less

  9. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier.

    PubMed

    Huang, Qiong; Bu, Tong; Zhang, Wentao; Yan, Lingzhi; Zhang, Mengyue; Yang, Qingfeng; Huang, Lunjie; Yang, Baowei; Hu, Na; Suo, Yourui; Wang, Jianlong; Zhang, Daohong

    2018-10-01

    Immunochromatographic assays (ICAs) are most frequently used for on-site rapid screening of clenbuterol. To improve sensitivity, a novel probe with bacteria as signal carriers was developed. Bacteria can load a great deal of gold nanoparticles (AuNPs) on their surface, meaning much fewer antibodies are needed to produce clearly visible results, although low concentrations of antibody could also trigger fierce competition between free analyte and the immobilized antigen. Thus, a limited number of antibodies was key to significantly improved sensitivity. Analytical conditions, including bacterial species, coupling method, and concentration, were optimized. The visual detection limit (VDL) for clenbuterol was 0.1 ng/mL, a 20-fold improvement in sensitivity compared with traditional strips. This work has opened up a new route for signal amplification and improved performance of ICAs. Furthermore, inactivated bacteria could also be environment-friendly and robust signal carriers for other biosensors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography.

    PubMed

    Robles, Lourdes Y; Singh, Satish; Fisichella, Piero Marco

    2015-05-15

    Despite advances in diagnoses and therapy, esophageal adenocarcinoma remains a highly lethal neoplasm. Hence, a great interest has been placed in detecting early lesions and in the detection of Barrett esophagus (BE). Advanced imaging technologies of the esophagus have then been developed with the aim of improving biopsy sensitivity and detection of preplastic and neoplastic cells. The purpose of this article was to review emerging imaging technologies for esophageal pathology, spectroscopy, confocal laser endomicroscopy (CLE), and optical coherence tomography (OCT). We conducted a PubMed search using the search string "esophagus or esophageal or oesophageal or oesophagus" and "Barrett or esophageal neoplasm" and "spectroscopy or optical spectroscopy" and "confocal laser endomicroscopy" and "confocal microscopy" and "optical coherence tomography." The first and senior author separately reviewed all articles. Our search identified: 19 in vivo studies with spectroscopy that accounted for 1021 patients and 4 ex vivo studies; 14 clinical CLE in vivo studies that accounted for 941 patients and 1 ex vivo study with 13 patients; and 17 clinical OCT in vivo studies that accounted for 773 patients and 2 ex vivo studies. Human studies using spectroscopy had a very high sensitivity and specificity for the detection of BE. CLE showed a high interobserver agreement in diagnosing esophageal pathology and an accuracy of predicting neoplasia. We also found several clinical studies that reported excellent diagnostic sensitivity and specificity for the detection of BE using OCT. Advanced imaging technology for the detection of esophageal lesions is a promising field that aims to improve the detection of early esophageal lesions. Although advancing imaging techniques improve diagnostic sensitivities and specificities, their integration into diagnostic protocols has yet to be perfected. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma

    PubMed Central

    Krug, A K; Enderle, D; Karlovich, C; Priewasser, T; Bentink, S; Spiel, A; Brinkmann, K; Emenegger, J; Grimm, D G; Castellanos-Rizaldos, E; Goldman, J W; Sequist, L V; Soria, J -C; Camidge, D R; Gadgeel, S M; Wakelee, H A; Raponi, M; Noerholm, M; Skog, J

    2018-01-01

    Abstract Background A major limitation of circulating tumor DNA (ctDNA) for somatic mutation detection has been the low level of ctDNA found in a subset of cancer patients. We investigated whether using a combined isolation of exosomal RNA (exoRNA) and cell-free DNA (cfDNA) could improve blood-based liquid biopsy for EGFR mutation detection in non-small-cell lung cancer (NSCLC) patients. Patients and methods Matched pretreatment tumor and plasma were collected from 84 patients enrolled in TIGER-X (NCT01526928), a phase 1/2 study of rociletinib in mutant EGFR NSCLC patients. The combined isolated exoRNA and cfDNA (exoNA) was analyzed blinded for mutations using a targeted next-generation sequencing panel (EXO1000) and compared with existing data from the same samples using analysis of ctDNA by BEAMing. Results For exoNA, the sensitivity was 98% for detection of activating EGFR mutations and 90% for EGFR T790M. The corresponding sensitivities for ctDNA by BEAMing were 82% for activating mutations and 84% for T790M. In a subgroup of patients with intrathoracic metastatic disease (M0/M1a; n = 21), the sensitivity increased from 26% to 74% for activating mutations (P = 0.003) and from 19% to 31% for T790M (P = 0.5) when using exoNA for detection. Conclusions Combining exoRNA and ctDNA increased the sensitivity for EGFR mutation detection in plasma, with the largest improvement seen in the subgroup of M0/M1a disease patients known to have low levels of ctDNA and poses challenges for mutation detection on ctDNA alone. Clinical Trials NCT01526928 PMID:29216356

  12. Molecular diagnostics for human leptospirosis.

    PubMed

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  13. Super-resolution and ultra-sensitivity of angular rotation measurement based on SU(1,1) interferometers using homodyne detection

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Li, Shitao; Wei, Dong; Gao, Hong; Li, Fuli

    2018-02-01

    We theoretically explore the angular rotation measurement sensitivity of SU(1,1) interferometers with a coherent beam and a vacuum beam input by using orbital angular momentum (OAM). Compared with the OAM in an SU(2) interferometer, the SU(1,1) interferometer employing homodyne detection can further surpass the angular rotation shot noise limit \\tfrac{1}{2l\\sqrt{N}} and improve the resolution and sensitivity of angular rotation measurement. Two models are considered, one is that OAM is carried by a probe beam and the other one is a pump beam with the OAM. The sensitivity can be improved by higher OAM and nonlinear process with a large gain. The resolution can be enhanced in the case that the pump beam has OAM. Moreover, we present a brief discussion on the variation of resolution and sensitivity in the presence of photon loss.

  14. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    PubMed

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  15. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  16. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  17. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    PubMed Central

    Cunningham, Brian T.; Zangar, Richard C.

    2013-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539

  18. Development and validation of a dual sensing scheme to improve accuracy of bradycardia and pause detection in an insertable cardiac monitor.

    PubMed

    Passman, Rod S; Rogers, John D; Sarkar, Shantanu; Reiland, Jerry; Reisfeld, Erin; Koehler, Jodi; Mittal, Suneet

    2017-07-01

    Undersensing of premature ventricular beats and low-amplitude R waves are primary causes for inappropriate bradycardia and pause detections in insertable cardiac monitors (ICMs). The purpose of this study was to develop and validate an enhanced algorithm to reduce inappropriately detected bradycardia and pause episodes. Independent data sets to develop and validate the enhanced algorithm were derived from a database of ICM-detected bradycardia and pause episodes in de-identified patients monitored for unexplained syncope. The original algorithm uses an auto-adjusting sensitivity threshold for R-wave sensing to detect tachycardia and avoid T-wave oversensing. In the enhanced algorithm, a second sensing threshold is used with a long blanking and fixed lower sensitivity threshold, looking for evidence of undersensed signals. Data reported includes percent change in appropriate and inappropriate bradycardia and pause detections as well as changes in episode detection sensitivity and positive predictive value with the enhanced algorithm. The validation data set, from 663 consecutive patients, consisted of 4904 (161 patients) bradycardia and 2582 (133 patients) pause episodes, of which 2976 (61%) and 996 (39%) were appropriately detected bradycardia and pause episodes. The enhanced algorithm reduced inappropriate bradycardia and pause episodes by 95% and 47%, respectively, with 1.7% and 0.6% reduction in appropriate episodes, respectively. The average episode positive predictive value improved by 62% (P < .001) for bradycardia detection and by 26% (P < .001) for pause detection, with an average relative sensitivity of 95% (P < .001) and 99% (P = .5), respectively. The enhanced dual sense algorithm for bradycardia and pause detection in ICMs substantially reduced inappropriate episode detection with a minimal reduction in true episode detection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Immuno-magnetic beads-based extraction-capillary zone electrophoresis-deep UV laser-induced fluorescence analysis of erythropoietin.

    PubMed

    Wang, Heye; Dou, Peng; Lü, Chenchen; Liu, Zhen

    2012-07-13

    Erythropoietin (EPO) is an important glycoprotein hormone. Recombinant human EPO (rhEPO) is an important therapeutic drug and can be also used as doping reagent in sports. The analysis of EPO glycoforms in pharmaceutical and sports areas greatly challenges analytical scientists from several aspects, among which sensitive detection and effective and facile sample preparation are two essential issues. Herein, we investigated new possibilities for these two aspects. Deep UV laser-induced fluorescence detection (deep UV-LIF) was established to detect the intrinsic fluorescence of EPO while an immuno-magnetic beads-based extraction (IMBE) was developed to specifically extract EPO glycoforms. Combined with capillary zone electrophoresis (CZE), CZE-deep UV-LIF allows high resolution glycoform profiling with improved sensitivity. The detection sensitivity was improved by one order of magnitude as compared with UV absorbance detection. An additional advantage is that the original glycoform distribution can be completely preserved because no fluorescent labeling is needed. By combining IMBE with CZE-deep UV-LIF, the overall detection sensitivity was 1.5 × 10⁻⁸ mol/L, which was enhanced by two orders of magnitude relative to conventional CZE with UV absorbance detection. It is applicable to the analysis of pharmaceutical preparations of EPO, but the sensitivity is insufficient for the anti-doping analysis of EPO in blood and urine. IMBE can be straightforward and effective approach for sample preparation. However, antibodies with high specificity were the key for application to urine samples because some urinary proteins can severely interfere the immuno-extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  1. Improvement of ion chromatography with ultraviolet photometric detection and comparison with conductivity detection for the determination of serum cations.

    PubMed

    Shintani, H

    1985-05-31

    Studies were made of the analytical conditions required for indirect photometric ion chromatography using ultraviolet photometric detection (UV method) for the determination of serum cations following a previously developed serum pre-treatment. The sensitivities of the conductivity detection (CD) and UV methods and the amounts of serum cations determined by both methods were compared. Attempts to improve the sensitivity of the conventional UV method are reported. It was found that the mobile phase previously reported by Small and Miller showed no quantitative response when more than 4 mM copper(II) sulphate pentahydrate was used. As a result, there was no significant difference in the amounts of serum cations shown by the CD and UV methods. However, by adding 0.5-5 mM cobalt(II) sulphate heptahydrate, nickel(II) sulphate hexahydrate, zinc(II) sulphate heptahydrate or cobalt(II) diammonium sulphate hexahydrate to 0.5-1.5 mM copper(II) sulphate pentahydrate, higher sensitivity and a quantitative response were attained.

  2. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors, together with the increased microwave power and magnet intensity will allow for a detection of high-frequency gravitational waves (HFGWs) exhibiting amplitudes, A, of the time-varying spacetime strains on the order of 10-30 to 10-34.

  3. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health.

    PubMed

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-05-17

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.

  4. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health

    PubMed Central

    Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham

    2016-01-01

    Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933

  5. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  6. Use of pump current modulation of diode laser for increased sensitivity of detection of 13СO2 in human exhaled breath

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Kondrashov, A. A.; Shnyrev, S. L.; Safagaraev, A. P.

    2018-03-01

    This paper reports that the use of a lock-in detection technique, when the pump current modulation of a diode laser is operating near the wavelength of 2 µm, allows the improvement of the sensitivity of the online detection of 13СO2 in expired air by more than three orders of magnitude. The sensitivity of the 13СO2 detected in the paper is 60 ppb with an error of 13СO2 concentration measured in the exhaled breath at the level of 2.9% for an optical path length of 60 cm.

  7. Improved detection rate of cytogenetic abnormalities in chronic lymphocytic leukemia and other mature B-cell neoplasms with use of CpG-oligonucleotide DSP30 and interleukin 2 stimulation.

    PubMed

    Shi, Min; Cipollini, Matthew J; Crowley-Bish, Patricia A; Higgins, Anne W; Yu, Hongbo; Miron, Patricia M

    2013-05-01

    Detection of cytogenetic abnormalities requires successful culture of the clonal population to obtain metaphase chromosomes for study, and as such, has been hampered by low mitotic indices of mature B cells in culture. Our study presents data on the improved abnormality detection rate with the use of a CpG-oligonucleotide/interleukin 2 (OL/IL-2) culture protocol for mature B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and non-CLL specimens. The increased detection rate of abnormalities, compared with unstimulated culture and traditional pokeweed mitogen culture, was statistically significant for both CLL and non-CLL neoplasms. For CLL specimens, our data also showed that for cytogenetically visible aberrations, OL/IL-2 was as, if not more, sensitive than detection with interphase fluorescence in situ hybridization (iFISH). Use of OL/IL-2 allowed a number of abnormalities to be detected, which were not covered by specific iFISH panels, especially balanced translocations. Therefore, OL/IL-2 stimulation improves diagnostic sensitivity and increases discovery rate of novel prognostic findings.

  8. Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae.

    PubMed

    Wang, Xin; Mair, Raydel; Hatcher, Cynthia; Theodore, M Jordan; Edmond, Karen; Wu, Henry M; Harcourt, Brian H; Carvalho, Maria da Gloria S; Pimenta, Fabiana; Nymadawa, Pagbajab; Altantsetseg, Dorjpurev; Kirsch, Mariah; Satola, Sarah W; Cohn, Amanda; Messonnier, Nancy E; Mayer, Leonard W

    2011-04-01

    Since the implementation of Haemophilus influenzae (Hi) serotype b vaccine, other serotypes and non-typeable strains have taken on greater importance as a cause of Hi diseases. A rapid and accurate method is needed to detect all Hi regardless of the encapsulation status. We developed 2 real-time PCR (rt-PCR) assays to detect specific regions of the protein D gene (hpd). Both hpd assays are very specific and sensitive for detection of Hi. Of the 63 non-Hi isolates representing 21 bacterial species, none was detected by the hpd #1 assay, and only one of 2 H. aphrophilus isolates was detected by the hpd #3 assay. The hpd #1 and #3 assays detected 97% (229/237) and 99% (234/237) of Hi isolates, respectively, and were superior for detection of both typeable and non-typeable Hi isolates, as compared to previously developed rt-PCR targeting ompP2 or bexA. The diagnostic sensitivity and specificity of these rt-PCR assays were assessed on cerebrospinal fluid specimens collected as part of meningitis surveillance in Ulaanbaatar, Mongolia. The etiology (Neisseria meningitidis, Hi, and Streptococcus pneumoniae) of 111 suspected meningitis cases was determined by conventional methods (culture and latex agglutination), previously developed rt-PCR assays, and the new hpd assays. The rt-PCR assays were more sensitive for detection of meningitis pathogens than other classical methods and improved detection from 50% (56/111) to 75% (83/111). The hpd #3 assay identified a non-b Hi that was missed by the bexA assay and other methods. A sensitive rt-PCR assay to detect both typeable and non-typeable Hi is a useful tool for improving Hi disease surveillance especially after Hib vaccine introduction. Published by Elsevier GmbH.

  9. “Global” visual training and extent of transfer in amblyopic macaque monkeys

    PubMed Central

    Kiorpes, Lynne; Mangal, Paul

    2015-01-01

    Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868

  10. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    PubMed

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  11. UV plasmonic device for sensing ethanol and acetone

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiro; Ichikawa, Yo; Rozhin, Alex G.; Kulinich, Sergei A.

    2018-01-01

    In the present study, we demonstrate efficient detection of volatile organic vapors with improved sensitivity, exploiting the localized surface plasmon resonance of indium nanograins in the UV range (UV-LSPR). The sensitivity of deep-UV-LSPR measurements toward ethanol was observed to be 0.004 nm/ppm, which is 10 times higher than that of a previously reported visible-LSPR device based on Ag nanoprisms [Sensors 11, 8643 (2011)]. Although practical issues such as improving detection limits are still remaining, the results of the present study suggest that the new approach based on UV-LSPR may open new avenues to the detection of organic molecules in solid, liquid, and gas phases using plasmonic sensors.

  12. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  13. The effect of hybridization-induced secondary structure alterations on RNA detection using backscattering interferometry

    PubMed Central

    Adams, Nicholas M.; Olmsted, Ian R.; Haselton, Frederick R.; Bornhop, Darryl J.; Wright, David W.

    2013-01-01

    Backscattering interferometry (BSI) has been used to successfully monitor molecular interactions without labeling and with high sensitivity. These properties suggest that this approach might be useful for detecting biomarkers of infection. In this report, we identify interactions and characteristics of nucleic acid probes that maximize BSI signal upon binding the respiratory syncytial virus nucleocapsid gene RNA biomarker. The number of base pairs formed upon the addition of oligonucleotide probes to a solution containing the viral RNA target correlated with the BSI signal magnitude. Using RNA folding software mfold, we found that the predicted number of unpaired nucleotides in the targeted regions of the RNA sequence generally correlated with BSI sensitivity. We also demonstrated that locked nucleic acid (LNA) probes improved sensitivity approximately 4-fold compared to DNA probes of the same sequence. We attribute this enhancement in BSI performance to the increased A-form character of the LNA:RNA hybrid. A limit of detection of 624 pM, corresponding to ∼105 target molecules, was achieved using nine distinct ∼23-mer DNA probes complementary to regions distributed along the RNA target. Our results indicate that BSI has promise as an effective tool for sensitive RNA detection and provides a road map for further improving detection limits. PMID:23519610

  14. Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays.

    PubMed

    Gao, Wanlei; Wang, Wentao; Yao, Shihua; Wu, Shan; Zhang, Honglian; Zhang, Jishen; Jing, Fengxiang; Mao, Hongju; Jin, Qinghui; Cong, Hui; Jia, Chunping; Zhang, Guojun; Zhao, Jianlong

    2017-03-15

    Assay of multiple serum tumor markers such as carcinoembryonic antigen (CEA), cytokeratin 19 fragment antigen (CYFRA21-1), and neuron specific enolase (NSE), is important for the early diagnosis of lung cancer. Dickkopf-1 (DKK1), a novel serological and histochemical biomarker, was recently reported to be preferentially expressed in lung cancer. Four target proteins were sandwiched by capture antibodies attached to microarrays and detection antibodies carried on modified gold nanoparticles. Optical signals generated by the sandwich structures were amplified by gold deposition with HAuCl 4 and H 2 O 2 , and were observable by microscopy or the naked eye. The four tumor markers were subsequently measured in 106 lung cancer patients and 42 healthy persons. The assay was capable of detecting multiple biomarkers in serum sample at concentration of <1 ng mL -1 in 1 h. Combined detection of the four tumor markers highly improved the sensitivity (to 87.74%) for diagnosis of lung cancer compared with sensitivity of single markers. A rapid, highly sensitive co-detection method for multiple biomarkers based on gold nanoparticles and microarrays was developed. In clinical use, it would be expected to improve the early diagnosis of lung cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  16. Low cost automated whole smear microscopy screening system for detection of acid fast bacilli.

    PubMed

    Law, Yan Nei; Jian, Hanbin; Lo, Norman W S; Ip, Margaret; Chan, Mia Mei Yuk; Kam, Kai Man; Wu, Xiaohua

    2018-01-01

    In countries with high tuberculosis (TB) burden, there is urgent need for rapid, large-scale screening to detect smear-positive patients. We developed a computer-aided whole smear screening system that focuses in real-time, captures images and provides diagnostic grading, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB) from respiratory specimens. To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms on concentrated smears with auramine O (AO) staining, as well as direct smears with AO and Ziehl-Neelsen (ZN) staining, using mycobacterial culture results as gold standard. Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-stained. All slides were graded by an experienced microscopist, in parallel with the automated whole smear screening system. Sensitivity and specificity of a TB diagnostic algorithm in using the screening system alone, and in combination with a microscopist, were evaluated. Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of 81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and specificity of 71.0%. To further improve performance, machine grading was confirmed by manual smear grading when the number of AFBs detected fell within an uncertainty range. These combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-direct:85.4%; AO-concentrated:92.5%) and slight improvement in sensitivity while requiring only limited manual workload. Our system achieved high sensitivity without substantially compromising specificity when compared to culture results. Significant improvement in specificity was obtained when uncertain results were confirmed by manual smear grading. This approach had potential to substantially reduce workload of microscopists in high burden countries.

  17. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    NASA Astrophysics Data System (ADS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-02-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  18. GaAs Coupled Micro Resonators with Enhanced Sensitive Mass Detection

    PubMed Central

    Chopard, Tony; Lacour, Vivien; Leblois, Therese

    2014-01-01

    This work demonstrates the improvement of mass detection sensitivity and time response using a simple sensor structure. Indeed, complicated technological processes leading to very brittle sensing structures are often required to reach high sensitivity when we want to detect specific molecules in biological fields. These developments constitute an obstacle to the early diagnosis of diseases. An alternative is the design of coupled structures. In this study, the device is based on the piezoelectric excitation and detection of two GaAs microstructures vibrating in antisymmetric modes. GaAs is a crystal which has the advantage to be micromachined easily using typical clean room processes. Moreover, we showed its high potential in direct biofunctionalisation for use in the biological field. A specific design of the device was performed to improve the detection at low mass and an original detection method has been developed. The principle is to exploit the variation in amplitude at the initial resonance frequency which has in the vicinity of weak added mass the greatest slope. Therefore, we get a very good resolution for an infinitely weak mass: relative voltage variation of 8%/1 fg. The analysis is based on results obtained by finite element simulation. PMID:25474375

  19. Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control.

    PubMed

    Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T

    2017-05-01

    Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.

  20. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    PubMed

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  1. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  2. Extracting information from the text of electronic medical records to improve case detection: a systematic review

    PubMed Central

    Carroll, John A; Smith, Helen E; Scott, Donia; Cassell, Jackie A

    2016-01-01

    Background Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss cases, and reduce study quality. This review examines whether incorporating information from text into case-detection algorithms can improve research quality. Methods A systematic search returned 9659 papers, 67 of which reported on the extraction of information from free text of EMRs with the stated purpose of detecting cases of a named clinical condition. Methods for extracting information from text and the technical accuracy of case-detection algorithms were reviewed. Results Studies mainly used US hospital-based EMRs, and extracted information from text for 41 conditions using keyword searches, rule-based algorithms, and machine learning methods. There was no clear difference in case-detection algorithm accuracy between rule-based and machine learning methods of extraction. Inclusion of information from text resulted in a significant improvement in algorithm sensitivity and area under the receiver operating characteristic in comparison to codes alone (median sensitivity 78% (codes + text) vs 62% (codes), P = .03; median area under the receiver operating characteristic 95% (codes + text) vs 88% (codes), P = .025). Conclusions Text in EMRs is accessible, especially with open source information extraction algorithms, and significantly improves case detection when combined with codes. More harmonization of reporting within EMR studies is needed, particularly standardized reporting of algorithm accuracy metrics like positive predictive value (precision) and sensitivity (recall). PMID:26911811

  3. The role of oncogenic human papillomavirus determination for diagnosis of high-grade anal intraepithelial neoplasia in HIV-infected MSM.

    PubMed

    Burgos, Joaquin; Hernández-Losa, Javier; Landolfi, Stefania; Guelar, Ana; Dinares, MªCarmen; Villar, Judith; Navarro, Jordi; Ribera, Esteve; Falcó, Vicenç; Curran, Adria

    2017-10-23

    To assess the oncogenic human papillomavirus (HPV) determination and the cotesting HPV and anal cytology value to detect high-grade anal intraepithelial neoplasia (HGAIN) in a cohort of HIV-MSM. Prospective study of HIV-infected MSM who underwent screening for anal dysplasia. Screening program includes anal cytology, HPV testing, and high-resolution anoscopy (HRA) at each visit. Histological samples were obtained if suspicious lesions were revealed by HRA. Sensitivity and specificity of the different tests were calculated by using histological results of HRA-guided biopsy as the reference test for HGAIN diagnosis. From May 2009 to August 2016, 692 HIV-infected MSM underwent 1827 anal cytologies, 1841 HRA examinations, and 1607 HPV testing. At first screening visit, anal cytology results were abnormal in 418 (60.4%) of 692 patients, and oncogenic HPV genotypes were found in 482 (79.5%) of 606 patients. Anal cytology showed a sensitivity of 89.2% [95% confidence interval (CI); 80.7-94.2] and a specificity of 44.2% (95% CI; 40.2-48.2) to detect HGAIN. Oncogenic HPV testing had 90.4% sensitivity (95% CI; 82-86.8) and 24.4% specificity (95% CI; 20.8-28.3). Cotesting showed a 97.4% sensitivity (95% CI; 91-99.3) and 14% specificity (95% CI; 11.2-17.3). In patients with atypical squamous cells of uncertain significance on cytology, oncogenic HPV testing had 91.3% sensitivity and 28.3% specificity to detect HGAIN. Abnormal cytology and oncogenic HPV determination showed similar sensitivity for detecting HGAIN. The two tests used together improved the sensitivity but with lowered specificity. In our opinion, HPV testing does not improve HGAIN detection and should not replace anal cytology as a standard screening test for HIV-infected MSM.

  4. Paraneoplastic autoantibody panels: sensitivity and specificity, a retrospective cohort.

    PubMed

    Albadareen, Rawan; Gronseth, Gary; Goeden, Marcie; Sharrock, Matthew; Lechtenberg, Colleen; Wang, Yunxia

    2017-06-01

    Experts in the autoimmune paraneoplastic field recommend autoantibody testing as "panels" to improve the poor sensitivity of individual autoantibodies in detecting paraneoplastic neurological syndromes (PNS). The sensitivity of those panels was not reported to date in a fashion devoid of incorporation bias. We aimed to assess the collective sensitivity and specificity of one of the commonly used panels in detecting PNS. A single-centered retrospective cohort of all patients tested for paraneoplastic evaluation panel (PAVAL; test ID: 83380) over one year for the suspicion of PNS. Case adjudication was based on newly proposed diagnostic criteria in line with previously published literature, but modified to exclude serological status to avoid incorporation bias. Measures of diagnostic accuracy were subsequently calculated. Cases that failed to show association with malignancy within the follow-up time studied, reflecting a possibly pure autoimmune process was considered paraneoplastic-like syndromes. Out of 321 patients tested, 51 patients tested positive. Thirty-two patients met diagnostic criteria for paraneoplastic/paraneoplastic-like syndromes. The calculated collective sensitivity was 34% (95% CI: 17-53), specificity was 86% (95% CI: 81-90), Youden's index 0.2 and a positive clinical utility index 0.07 suggesting poor utility for case-detection. This is the first reported diagnostic accuracy measures of paraneoplastic panels without incorporation bias. Despite recommended panel testing to improve detection of PNS, sensitivity remains low with poor utility for case-detection. The high-calculated specificity suggests a possible role in confirming the condition in difficult cases suspicious for PNS, when enough supportive evidence is lacking on ancillary testing.

  5. Evaluation of clinical sensitivity and specificity of hepatitis B virus (HBV), hepatitis C virus, and human immunodeficiency Virus-1 by cobas MPX: Detection of occult HBV infection in an HBV-endemic area.

    PubMed

    Ha, Jihye; Park, Younhee; Kim, Hyon-Suk

    2017-11-01

    Transfusion-transmitted infectious diseases remain a major concern for blood safety, particularly with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). Nucleic acid testing (NAT) in donor screening shortens the serologically negative window period and reduces virus transmission. The cobas MPX (Roche Molecular Systems, Inc., Branchburg, New Jersey) is a recently developed multiplex qualitative PCR system that enables the simultaneous detection of HBV, HCV, and HIV with improved sensitivity and throughput using cobas 6800 and 8800 instruments. The aim of this study was to conduct an evaluation of the clinical sensitivity and specificity of cobas MPX detection of HBV, HCV, and HIV in clinical specimens. Among samples referred for HBV, HCV, and HIV-1 quantification at Severance Hospital, Yonsei University College of Medicine, positive samples were selected to evaluate sensitivity. A total of 843 samples was tested using both cobas MPX and COBAS AmpliPrep/COBAS TaqMan Tests for HBV, HCV, and HIV-1 using the cobas 8800 system and a COBAS TaqMan 96 analyzer, respectively. Samples that showed discrepancies were confirmed by nested PCR. The cobas MPX achieved excellent sensitivity and specificity for the detection of HBV, HCV, and HIV-1 in clinical samples. We found that the lower limit of detection (LOD) of blood screening by NAT actually improves clinical sensitivity, and occult HBV infection prevalence among healthy employees of the hospital was rather high. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity.

    PubMed

    Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin

    2018-05-29

    Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10  M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7  M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10  M.

  7. High-performance computer aided detection system for polyp detection in CT colonography with fluid and fecal tagging

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wang, Shijun; Kabadi, Suraj; Summers, Ronald M.

    2009-02-01

    CT colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. Computer-aided detection (CAD) of polyps has improved consistency and sensitivity of virtual colonoscopy interpretation and reduced interpretation burden. A CAD system typically consists of four stages: (1) image preprocessing including colon segmentation; (2) initial detection generation; (3) feature selection; and (4) detection classification. In our experience, three existing problems limit the performance of our current CAD system. First, highdensity orally administered contrast agents in fecal-tagging CTC have scatter effects on neighboring tissues. The scattering manifests itself as an artificial elevation in the observed CT attenuation values of the neighboring tissues. This pseudo-enhancement phenomenon presents a problem for the application of computer-aided polyp detection, especially when polyps are submerged in the contrast agents. Second, general kernel approach for surface curvature computation in the second stage of our CAD system could yield erroneous results for thin structures such as small (6-9 mm) polyps and for touching structures such as polyps that lie on haustral folds. Those erroneous curvatures will reduce the sensitivity of polyp detection. The third problem is that more than 150 features are selected from each polyp candidate in the third stage of our CAD system. These high dimensional features make it difficult to learn a good decision boundary for detection classification and reduce the accuracy of predictions. Therefore, an improved CAD system for polyp detection in CTC data is proposed by introducing three new techniques. First, a scale-based scatter correction algorithm is applied to reduce pseudo-enhancement effects in the image pre-processing stage. Second, a cubic spline interpolation method is utilized to accurately estimate curvatures for initial detection generation. Third, a new dimensionality reduction classifier, diffusion map and local linear embedding (DMLLE), is developed for classification and false positives (FP) reduction. Performance of the improved CAD system is evaluated and compared with our existing CAD system (without applying those techniques) using CT scans of 1186 patients. These scans are divided into a training set and a test set. The sensitivity of the improved CAD system increased 18% on training data at a rate of 5 FPs per patient and 15% on test data at a rate of 5 FPs per patient. Our results indicated that the improved CAD system achieved significantly better performance on medium-sized colonic adenomas with higher sensitivity and lower FP rate in CTC.

  8. Improved detection of Burkholderia pseudomallei from non-blood clinical specimens using enrichment culture and PCR: narrowing diagnostic gap in resource-constrained settings.

    PubMed

    Tellapragada, Chaitanya; Shaw, Tushar; D'Souza, Annet; Eshwara, Vandana Kalwaje; Mukhopadhyay, Chiranjay

    2017-07-01

    To evaluate the diagnostic utility of enrichment culture and PCR for improved case detection rates of non-bacteraemic form of melioidosis in limited resource settings. Clinical specimens (n = 525) obtained from patients presenting at a tertiary care hospital of South India with clinical symptoms suggestive of community-acquired pneumonia, lower respiratory tract infections, superficial or internal abscesses, chronic skin ulcers and bone or joint infections were tested for the presence of Burkholderia pseudomallei using conventional culture (CC), enrichment culture (EC) and PCR. Sensitivity, specificity, positive and negative predictive values of CC and PCR were initially deduced using EC as the gold standard method. Further, diagnostic accuracies of all the three methods were analysed using Bayesian latent class modelling (BLCM). Detection rates of B. pseudomallei using CC, EC and PCR were 3.8%, 5.3% and 6%, respectively. Diagnostic sensitivities and specificities of CC and PCR were 71.4, 98.4% and 100 and 99.4%, respectively in comparison with EC as the gold standard test. With Bayesian latent class modelling, EC and PCR demonstrated sensitivities of 98.7 and 99.3%, respectively, while CC showed a sensitivity of 70.3% for detection of B. pseudomallei. An increase of 1.6% (95% CI: 1.08-4.32%) in the case detection rate of melioidosis was observed in the study population when EC and/or PCR were used in adjunct to the conventional culture technique. Our study findings underscore the diagnostic superiority of enrichment culture and/or PCR over conventional microbiological culture for improved case detection of melioidosis from non-blood clinical specimens. © 2017 John Wiley & Sons Ltd.

  9. Current and future molecular diagnostics for ocular infectious diseases.

    PubMed

    Doan, Thuy; Pinsky, Benjamin A

    2016-11-01

    Confirmation of ocular infections can pose great challenges to the clinician. A fundamental limitation is the small amounts of specimen that can be obtained from the eye. Molecular diagnostics can circumvent this limitation and have been shown to be more sensitive than conventional culture. The purpose of this review is to describe new molecular methods and to discuss the applications of next-generation sequencing-based approaches in the diagnosis of ocular infections. Efforts have focused on improving the sensitivity of pathogen detection using molecular methods. This review describes a new molecular target for Toxoplasma gondii-directed polymerase chain reaction assays. Molecular diagnostics for Chlamydia trachomatis and Acanthamoeba species are also discussed. Finally, we describe a hypothesis-free approach, metagenomic deep sequencing, which can detect DNA and RNA pathogens from a single specimen in one test. In some cases, this method can provide the geographic location and timing of the infection. Pathogen-directed PCRs have been powerful tools in the diagnosis of ocular infections for over 20 years. The use of next-generation sequencing-based approaches, when available, will further improve sensitivity of detection with the potential to improve patient care.

  10. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    PubMed

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  11. A New Approach for Detection Improvement of the Creutzfeldt-Jakob Disorder through a Specific Surface Chemistry Applied onto Titration Well

    PubMed Central

    Mille, Caroline; Debarnot, Dominique; Zorzi, Willy; Moualij, Benaissa El; Quadrio, Isabelle; Perret-Liaudet, Armand; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2012-01-01

    This work illustrates the enhancement of the sensitivity of the ELISA titration for recombinant human and native prion proteins, while reducing other non-specific adsorptions that could increase the background signal and lead to a low sensitivity and false positives. It is achieved thanks to the association of plasma chemistry and coating with different amphiphilic molecules bearing either ionic charges and/or long hydrocarbon chains. The treated support by 3-butenylamine hydrochloride improves the signal detection of recombinant protein, while surface modification with the 3,7-dimethylocta-2,6-dien-1-diamine (geranylamine) enhances the sensitivity of the native protein. Beside the surface chemistry effect, these different results are associated with protein conformation. PMID:25586034

  12. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  13. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  14. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Dirk; Weibring, P.; Walega, J.

    2015-02-01

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  15. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis.

    PubMed

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.

  16. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions.

    PubMed

    Dunthorn, Jason; Dyer, Robert M; Neerchal, Nagaraj K; McHenry, Jonathan S; Rajkondawar, Parimal G; Steingraber, Gary; Tasch, Uri

    2015-11-01

    Lameness remains a significant cause of production losses, a growing welfare concern and may be a greater economic burden than clinical mastitis . A growing need for accurate, continuous automated detection systems continues because US prevalence of lameness is 12.5% while individual herds may experience prevalence's of 27.8-50.8%. To that end the first force-plate system restricted to the vertical dimension identified lame cows with 85% specificity and 52% sensitivity. These results lead to the hypothesis that addition of transverse and longitudinal dimensions could improve sensitivity of lameness detection. To address the hypothesis we upgraded the original force plate system to measure ground reaction forces (GRFs) across three directions. GRFs and locomotion scores were generated from randomly selected cows and logistic regression was used to develop a model that characterised relationships of locomotion scores to the GRFs. This preliminary study showed 76 variables across 3 dimensions produced a model with greater than 90% sensitivity, specificity, and area under the receiver operating curve (AUC). The result was a marked improvement on the 52% sensitivity, and 85% specificity previously observed with the 1 dimensional model or the 45% sensitivities reported with visual observations. Validation of model accuracy continues with the goal to finalise accurate automated methods of lameness detection.

  17. Minding the MeV gap: The indirect detection of low mass dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boddy, Kimberly K.; Kumar, Jason, E-mail: jkumar@hawaii.edu

    2016-06-21

    We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.

  18. Performance of an improved thermal neutron activation detector for buried bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Andrews, H. R.; Clifford, E. T. H.; Mosquera, C. M.

    2013-06-01

    First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.

  19. Airport detectors and orthopaedic implants.

    PubMed

    van der Wal, Bart C H; Grimm, Bernd; Heyligers, Ide C

    2005-08-01

    As a result of the rising threats of terrorism, airport security has become a major issue. Patients with orthopaedic implants are concerned that they may activate alarms at airport security gates. A literature overview showed that the activation rate of the alarm by hand-held detectors is higher than for arch detectors (100% versus 56%). Arch detection rate has significantly increased from 0% before 1995 up to 83.3% after 1994. Reported factors which influence detection rates are implant mass, implant combinations, implant volume, transfer speed, side of implant, detector model, sensitivity settings, material and tissue masking. Detection rate has been improved by more sensitive devices and improved filter software. Doctors should be able to objectively inform patients. A form is presented which will easily inform the airport security staff.

  20. Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization.

    PubMed

    Faridi, Ambar; Jia, Yali; Gao, Simon S; Huang, David; Bhavsar, Kavita V; Wilson, David J; Sill, Andrew; Flaxel, Christina J; Hwang, Thomas S; Lauer, Andreas K; Bailey, Steven T

    2017-01-01

    To determine the sensitivity and specificity of optical coherence tomography angiography (OCTA) in the detection of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). Prospective case series. Prospective series of seventy-two eyes were studied, which included eyes with treatment-naive CNV due to AMD, non-neovascular AMD, and normal controls. All eyes underwent OCTA with a spectral domain (SD) OCT (Optovue, Inc.). The 3D angiogram was segmented into separate en face views including the inner retinal angiogram, outer retinal angiogram, and choriocapillaris angiogram. Detection of abnormal flow in the outer retina served as candidate CNV with OCTA. Masked graders reviewed structural OCT alone, en face OCTA alone, and en face OCTA combined with cross-sectional OCTA for the presence of CNV. The sensitivity and specificity of CNV detection compared to the gold standard of fluorescein angiography (FA) and OCT was determined for structural SD-OCT alone, en face OCTA alone, and with en face OCTA combined with cross-sectional OCTA. Of 32 eyes with CNV, both graders identified 26 true positives with en face OCTA alone, resulting in a sensitivity of 81.3%. Four of the 6 false negatives had large subretinal hemorrhage (SRH) and sensitivity improved to 94% for both graders if eyes with SRH were excluded. The addition of cross-sectional OCTA along with en face OCTA improved the sensitivity to 100% for both graders. Structural OCT alone also had a sensitivity of 100%. The specificity of en face OCTA alone was 92.5% for grader A and 97.5% for grader B. The specificity of structural OCT alone was 97.5% for grader A and 85% for grader B. Cross-sectional OCTA combined with en face OCTA had a specificity of 97.5% for grader A and 100% for grader B. Sensitivity and specificity for CNV detection with en face OCTA combined with cross-sectional OCTA approaches that of the gold standard of FA with OCT, and it is better than en face OCTA alone. Structural OCT alone has excellent sensitivity for CNV detection. False positives from structural OCT can be mitigated with the addition of flow information with OCTA.

  1. Molecular diagnostics using magnetic nanobeads

    NASA Astrophysics Data System (ADS)

    Zardán Gómez de la Torre, Teresa; Strömberg, Mattias; Göransson, Jenny; Gunnarsson, Klas; Nilsson, Mats; Svedlindh, Peter; Strømme, Maria

    2010-01-01

    In this paper, we investigate the volume-amplified magnetic nanobead detection assay with respect to bead size, bead concentration and bead oligonucleotide surface coverage in order to improve the understanding of the underlying microscopic mechanisms. It has been shown that: (i) the immobilization efficiency of the beads depends on the surface coverage of oligonucleotides, (ii) by using lower amounts of probe-tagged beads, detection sensitivity can be improved and (iii) using small enough beads enables both turn-off and turn-on detection. Finally, biplex detection was demonstrated.

  2. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  3. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Multi-scale silica structures for improved point of care detection

    NASA Astrophysics Data System (ADS)

    Lin, Sophia; Lin, Lancy; Cho, Eunbyul; Pezzani, Gaston A. O.; Khine, Michelle

    2017-03-01

    The need for sensitive, portable diagnostic tests at the point of care persists. We report on a simple method to obtain improved detection of biomolecules by a two-fold mechanism. Silica (SiO2) is coated on pre-stressed thermoplastic shrink-wrap film. When the film retracts, the resulting micro- and nanostructures yield far-field fluorescence signal enhancements over their planar or wrinkled counterparts. Because the film shrinks by 95% in surface area, there is also a 20x concentration effect. The SiO2 structured substrate is therefore used for improved detection of labeled proteins and DNA hybridization via both fluorescent and bright field. Through optical characterization studies, we attribute the fluorescence signal enhancements of 100x to increased surface density and light scattering from the rough SiO2 structures. Combining with our open channel self-wicking microfluidics, we can achieve extremely low cost yet sensitive point of care diagnostics.

  5. Affinity Biosensors for Detection of Mycotoxins in Food.

    PubMed

    Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor

    2018-01-01

    This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.

  6. Research of the chemiluminescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyi; Wang, Yu; Ni, Xuxiang; Yan, Huimin

    2016-10-01

    The multifunctional nutrition analyzer, which integrates four detection functions, can make fast, accurate, quantitative analysis for a variety of nutrients. In this article we focus on researching the luminescence detection system. Compared with other means, luminescence detection needs no excitation light, and the detection sensitivity is improved due to the reduction of the background light. The apparatus consists of an displacement platform, a microporous plate, a combination of an aspheric lens and a plano-convex lens, an optical fiber and a photon counter connected with a computer. A theoretical light intensity formula is established as a reference and a comparison of the experimental data. In the experiment we applies ATP detection reagent as the experimental reagent, whose magnitudes of concentration are from 10-6 mol/L to 10-12 mol/L. The sensitivity of the apparatus could reach a magnitude of concentration of 0.1nmol/L, and it is estimated to be further improved by at least two magnitudes in theory with the system and the reagent optimized.

  7. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    PubMed

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants.

  8. Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk.

    PubMed

    Mottram, Toby; Rudnitskaya, Alisa; Legin, Andrey; Fitzpatrick, Julie L; Eckersall, P David

    2007-05-15

    Automatic detection of clinical mastitis is an essential part of high performance and robotic milking. Currently available technology (conductivity monitoring) is unable to achieve acceptable specificity or sensitivity of detection of clinical mastitis or other clinical diseases. Arrays of sensors with high cross-sensitivity have been successfully applied for recognition and quantitative analysis of other multicomponent liquids. An experiment was conducted to determine whether a multisensor system ("electronic tongue") based on an array of chemical sensors and suitable data processing could be used to discriminate between milk secretions from infected and healthy glands. Measurements were made with a multisensor system of milk samples from two different farms in two experiments. A total of 67 samples of milk from both mastitic and healthy glands were in two sets. It was demonstrated that the multisensor system could distinguish between control and clinically mastitic milk samples (p=0.05). The sensitivity and specificity of the sensor system (93 and 96% correspondingly) showed an improvement over conductivity (56 and 82% correspondingly). The multisensor system offers a novel method of improving mastitis detection.

  9. B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones

    PubMed Central

    Harper, Jonathan D.; Hsi, Ryan S.; Shah, Anup R.; Dighe, Manjiri K.; Carter, Stephen J.; Moshiri, Mariam; Paun, Marla; Lu, Wei; Bailey, Michael R.

    2013-01-01

    Abstract Purpose To compare color Doppler twinkling artifact and B-mode ultrasonography in detecting kidney stones. Patients and Methods Nine patients with recent CT scans prospectively underwent B-mode and twinkling artifact color Doppler ultrasonography on a commercial ultrasound machine. Video segments of the upper pole, interpolar area, and lower pole were created, randomized, and independently reviewed by three radiologists. Receiver operator characteristics were determined. Results There were 32 stones in 18 kidneys with a mean stone size of 8.9±7.5 mm. B-mode ultrasonography had 71% sensitivity, 48% specificity, 52% positive predictive value, and 68% negative predictive value, while twinkling artifact Doppler ultrasonography had 56% sensitivity, 74% specificity, 62% positive predictive value, and 68% negative predictive value. Conclusions When used alone, B-mode is more sensitive, but twinkling artifact is more specific in detecting kidney stones. This information may help users employ twinkling and B-mode to identify stones and developers to improve signal processing to harness the fundamental acoustic differences to ultimately improve stone detection. PMID:23067207

  10. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    PubMed

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  11. Lateral Flow Assay Based on Paper-Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Tang, Ruihua; Gong, Yan; Wen, Ting; Yang, Hui; Li, Ang; Chia, Yook Chin; Pingguan-Murphy, Belinda; Xu, Feng

    2017-01-01

    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  13. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    NASA Astrophysics Data System (ADS)

    Kim, Shin Ae; Byun, Kyung Min; Kim, Kyujung; Jang, Sung Min; Ma, Kyungjae; Oh, Youngjin; Kim, Donghyun; Kim, Sung Guk; Shuler, Michael L.; Kim, Sung June

    2010-09-01

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  14. ERASE-Seq: Leveraging replicate measurements to enhance ultralow frequency variant detection in NGS data

    PubMed Central

    Kamps-Hughes, Nick; McUsic, Andrew; Kurihara, Laurie; Harkins, Timothy T.; Pal, Prithwish; Ray, Claire

    2018-01-01

    The accurate detection of ultralow allele frequency variants in DNA samples is of interest in both research and medical settings, particularly in liquid biopsies where cancer mutational status is monitored from circulating DNA. Next-generation sequencing (NGS) technologies employing molecular barcoding have shown promise but significant sensitivity and specificity improvements are still needed to detect mutations in a majority of patients before the metastatic stage. To address this we present analytical validation data for ERASE-Seq (Elimination of Recurrent Artifacts and Stochastic Errors), a method for accurate and sensitive detection of ultralow frequency DNA variants in NGS data. ERASE-Seq differs from previous methods by creating a robust statistical framework to utilize technical replicates in conjunction with background error modeling, providing a 10 to 100-fold reduction in false positive rates compared to published molecular barcoding methods. ERASE-Seq was tested using spiked human DNA mixtures with clinically realistic DNA input quantities to detect SNVs and indels between 0.05% and 1% allele frequency, the range commonly found in liquid biopsy samples. Variants were detected with greater than 90% sensitivity and a false positive rate below 0.1 calls per 10,000 possible variants. The approach represents a significant performance improvement compared to molecular barcoding methods and does not require changing molecular reagents. PMID:29630678

  15. Computerized Detection of Lung Nodules by Means of “Virtual Dual-Energy” Radiography

    PubMed Central

    Chen, Sheng; Suzuki, Kenji

    2014-01-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of “virtual dual-energy” (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated “extremely subtle” or “very subtle” by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially. PMID:23193306

  16. Computerized detection of lung nodules by means of "virtual dual-energy" radiography.

    PubMed

    Chen, Sheng; Suzuki, Kenji

    2013-02-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially.

  17. How would GW150914 look with future gravitational wave detector networks?

    NASA Astrophysics Data System (ADS)

    Gaebel, S. M.; Veitch, J.

    2017-09-01

    The first detected gravitational wave signal, GW150914 (Abbott et al 2016 Phys. Rev. Lett. 116 061102), was produced by the coalescence of a stellar-mass binary black hole. Along with the subsequent detection of GW151226, GW170104 and the candidate event LVT151012, this gives us evidence for a population of black hole binaries with component masses in the tens of solar masses (Abbott et al 2016 Phys. Rev. X 6 041015). As detector sensitivity improves, this type of source is expected to make a large contribution to the overall number of detections, but has received little attention compared to binary neutron star systems in studies of projected network performance. We simulate the observation of a system like GW150914 with different proposed network configurations, and study the precision of parameter estimates, particularly source location, orientation and masses. We find that the improvements to low frequency sensitivity that are expected with continued commissioning (Abbott et al 2016 Living Rev. Relativ. 19 1) will improve the precision of chirp mass estimates by an order of magnitude, whereas the improvements in sky location and orientation are driven by the expanded network configuration. This demonstrates that both sensitivity and number of detectors will be important factors in the scientific potential of second generation detector networks.

  18. Analytical sensitivity of current best-in-class malaria rapid diagnostic tests.

    PubMed

    Jimenez, Alfons; Rees-Channer, Roxanne R; Perera, Rushini; Gamboa, Dionicia; Chiodini, Peter L; González, Iveth J; Mayor, Alfredo; Ding, Xavier C

    2017-03-24

    Rapid diagnostic tests (RDTs) are today the most widely used method for malaria diagnosis and are recommended, alongside microscopy, for the confirmation of suspected cases before the administration of anti-malarial treatment. The diagnostic performance of RDTs, as compared to microscopy or PCR is well described but the actual analytical sensitivity of current best-in-class tests is poorly documented. This value is however a key performance indicator and a benchmark value needed to developed new RDTs of improved sensitivity. Thirteen RDTs detecting either the Plasmodium falciparum histidine rich protein 2 (HRP2) or the plasmodial lactate dehydrogenase (pLDH) antigens were selected from the best performing RDTs according to the WHO-FIND product testing programme. The analytical sensitivity of these products was evaluated using a range of reference materials including P. falciparum and Plasmodium vivax whole parasite samples as well as recombinant proteins. The best performing HRP2-based RDTs could detect all P. falciparum cultured samples at concentrations as low as 0.8 ng/mL of HRP2. The limit of detection of the best performing pLDH-based RDT specifically detecting P. vivax was 25 ng/mL of pLDH. The analytical sensitivity of P. vivax and Pan pLDH-based RDTs appears to vary considerably from product to product, and improvement of the limit-of-detection for P. vivax detecting RDTs is needed to match the performance of HRP2 and Pf pLDH-based RDTs for P. falciparum. Different assays using different reference materials produce different values for antigen concentration in a given specimen, highlighting the need to establish universal reference assays.

  19. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection

    NASA Astrophysics Data System (ADS)

    Arafa, Safia; Bouchemat, Mohamed; Bouchemat, Touraya; Benmerkhi, Ahlem; Hocini, Abdesselam

    2017-02-01

    A Bio-sensing platform based on an infiltrated photonic crystal ring shaped holes cavity-coupled waveguide system is proposed for glucose concentration detection. Considering silicon-on-insulator (SOI) technology, it has been demonstrated that the ring shaped holes configuration provides an excellent optical confinement within the cavity region, which further enhances the light-matter interactions at the precise location of the analyte medium. Thus, the sensitivity and the quality factor (Q) can be significantly improved. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte glucose concentration are analyzed by performing finite-difference time-domain (FDTD) simulations. Accordingly, an improved sensitivity of 462 nm/RIU and a Q factor as high as 1.11х105 have been achieved, resulting in a detection limit of 3.03х10-6 RIU. Such combination of attributes makes the designed structure a promising element for performing label-free biosensing in medical diagnosis and environmental monitoring.

  20. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  1. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345

  3. A ppb level sensitive sensor for atmospheric methane detection

    NASA Astrophysics Data System (ADS)

    Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans

    2017-11-01

    A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.

  4. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells.

    PubMed

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-07-02

    Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.

  5. Recognition of lesion correspondence on two mammographic views: a new method of false-positive reduction for computerized mass detection

    NASA Astrophysics Data System (ADS)

    Sahiner, Berkman; Petrick, Nicholas; Chan, Heang-Ping; Paquerault, Sophie; Helvie, Mark A.; Hadjiiski, Lubomir M.

    2001-07-01

    We used the correspondence of detected structures on two views of the same breast for false-positive (FP) reduction in computerized detection of mammographic masses. For each initially detected object on one view, we considered all possible pairings with objects on the other view that fell within a radial band defined by the nipple-to-object distances. We designed a 'correspondence classifier' to classify these pairs as either the same mass (a TP-TP pair) or a mismatch (a TP-FP, FP-TP or FP-FP pair). For each pair, similarity measures of morphological and texture features were derived and used as input features in the correspondence classifier. Two-view mammograms from 94 cases were used as a preliminary data set. Initial detection provided 6.3 FPs/image at 96% sensitivity. Further FP reduction in single view resulted in 1.9 FPs/image at 80% sensitivity and 1.1 FPs/image at 70% sensitivity. By combining single-view detection with the correspondence classifier, detection accuracy improved to 1.5 FPs/image at 80% sensitivity and 0.7 FPs/image at 70% sensitivity. Our preliminary results indicate that the correspondence of geometric, morphological, and textural features of a mass on two different views provides valuable additional information for reducing FPs.

  6. Photooxidation of 3-substituted pyrroles:  a postcolumn reaction detection system for singlet molecular oxygen in HPLC.

    PubMed

    Denham, K; Milofsky, R E

    1998-10-01

    A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.

  7. Autoantibody Approach for Serum-Based Detection of Head and Neck Cancer — EDRN Public Portal

    Cancer.gov

    Our long term goal is to improve survival of patients with head and neck squamous cell carcinoma (HNSCC) through early detection using simple noninvasive serum assays in an ELISA-like platform. The objective of this proposal is to improve and confirm the validity of a diagnostic serum assay based on a panel of cancer-specific biomarkers for early cancer detection in patients with HNSCC. Our central hypothesis is that the detection of antibody responses to HNSCC-specific antigens, using a panel of biomarkers, can provide sufficient sensitivity and specificity suitable for clinical testing in the primary setting to screen and diagnose HNSCC in high risk populations to improve early detection.

  8. Computer-aided detection of colorectal polyps: can it improve sensitivity of less-experienced readers? Preliminary findings.

    PubMed

    Baker, Mark E; Bogoni, Luca; Obuchowski, Nancy A; Dass, Chandra; Kendzierski, Renee M; Remer, Erick M; Einstein, David M; Cathier, Pascal; Jerebko, Anna; Lakare, Sarang; Blum, Andrew; Caroline, Dina F; Macari, Michael

    2007-10-01

    To determine whether computer-aided detection (CAD) applied to computed tomographic (CT) colonography can help improve sensitivity of polyp detection by less-experienced radiologist readers, with colonoscopy or consensus used as the reference standard. The release of the CT colonographic studies was approved by the individual institutional review boards of each institution. Institutions from the United States were HIPAA compliant. Written informed consent was waived at all institutions. The CT colonographic studies in 30 patients from six institutions were collected; 24 images depicted at least one confirmed polyp 6 mm or larger (39 total polyps) and six depicted no polyps. By using an investigational software package, seven less-experienced readers from two institutions evaluated the CT colonographic images and marked or scored polyps by using a five-point scale before and after CAD. The time needed to interpret the CT colonographic findings without CAD and then to re-evaluate them with CAD was recorded. For each reader, the McNemar test, adjusted for clustered data, was used to compare sensitivities for readers without and with CAD; a Wilcoxon signed-rank test was used to analyze the number of false-positive results per patient. The average sensitivity of the seven readers for polyp detection was significantly improved with CAD-from 0.810 to 0.908 (P=.0152). The number of false-positive results per patient without and with CAD increased from 0.70 to 0.96 (95% confidence interval for the increase: -0.39, 0.91). The mean total time for the readings was 17 minutes 54 seconds; for interpretation of CT colonographic findings alone, the mean time was 14 minutes 16 seconds; and for review of CAD findings, the mean time was 3 minutes 38 seconds. Results of this feasibility study suggest that CAD for CT colonography significantly improves per-polyp detection for less-experienced readers. Copyright (c) RSNA, 2007.

  9. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis

    PubMed Central

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation. PMID:29084241

  10. Fiber-pigtailed silicon photonic sensors for methane leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu; Xiong, Chi; Zhang, Eric

    We present comprehensive characterization of silicon photonic sensors for methane leak detection. Sensitivity of 40 ppmv after 1 second integration is reported. Fourier domain characterization of on-chip etalon drifts is used for further sensor improvement.

  11. Repeat Cytology and Human Papillomavirus Screening Strategies in Detecting Preinvasive Cervical Lesions

    PubMed Central

    Li, Kemin; Yin, Rutie

    2015-01-01

    Abstract The aim of the present study was to determine the value of human papillomavirus (HPV) testing in screening patients with preinvasive cervical lesions. Seven hundred thirty-four women diagnosed with atypical squamous cells of undetermined significance (ASCUS+) cervical cytology during routine screening had additional cytologic testing and HPV DNA testing within 6 months of their diagnosis, after which all women who tested positive were referred for colposcopy and biopsy. The test findings were then used to determine the screening value of HPV for diagnosing preinvasive cervical lesions. Cytology and HPV testing were compared by conventional cytology. The odds ratio (OR) of sensitivity using ASCUS+ or low-grade squamous intraepithelial neoplasia (LSIL+) as a cutoff for detecting cervical intraepithelial neoplasia (CIN) II+ was, respectively, 0.78 (0.72, 0.85) and 0.82 (0.70, 0.95) (P < 0.01). The cytology for triage and conventional cytology had different sensitivities using ASCUS+ or LSIL+ as the cutoff (P < 0.01). The cytology or HPV testing and conventional cytology had a difference in sensitivity using ASCUS+, LSIL+, or high-grade squamous intraepithelial neoplasia (HSIL+) as the cutoff (P < 0.01). Cytology and HPV testing were also compared with conventional cytology. The OR of specificity using ASCUS+ or LSIL+ as the cutoff for the detection of CIN II+ was 1.97 (1.68, 2.31) and 1.10 (1.02, 1.18), respectively (P < 0.01). The cytology for triage and conventional cytology had a difference in specificity when ASCUS+ or LSIL+ was used as the cutoff (P < 0.01). Finally, the cytology or HPV testing and conventional cytology had a difference in specificity when ASCUS+, LSIL+, or HSIL+ was used as the cutoff (P < 0.01). Cytology and HPV testing and cytology for triage improved the specificity of detecting CIN II+, but this did not improve the sensitivity. Additionally, cytology or HPV testing improved the sensitivity of detecting CIN II+ but not the specificity. PMID:25654377

  12. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification.

    PubMed

    Kim, Duck-Jin; Lee, Nae-Eung; Park, Joon-Shik; Park, In-Jun; Kim, Jung-Gu; Cho, Hyoung J

    2010-07-15

    We demonstrated a highly sensitive organic electrochemical transistor (OECT) based immunosensor with a low detection limit for prostate specific antigen/alpha1-antichymotrypsin (PSA-ACT) complex. The poly(styrenesulfonate) doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) based OECT with secondary antibody conjugated gold nanoparticles (AuNPs) provided a detection limit of the PSA-ACT complex as low as 1pg/ml, as well as improved sensitivity and a dynamic range, due to the role of AuNPs in the signal amplification. The sensor performances were particularly improved in the lower concentration range where the detection is clinically important for the preoperative diagnosis and screening of prostate cancer. This result shows that the OECT-based immunosensor can be used as a transducer platform acceptable to the point-of-care (POC) diagnostic systems and demonstrates adaptability of organic electronics to clinical applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets.

    PubMed

    Oldenburg, Amy L; Wu, Gongting; Spivak, Dmitry; Tsui, Frank; Wolberg, Alisa S; Fischer, Thomas H

    2011-07-21

    Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots.

  14. Vestibular-somatosensory interactions: effects of passive whole-body rotation on somatosensory detection.

    PubMed

    Ferrè, Elisa Raffaella; Kaliuzhna, Mariia; Herbelin, Bruno; Haggard, Patrick; Blanke, Olaf

    2014-01-01

    Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals.

  15. Gravitational wave hotspots: Ranking potential locations of single-source gravitational wave emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Joseph; Polin, Abigail; Lommen, Andrea

    2014-03-20

    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that everymore » galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.« less

  16. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    PubMed

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  17. Fluorescence detection system for microfluidic droplets

    NASA Astrophysics Data System (ADS)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  18. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.

    PubMed

    Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida

    2016-09-01

    Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment

    PubMed Central

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-01-01

    Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916

  20. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  1. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol.

    PubMed

    Kijowski, Richard; Blankenbaker, Donna G; Munoz Del Rio, Alejandro; Baer, Geoffrey S; Graf, Ben K

    2013-05-01

    To determine whether the addition of a T2 mapping sequence to a routine magnetic resonance (MR) imaging protocol could improve diagnostic performance in the detection of surgically confirmed cartilage lesions within the knee joint at 3.0 T. This prospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. The study group consisted of 150 patients (76 male and 74 female patients with an average age of 41.2 and 41.5 years, respectively) who underwent MR imaging and arthroscopy of the knee joint. MR imaging was performed at 3.0 T by using a routine protocol with the addition of a sagittal T2 mapping sequence. Images from all MR examinations were reviewed in consensus by two radiologists before surgery to determine the presence or absence of cartilage lesions on each articular surface, first by using the routine MR protocol alone and then by using the routine MR protocol with T2 maps. Each articular surface was then evaluated at arthroscopy. Generalized estimating equation models were used to compare the sensitivity and specificity of the routine MR imaging protocol with and without T2 maps in the detection of surgically confirmed cartilage lesions. The sensitivity and specificity in the detection of 351 cartilage lesions were 74.6% and 97.8%, respectively, for the routine MR protocol alone and 88.9% and 93.1% for the routine MR protocol with T2 maps. Differences in sensitivity and specificity were statistically significant (P < .001). The addition of T2 maps to the routine MR imaging protocol significantly improved the sensitivity in the detection of 24 areas of cartilage softening (from 4.2% to 62%, P < .001), 41 areas of cartilage fibrillation (from 20% to 66%, P < .001), and 96 superficial partial-thickness cartilage defects (from 71% to 88%, P = .004). The addition of a T2 mapping sequence to a routine MR protocol at 3.0 T improved sensitivity in the detection of cartilage lesions within the knee joint from 74.6% to 88.9%, with only a small reduction in specificity. The greatest improvement in sensitivity with use of the T2 maps was in the identification of early cartilage degeneration. © RSNA, 2013.

  2. Gd-EOB-DTPA-enhanced magnetic resonance imaging for focal liver lesions in Chinese patients: a multicenter, open-label, phase III study.

    PubMed

    Zeng, Meng-Su; Ye, Hui-Yi; Guo, Liang; Peng, Wei-Jun; Lu, Jian-Ping; Teng, Gao-Jun; Huan, Yi; Li, Ping; Xu, Jian-Rong; Liang, Chang-Hong; Breuer, Josy

    2013-12-01

    Contrast agents help to improve visibility in magnetic resonance (MR) imaging. However, owing to the large interstitial spaces of the liver, there is a reduction in the natural contrast gradient between lesions and healthy tissue. This study was undertaken to evaluate the efficacy and safety of the liver-specific MR imaging contrast agent gadoxetate disodium (Gd-EOB-DTPA) in Chinese patients. This was a single-arm, open-label, multicenter study in patients with known or suspected focal liver lesions referred for contrast-enhanced MR imaging. MR imaging was performed in 234 patients before and after a single intravenous bolus of Gd-EOB-DTPA (0.025 mmol/kg body weight). Images were evaluated by clinical study investigators and three independent, blinded radiologists. The primary efficacy endpoint was sensitivity in lesion detection. Gd-EOB-DTPA improved sensitivity in lesion detection by 9.46% compared with pre-contrast imaging for the average of the three blinded readers (94.78% vs 85.32% for Gd-EOB-DTPA vs pre-contrast, respectively). Improvements in detection were more pronounced in lesions less than 1 cm. Gd-EOB-DTPA improved diagnostic accuracy in lesion classification. This open-label study demonstrated that Gd-EOB-DTPA improves diagnostic sensitivity in liver lesions, particularly in those smaller than 1 cm. Gd-EOB-DTPA also significantly improves the diagnostic accuracy in lesion classification, and furthermore, Gd-EOB-DTPA is safe in Chinese patients with liver lesions.

  3. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  4. Modeling feeding behavior of swine to detect illness

    USDA-ARS?s Scientific Manuscript database

    Animal well-being may be improved by detecting disruptions in feeding behavior indicative of challenged animals. The objectives of this study were to 1) develop and optimize an autoregressive model by adjusting sensitivity of the model to detect disruptions in feeding time; 2) test the model on dail...

  5. Advanced LIGO status

    NASA Astrophysics Data System (ADS)

    Dwyer, S.; LIGO Scientific Collaboration

    2015-05-01

    Advanced LIGO is currently in the final stages of installation and early commissioning. In the design of Advanced LIGO a key goal was the ability to detect gravitational waves from compact object binary inspirals, as these are thought to be the most likely candidates for early detections with ground based interferometers. Special emphasis has been placed on improving the low frequency sensitivity relative to the first generations of LIGO, in addition to improving the high frequency sensitivity by increasing the laser power. The interferometer in Livingston Louisiana has been locked (continuously held within the linear operating range) and noise investigations have begun, and the major installation activities for the interferometer at Hanford, Washington are completed.

  6. An evaluation of computer-aided disproportionality analysis for post-marketing signal detection.

    PubMed

    Lehman, H P; Chen, J; Gould, A L; Kassekert, R; Beninger, P R; Carney, R; Goldberg, M; Goss, M A; Kidos, K; Sharrar, R G; Shields, K; Sweet, A; Wiholm, B E; Honig, P K

    2007-08-01

    To understand the value of computer-aided disproportionality analysis (DA) in relation to current pharmacovigilance signal detection methods, four products were retrospectively evaluated by applying an empirical Bayes method to Merck's post-marketing safety database. Findings were compared with the prior detection of labeled post-marketing adverse events. Disproportionality ratios (empirical Bayes geometric mean lower 95% bounds for the posterior distribution (EBGM05)) were generated for product-event pairs. Overall (1993-2004 data, EBGM05> or =2, individual terms) results of signal detection using DA compared to standard methods were sensitivity, 31.1%; specificity, 95.3%; and positive predictive value, 19.9%. Using groupings of synonymous labeled terms, sensitivity improved (40.9%). More of the adverse events detected by both methods were detected earlier using DA and grouped (versus individual) terms. With 1939-2004 data, diagnostic properties were similar to those from 1993 to 2004. DA methods using Merck's safety database demonstrate sufficient sensitivity and specificity to be considered for use as an adjunct to conventional signal detection methods.

  7. An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR

    PubMed Central

    Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming

    2015-01-01

    We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910

  8. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    NASA Astrophysics Data System (ADS)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  9. Improved Sensitivity for Molecular Detection of Bacterial and Candida Infections in Blood

    PubMed Central

    Bacconi, Andrea; Richmond, Gregory S.; Baroldi, Michelle A.; Laffler, Thomas G.; Blyn, Lawrence B.; Carolan, Heather E.; Frinder, Mark R.; Toleno, Donna M.; Metzgar, David; Gutierrez, Jose R.; Massire, Christian; Rounds, Megan; Kennel, Natalie J.; Rothman, Richard E.; Peterson, Stephen; Carroll, Karen C.; Wakefield, Teresa; Ecker, David J.

    2014-01-01

    The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections. PMID:24951806

  10. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  11. Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter.

    PubMed

    Bergquist, J; Vona, M J; Stiller, C O; O'Connor, W T; Falkenberg, T; Ekman, R

    1996-03-01

    The use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the analysis of microdialysate samples from the periaqueductal grey matter (PAG) of freely moving rats is described. By employing 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) as a derivatization agent, we simultaneously monitored the concentrations of 8 amino acids (arginine, glutamine, valine, gamma-amino-n-butyric acid (GABA), alanine, glycine, glutamate, and aspartate), with nanomolar and subnanomolar detection limits. Two of the amino acids (GABA and glutamate) were analysed in parallel by conventional high-performance liquid chromatography (HPLC) in order to directly compare the two analytical methods. Other CE methods for analysis of microdialysate have been previously described, and this improved method offers greater sensitivity, ease of use, and the possibility to monitor several amino acids simultaneously. By using this technique together with an optimised form of microdialysis technique, the tiny sample consumption and the improved detection limits permit the detection of fast and transient transmitter changes.

  12. Rhythm-based heartbeat duration normalization for atrial fibrillation detection.

    PubMed

    Islam, Md Saiful; Ammour, Nassim; Alajlan, Naif; Aboalsamh, Hatim

    2016-05-01

    Screening of atrial fibrillation (AF) for high-risk patients including all patients aged 65 years and older is important for prevention of risk of stroke. Different technologies such as modified blood pressure monitor, single lead ECG-based finger-probe, and smart phone using plethysmogram signal have been emerging for this purpose. All these technologies use irregularity of heartbeat duration as a feature for AF detection. We have investigated a normalization method of heartbeat duration for improved AF detection. AF is an arrhythmia in which heartbeat duration generally becomes irregularly irregular. From a window of heartbeat duration, we estimate the possible rhythm of the majority of heartbeats and normalize duration of all heartbeats in the window based on the rhythm so that we can measure the irregularity of heartbeats for both AF and non-AF rhythms in the same scale. Irregularity is measured by the entropy of distribution of the normalized duration. Then we classify a window of heartbeats as AF or non-AF by thresholding the measured irregularity. The effect of this normalization is evaluated by comparing AF detection performances using duration with the normalization, without normalization, and with other existing normalizations. Sensitivity and specificity of AF detection using normalized heartbeat duration were tested on two landmark databases available online and compared with results of other methods (with/without normalization) by receiver operating characteristic (ROC) curves. ROC analysis showed that the normalization was able to improve the performance of AF detection and it was consistent for a wide range of sensitivity and specificity for use of different thresholds. Detection accuracy was also computed for equal rates of sensitivity and specificity for different methods. Using normalized heartbeat duration, we obtained 96.38% accuracy which is more than 4% improvement compared to AF detection without normalization. The proposed normalization method was found useful for improving performance and robustness of AF detection. Incorporation of this method in a screening device could be crucial to reduce the risk of AF-related stroke. In general, the incorporation of the rhythm-based normalization in an AF detection method seems important for developing a robust AF screening device. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis

    PubMed Central

    Surti, Suleman

    2013-01-01

    Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989

  14. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors.

    PubMed

    March, Carmen; García, José V; Sánchez, Ángel; Arnau, Antonio; Jiménez, Yolanda; García, Pablo; Manclús, Juan J; Montoya, Ángel

    2015-03-15

    In spite of being widely used for in liquid biosensing applications, sensitivity improvement of conventional (5-20MHz) quartz crystal microbalance (QCM) sensors remains an unsolved challenging task. With the help of a new electronic characterization approach based on phase change measurements at a constant fixed frequency, a highly sensitive and versatile high fundamental frequency (HFF) QCM immunosensor has successfully been developed and tested for its use in pesticide (carbaryl and thiabendazole) analysis. The analytical performance of several immunosensors was compared in competitive immunoassays taking carbaryl insecticide as the model analyte. The highest sensitivity was exhibited by the 100MHz HFF-QCM carbaryl immunosensor. When results were compared with those reported for 9MHz QCM, analytical parameters clearly showed an improvement of one order of magnitude for sensitivity (estimated as the I50 value) and two orders of magnitude for the limit of detection (LOD): 30μgl(-1) vs 0.66μgL(-1)I50 value and 11μgL(-1) vs 0.14μgL(-1) LOD, for 9 and 100MHz, respectively. For the fungicide thiabendazole, I50 value was roughly the same as that previously reported for SPR under the same biochemical conditions, whereas LOD improved by a factor of 2. The analytical performance achieved by high frequency QCM immunosensors surpassed those of conventional QCM and SPR, closely approaching the most sensitive ELISAs. The developed 100MHz QCM immunosensor strongly improves sensitivity in biosensing, and therefore can be considered as a very promising new analytical tool for in liquid applications where highly sensitive detection is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sensitive enhancement of vessel wall imaging with an endoesophageal Wireless Amplified NMR Detector (WAND).

    PubMed

    Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi

    2017-11-01

    To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Detection of Methylated Circulating DNA as Noninvasive Biomarkers for Breast Cancer Diagnosis

    PubMed Central

    Cheuk, Isabella Wai Yin; Shin, Vivian Yvonne

    2017-01-01

    Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer. PMID:28382090

  17. Interfacing of differential-capacitive biomimetic hair flow-sensors for optimal sensitivity

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.; Bruinink, C. M.; Wiegerink, R. J.; Lammerink, T. S. J.; Droogendijk, H.; Krijnen, G. J. M.

    2013-03-01

    Biologically inspired sensor-designs are investigated as a possible path to surpass the performance of more traditionally engineered designs. Inspired by crickets, artificial hair sensors have shown the ability to detect minute flow signals. This paper addresses developments in the design, fabrication, interfacing and characterization of biomimetic hair flow-sensors towards sensitive high-density arrays. Improvement of the electrode design of the hair sensors has resulted in a reduction of the smallest hair movements that can be measured. In comparison to the arrayed hairs-sensor design, the detection-limit was arguably improved at least twelve-fold, down to 1 mm s-1 airflow amplitude at 250 Hz as measured in a bandwidth of 3 kHz. The directivity pattern closely resembles a figure-of-eight. These sensitive hair-sensors open possibilities for high-resolution spatio-temporal flow pattern observations.

  18. Comparison of the performance of rapid prescreening, 10% random review, and clinical risk criteria as methods of internal quality control in cervical cytopathology.

    PubMed

    Tavares, Suelene B N; Alves de Sousa, Nadja L; Manrique, Edna J C; Pinheiro de Albuquerque, Zair B; Zeferino, Luiz C; Amaral, Rita G

    2008-06-25

    Rapid prescreening (RPS) is an internal quality-control (IQC) method that is used both to reduce errors in the laboratory and to measure the sensitivity of routine screening (RS). Little direct comparison data are available comparing RPS with other more widely used IQC methods. The authors compared the performance of RPS, 10% random review of negative smears (R-10%), and directed rescreening of negative smears based on clinical risk criteria (RCRC) over 1 year in a community clinic setting. In total, 6,135 smears were evaluated. The sensitivity of RS alone was 71.3%. RPS detected significantly more (132 cases) false-negative (FN) cases than either R-10% (7 cases) or RCRC (32 cases). RPS significantly improved the overall sensitivity of the laboratory (71.3-92.2%; P = .001); neither R-10% nor RCRC significantly changed the sensitivity of RS. RPS was not as specific as the other methods, although nearly 68% of all abnormalities detected by RPS were verified as real. RPS of 100% of smears required the same amount of time as RCRC but required twice as much time as R-10%. The current results demonstrated that RPS is a much more effective IQC method than either R-10% or RCRC. RPS detects significantly more errors and can improve the overall sensitivity of a laboratory with either a modest increase or no increase in overall time spent on IQC. R-10% is an insensitive IQC method, and neither R-10% nor RCRC can significantly improve the overall sensitivity of a laboratory. (c) 2008 American Cancer Society.

  19. Metal cation detection in positive ion mode electrospray ionization mass spectrometry using a tetracationic salt as a gas-phase ion-pairing agent: evaluation of the effect of chelating agents on detection sensitivity.

    PubMed

    Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W

    2012-12-30

    The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the analysis of metal ions. Copyright © 2012 John Wiley & Sons, Ltd.

  20. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.

    PubMed

    Ye, Yu-Dan; Xia, Li; Xu, Dang-Dang; Xing, Xiao-Jing; Pang, Dai-Wen; Tang, Hong-Wu

    2016-11-15

    Based on the remarkable difference between the interactions of carbon nanoparticles (CNPs) oxide with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), and the fact that fluorescence of DNA-stabilized silver nanoclusters (AgNCs) can be quenched by CNPs oxide, DNA-functionalized AgNCs were applied as label-free fluorescence probes and a novel fluorescence resonance energy transfer (FRET) sensor was successfully constructed for the detection of human immunodeficiency virus (HIV) DNA sequences. CNPs oxide were prepared with the oxidation of candle soot, hence it is simple, time-saving and low-cost. The strategy of dual AgNCs probes was applied to improve the detection sensitivity by using dual- probe capturing the same target DNA in a sandwich mode and as the fluorescence donor, and using CNPs oxide as the acceptor. In the presence of target DNA, a dsDNA hybrid forms, leading to the desorption of the ssDNA-AgNCs probes from CNPs oxide, and the recovering of fluorescence of the AgNCs in a HIV-DNA concentration-dependent manner. The results show that HIV-DNA can be detected in the range of 1-50nM with a detection limit of 0.40nM in aqueous buffer. The method is simple, rapid and sensitive with no need of labeled fluorescent probes, and moreover, the design of fluorescent dual-probe makes full use of the excellent fluorescence property of AgNCs and further improves the detection sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Saturated fatty acid determination method using paired ion electrospray ionization mass spectrometry coupled with capillary electrophoresis.

    PubMed

    Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol

    2017-09-01

    A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2  > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Label-Free Electrical Immunosensor for Highly Sensitive and Specific Detection of Microcystin-LR in Water Samples.

    PubMed

    Tan, Feng; Saucedo, Nuvia Maria; Ramnani, Pankaj; Mulchandani, Ashok

    2015-08-04

    Microcystin-LR (MCLR) is one of the most commonly detected and toxic cyclic heptapeptide cyanotoxins released by cyanobacterial blooms in surface waters, for which sensitive and specific detection methods are necessary to carry out its recognition and quantification. Here, we present a single-walled carbon nanotube (SWCNTs)-based label-free chemiresistive immunosensor for highly sensitive and specific detection of MCLR in different source waters. MCLR was initially immobilized on SWCNTs modified interdigitated electrode, followed by incubation with monoclonal anti-MCLR antibody. The competitive binding of MCLR in sample solutions induced departure of the antibody from the antibody-antigen complexes formed on SWCNTs, resulting in change in the conductivity between source and drain of the sensor. The displacement assay greatly improved the sensitivity of the sensor compared with direct immunoassay on the same device. The immunosensor exhibited a wide linear response to log value of MCLR concentration ranging from 1 to 1000 ng/L, with a detection limit of 0.6 ng/L. This method showed good reproducibility, stability and recovery. The proposed method provides a powerful tool for rapid and sensitive monitoring of MCLR in environmental samples.

  3. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    PubMed

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  5. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  6. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  7. Clinical experience with a computer-aided diagnosis system for automatic detection of pulmonary nodules at spiral CT of the chest

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter

    2001-05-01

    The purpose of the study was to evaluate a computer aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Two radiologists in consensus reported 88 consecutive spiral CT examinations. All examinations were reviewed using a UNIX-based CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm was designed to detect nodules with at least 5 mm diameter. The results of automatic nodule detection were compared to the consensus reporting of two radiologists as gold standard. Additional CAD findings were regarded as nodules initially missed by the radiologists or as false positive results. A total of 153 nodules were detected with all modalities (diameter: 85 nodules <5mm, 63 nodules 5-9 mm, 5 nodules >= 10 mm). Reasons for failure of automatic nodule detection were assessed. Sensitivity of radiologists for nodules >=5 mm was 85%, sensitivity of CAD was 38%. For nodules >=5 mm without pleural contact sensitivity was 84% for radiologists at 45% for CAD. CAD detected 15 (10%) nodules not mentioned in the radiologist's report but representing real nodules, among them 10 (15%) nodules with a diameter $GREW5 mm. Reasons for nodules missed by CAD include: exclusion because of morphological features during region analysis (33%), nodule density below the detection threshold (26%), pleural contact (33%), segmentation errors (5%) and other reasons (2%). CAD improves detection of pulmonary nodules at spiral CT significantly and is a valuable second opinion in a clinical setting for lung cancer screening. Optimization of region analysis and an appropriate density threshold have a potential for further improvement of automatic nodule detection.

  8. Indoor air quality inspection and analysis system based on gas sensor array

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Mingjiang; Fan, Binwen

    2017-08-01

    A detection and analysis system capable of measuring the concentration of four major gases in indoor air is designed. It uses four gas sensors constitute a gas sensor array, to achieve four indoor gas concentration detection, while the detection of data for further processing to reduce the cross-sensitivity between the gas sensor to improve the accuracy of detection.

  9. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Sensitivity improvement of an electrical sensor achieved by control of biomolecules based on the negative dielectrophoretic force.

    PubMed

    Kim, Hye Jin; Kim, Jinsik; Yoo, Yong Kyoung; Lee, Jeong Hoon; Park, Jung Ho; Hwang, Kyo Seon

    2016-11-15

    Effective control of nano-scale biomolecules can enhance the sensitivity and limit of detection of an interdigitated microelectrode (IME) sensor. Manipulation of the biomolecules by dielectrophoresis (DEP), especially the negative DEP (nDEP) force, so that they are trapped between electrodes (sensing regions) was predicted to increase the binding efficiency of the antibody and target molecules, leading to a more effective reaction. To prove this concept, amyloid beta 42 (Aβ42) and prostate specific antigen (PSA) protein were respectively trapped between the sensing region owing to the nDEP force under 5V and 0.05V, which was verified with COMSOL simulation. Using the simulation value, the resistance change (ΔR/Rb) of the IME sensor from the specific antibody-antigen reaction of the two biomolecules and the change in fluorescence intensity were compared in the reference (pDEP) and nDEP conditions. The ΔR/Rb value improved by about 2-fold and 1.66-fold with nDEP compared to the reference condition with various protein concentrations, and these increases were confirmed with fluorescence imaging. Overall, nDEP enhanced the detection sensitivity for Aβ42 and PSA by 128% and 258%, respectively, and the limit of detection improved by up to 2-orders of magnitude. These results prove that DEP can improve the biosensor's performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tag Array gene chip rapid diagnosis anti-tuberculosis drug resistance in pulmonary tuberculosis -a feasibility study.

    PubMed

    Wu, Wenjie; Cheng, Peng; Lyu, Jingtong; Zhang, Zehua; Xu, Jianzhong

    2018-05-01

    We developed a Tag Array chip for detecting first- and second-line anti tuberculosis drug resistance in pulmonary tuberculosis and compared the analytical performance of the gene chip to that of phenotypic drug susceptibility testing (DST). From November 2011 to April 2016.234 consecutive culture-confirmed, clinically and imaging diagnosed patients with pulmonary tuberculosis from Southwest Hospital, Chongqing were enrolled into the study. Specimens collected during sputum or bronchoalveolar lavage fluid from the pulmonary tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the Tag Array gene chip, and evaluate the sensitivity and specificity of chip. A total of 186 patients was diagnosed drug-resistant tuberculosis. The detection of rifampicin (RFP), isoniazid (INH), fluoroquinolones (FQS), streptomycin (SM) resistance genes was highly sensitive and specific: however, for detection of amikacin (AMK), capreomycin (CPM), Kanamycin (KM), specificity was higher, but sensitivity was lower. Sensitivity for the detection of a mutation in the eis promoter region could be improved. The detection sensitivity of the EMB resistance gene was low, therefore it is easy to miss a diagnosis of EMB drug resistance, but its specificity was high. Tag Array chip can achieve rapid, accurate and high-throughput detection of tuberculosis resistance in pulmonary tuberculosis, which has important clinical significance and feasibility. Copyright © 2018. Published by Elsevier Ltd.

  12. Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.

    PubMed

    Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K

    2015-10-01

    Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Active substrates improving sensitivity in biomedical fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2005-08-01

    Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.

  14. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device.

    PubMed

    You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol

    2011-10-15

    Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    PubMed

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  16. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing.

    PubMed

    Chakravorty, Soumitesh; Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M; Davidow, Amy; Denkinger, Claudia M; Persing, David; Kwiatkowski, Robert; Jones, Martin; Alland, David

    2017-08-29

    The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and specificity with pulmonary samples, its sensitivity has been lower with smear-negative pulmonary samples and extrapulmonary samples. In addition, the prediction of rifampin resistance (RIF-R) in paucibacillary samples and for a few rpoB mutations has resulted in both false-positive and false-negative results. The present study is the first demonstration of the design features and operational characteristics of an improved Xpert Ultra assay. This study also shows that the Ultra format overcomes many of the known shortcomings of Xpert. The new assay should significantly improve TB detection, especially in patients with paucibacillary disease, and provide more-reliable detection of RIF-R. Copyright © 2017 Chakravorty et al.

  18. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  19. Polymerase chain reaction in the detection of tumor cells: new approaches in diagnosis and follow-up of patients with thyroid cancer.

    PubMed

    Bojunga, Jörg; Kusterer, Klaus; Schumm-Draeger, Petra-Maria; Usadel, Klaus-Henning

    2002-12-01

    Thyroid cancers are the most common endocrine malignancies and are being diagnosed with increasing frequency. In addition to other measures, diagnosis is based on fine-needle aspiration cytology examination. Recently, new assays using reverse transcription-polymerase chain reaction (PCR) are being tested to improve sensitivity and specificity of primary diagnosis and detection of recurrent thyroid cancer. In the preoperative diagnosis of thyroid cancer, several tissue- and/or tumor-specific mRNA have been described and in several cases, a higher sensitivity and specificity could be achieved using molecular techniques compared to conventional methods. In the postoperative follow-up of patients with thyroid cancer, conflicting data have been published and the use of PCR techniques revealed several problems of the molecular approach, which are based on some technical as well as biologic limitations. Despite these problems, which are discussed in detail in this review, molecular techniques may nevertheless improve the sensitivity and accuracy of fine-needle aspiration of thyroid nodules, fine-needle aspiration of metastases, and detection of recurrent disease in peripheral blood samples.

  20. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  1. Reformatted images improve the detection rate of acute traumatic subdural hematomas on brain CT compared with axial images alone.

    PubMed

    Amrhein, Timothy J; Mostertz, William; Matheus, Maria Gisele; Maass-Bolles, Genevieve; Sharma, Komal; Collins, Heather R; Kranz, Peter G

    2017-02-01

    Subdural hematomas (SDHs) comprise a significant percentage of missed intracranial hemorrhage on axial brain CT. SDH detection rates could be improved with the addition of reformatted images. Though performed at some centers, the potential additional diagnostic sensitivity of reformatted images has not yet been investigated. The purpose of our study is to determine if the addition of coronal and sagittal reformatted images to an axial brain CT increases the sensitivity and specificity for detection of acute traumatic SDH. We retrospectively reviewed consecutive brain CTs acquired for acute trauma that contained new SDHs. An equivalent number of normal brain CTs served as control. Paired sets of images were created for each case: (1) axial images only ("axial only") and (2) axial, coronal, sagittal images ("reformat added"). Three readers interpreted both the axial only and companion reformat added for each case, separated by 1 month. Reading times and SDH detection rates were compared. One hundred SDH and 100 negative examinations were collected. Sensitivity and specificity for the axial-only scans were 75.7 and 94.3 %, respectively, compared with 88.3 and 98.3 % for reformat added. There was a 24.3 % false negative (missed SDH) rate with axial-only scans versus 11.7 % with reformat added (p = <0.001). Median reader interpretation times were longer with the addition of reformatted images (125 versus 89 s), but this difference was not significant (p = 0.23). The addition of coronal and sagittal images in trauma brain CT resulted in improved sensitivity and specificity as well as a reduction in SDH false negatives by greater than 50 %. Reformatted images substantially reduce the number of missed SDHs compared with axial images alone.

  2. Evaluation of a Broad-Spectrum Partially Automated Adverse Event Surveillance System: A Potential Tool for Patient Safety Improvement in Hospitals With Limited Resources.

    PubMed

    Saikali, Melody; Tanios, Alain; Saab, Antoine

    2017-11-21

    The aim of the study was to evaluate the sensitivity and resource efficiency of a partially automated adverse event (AE) surveillance system for routine patient safety efforts in hospitals with limited resources. Twenty-eight automated triggers from the hospital information system's clinical and administrative databases identified cases that were then filtered by exclusion criteria per trigger and then reviewed by an interdisciplinary team. The system, developed and implemented using in-house resources, was applied for 45 days of surveillance, for all hospital inpatient admissions (N = 1107). Each trigger was evaluated for its positive predictive value (PPV). Furthermore, the sensitivity of the surveillance system (overall and by AE category) was estimated relative to incidence ranges in the literature. The surveillance system identified a total of 123 AEs among 283 reviewed medical records, yielding an overall PPV of 52%. The tool showed variable levels of sensitivity across and within AE categories when compared with the literature, with a relatively low overall sensitivity estimated between 21% and 44%. Adverse events were detected in 23 of the 36 AE categories defined by an established harm classification system. Furthermore, none of the detected AEs were voluntarily reported. The surveillance system showed variable sensitivity levels across a broad range of AE categories with an acceptable PPV, overcoming certain limitations associated with other harm detection methods. The number of cases captured was substantial, and none had been previously detected or voluntarily reported. For hospitals with limited resources, this methodology provides valuable safety information from which interventions for quality improvement can be formulated.

  3. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials

    PubMed Central

    Cheng, Fei; Yang, Xiaodong; Gao, Jie

    2015-01-01

    Infrared vibrational spectroscopy is an effective technique which enables the direct probe of molecular fingerprints, and such detection can be further enhanced by the emerging engineered plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial, and quantitatively analyze the molecule detection sensitivity and molecule-structure interactions. A sharp, non-radiative Fano resonance supported by the plasmonic metamaterial exhibits strongly enhanced near-field, and the resonance frequency is tailored to match the vibrational fingerprint of the target molecule. By utilizing the near-field nature of the plasmonic excitation, significantly enhanced absorption signal of molecules in the infrared spectroscopy are obtained, enabling ultrasensitive detection of only minute quantities of organic molecules. The enhancement of molecular absorption up to 105 fold is obtained, and sensitive detection of molecules at zeptomole levels (corresponding to a few tens of molecules within a unit cell) is achieved with high signal-to-noise ratio in our experiment. The demonstrated infrared plasmonic metamaterial sensing platform offers great potential for improving the specificity and sensitivity of label-free, biochemical detection. PMID:26388404

  4. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improvemore » quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.« less

  5. A SAW-based chemical sensor for detecting sulfur-containing organophosphorus compounds using a two-step self-assembly and molecular imprinting technology.

    PubMed

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-05-19

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  6. A SAW-Based Chemical Sensor for Detecting Sulfur-Containing Organophosphorus Compounds Using a Two-Step Self-Assembly and Molecular Imprinting Technology

    PubMed Central

    Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang

    2014-01-01

    This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio

  7. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  8. Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets

    PubMed Central

    Oldenburg, Amy L.; Wu, Gongting; Spivak, Dmitry; Tsui, Frank; Wolberg, Alisa S.; Fischer, Thomas H.

    2013-01-01

    Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots. PMID:23833549

  9. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems

    NASA Astrophysics Data System (ADS)

    Namasivayam, Vijay; Lin, Rongsheng; Johnson, Brian; Brahmasandra, Sundaresh; Razzacki, Zafar; Burke, David T.; Burns, Mark A.

    2004-01-01

    Microfabrication techniques have become increasingly popular in the development of next generation DNA analysis devices. Improved on-chip fluorescence detection systems may have applications in developing portable hand-held instruments for point-of-care diagnostics. Miniaturization of fluorescence detection involves construction of ultra-sensitive photodetectors that can be integrated onto a fluidic platform combined with the appropriate optical emission filters. We have previously demonstrated integration PIN photodiodes onto a microfabricated electrophoresis channel for separation and detection of DNA fragments. In this work, we present an improved detector structure that uses a PINN+ photodiode with an on-chip interference filter and a robust liquid barrier layer. This new design yields high sensitivity (detection limit of 0.9 ng µl-1 of DNA), low-noise (S/N ~ 100/1) and enhanced quantum efficiencies (>80%) over the entire visible spectrum. Applications of these photodiodes in various areas of DNA analysis such as microreactions (PCR), separations (electrophoresis) and microfluidics (drop sensing) are presented.

  10. Evaluation of the highly sensitive chemiluminescent enzyme immunoassay "Lumipulse HBsAg-HQ" for hepatitis B virus screening.

    PubMed

    Deguchi, Matsuo; Kagita, Masanori; Yoshioka, Nori; Tsukamoto, Hiroko; Takao, Miyuki; Tahara, Kazuko; Maeda, Ikuhiro; Hidaka, Yoh; Yamauchi, Satoshi; Kaneko, Atsushi; Miyakoshi, Hideo; Isomura, Mitsuo

    2017-10-06

    Ongoing efforts in the development of HBsAg detection kits are focused on improving sensitivity and specificity. The purpose of this study was to evaluate an improved, highly sensitive quantitative assay, "Lumipulse HBsAg-HQ", a chemiluminescent enzyme immunoassay designed for a fully automated instrument, the "Lumipulse G1200". Serum samples for reproducibility, dilution, correlation, sensitivity, and specificity studies were obtained from patients at the Osaka University Hospital. Seroconversion and sensitivity panels were purchased from a commercial vender. Subtype, sensitivity panels, and HBsAg recombinant proteins with one or two amino acid substitutions were prepared in-house. The coefficients of variation for the low, medium, and high concentration samples ranged from 1.93 to 2.55%. The HBsAg-HQ reagent for dilution testing showed good linearity in the 0.005-150 HBsAg IU/mL range and no prozone phenomenon. All 102 HBV carrier samples were positive by HBsAg-HQ, while other commercial reagents showed one or more to be negative. In the seroconversion panel, the 14-day blood sample was positive. The sensitivity against HBsAg-HQ "ad" and "ay" subtypes was 0.025 ng/mL. Comparisons among the HBsAg-HQ, HISCL, and Architect HBsAg reagents were performed using the Bland-Altman plot. Specificity for 1000 seronegative individuals was 99.7%. HBsAg-HQ detected 29 positive serum among 12 231 routinely obtained serum samples, which showed concentrations of 0.005-0.05 HBsAg IU/mL. According to these results, the Lumipulse HBsAg-HQ assay, with a highly sensitive limit of detection of 0.005 IU/mL, may facilitate the development of a better management strategy for a considerable proportion of infected patients. © 2017 Wiley Periodicals, Inc.

  11. High sensitivity detection of NO2 employing off-axis integrated cavity output spectroscopy coupled with multiple line integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Rao, Gottipaty N.; Karpf, Andreas

    2011-05-01

    We report on the development of a new sensor for NO2 with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several km in a small volume cell) with multiple line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity tunable quantum cascade laser operating in the 1601 - 1670 cm-1 range and a high-finesse optical cavity, the absorption spectra of NO2 over 100 transitions in the R-band have been recorded. From the observed linear relationship between the integrated absorption vs. concentration of NO2, we report an effective sensitivity of detection of 10 ppt for NO2. To the best of our knowledge, this is among the most sensitive levels of detection of NO2 to date. A sensitive sensor for the detection of NO2 will be helpful to monitor the ambient air quality, combustion emissions from the automobiles, power plants, aircraft and for the detection of nitrate based explosives (which are commonly used in improvised explosives (IEDs)). Additionally such a sensor would be valuable for the study of complex chemical reactions that undergo in the atmosphere resulting in the formation of photochemical smog, tropospheric ozone and acid rain.

  12. Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor.

    PubMed

    Zhang, Jingle; Fu, Haiwei; Ding, Jijun; Zhang, Min; Zhu, Yi

    2017-11-01

    A graphene-oxide-coated interferometric microfiber-sensor-based polarization-maintaining optical fiber is proposed for highly sensitive detecting for ethanol vapor concentration at room temperature in this paper. The strong sensing capability of the sensor to detect the concentration of ethanol vapor is demonstrated, taking advantage of the evanescent field enhancement and gas absorption of a graphene-oxide-coated microfiber. The transmission spectrum of the sensor varies with concentrations of ethanol vapor, and the redshift of the transmission spectrum has been analyzed for the concentration range from 0 to 80 ppm with sensitivity as high as 0.138 nm/ppm. The coated graphene oxide layer induces the evanescent field enhancement and gas selective adsorption, which improves sensitivity and selectivity of the microfiber gas sensor for ethanol vapor detection.

  13. The Value of Diffusion-Weighted Imaging in Combination With Conventional Magnetic Resonance Imaging for Improving Tumor Detection for Early Cervical Carcinoma Treated With Fertility-Sparing Surgery.

    PubMed

    Li, Xiulei; Wang, Ling; Li, Yong; Song, Peiji

    2017-10-01

    This study aimed to investigate the value of diffusion-weighted imaging (DWI) in combination with conventional magnetic resonance imaging (MRI) for improving tumor detection in young patients treated with fertility-sparing surgery because of early cervical carcinoma. Fifty-four patients with stage Ia or Ib1 cervical carcinoma were enrolled into this study. Magnetic resonance examinations were performed for these patients using conventional MRI (including T1-weighted imaging, T2-weighted imaging, and dynamic contrast-enhanced MRI) and DWI. The apparent diffusion coefficient (ADC) values of cervical carcinoma were analyzed quantitatively and compared with that of adjacent epithelium. Sensitivity, positive predictive value, and accuracy of 2 sets of MRI sequences were calculated on the basis of histologic results, and the diagnostic ability of conventional MRI/DWI combinations was compared with that of conventional MRI. The mean ADC value from cervical carcinoma (mean, 786 × 10 mm/s ± 100) was significantly lower than that from adjacent epithelium (mean, 1352 × 10 mm/s ± 147) (P = 0.01). When the threshold ADC value set as 1010 × 10 mm/s, the sensitivity and specificity for differentiating cervical carcinoma from nontumor epithelium were 78.2% and 67.2%, respectively. The sensitivity and accuracy of conventional MRI for tumor detection were 76.0% and 70.4%, whereas the sensitivity and accuracy of conventional MRI/DWI combinations were 91.7% and 90.7%, respectively. Conventional MRI/DWI combinations revealed a positive predictive value of 97.8% and only 4 false-negative findings. The addition of DWI to conventional MRI considerably improves the sensitivity and accuracy of tumor detection in young patients treated with fertility-sparing surgery, which supports the inclusion quantitative analysis of ADC value in routine MRI protocol before fertility-sparing surgery.

  14. Development of a high-sensitivity and portable cell using Helmholtz resonance for noninvasive blood glucose-level measurement based on photoacoustic spectroscopy.

    PubMed

    Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y

    2016-08-01

    We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.

  15. Development of a fast and efficient method for hepatitis A virus concentration from green onion.

    PubMed

    Zheng, Yan; Hu, Yuan

    2017-11-01

    Hepatitis A virus (HAV) can cause serious liver disease and even death. HAV outbreaks are associated with the consumption of raw or minimally processed produce, making it a major public health concern. Infections have occurred despite the fact that effective HAV vaccine has been available. Development of a rapid and sensitive HAV detection method is necessary for an investigation of an HAV outbreak. Detection of HAV is complicated by the lack of a reliable culture method. In addition, due to the low infectious dose of HAV, these methods must be very sensitive. Current methods rely on efficient sample preparation and concentration steps followed by sensitive molecular detection techniques. Using green onions which was involved in most recent HAV outbreaks as a representative produce, a method of capturing virus particles was developed using carboxyl-derivatized magnetic beads in this study. Carboxyl beads, like antibody-coated beads or cationic beads, detect HAV at a level as low as 100 pfu/25g of green onions. RNA from virus concentrated in this manner can be released by heat-shock (98°C 5min) for molecular detection without sacrificing sensitivity. Bypassing the RNA extraction procedure saves time and removes multiple manipulation steps, which makes large scale HAV screening possible. In addition, the inclusion of beef extract and pectinase rather than NP40 in the elution buffer improved the HAV liberation from the food matrix over current methods by nearly 10 fold. The method proposed in this study provides a promising tool to improve food risk assessment and protect public health. Published by Elsevier B.V.

  16. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  17. Sensitivity and specificity of a new automated system for the detection of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus nucleic acid in blood and plasma donations.

    PubMed

    Galel, Susan A; Simon, Toby L; Williamson, Phillip C; AuBuchon, James P; Waxman, Dan A; Erickson, Yasuko; Bertuzis, Rasa; Duncan, John R; Malhotra, Khushbeer; Vaks, Jeffrey; Huynh, Nancy; Pate, Lisa Lee

    2018-03-01

    Use of nucleic acid testing (NAT) in donor infectious disease screening improves transfusion safety. Advances in NAT technology include improvements in assay sensitivity and system automation, and real-time viral target discrimination in multiplex assays. This article describes the sensitivity and specificity of cobas MPX, a multiplex assay for detection of human immunodeficiency virus (HIV)-1 Group M, HIV-2 and HIV-1 Group O RNA, HCV RNA, and HBV DNA, for use on the cobas 6800/8800 Systems. The specificity of cobas MPX was evaluated in samples from donors of blood and source plasma in the United States. Analytic sensitivity was determined with reference standards. Infectious window periods (WPs) before NAT detectability were calculated for current donor screening assays. The specificity of cobas MPX was 99.946% (99.883%-99.980%) in 11,203 blood donor samples tested individually (IDT), 100% (99.994%-100%) in 63,012 donor samples tested in pools of 6, and 99.994% (99.988%-99.998%) in 108,306 source plasma donations tested in pools of 96. Seven HCV NAT-yield donations and one seronegative occult HBV infection were detected. Ninety-five percent and 50% detection limits in plasma (IU/mL) were 25.7 and 3.8 for HIV-1M, 7.0 and 1.3 for HCV, and 1.4 and 0.3 for HBV. The HBV WP was 1 to 4 days shorter than other donor screening assays by IDT. cobas MPX demonstrated high specificity in blood and source plasma donations tested individually and in pools. High sensitivity, in particular for HBV, shortens the WP and may enhance detection of occult HBV. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  18. Clinical validation of multiplex real-time PCR assays for detection of bacterial meningitis pathogens.

    PubMed

    Wang, Xin; Theodore, M Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J Matthew; Messonnier, Nancy E; Mayer, Leonard W

    2012-03-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays.

  19. A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.

    PubMed

    Zhang, Ye; Luo, Shihua; Situ, Bo; Chai, Zhixin; Li, Bo; Liu, Jumei; Zheng, Lei

    2018-04-15

    Rare cancer cells in body fluid could be useful biomarkers for noninvasive diagnosis of cancer. However, detection of these rare cells is currently challenging. In this work, a binding-induced dual catalytic hairpin assembly (DCHA) electrochemical cytosensor was developed for highly selective and sensitive detection of cancer cells. The fuel probe, released by hybridization between the capture probe and catalytic hairpin assembly (CHA) products of target cell-responsive reaction, initiated dual CHA recycling, leading to multiple CHA products. Furthermore, the hybridization between fuel probe and capture probe decreased non-specific CHA products, improving the signal-to-noise ratio and detection sensitivity. Under the optimal conditions, the developed cytosensor was able to detect cells down to 30 cells mL -1 (S/N = 3) with a linear range from 50 to 100,000 cells mL -1 and was capable of distinguishing target cells from normal cells in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.

    PubMed

    Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-12-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.

  1. Highly sensitive detection of target molecules using a new fluorescence-based bead assay

    NASA Astrophysics Data System (ADS)

    Scheffler, Silvia; Strauß, Denis; Sauer, Markus

    2007-07-01

    Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.

  2. Precolumn Derivatization with Bromine to Improve Separation and Detection Sensitivity of Triacylglycerols in Edible Oil by Reversed-Phase High Performance Liquid Chromatography.

    PubMed

    Shan, Xiao-Lin; Liu, Xiao-Ting; Gong, Can; Xu, Xu

    2018-01-01

    The complexity of triacylglycerols (TAGs) in edible oils is largely due to the many similar unsaturated TAG compounds, which makes profiling TAGs difficult. In this study, precolumn derivatization with bromine (Br 2 ) was used to improve the separation and detection sensitivity of TAGs in edible oils by RP-HPLC. Oil samples dissolved in n-hexane and TAGs were derived by reaction with a Br2-CCl 4 (1:1, v/v) solution for 3 h at room temperature. The derivate product solution was stable and was best separated and detected by RP-HPLC using a C18 column, with a mobile phase of methanol-n-hexane (91.5:8.5, v/v) at 25°C. A detection wavelength of 230 nm was used. The results showed that the approach enabled the separation and detection of more similar TAGs by RP-HPLC. The method was applied to profile 20 types of edible oil, and the results presented the differences in the TAG profiles of various edible oils, which may be useful in the identification of edible oils.

  3. Searching for dark absorption with direct detection experiments

    DOE PAGES

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...

    2017-06-16

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  4. Searching for dark absorption with direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  5. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  6. High-Resolution Scintimammography: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection ofmore » breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.« less

  7. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  8. Optofluidic devices for biomolecule sensing and multiplexing

    NASA Astrophysics Data System (ADS)

    Ozcelik, Damla

    Optofluidics which integrates photonics and microfluidics, has led to highly compact, sensitive and adaptable biomedical sensors. Optofluidic biosensors based on liquid-core anti-resonant reflecting optical waveguides (LC-ARROWs), have proven to be a highly sensitive, portable, and reconfigurable platform for fluorescence spectroscopy and detection of single biomolecules such as proteins, nucleic acids, and virus particles. However, continued improvements in sensitivity remain a major goal as we approach the ultimate limit of detecting individual bio-particles labeled by single or few fluorophores. Additionally, the ability to simultaneously detect and identify multiple biological particles or biomarkers is one of the key requirements for molecular diagnostic tests. The compactness and adaptability of these platforms can further be advanced by introducing tunability, integrating off-chip components, designing reconfigurable and customizable devices, which makes these platforms very good candidates for many different applications. The goal of this thesis was to introduce new elements in these LC-ARROW optofluidics platforms that provide major enhancements in their functionality, making them more sensitive, compact, customizable and multiplexed. First, a novel integrated tunable spectral filter that achieves effective elimination of background noise on the ARROW platform was demonstrated. A unique dual liquid-core design enabled the independent multi-wavelength tuning of the spectral filter by adjusting the refractive index and chemical properties of the liquid. In order to enhance the detection sensitivity of the platform, Y-splitter waveguides were integrated to create multiple excitation spots for each target molecule. A powerful signal processing algorithm was used to analyze the data to improve the signal-to-noise ratio (SNR) of the collected data. Next, the design, optimization and characterization of the Y-splitter waveguides are presented; and single influenza virus detection with an improved SNR was demonstrated using this platform. Finally, multiplexing capacity is introduced to the ARROW detection platform by integrating multi-mode interference (MMI) waveguides. MMI waveguides create wavelength dependent multiple excitation spots at the excitation region, allowing the spectral multiplexed detection of multiple different target molecules based on the excitation pattern, without the need for additional spectral filters. Successful spectral multiplexed detection of three different types of influenza viruses is achieved by using separate wavelengths and combination of wavelengths. This multiplexing capacity is further enhanced by taking advantage of the spatial properties of the MMI pattern, designing triple liquid-core waveguides that intersect the MMI waveguide in different locations. Furthermore, the spectral and spatial multiplexing capacities are combined in these triple liquid-core MMI platforms, allowing these devices to distinguish multiple different targets and samples simultaneously.

  9. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    PubMed

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  10. Detection of Bovine IgG Isotypes in a PPA-ELISA for Johne's Disease Diagnosis in Infected Herds

    PubMed Central

    Fernández, Bárbara; Gilardoni, Liliana Rosa; Jolly, Ana; Colavecchia, Silvia Beatriz; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor

    2012-01-01

    Johne's Disease or Paratuberculosis is a chronic granulomatous enteritis disease affecting ruminants. Detection of subclinically infected animals is difficult, hampering the control of this disease. The aim of this work was to evaluate the performance of detection of IgG isotypes in a PPA-ELISA to improve the recognition of cattle naturally infected with Map in different stages. A total of 108 animals from Tuberculosis-free herds were grouped as follows: exposed (n = 30), subclinically infected (n = 26), clinically infected (n = 14), and healthy controls (n = 38). Receiver-operating characteristic (ROC) curves of isotypes/PPA-ELISAs were constructed and areas under the curves were compared to evaluate the performance of each test. Our study demonstrated that the conventional PPA-ELISA (detecting IgG) is the best to identify clinically infected animals with high sensitivity (92.9%) and specificity (100%). Meanwhile, IgG2/PPA-ELISA improved the number of subclinically infected cattle detected as compared with conventional IgG/PPA-ELISA (53.8 versus 23.1%). In addition, it had the maximum sensitivity (65.0%, taking into account all Map-infected cattle). In conclusion, the combination of IgG and IgG2/PPA-ELISAs may improve the identification of Map-infected cattle in different stages of disease. The usefulness of IgG2 detection in serological tests for Johne's Disease diagnosis should be further evaluated. PMID:22792511

  11. Detection of Bovine IgG Isotypes in a PPA-ELISA for Johne's Disease Diagnosis in Infected Herds.

    PubMed

    Fernández, Bárbara; Gilardoni, Liliana Rosa; Jolly, Ana; Colavecchia, Silvia Beatriz; Paolicchi, Fernando Alberto; Mundo, Silvia Leonor

    2012-01-01

    Johne's Disease or Paratuberculosis is a chronic granulomatous enteritis disease affecting ruminants. Detection of subclinically infected animals is difficult, hampering the control of this disease. The aim of this work was to evaluate the performance of detection of IgG isotypes in a PPA-ELISA to improve the recognition of cattle naturally infected with Map in different stages. A total of 108 animals from Tuberculosis-free herds were grouped as follows: exposed (n = 30), subclinically infected (n = 26), clinically infected (n = 14), and healthy controls (n = 38). Receiver-operating characteristic (ROC) curves of isotypes/PPA-ELISAs were constructed and areas under the curves were compared to evaluate the performance of each test. Our study demonstrated that the conventional PPA-ELISA (detecting IgG) is the best to identify clinically infected animals with high sensitivity (92.9%) and specificity (100%). Meanwhile, IgG2/PPA-ELISA improved the number of subclinically infected cattle detected as compared with conventional IgG/PPA-ELISA (53.8 versus 23.1%). In addition, it had the maximum sensitivity (65.0%, taking into account all Map-infected cattle). In conclusion, the combination of IgG and IgG2/PPA-ELISAs may improve the identification of Map-infected cattle in different stages of disease. The usefulness of IgG2 detection in serological tests for Johne's Disease diagnosis should be further evaluated.

  12. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Chaudhery, Vikram; George, Sherine; Lu, Meng; Pokhriyal, Anusha; Cunningham, Brian T.

    2013-01-01

    Photonic crystal (PC) surfaces have been demonstrated as a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics and life science research. PCs can be engineered to support optical resonances at specific wavelengths at which strong electromagnetic fields are utilized to enhance the intensity of surface-bound fluorophore excitation. Meanwhile, the leaky resonant modes of PCs can be used to direct emitted photons within a narrow range of angles for more efficient collection by a fluorescence detection system. The multiplicative effects of enhanced excitation combined with enhanced photon extraction combine to provide improved signal-to-noise ratios for detection of fluorescent emitters, which in turn can be used to reduce the limits of detection of low concentration analytes, such as disease biomarker proteins. Fabrication of PCs using inexpensive manufacturing methods and materials that include replica molding on plastic, nano-imprint lithography on quartz substrates result in devices that are practical for single-use disposable applications. In this review, we will describe the motivation for implementing high-sensitivity fluorescence detection in the context of molecular diagnosis and gene expression analysis though the use of PC surfaces. Recent efforts to improve the design and fabrication of PCs and their associated detection instrumentation are summarized, including the use of PCs coupled with Fabry-Perot cavities and external cavity lasers. PMID:23624689

  13. Sensitivity improvement of one-shot Fourier spectroscopic imager for realization of noninvasive blood glucose sensors in smartphones

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Nogo, Kosuke; Hosono, Satsuki; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-11-01

    The use of the wide-field-stop and beam-expansion method for sensitivity enhancement of one-shot Fourier spectroscopy is proposed to realize health care sensors installed in smartphones for daily monitoring. When measuring the spectral components of human bodies noninvasively, diffuse reflected light from biological membranes is too weak for detection using conventional hyperspectral cameras. One-shot Fourier spectroscopy is a spatial phase-shift-type interferometer that can determine the one-dimensional spectral characteristics from a single frame. However, this method has low sensitivity, so that only the spectral characteristics of light sources with direct illumination can be obtained, because a single slit is used as a field stop. The sensitivity of the proposed spectroscopic method is improved by using the wide-field-stop and beam-expansion method. The use of a wider field stop slit width increases the detected light intensity; however, this simultaneously narrows the diffraction angle. The narrower collimated objective beam diameter degrades the visibility of interferograms. Therefore, a plane-concave cylindrical lens between the objective plane and the single slit is introduced to expand the beam diameter. The resulting sensitivity improvement achieved when using the wide-field-stop and beam-expansion method allows the spectral characteristics of hemoglobin to be obtained noninvasively from a human palm using a midget lamp.

  14. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  15. Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation.

    PubMed

    Sellmann, Lea; Rabe, Kim; Bünting, Ivonne; Dammann, Elke; Göhring, Gudrun; Ganser, Arnold; Stadler, Michael; Weissinger, Eva M; Hambach, Lothar

    2018-05-02

    Conventional analysis of host chimerism (HC) frequently fails to detect relapse before its clinical manifestation in patients with hematological malignancies after allogeneic stem cell transplantation (allo-SCT). Quantitative PCR (qPCR)-based highly-sensitive chimerism analysis extends the detection limit of conventional (short tandem repeats-based) chimerism analysis from 1 to 0.01% host cells in whole blood. To date, the diagnostic value of highly-sensitive chimerism analysis is hardly defined. Here, we applied qPCR-based chimerism analysis to 901 blood samples of 71 out-patients with hematological malignancies after allo-SCT. Receiver operating characteristics (ROC) curves were calculated for absolute HC values and for the increments of HC before relapse. Using the best cut-offs, relapse was detected with sensitivities of 74 or 85% and specificities of 69 or 75%, respectively. Positive predictive values (PPVs) were only 12 or 18%, but the respective negative predictive values were 98 or 99%. Relapse was detected median 38 or 45 days prior to clinical diagnosis, respectively. Considering also durations of steadily increasing HC of more than 28 days improved PPVs to more than 28 or 59%, respectively. Overall, highly-sensitive chimerism analysis excludes relapses with high certainty and predicts relapses with high sensitivity and specificity more than a month prior to clinical diagnosis.

  16. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    PubMed Central

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-01-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future. PMID:25655666

  17. The technology on noise reduction of the APD detection circuit

    NASA Astrophysics Data System (ADS)

    Wu, Xue-ying; Zheng, Yong-chao; Cui, Jian-yong

    2013-09-01

    The laser pulse detection is widely used in the field of laser range finders, laser communications, laser radar, laser Identification Friend or Foe, et al, for the laser pulse detection has the advantage of high accuracy, high sensitivity and strong anti-interference. The avalanche photodiodes (APD) has the advantage of high quantum efficiency, high response speed and huge gain. The APD is particularly suitable for weak signal detection. The technology that APD acts as the photodetector for weak signal reception and amplification is widely used in laser pulse detection. The APD will convert the laser signal to weak electrical signal. The weak signal is amplified, processed and exported by the circuit. In the circuit design, the optimal signal detection is one key point in photoelectric detection system. The issue discusses how to reduce the noise of the photoelectric signal detection circuit and how to improve the signal-to-noise ratio, related analysis and practice included. The essay analyzes the mathematical model of the signal-to-noise ratio for photoelectric conversion and the noise of the APD photoelectric detection system. By analysis the bandwidth of the detection system is determined, and the circuit devices are selected that match the APD. In the circuit design separated devices with low noise are combined with integrated operational amplifier for the purpose of noise reduction. The methods can effectively suppress the noise, and improve the detection sensitivity.

  18. Improved clonality detection in B-cell lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH rearrangement: A paraffin-embedded tissue study.

    PubMed

    Sakamoto, Yuma; Masaki, Ayako; Aoyama, Satsuki; Han, Shusen; Saida, Kosuke; Fujii, Kana; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2017-09-01

    The BIOMED-2 PCR protocol for targeting the IGH gene is widely employed for detecting clonality in B-cell malignancies. Unfortunately, the detection of clonality with this method is not very sensitive when paraffin sections are used as a DNA source. To increase the sensitivity, we devised a semi-nested modification of a JH consensus primer. The clonality detection rates of three assays were compared: the standard BIOMED-2, BIOMED-2 assay followed by BIOMED-2 re-amplification, and BIOMED-2 assay followed by semi-nested BIOMED-2. We tested more than 100 cases using paraffin-embedded tissues of various B-cell lymphomas, and found that the clonality detection rates with the above three assays were 63.9%, 79.6%, and 88.0%, respectively. While BIOMED-2 re-amplification was significantly more sensitive than the standard BIOMED-2, the semi-nested BIOMED-2 was significantly more sensitive than both the standard BIOMED-2 and BIOMED-2 re-amplification. An increase in sensitivity was observed in all lymphoma subtypes examined. In conclusion, tumor clonality may be detected in nearly 90% of B-cell lymphoma cases with semi-nested BIOMED-2. This ancillary assay may be useful when the standard BIOMED-2 fails to detect clonality in histopathologically suspected B-cell lymphomas. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  19. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula.

    PubMed

    Pan, Ruili; Jiang, Yujun; Sun, Luhong; Wang, Rui; Zhuang, Kejin; Zhao, Yueming; Wang, Hui; Ali, Md Aslam; Xu, Honghua; Man, Chaoxin

    2018-05-01

    Cronobacter sakazakii is an opportunistic foodborne pathogen that can infect newborns through powdered infant formula (PIF). In this study, we developed a novel enhanced lateral flow immunoassay (LFA) with enhanced sensitivity for detection of C. sakazakii in PIF by the naked eye. The proposed strategy for signal enhancement of the traditional LFA used concentrated gold nanoparticles (AuNP) as the enhancer to conjugate with capture antibodies, which could increase the immobilized capture antibodies concentration at the detection zone to improve capture efficiency. Besides, the detection signal was further amplified by accumulated AuNP as the C. sakazakii labeled with AuNP probes was captured by antibodies conjugated with enhancer at the test line. We also studied the effect of different concentrations of capture antibodies and concentrated AuNP on detection performance, and found that 2.2 mg/mL of capture antibodies and 0.06 nM concentrated AuNP were the optimal combination that could avoid a false-positive signal and maximally amplify the detection signal of the enhanced LFA. Using this strategy, the detection sensitivity of the enhanced LFA was 10 3 cfu/mL and improved 100-fold compared with traditional LFA. The strip was highly specific to C. sakazakii, and the time for detection of C. sakazakii in PIF was shortened by 3 h. In summary, the enhanced LFA developed by the addition of concentrated AuNP as the enhancer can be used as a sensitive, rapid, visual qualitative and point-of-care test method for detecting target analytes. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Developing Highly Sensitive Micro-Biosensors for in-situ Monitoring Mercury and Chromium(IV) Contaminants by Genetically-evolving and Computer-designing Metal-binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qinghong; Fang, Xiangdong; Goddard, William

    2013-10-17

    Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less

  1. Scintillation light detectors with Neganov Luke amplification

    NASA Astrophysics Data System (ADS)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  2. Remote photoacoustic detection of liquid contamination of a surface.

    PubMed

    Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C

    2003-08-20

    A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.

  3. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    PubMed Central

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2015-01-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541

  4. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    NASA Astrophysics Data System (ADS)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  5. Radar and optical observations of small mass meteors at Arecibo

    NASA Astrophysics Data System (ADS)

    Michell, R.; Janches, D.; DeLuca, M. D.; Samara, M.; Chen, R. Y.

    2016-12-01

    Optical observations of meteors were conducted over 4 separate nights alongside the Arecibo radar. Meteors were detected in the optical imaging data and with both of the radars at Arecibo. The UHF (430 MHz) radar is the most sensitive and therefore detected the most meteors however the VHF (46.8 MHz) radar detected a higher percentage of meteors in common with the optics, due to the larger beam size and larger mass detectability threshold. The emphasis of this presentation is on meteors that were detected by the optics and one or both radars. The comparisons between the the relative sensitivities of these 3 detecting techniques will improve the meteoroid mass estimates made from the optical intensities. The overall aim would be to develop more accurate and robust methods of calculating meteoroid mass from the radar data alone.

  6. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator.

    PubMed

    Zhu, Lixuan; Qing, Zhihe; Hou, Lina; Yang, Sheng; Zou, Zhen; Cao, Zhong; Yang, Ronghua

    2017-08-25

    As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.

  7. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling.

    PubMed

    Wen, Wei; Hu, Rong; Bao, Ting; Zhang, Xiuhua; Wang, Shengfu

    2015-09-15

    In this work, a sensitive exonuclease-assisted amplification electrochemical aptasensor through insertion approach was developed for the detection of mucin 1 (MUC 1). In order to construct the aptasensor, 6-Mercapto-1-hexanol (MCH) was used to block partial sites of gold electrode (GE), followed by thiolated capture probe self-assembled on GE. Methylene blue (MB) labeled aptamer hybridized with capture probe at both ends to form double-strand DNA. For the MB labeled termini was close to GE, the electrochemical response was remarkable. The presence of MUC 1 caused the dissociation of the double-strand DNA owing to the specific recognition of aptamer to MUC 1. Then exonuclease I (Exo I) selectively digested the aptamer which bound with MUC 1, the released MUC 1 participated new binding with the rest aptamer. Insertion approach improved the reproducibility and Exo I-catalyzed target recycling improved the sensitivity of the aptasensor significantly. Under optimal experimental conditions, the proposed aptasensor had a good linear correlation ranged from 10 pM to 1 μM with a detection limit of 4 pM (Signal to Noise ratio, S/N=3). The strategy had great potential for the simple and sensitive detection of other cancer markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans-Juergen; Lott, Carsten; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1998-01-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  9. Noninvasive detection of intracerebral hemorrhage using near-infrared spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Hennes, Hans J.; Lott, C.; Windirsch, Michael; Hanley, Daniel F.; Boor, Stephan; Brambrink, Ansgar; Dick, Wolfgang

    1997-12-01

    Intracerebral Hemorrhage (IH) is an important cause of secondary brain injury in neurosurgical patients. Early identification and treatment improve neurologic outcome. We have tested Near Infrared Spectroscopy (NIRS) as an alternative noninvasive diagnostic tool compared to CT-Scans to detect IH. We prospectively studied 212 patients with neurologic symptoms associated with intracranial pathology before performing a CT-scan. NIRS signals indicated pathologies in 181 cases (sensitivity 0.96; specificity 0.29). In a subgroup of subdural hematomas NIRS detected 45 of 46 hematomas (sensitivity 0.96; specificity 0.79). Identification of intracerebral hemorrhage using NIRS has the potential to allow early treatment, thus possibly avoiding further injury.

  10. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  11. Detection of viral infection and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization.

    PubMed

    Kenny, Daryn; Shen, Lu-Ping; Kolberg, Janice A

    2002-09-01

    In situ hybridization (ISH) methods for detection of nucleic acid sequences have proved especially powerful for revealing genetic markers and gene expression in a morphological context. Although target and signal amplification technologies have enabled researchers to detect relatively low-abundance molecules in cell extracts, the sensitive detection of nucleic acid sequences in tissue specimens has proved more challenging. We recently reported the development of a branched DNA (bDNA) ISH method for detection of DNA and mRNA in whole cells. Based on bDNA signal amplification technology, bDNA ISH is highly sensitive and can detect one or two copies of DNA per cell. In this study we evaluated bDNA ISH for detection of nucleic acid sequences in tissue specimens. Using normal and human papillomavirus (HPV)-infected cervical biopsy specimens, we explored the cell type-specific distribution of HPV DNA and mRNA by bDNA ISH. We found that bDNA ISH allowed rapid, sensitive detection of nucleic acids with high specificity while preserving tissue morphology. As an adjunct to conventional histopathology, bDNA ISH may improve diagnostic accuracy and prognosis for viral and neoplastic diseases.

  12. Optical Detection of Ultrasound in Photoacoustic Imaging

    PubMed Central

    Dong, Biqin; Sun, Cheng; Zhang, Hao F.

    2017-01-01

    Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445

  13. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs.

    PubMed

    Lin, Xiaodong; Liu, Yaqing; Tao, Zhanhui; Gao, Jinting; Deng, Jiankang; Yin, Jinjin; Wang, Shuo

    2017-08-15

    Since HCV and HIV share a common transmission path, high sensitive detection of HIV and HCV gene is of significant importance to improve diagnosis accuracy and cure rate at early stage for HIV virus-infected patients. In our investigation, a novel nanozyme-based bio-barcode fluorescence amplified assay is successfully developed for simultaneous detection of HIV and HCV DNAs with excellent sensitivity in an enzyme-free and label-free condition. Here, bimetallic nanoparticles, PtAu NPs , present outstanding peroxidase-like activity and act as barcode to catalyze oxidation of nonfluorescent substrate of amplex red (AR) into fluorescent resorufin generating stable and sensitive "Turn On" fluorescent output signal, which is for the first time to be integrated with bio-barcode strategy for fluorescence detection DNA. Furthermore, the provided strategy presents excellent specificity and can distinguish single-base mismatched mutant from target DNA. What interesting is that cascaded INHIBIT-OR logic gate is integrated with biosensors for the first time to distinguish individual target DNA from each other under logic function control, which presents great application in development of rapid and intelligent detection. Copyright © 2017. Published by Elsevier B.V.

  14. A visual assay and spectrophotometric determination of LLM-105 explosive using detection of gold nanoparticle aggregation at two pH values.

    PubMed

    He, Yi; Cheng, Yang

    2016-08-01

    We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion.

  15. Enhancement of sensitivity using hybrid stimulus for the diagnosis of prostate cancer based on polydiacetylene (PDA) supramolecules.

    PubMed

    Kwon, Il Kyoung; Kim, Jun Pyo; Sim, Sang Jun

    2010-12-15

    In this study, hybrid stimulus was initially introduced to improve the sensitivity of PDA vesicle chip for detection of prostate-specific antigen-α1-antichymotrypsin (PSA-ACT) complex. The strategy of hybrid stimulus on PDA vesicle chip offers the amplification method of fluorescent signal which combines a primary response by the immune reaction of antigen-antibody and a secondary response by the mechanical pressure of pAb-conjugated magnetic beads. As the primary response result on PDA vesicle chip, the PSA-ACT complex in PBS buffer was detected at 10 ng/mL. However, this detection sensitivity was insufficient for diagnosis of prostate cancer because the normal human PSA concentration is less than 4.0 ng/mL. To solve this problem, polyclonal PSA antibody-conjugated magnetic beads were used as an amplifying agent after primary immunoresponse. As a result, the PSA-ACT complex concentrations (as low as 0.1 ng/mL) could be detected in the PBS buffer sample. Therefore, this result can be applied to various fields, such as the detection of cells, proteins, and DNA for sensitive and specific biosensing based on PDA supramolecules. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The design of high precision temperature control system for InGaAs short-wave infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin

    2018-02-01

    The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.

  17. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity.

    PubMed

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-29

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  18. Magnetically-focusing biochip structures for high-speed active biosensing with improved selectivity

    NASA Astrophysics Data System (ADS)

    Yoo, Haneul; Lee, Dong Jun; Kim, Daesan; Park, Juhun; Chen, Xing; Hong, Seunghun

    2018-06-01

    We report a magnetically-focusing biochip structure enabling a single layered magnetic trap-and-release cycle for biosensors with an improved detection speed and selectivity. Here, magnetic beads functionalized with specific receptor molecules were utilized to trap target molecules in a solution and transport actively to and away from the sensor surfaces to enhance the detection speed and reduce the non-specific bindings, respectively. Using our method, we demonstrated the high speed detection of IL-13 antigens with the improved detection speed by more than an order of magnitude. Furthermore, the release step in our method was found to reduce the non-specific bindings and improve the selectivity and sensitivity of biosensors. This method is a simple but powerful strategy and should open up various applications such as ultra-fast biosensors for point-of-care services.

  19. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  20. Assisted inhibition effect of acetylcholinesterase with n-octylphosphonic acid and application in high sensitive detection of organophosphorous pesticides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry.

    PubMed

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Guo, Yinlong

    2011-11-14

    A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 10(2)-10(3) folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L(-1) for high toxic pesticides and 0.05 μg L(-1) for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Enhanced detection of type C botulinum neurotoxin by the Endopep-MS assay through optimization of peptide substrates

    PubMed Central

    Wang, Dongxia; Krilich, Joan; Baudys, Jakub; Barr, John R.; Kalb, Suzanne R.

    2015-01-01

    It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1 mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay. PMID:25913863

  2. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.

    PubMed

    Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas

    2016-01-01

    While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.

  3. A spirooxazine derivative as a highly sensitive cyanide sensor by means of UV-visible difference spectroscopy.

    PubMed

    Zhu, Shaoyin; Li, Minjie; Sheng, Lan; Chen, Peng; Zhang, Yumo; Zhang, Sean Xiao-An

    2012-12-07

    A spirooxazine derivative 2-nitro-5a-(2-(4-dimethylaminophenyl)-ethylene)-6,6-dimethyl-5a,6-dihydro-12H-indolo[2,1-b][1,3]benzooxazine (P1) was explored as a sensitive cyanide probe. Different from conventional spiropyrans, P1 avoided locating the 3H-indolium cation and the 4-nitrophenolate anion in the same conjugated structure, which enhanced the positive charge of 3H-indolium cation so that the sensitivity and reaction speed were improved highly. UV-visible difference spectroscopy using P1 detection solution as a timely reference improved the measurement accuracy, prevented the error caused by the inherent absorption change of P1 solution with time. This enabled the "positive-negative alternative absorption peaks" in difference spectrum to be used as a finger-print to distinguish whether the spectral change was caused by cyanide. Benefiting from the special design of the molecular structure and the strategy of difference spectroscopy, P1 showed high selectivity and sensitivity for CN(-). A detection limit of 0.4 μM and a rate constant of 1.1 s(-1) were achieved.

  4. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    PubMed

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  5. Improving staff response to seizures on the epilepsy monitoring unit with online EEG seizure detection algorithms.

    PubMed

    Rommens, Nicole; Geertsema, Evelien; Jansen Holleboom, Lisanne; Cox, Fieke; Visser, Gerhard

    2018-05-11

    User safety and the quality of diagnostics on the epilepsy monitoring unit (EMU) depend on reaction to seizures. Online seizure detection might improve this. While good sensitivity and specificity is reported, the added value above staff response is unclear. We ascertained the added value of two electroencephalograph (EEG) seizure detection algorithms in terms of additional detected seizures or faster detection time. EEG-video seizure recordings of people admitted to an EMU over one year were included, with a maximum of two seizures per subject. All recordings were retrospectively analyzed using Encevis EpiScan and BESA Epilepsy. Detection sensitivity and latency of the algorithms were compared to staff responses. False positive rates were estimated on 30 uninterrupted recordings (roughly 24 h per subject) of consecutive subjects admitted to the EMU. EEG-video recordings used included 188 seizures. The response rate of staff was 67%, of Encevis 67%, and of BESA Epilepsy 65%. Of the 62 seizures missed by staff, 66% were recognized by Encevis and 39% by BESA Epilepsy. The median latency was 31 s (staff), 10 s (Encevis), and 14 s (BESA Epilepsy). After correcting for walking time from the observation room to the subject, both algorithms detected faster than staff in 65% of detected seizures. The full recordings included 617 h of EEG. Encevis had a median false positive rate of 4.9 per 24 h and BESA Epilepsy of 2.1 per 24 h. EEG-video seizure detection algorithms may improve reaction to seizures by improving the total number of seizures detected and the speed of detection. The false positive rate is feasible for use in a clinical situation. Implementation of these algorithms might result in faster diagnostic testing and better observation during seizures. Copyright © 2018. Published by Elsevier Inc.

  6. A net fishing enrichment strategy for colorimetric detection of E. coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    The strict regulatory requirements for pathogen monitoring in food systems to ensure safety demands that the detection method can recognize small numbers of pathogens. Although significant efforts on the development of biosensors have been reported with marked improvement in sensitivity, appropriate...

  7. Low cost charged-coupled device (CCD) based detectors for Shiga toxins activity analysis

    USDA-ARS?s Scientific Manuscript database

    To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of foodborne pathogens and their toxins. We describe a simple and relatively low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemilumi...

  8. Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Prohira, S.; Besson, D.; Kunwar, S.; Ratzlaff, K.; Young, R.

    2018-05-01

    Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the most economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA) reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016 to 2017.

  9. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  10. Pre-oxidation for Colorimetric Sensor Array Detection of VOCs

    PubMed Central

    Lin, Hengwei; Jang, Minseok; Suslick, Kenneth S.

    2011-01-01

    A disposable pre-oxidation technique is reported that dramatically improves the detection and identification of volatile organic compounds (VOCs) by a colorimetric sensor array. By passing a vapor stream through a tube packed with chromic acid on silica immediately before the colorimetric sensor array, the sensitivity to less reactive VOCs is substantially increased and limits of detection (LODs) are improved ~300-fold, permitting the detection, identification, and discrimination of 20 commonly found indoor VOC pollutants at both their immediately dangerous to life or health (IDLH) and at permissible exposure limits (PEL) concentrations. LODs of these pollutants were on average 1.4% of their respective PELs. PMID:21967478

  11. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach.

    PubMed

    Helguera, P R; Taborda, R; Docampo, D M; Ducasse, D A

    2001-06-01

    A detection system based on nested PCR after IC-RT-PCR (IC-RT-PCR-Nested PCR) was developed to improve indexing of Prunus necrotic ringspot virus in peach trees. Inhibitory effects and inconsistencies of the standard IC-RT-PCR were overcome by this approach. IC-RT-PCR-Nested PCR improved detection by three orders of magnitude compared with DAS-ELISA for the detection of PNRSV in leaves. Several different tissues were evaluated and equally consistent results were observed. The main advantages of the method are its consistency, high sensitivity and easy application in quarantine programs.

  12. Improvement of immunoassay detection system by using alternating current magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mizoguchi, T.; Kandori, A.

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  13. Improvement of immunoassay detection system by using alternating current magnetic susceptibility.

    PubMed

    Kawabata, R; Mizoguchi, T; Kandori, A

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  14. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs

    NASA Astrophysics Data System (ADS)

    Thamri, Atef; Baccar, Hamdi; Struzzi, Claudia; Bittencourt, Carla; Abdelghani, Adnane; Llobet, Eduard

    2016-10-01

    The chemical modification of multiwalled carbon nanotubes (MWCNTs) with a long chain mercapto acid is reported as a way to improve sensitivity and response time of gas sensors for detecting alcohols, acetone and toxic gases such as DMMP. We have developed sensors employing MWCNTs decorated with gold nanoparticles and modified with a 16-mercaptohexadecanoic acid (MHDA) monolayer. Morphological and compositional analysis by Transmission Electron Microscopy (TEM), Fourier Transform Infra-red Spectroscopy (FTIR) and X-ray photoelectron spectroscopy were performed to characterize the gold nanoparticles and to check the bonding of the thiol monolayer. The detection of aromatic and non-aromatic volatiles and DMMP vapors by MWCNT/Au and MWCNT/Au/MHDA shows that the presence of the self-assembled layer increases sensitivity and selectivity towards non-aromatics. Furthermore, it ameliorates response dynamics, and significantly reduces nitrogen dioxide and moisture cross-sensitivity.

  15. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    PubMed

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The failure of routine rapid HIV testing: a case study of improving low sensitivity in the field.

    PubMed

    Wolpaw, Benjamin J; Mathews, Catherine; Chopra, Mickey; Hardie, Diana; de Azevedo, Virginia; Jennings, Karen; Lurie, Mark N

    2010-03-22

    The rapid HIV antibody test is the diagnostic tool of choice in low and middle-income countries. Previous evidence suggests that rapid HIV diagnostic tests may underperform in the field, failing to detect a substantial number of infections. A research study inadvertently discovered that a clinic rapid HIV testing process was failing to detect cases of established (high antibody titer) infection, exhibiting an estimated 68.7% sensitivity (95% CI [41.3%-89.0%]) over the course of the first three weeks of observation. The setting is a public service clinic that provides STI diagnosis and treatment in an impoverished, peri-urban community outside of Cape Town, South Africa. The researchers and local health administrators collaborated to investigate the cause of the poor test performance and make necessary corrections. The clinic changed the brand of rapid test being used and later introduced quality improvement measures. Observations were made of the clinic staff as they administered rapid HIV tests to real patients. Estimated testing sensitivity was calculated as the number of rapid HIV test positive individuals detected by the clinic divided by this number plus the number of PCR positive, highly reactive 3rd generation ELISA patients identified among those who were rapid test negative at the clinic. In the period of five months after the clinic made the switch of rapid HIV tests, estimated sensitivity improved to 93.5% (95% CI [86.5%-97.6%]), during which time observations of counselors administering tests at the clinic found poor adherence to the recommended testing protocol. Quality improvement measures were implemented and estimated sensitivity rose to 95.1% (95% CI [83.5%-99.4%]) during the final two months of full observation. Poor testing procedure in the field can lead to exceedingly low levels of rapid HIV test sensitivity, making it imperative that stringent quality control measures are implemented where they do not already exist. Certain brands of rapid-testing kits may perform better than others when faced with sub-optimal use.

  17. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI).

    PubMed

    Ouyang, Ruizhuo; Zhang, Wangyao; Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2013-12-15

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at -1.06 V ( vs . Ag/AgCl) with a linear concentration range of 0-25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples.

  18. Improved Bi Film Wrapped Single Walled Carbon Nanotubes for Ultrasensitive Electrochemical Detection of Trace Cr(VI)

    PubMed Central

    Zhou, Shilin; Xue, Zi-Ling; Xu, Lina; Gu, Yingying; Miao, Yuqing

    2014-01-01

    We report here the successful fabrication of an improved Bi film wrapped single walled carbon nanotubes modified glassy carbon electrode (Bi/SWNTs/GCE) as a highly sensitive platform for ultratrace Cr(VI) detection through catalytic adsorptive cathodic stripping voltammetry (AdCSV). The introduction of negatively charged SWNTs extraordinarily decreased the size of Bi particles to nanoscale due to electrostatic interaction which made Bi(III) cations easily attracted onto the surface of SWNTs in good order, leading to higher quality of Bi film deposition. The obtained Bi/SWNTs composite was well characterized with electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), the static water contact angle and the voltammetric measurements. The results demonstrates the improvements in the quality of Bi film deposited on the surface of SWNTs such as faster speed of electron transfer, more uniform and smoother morphology, better hydrophilicity and higher stripping signal. Using diethylene triaminepentaacetic acid (DTPA) as complexing ligand, the fabricated electrode displays a well-defined and highly sensitive peak for the reduction of Cr(III)-DTPA complex at −1.06 V (vs. Ag/AgCl) with a linear concentration range of 0–25 nM and a fairly low detection limit of 0.036 nM. No interference was found in the presence of coexisting ions, and good recoveries were achieved for the analysis of a river sample. In comparison to previous approaches using Bi film modified GCE, the newly designed electrode exhibits better reproducibility and repeatability towards aqueous detection of trace Cr(VI) and appears to be very promising as the basis of a highly sensitive and selective voltammetric procedure for Cr(VI) detection at trace level in real samples. PMID:24771881

  19. Detection of Bacteriuria by Canine Olfaction

    PubMed Central

    Maurer, Maureen; McCulloch, Michael; Willey, Angel M.; Hirsch, Wendi; Dewey, Danielle

    2016-01-01

    Background. Urinary tract infections (UTIs) are a significant medical problem , particularly for patients with neurological conditions and the elderly. Detection is often difficult in these patients, resulting in delayed diagnoses and more serious infections such as pyelonephritis and life-threatening sepsis. Many patients have a higher risk of UTIs because of impaired bladder function, catheterization, and lack of symptoms. Urinary tract infections are the most common nosocomial infection; however, better strategies are needed to improve early detection of the disease. Methods. In this double-blinded, case-control, validation study, we obtained fresh urine samples daily in a consecutive case series over a period of 16 weeks. Dogs were trained to distinguish urine samples that were culture-positive for bacteriuria from those of culture-negative controls, using reward-based clicker and treat methods. Results. Samples were obtained from 687 individuals (from 3 months to 92 years of age; 86% female and 14% male; 34% culture-positive and 66% culture-negative controls). Dogs detected urine samples positive for 100 000 colony-forming units/mL Escherichia coli (N = 250 trials; sensitivity 99.6%, specificity 91.5%). Dilution of E coli urine with distilled water did not affect accuracy at 1% (sensitivity 100%, specificity 91.1%) or 0.1% (sensitivity 100%, specificity 93.6%) concentration. Diagnostic accuracy was similar to Enterococcus (n = 50; sensitivity 100%, specificity 93.9%), Klebsiella (n = 50; sensitivity 100%, specificity 95.1%), and Staphylococcus aureus (n = 50; sensitivity 100%, specificity 96.3%). All dogs performed with similarly high accuracy: overall sensitivity was at or near 100%, and specificity was above 90%. Conclusions. Canine scent detection is an accurate and feasible method for detection of bacteriuria. PMID:27186578

  20. Technetium-99m sestamibi scintimammography complements mammography in the detection of breast cancer.

    PubMed

    Krishnaiah, Gayathri; Sher-Ahmed, Arifa; Ugwu-Dike, Martins; Regan, Patricia; Singer, John; Totoonchie, Adil; Spiegler, Ethan; Sardi, Armando

    2003-01-01

    Mammography remains the technique of choice for the detection of early breast cancer. The sensitivity of mammography is 85%, but is decreased in patients with dense breasts. Sestamibi scintimammography (SCM) has been suggested as an adjunctive modality to improve the detection of breast cancer. We conducted a study to determine the impact of SCM in patient management. A prospective study was conducted in 95 patients presenting with palpable masses and/or abnormal mammography scheduled for biopsy. Injection of 20-30 mCi of technetium-99m (Tc-99m) sestamibi into a pedal vein was performed. Ten-minute images of the breast and axilla were obtained in multiple projections. The mammography and SCM were correlated with pathology and clinical findings. The median age was 44 years (range 28-86 years). The total number of lesions was 104, as eight patients had bilateral lesions and one patient had two lesions in the same breast. Fifty-nine patients presented with palpable lesions and 45 patients with nonpalpable lesions (42 with abnormal mammography only and 3 with nipple discharge). A comparison of sensitivity, specificity, positive and negative predictive values, and overall accuracy of SCM and mammography were performed. The sensitivity and specificity for SCM were 83% and 83%, respectively, and for mammography were 65%, and 72%, respectively. The sensitivity and specificity for combined SCM and mammography were 87% and 94%, respectively. The p-value for mammography versus combined SCM and mammography was 0.0003 and that for SCM versus SCM and mammography was 0.0098. There were 80 (77%) benign and 24 (23%) malignant lesions. Of the 24 malignancies, SCM missed six (25%), versus eight (33%) by mammography. In two patients (9%) SCM detected malignancy in the breast that was not visualized by mammography or found on clinical examination. Sestamibi SCM improves the sensitivity of mammography and it detects up to 9% of malignancies not detected by mammography or clinical examination. This testing could impact the management of 16,500 patients in the United States every year. More studies are needed to better define its role in breast cancer detection.

  1. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification.

    PubMed

    Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao

    2015-09-01

    Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.

  2. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    NASA Astrophysics Data System (ADS)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj

    2003-01-01

    99mTc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM™) featuring a 12.8×12.8 cm 2 FOV and an array of 2×2×6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.

  3. Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance.

    PubMed

    Xing, Jian; Burkom, Howard; Tokars, Jerome

    2011-12-01

    Automated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models. We used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008-4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1-19, 20-49, ≥50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods. Among the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6-14% improvement), and in two categories the time series method had higher sensitivity. When automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data. Published by Elsevier Inc.

  4. Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.

    PubMed

    Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed

    2014-01-01

    ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.

    PubMed

    Harun, Noor Hasmiza; Misron, Norhisam; Mohd Sidek, Roslina; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-11-19

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.

  6. Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

    PubMed Central

    Harun, Noor Hasmiza; Misron, Norhisam; Sidek, Roslina Mohd; Aris, Ishak; Wakiwaka, Hiroyuki; Tashiro, Kunihisa

    2014-01-01

    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept. PMID:25414970

  7. Optimization of Enzyme-Substrate Pairing for Bioluminescence Imaging of Gene Transfer Using Renilla and Gaussia Luciferases

    PubMed Central

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R.

    2010-01-01

    Background Bioluminescence imaging (BLI) permits the noninvasive quantitation and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. Methods With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. Results In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were 8–15 times higher than that of the prototypical RLuc-native coelenterazine combination. Conclusions Our results demonstrate that substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and that appropriate selection of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI. PMID:20527045

  8. Optimization of enzyme-substrate pairing for bioluminescence imaging of gene transfer using Renilla and Gaussia luciferases.

    PubMed

    Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R

    2010-06-01

    Bioluminescence imaging (BLI) permits the non-invasive quantification and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were eight- to 15-fold higher than that of the prototypical RLuc-native coelenterazine combination. Substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and appropriate choice of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI.

  9. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images.

    PubMed

    Khomri, Bilal; Christodoulidis, Argyrios; Djerou, Leila; Babahenini, Mohamed Chaouki; Cheriet, Farida

    2018-05-01

    Retinal vessel segmentation plays an important role in the diagnosis of eye diseases and is considered as one of the most challenging tasks in computer-aided diagnosis (CAD) systems. The main goal of this study was to propose a method for blood-vessel segmentation that could deal with the problem of detecting vessels of varying diameters in high- and low-resolution fundus images. We proposed to use the particle swarm optimization (PSO) algorithm to improve the multiscale line detection (MSLD) method. The PSO algorithm was applied to find the best arrangement of scales in the MSLD method and to handle the problem of multiscale response recombination. The performance of the proposed method was evaluated on two low-resolution (DRIVE and STARE) and one high-resolution fundus (HRF) image datasets. The data include healthy (H) and diabetic retinopathy (DR) cases. The proposed approach improved the sensitivity rate against the MSLD by 4.7% for the DRIVE dataset and by 1.8% for the STARE dataset. For the high-resolution dataset, the proposed approach achieved 87.09% sensitivity rate, whereas the MSLD method achieves 82.58% sensitivity rate at the same specificity level. When only the smallest vessels were considered, the proposed approach improved the sensitivity rate by 11.02% and by 4.42% for the healthy and the diabetic cases, respectively. Integrating the proposed method in a comprehensive CAD system for DR screening would allow the reduction of false positives due to missed small vessels, misclassified as red lesions. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    PubMed

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A multistage approach to improve performance of computer-aided detection of pulmonary embolisms depicted on CT images: preliminary investigation.

    PubMed

    Park, Sang Cheol; Chapman, Brian E; Zheng, Bin

    2011-06-01

    This study developed a computer-aided detection (CAD) scheme for pulmonary embolism (PE) detection and investigated several approaches to improve CAD performance. In the study, 20 computed tomography examinations with various lung diseases were selected, which include 44 verified PE lesions. The proposed CAD scheme consists of five basic steps: 1) lung segmentation; 2) PE candidate extraction using an intensity mask and tobogganing region growing; 3) PE candidate feature extraction; 4) false-positive (FP) reduction using an artificial neural network (ANN); and 5) a multifeature-based k-nearest neighbor for positive/negative classification. In this study, we also investigated the following additional methods to improve CAD performance: 1) grouping 2-D detected features into a single 3-D object; 2) selecting features with a genetic algorithm (GA); and 3) limiting the number of allowed suspicious lesions to be cued in one examination. The results showed that 1) CAD scheme using tobogganing, an ANN, and grouping method achieved the maximum detection sensitivity of 79.2%; 2) the maximum scoring method achieved the superior performance over other scoring fusion methods; 3) GA was able to delete "redundant" features and further improve CAD performance; and 4) limiting the maximum number of cued lesions in an examination reduced FP rate by 5.3 times. Combining these approaches, CAD scheme achieved 63.2% detection sensitivity with 18.4 FP lesions per examination. The study suggested that performance of CAD schemes for PE detection depends on many factors that include 1) optimizing the 2-D region grouping and scoring methods; 2) selecting the optimal feature set; and 3) limiting the number of allowed cueing lesions per examination.

  12. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    PubMed

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  13. Two-view information fusion for improvement of computer-aided detection (CAD) of breast masses on mammograms

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Zhou, Chuan; Ge, Jun; Zhang, Yiheng

    2006-03-01

    We are developing a two-view information fusion method to improve the performance of our CAD system for mass detection. Mass candidates on each mammogram were first detected with our single-view CAD system. Potential object pairs on the two-view mammograms were then identified by using the distance between the object and the nipple. Morphological features, Hessian feature, correlation coefficients between the two paired objects and texture features were used as input to train a similarity classifier that estimated a similarity scores for each pair. Finally, a linear discriminant analysis (LDA) classifier was used to fuse the score from the single-view CAD system and the similarity score. A data set of 475 patients containing 972 mammograms with 475 biopsy-proven masses was used to train and test the CAD system. All cases contained the CC view and the MLO or LM view. We randomly divided the data set into two independent sets of 243 cases and 232 cases. The training and testing were performed using the 2-fold cross validation method. The detection performance of the CAD system was assessed by free response receiver operating characteristic (FROC) analysis. The average test FROC curve was obtained from averaging the FP rates at the same sensitivity along the two corresponding test FROC curves from the 2-fold cross validation. At the case-based sensitivities of 90%, 85% and 80% on the test set, the single-view CAD system achieved an FP rate of 2.0, 1.5, and 1.2 FPs/image, respectively. With the two-view fusion system, the FP rates were reduced to 1.7, 1.3, and 1.0 FPs/image, respectively, at the corresponding sensitivities. The improvement was found to be statistically significant (p<0.05) by the AFROC method. Our results indicate that the two-view fusion scheme can improve the performance of mass detection on mammograms.

  14. The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.

    PubMed

    Fleming, Alan D; Goatman, Keith A; Philip, Sam; Williams, Graeme J; Prescott, Gordon J; Scotland, Graham S; McNamee, Paul; Leese, Graham P; Wykes, William N; Sharp, Peter F; Olson, John A

    2010-06-01

    Automated grading has the potential to improve the efficiency of diabetic retinopathy screening services. While disease/no disease grading can be performed using only microaneurysm detection and image-quality assessment, automated recognition of other types of lesions may be advantageous. This study investigated whether inclusion of automated recognition of exudates and haemorrhages improves the detection of observable/referable diabetic retinopathy. Images from 1253 patients with observable/referable retinopathy and 6333 patients with non-referable retinopathy were obtained from three grading centres. All images were reference-graded, and automated disease/no disease assessments were made based on microaneurysm detection and combined microaneurysm, exudate and haemorrhage detection. Introduction of algorithms for exudates and haemorrhages resulted in a statistically significant increase in the sensitivity for detection of observable/referable retinopathy from 94.9% (95% CI 93.5 to 96.0) to 96.6% (95.4 to 97.4) without affecting manual grading workload. Automated detection of exudates and haemorrhages improved the detection of observable/referable retinopathy.

  15. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  16. Sensitivity of seven PCRs for early detection of koi herpesvirus in experimentally infected carp, Cyprinus carpio L., by lethal and non-lethal sampling methods.

    PubMed

    Monaghan, S J; Thompson, K D; Adams, A; Bergmann, S M

    2015-03-01

    Koi herpesvirus (KHV) causes an economically important, highly infectious disease in common carp and koi, Cyprinus carpio L. Since the occurrence of mass mortalities worldwide, highly specific and sensitive molecular diagnostic methods have been developed for KHV detection. The sensitivity and reliability of these assays have essentially focused at the detection of low viral DNA copy numbers during latent or persistent infections. However, the efficacy of these assays has not been investigated with regard to low-level viraemia during acute infection stages. This study was conducted to compare the sensitivity of seven different polymerase chain reaction (PCR) assays to detect KHV during the first hours and days post-infection (hpi; dpi), using lethal and non-lethal sampling methods. The results highlight the limitations of the assays for detecting virus during the first 4 dpi despite rapid mortality in experimentally infected carp. False-negative results were associated with time post-infection and the tissue sampled. Non-lethal sampling appears effective for KHV screening, with efficient detection in mucus samples obtained from external swabs during this early infection period (<5 dpi), while biopsies from gills and kidney were negative using the same PCR assays. Non-lethal sampling may improve the reliability of KHV detection in subclinical, acutely infected carp. © 2014 John Wiley & Sons Ltd.

  17. Absorption enhancement and sensing properties of Ag diamond nanoantenna arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Yu-Yang; Yuan, Zong-Heng; Li, Xiao-Nan; Wu, Jun; Zhang, Wen-Tao; Ye, Song

    2015-07-01

    Noble metal nanoantenna could effectively enhance light absorption and increase detection sensitivity. In this paper, we propose a periodic Ag diamond nanoantenna array to increase the absorption of thin-film solar cells and to improve the detection sensitivity via localized surface plasmon resonance. The effect of nanoantenna arrays on the absorption enhancement is theoretically investigated using the finite difference time domain (FDTD) method with manipulating the spectral response by geometrical parameters of nanoantennas. A maximum absorption enhancement factor of 1.51 has been achieved in this study. In addition, the relation between resonant wavelength (intensity reflectivity) and refractive index is discussed in detail. When detecting the environmental index using resonant wavelengths, a maximum detection sensitivity of about 837 nm/RIU (refractive index unit) and a resolution of about 10-3 RIU can be achieved. Moreover, when using the reflectivity, the sensitivity can be as high as 0.93 AU/RIU. Furthermore, we also have theoretically studied the effectiveness of nanoantennas in distinguishing chemical reagents, solution concentrations, and solution allocation ratios by detecting refractive index. From the results presented in this paper, we conclude that this work might be useful for biosensor detection and other types of detections. Project supported by the International Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. 20117035) and the Program for Innovative Research Team of Guilin University of Electronic Technology, China (Grant No. IRTGUET).

  18. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    PubMed Central

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  19. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor.

    PubMed

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao

    2017-05-15

    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  1. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  2. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  3. Significant enhancement of 11-Hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3) ): Application to hair and oral fluid analysis.

    PubMed

    Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine

    2015-07-01

    Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee

    2018-03-01

    Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.

  5. A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring.

    PubMed

    Kiourti, Asimina; Lee, Cedric W L; Chae, Junseok; Volakis, John L

    2016-01-01

    We propose a novel wireless fully passive neural recording device for unobtrusive neuropotential monitoring. Previous work demonstrated the feasibility of monitoring emulated brain signals in a wireless fully passive manner. In this paper, we propose a novel realistic recorder that is significantly smaller and much more sensitive. The proposed recorder utilizes a highly efficient microwave backscattering method and operates without any formal power supply or regulating elements. Also, no intracranial wires or cables are required. In-vitro testing is performed inside a four-layer head phantom (skin, bone, gray matter, and white matter). Compared to our former implementation, the neural recorder proposed in this study has the following improved features: 1) 59% smaller footprint, 2) up to 20-dB improvement in neuropotential detection sensitivity, and 3) encapsulation in biocompatible polymer. For the first time, temporal emulated neuropotentials as low as 63 μVpp can be detected in a wireless fully passive manner. Remarkably, the high-sensitivity achieved in this study implies reading of most neural signals generated by the human brain. The proposed recorder brings forward transformational possibilities in wireless fully passive neural detection for a very wide range of applications (e.g., epilepsy, Alzheimer's, mental disorders, etc.).

  6. Current trends in explosive detection techniques.

    PubMed

    Caygill, J Sarah; Davis, Frank; Higson, Seamus P J

    2012-01-15

    The detection of explosives and explosive-related compounds has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area-through both the development of new, innovative detection approaches and the improvement of existing techniques. Developments for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances, selectivity and sensitivity have been necessary to develop and improve techniques. This review provides a consolidation of information relating to recent advances in explosive detection techniques without being limited to one specific research area or explosive type. The focus of this review will be towards advances in the last 5 years, with the reader being referred to earlier reviews where appropriate. Copyright © 2011. Published by Elsevier B.V.

  7. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  8. SENSITIVITY AND SPECIFICITY OF DETECTING POLYPOIDAL CHOROIDAL VASCULOPATHY WITH EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    de Carlo, Talisa E; Kokame, Gregg T; Kaneko, Kyle N; Lian, Rebecca; Lai, James C; Wee, Raymond

    2018-03-20

    Determine sensitivity and specificity of polypoidal choroidal vasculopathy (PCV) diagnosis with structural en face optical coherence tomography (OCT) and OCT angiography (OCTA). Retrospective review of the medical records of eyes diagnosed with PCV by indocyanine green angiography with review of diagnostic testing with structural en face OCT and OCTA by a trained reader. Structural en face OCT, cross-sectional OCT angiograms alone, and OCTA in its entirety were reviewed blinded to the findings of indocyanine green angiography and each other to determine if they could demonstrate the PCV complex. Sensitivity and specificity of PCV diagnosis was determined for each imaging technique using indocyanine green angiography as the ground truth. Sensitivity and specificity of structural en face OCT were 30.0% and 85.7%, of OCT angiograms alone were 26.8% and 96.8%, and of the entire OCTA were 43.9% and 87.1%, respectively. Sensitivity and specificity were improved for OCT angiograms and OCTA when looking at images taken within 1 month of PCV diagnosis. Sensitivity of detecting PCV was low using structural en face OCT and OCTA but specificity was high. Indocyanine green angiography remains the gold standard for PCV detection.

  9. Improved method increases sensitivity for circulating hepatocellular carcinoma cells

    PubMed Central

    Liu, Hui-Ying; Qian, Hai-Hua; Zhang, Xiao-Feng; Li, Jun; Yang, Xia; Sun, Bin; Ma, Jun-Yong; Chen, Lei; Yin, Zheng-Feng

    2015-01-01

    AIM: To improve an asialoglycoprotein receptor (ASGPR)-based enrichment method for detection of circulating tumor cells (CTCs) of hepatocellular carcinoma (HCC). METHODS: Peripheral blood samples were collected from healthy subjects, patients with HCC or various other cancers, and patients with hepatic lesions or hepatitis. CTCs were enriched from whole blood by extracting CD45-expressing leukocytes with monoclonal antibody coated-beads following density gradient centrifugation. The remaining cells were cytocentrifuged on polylysine-coated slides. Isolated cells were treated by triple immunofluorescence staining with CD45 antibody and a combination of antibodies against ASGPR and carbamoyl phosphate synthetase 1 (CPS1), used as liver-specific markers, and costained with DAPI. The cell slide was imaged and stained tumor cells that met preset criteria were counted. Recovery, sensitivity and specificity of the detection methods were determined and compared by spiking experiments with various types of cultured human tumor cell lines. Expression of ASGPR and CPS1 in cultured tumor cells and tumor tissue specimens was analyzed by flow cytometry and triple immunofluorescence staining, respectively. RESULTS: CD45 depletion of leukocytes resulted in a significantly greater recovery of multiple amounts of spiked HCC cells than the ASGPR+ selection (Ps < 0.05). The expression rates of either ASGPR or CPS1 were different in various liver cancer cell lines, ranging between 18% and 99% for ASGPR and between 9% and 98% for CPS1. In both human HCC tissues and liver cancer cell lines, there were a few HCC cells that did not stain positive for ASGPR or CPS1. The mixture of monoclonal antibodies against ASGPR and CPS1 identified more HCC cells than either antibody alone. However, these antibodies did not detect any tumor cells in blood samples spiked with the human breast cancer cell line MCF-7 and the human renal cancer cell line A498. ASGPR+ or/and CPS1+ CTCs were detected in 29/32 (91%) patients with HCC, but not in patients with any other kind of cancer or any of the other test subjects. Furthermore, the improved method detected a higher CTC count in all patients examined than did the previous method (P = 0.001), and consistently achieved 12%-21% higher sensitivity of CTC detection in all seven HCC patients with more than 40 CTCs. CONCLUSION: Negative depletion enrichment combined with identification using a mixture of antibodies against ASGPR and CPS1 improves sensitivity and specificity for detecting circulating HCC cells. PMID:25780289

  10. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg).

    PubMed

    Kim, Jinwoon; Oh, Seo Yeong; Shukla, Shruti; Hong, Seok Bok; Heo, Nam Su; Bajpai, Vivek K; Chun, Hyang Sook; Jo, Cheon-Ho; Choi, Bong Gill; Huh, Yun Suk; Han, Young-Kyu

    2018-06-01

    This study aimed to develop a more sensitive method for the detection of hepatitis B surface antigen (HBsAg) using heteroassembled gold nanoparticles (AuNPs). A single layered localized surface plasmon resonance (LSPR) chip format was developed with antigen-antibody reaction-based detection symmetry using AuNPs, which detected HBsAg at 10 pg/mL. To further improve the detection limit, a modified detection format was fabricated by fixing a secondary antibody (to form a heteroassembled sandwich format) to the AuNP monolayer, which enhanced the detection sensitivity by about 100 times. The developed heteroassembled AuNPs sandwich-immunoassay LSPR chip format was able to detect as little as 100 fg/mL of HBsAg within 10-15 min. In addition, the heteroassembled AuNPs sandwich-immunoassay LSPR chip format did not show any non-specific binding to other tested antigens, including alpha fetoprotein (AFP), C-reactive protein (CRP), and prostate-specific antigen (PSA). These findings confirm that the proposed detection strategy of heteroassembled AuNPs sandwich-immunoassay LSPR chip format may provide a new platform for early diagnosis of various human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparing performance of mothers using simplified mid-upper arm circumference (MUAC) classification devices with an improved MUAC insertion tape in Isiolo County, Kenya.

    PubMed

    Grant, Angeline; Njiru, James; Okoth, Edgar; Awino, Imelda; Briend, André; Murage, Samuel; Abdirahman, Saida; Myatt, Mark

    2018-01-01

    A novel approach for improving community case-detection of acute malnutrition involves mothers/caregivers screening their children for acute malnutrition using a mid-upper arm circumference (MUAC) insertion tape. The objective of this study was to test three simple MUAC classification devices to determine whether they improved the sensitivity of mothers/caregivers at detecting acute malnutrition. Prospective, non-randomised, partially-blinded, clinical diagnostic trial describing and comparing the performance of three "Click-MUAC" devices and a MUAC insertion tape. The study took place in twenty-one health facilities providing integrated management of acute malnutrition (IMAM) services in Isiolo County, Kenya. Mothers/caregivers classified their child ( n =1040), aged 6-59 months, using the "Click-MUAC" devices and a MUAC insertion tape. These classifications were compared to a "gold standard" classification (the mean of three measurements taken by a research assistant using the MUAC insertion tape). The sensitivity of mother/caregiver classifications was high for all devices (>93% for severe acute malnutrition (SAM), defined by MUAC < 115 mm, and > 90% for global acute malnutrition (GAM), defined by MUAC < 125 mm). Mother/caregiver sensitivity for SAM and GAM classification was higher using the MUAC insertion tape (100% sensitivity for SAM and 99% sensitivity for GAM) than using "Click-MUAC" devices. Younden's J for SAM classification, and sensitivity for GAM classification, were significantly higher for the MUAC insertion tape (99% and 99% respectively). Specificity was high for all devices (>96%) with no significant difference between the "Click-MUAC" devices and the MUAC insertion tape. The results of this study indicate that, although the "Click-MUAC" devices performed well, the MUAC insertion tape performed best. The results for sensitivity are higher than found in previous studies. The high sensitivity for both SAM and GAM classification by mothers/caregivers with the MUAC insertion tape could be due to the use of an improved MUAC tape design which has a number of new design features. The one-on-one demonstration provided to mothers/caregivers on the use of the devices may also have helped improve sensitivity. The results of this study provide evidence that mothers/caregivers can perform sensitive and specific classifications of their child's nutritional status using MUAC. Clinical trials registration number: NCT02833740.

  12. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a blind clinical study that screened real patient urine samples (n=70) for opiates in collaboration with Strong Memorial Hospital Clinical Toxicology Laboratory. PSI sensor results showed improved clinical specificity over current commercial opiate immunoassay techniques and therefore, identified potential for a reduction in false-negative and false-positive screening results. Here, we demonstrate for the first time, successful clinical capability of a PSi sensor to detect opiates as a model target in real-world patient samples. The final part of this thesis explores novel sensor designs to leverage the tunable optical properties of PSi photonic devices and facilitate colorimetric readout of molecular recognition events by the unaided eye. Such a design is ideal for uncomplicated diagnostic screening at point-of-care as no instrumentation is needed for result readout. The photonic PSi transducers were integrated with target analyte-responsive hydrogels (TRAP-gels) that upon exposure to a target solution would swell and dissolute, inducing material property changes that were optically detected by the incorporated PSi transducer. This strategy extends target detection throughout the 3-ll internal volume of the PSi, improving upon current techniques that limit detection to the surface area (2-ll) of PSi. Work to acheive this approach involved design of TRAP-gel networks, polymer synthesis and characterization techniques, and optical characterization of the hybrid hydrogel-PSi material sensor. Successful implementation of a hybrid sensor design was exhibited for a. model chemical target (reducing agent), in which visual colorimetric change from red to green was observed for above-threshold exposure to the chemical target. In addition, initial proof-of-concept of an opiate responsive TRAP-gel is also demonstrated where cross-links are formed between antibody-antigen interactions and exposure to opiates induces bulk gel dissolution.

  13. Diagnostic accuracy of the MMSE in detecting probable and possible Alzheimer's disease in ethnically diverse highly educated individuals: an analysis of the NACC database.

    PubMed

    Spering, Cynthia C; Hobson, Valerie; Lucas, John A; Menon, Chloe V; Hall, James R; O'Bryant, Sid E

    2012-08-01

    To validate and extend the findings of a raised cut score of O'Bryant and colleagues (O'Bryant SE, Humphreys JD, Smith GE, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol. 2008;65(7):963-967.) for the Mini-Mental State Examination in detecting cognitive dysfunction in a bilingual sample of highly educated ethnically diverse individuals. Archival data were reviewed from participants enrolled in the National Alzheimer's Coordinating Center minimum data set. Data on 7,093 individuals with 16 or more years of education were analyzed, including 2,337 cases with probable and possible Alzheimer's disease, 1,418 mild cognitive impairment patients, and 3,088 nondemented controls. Ethnic composition was characterized as follows: 6,296 Caucasians, 581 African Americans, 4 American Indians or Alaska natives, 2 native Hawaiians or Pacific Islanders, 149 Asians, 43 "Other," and 18 of unknown origin. Diagnostic accuracy estimates (sensitivity, specificity, and likelihood ratio) of Mini-Mental State Examination cut scores in detecting probable and possible Alzheimer's disease were examined. A standard Mini-Mental State Examination cut score of 24 (≤23) yielded a sensitivity of 0.58 and a specificity of 0.98 in detecting probable and possible Alzheimer's disease across ethnicities. A cut score of 27 (≤26) resulted in an improved balance of sensitivity and specificity (0.79 and 0.90, respectively). In the cognitively impaired group (mild cognitive impairment and probable and possible Alzheimer's disease), the standard cut score yielded a sensitivity of 0.38 and a specificity of 1.00 while raising the cut score to 27 resulted in an improved balance of 0.59 and 0.96 of sensitivity and specificity, respectively. These findings cross-validate our previous work and extend them to an ethnically diverse cohort. A higher cut score is needed to maximize diagnostic accuracy of the Mini-Mental State Examination in individuals with college degrees.

  14. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter

    PubMed Central

    McVey, Mark J.; Spring, Christopher M.; Kuebler, Wolfgang M.

    2018-01-01

    ABSTRACT Improvements in identification and assessment of extracellular vesicles (EVs) have fuelled a recent surge in EV publications investigating their roles as biomarkers and mediators of disease. Meaningful scientific comparisons are, however, hampered by difficulties in accurate, reproducible enumeration and characterization of EVs in biological fluids. High-sensitivity flow cytometry (FCM) is presently the most commonly applied strategy to assess EVs, yet its utility is limited by variant ability to resolve smaller EVs. Here, we propose the use of 405 nm (violet) wavelength lasers in place of 488 nm (blue) for side scatter (SSC) detection to obtain greater resolution of EVs using high-sensitivity FCM. To test this hypothesis, we modelled EV resolution by violet versus blue SSC in silico and compared resolution of reference beads and biological EVs from plasma and bronchoalveolar lavage (BAL) fluid using either violet or blue wavelength SSC EV detection. Mie scatter modelling predicted that violet as compared to blue SSC increases resolution of small (100–500 nm) spherical particles with refractive indices (1.34–1.46) similar to EVs by approximately twofold in terms of light intensity and by nearly 20% in SSC signal quantum efficiency. Resolution of reference beads was improved by violet instead of blue SSC with two- and fivefold decreases in coefficients of variation for particles of 300–500 nm and 180–240 nm size, respectively. Resolution was similarly improved for detection of EVs from plasma or BAL fluid. Violet SSC detection for high-sensitivity FCM allows for significantly greater resolution of EVs in plasma and BAL compared to conventional blue SSC and particularly improves resolution of smaller EVs. Notably, the proposed strategy is readily implementable and inexpensive for machines already equipped with 405 nm SSC or the ability to accommodate 405/10 nm bandpass filters in their violet detector arrays. PMID:29696076

  15. Comparison of 1.5- and 3-T MR imaging for evaluating the articular cartilage of the knee.

    PubMed

    Van Dyck, Pieter; Kenis, Christoph; Vanhoenacker, Filip M; Lambrecht, Valérie; Wouters, Kristien; Gielen, Jan L; Dossche, Lieven; Parizel, Paul M

    2014-06-01

    The aim of this prospective study was to compare routine MRI scans of the knee at 1.5 and 3 T obtained in the same individuals in terms of their performance in the diagnosis of cartilage lesions. One hundred patients underwent MRI of the knee at 1.5 and 3 T and subsequent knee arthroscopy. All MR examinations consisted of multiplanar 2D turbo spin-echo sequences. Three radiologists independently graded all articular surfaces of the knee joint seen at MRI. With arthroscopy as the reference standard, the sensitivity, specificity, and accuracy of 1.5- and 3-T MRI for detecting cartilage lesions and the proportion of correctly graded cartilage lesions within the knee joint were determined and compared using resampling statistics. For all readers and surfaces combined, the respective sensitivity, specificity, and accuracy for detecting all grades of cartilage lesions in the knee joint using MRI were 60, 96, and 87% at 1.5 T and 69, 96, and 90% at 3 T. There was a statistically significant improvement in sensitivity (p < 0.05), but not specificity or accuracy (n.s.) for the detection of cartilage lesions at 3 T. There was also a statistically significant (p < 0.05) improvement in the proportion of correctly graded cartilage lesions at 3 T as compared to 1.5 T. A 3-T MR protocol significantly improves diagnostic performance for the purpose of detecting cartilage lesions within the knee joint, when compared with a similar protocol performed at 1.5 T. III.

  16. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease

    PubMed Central

    Panas, Michael W.; Mao, Rong; Delanoy, Michelle; Flanagan, John J.; Binder, Steven R.; Rebman, Alison W.; Montoya, Jose G.; Soloski, Mark J.; Steere, Allen C.; Dattwyler, Raymond J.; Arnaboldi, Paul M.; Aucott, John N.

    2015-01-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease. PMID:26447113

  17. Effectiveness of rapid prescreening and 10% rescreening in liquid-based Papanicolaou testing.

    PubMed

    Currens, Heather S; Nejkauf, Katharine; Wagner, Lynn; Raab, Stephen S

    2012-01-01

    Although rapid prescreening (RPS) has been shown to be an effective quality control procedure for detecting false-negative conventional Papanicolaou (Pap) tests, RPS has not been widely implemented in the United States. In our laboratory, cytotechnologists performed RPS in 3,567 liquid-based Pap tests: 1,911 SurePath (BD Diagnostics-TriPath, Burlington, NC) preparations that were manually screened and 1,656 ThinPrep Pap tests (Hologic, Bedford, MA) that were imaged using the ThinPrep Imaging System (Hologic). We compared the sensitivity of RPS, 10% rescreening (R-10%), and routine screening (RS). In contrast with previously published findings, we found that RS + RPS did not improve screening sensitivity compared with RS + R-10%. These results support the following hypotheses: (1) Higher baseline RS sensitivity as a result of Pap test diagnoses standardization implemented for quality improvement purposes decreases the performance impact of RPS. (2) R-10% and RPS quality assurance methods detect diagnostic failures caused by different types of cognitive errors.

  18. Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo

    2018-01-01

    The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.

  19. Detection of pericardial effusion by chest roentgenography and electrocardiography versus echocardiography.

    PubMed Central

    Manyari, D. E.; Milliken, J. A.; Colwell, B. T.; Burggraf, G. W.

    1978-01-01

    To determine the sensitivity and specificity of chest roentgenography and electrocardiography in the detection of pericardial effusion, echocardiography was used as the diagnostic standard. Chest roentgenograms and electrocardiograms of 124 patients, 57 of whom had pericardial effusion, were read without knowledge of the echocardiographic interpretation. The sensitivity of roentgenographic diagnosis was low (20%), as was that of diagnosis from decreased voltage on the electrocardiogram (26%). The specificity of the chest roentgenogram was 89% and that of the low-voltage electrocardiogram 97%. The high specificity of the low-voltage electrocardiogram may have been due in part to the exclusion of obese and emphysematous subjects from the study. When cardiomegaly detected roentgenographically or a low-voltage electrocardiogram or both were considered as evidence of pericardial effusion, sensitivity improved to 82% but specificity declined to 29%. It is concluded the chest roentgenography and electrocardiography are unsatisfactory as screening investigations for the detection of pericardial effusion. Images FIG. 1 FIG. 2 FIG. 3 PMID:688146

  20. Thickness dependence of polydopamine thin films on detection sensitivity of surface plasmon-enhanced fluorescence biosensors

    NASA Astrophysics Data System (ADS)

    Toma, Mana; Tawa, Keiko

    2018-03-01

    A bioinspired polydopamine (PDA) coating is a good candidate for the rapid and cheap chemical modification of biosensor surfaces. Herein, we report the effect of PDA thickness on the detection sensitivity of a fluorescence biosensor utilizing surface plasmon-enhanced fluorescence. The thickness of PDA films was tuned by the incubation time of the dopamine solution and varied from 1 to 17 nm. The detection sensitivity was evaluated as the limit of detection (LOD) of a fluorescently labelled target analyte by a model immunoassay. The LOD was determined to be 1.6 pM for the thickest PDA film and was improved to 1.0 pM by reducing the thickness to the range from 1 to 5 nm, corresponding to the incubation time of 10 to 60 min. The experimental results indicate that the PDA coating is suitable for the surface functionalization of biosensors in mass production as it does not require precise control of the incubation time.

  1. Increased sensitivity and high specificity of indirect immunofluorescence in detecting IgG subclasses for diagnosis of bullous pemphigoid.

    PubMed

    Jankásková, J; Horváth, O N; Varga, R; Arenberger, P; Schmidt, E; Ruzicka, T; Sárdy, M

    2018-04-01

    Indirect immunofluorescence (IIF) microscopy on monkey oesophagus is an important assay for the diagnosis of bullous pemphigoid (BP). Its relatively low sensitivity (60-80%) may be partly due to insufficient detection of minor IgG subclasses. To determine the operating characteristics of an IgG subclass in IIF. We designed a retrospective, dual-centre, controlled cohort study on sera from 64 BP sera that had been rated as false negatives by traditional IIF microscopy, and assessed circulating IgG 1 , IgG 3 and IgG 4 autoantibodies. The sensitivities of IIF in detecting IgG 1 , IgG 3 , IgG 4 and all three in combination were 45.3%, 18.8%, 32.8% and 48.4%, respectively. Specificities were > 97%. Detection of IgG subclass (especially IgG 1 and IgG 4 ) autoantibodies by IIF on monkey oesophagus can significantly improve diagnostic performance of IIF microscopy for diagnosis of BP. © 2018 British Association of Dermatologists.

  2. Adapting detection sensitivity based on evidence of irregular sinus arrhythmia to improve atrial fibrillation detection in insertable cardiac monitors.

    PubMed

    Pürerfellner, Helmut; Sanders, Prashanthan; Sarkar, Shantanu; Reisfeld, Erin; Reiland, Jerry; Koehler, Jodi; Pokushalov, Evgeny; Urban, Luboš; Dekker, Lukas R C

    2017-10-03

    Intermittent change in p-wave discernibility during periods of ectopy and sinus arrhythmia is a cause of inappropriate atrial fibrillation (AF) detection in insertable cardiac monitors (ICM). To address this, we developed and validated an enhanced AF detection algorithm. Atrial fibrillation detection in Reveal LINQ ICM uses patterns of incoherence in RR intervals and absence of P-wave evidence over a 2-min period. The enhanced algorithm includes P-wave evidence during RR irregularity as evidence of sinus arrhythmia or ectopy to adaptively optimize sensitivity for AF detection. The algorithm was developed and validated using Holter data from the XPECT and LINQ Usability studies which collected surface electrocardiogram (ECG) and continuous ICM ECG over a 24-48 h period. The algorithm detections were compared with Holter annotations, performed by multiple reviewers, to compute episode and duration detection performance. The validation dataset comprised of 3187 h of valid Holter and LINQ recordings from 138 patients, with true AF in 37 patients yielding 108 true AF episodes ≥2-min and 449 h of AF. The enhanced algorithm reduced inappropriately detected episodes by 49% and duration by 66% with <1% loss in true episodes or duration. The algorithm correctly identified 98.9% of total AF duration and 99.8% of total sinus or non-AF rhythm duration. The algorithm detected 97.2% (99.7% per-patient average) of all AF episodes ≥2-min, and 84.9% (95.3% per-patient average) of detected episodes involved AF. An enhancement that adapts sensitivity for AF detection reduced inappropriately detected episodes and duration with minimal reduction in sensitivity. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology

  3. Development of an Assay for the Detection of PrPres in Blood and Urine Based on PMCA Assay and ELISA Methods

    DTIC Science & Technology

    2007-09-01

    practically have dropped the collaboration with Biotraces as the company was not able to provide us with an improved version of their instrument...Although the claimed sensitivity was reproduced in studies conducted at BioTraces with recombinant PrP. The question was whether the same sensitivity

  4. A novel double recognition enzyme-linked immunosorbent assay based on the nucleocapsid protein for early detection of European porcine reproductive and respiratory syndrome virus infection.

    PubMed

    Venteo, A; Rebollo, B; Sarraseca, J; Rodriguez, M J; Sanz, A

    2012-04-01

    Precise and rapid detection of porcine reproductive respiratory syndrome virus (PRRSV) infection in swine farms is critical. Improvement of control procedures, such as testing incoming gilt and surveillance of seronegative herds requires more rapid and sensitive methods. However, standard serological techniques detect mainly IgG antibodies. A double recognition enzyme-linked immunosorbent assay (DR-ELISA) was developed for detection of antibodies specific to European PRRSV. This new assay can recognize both IgM and IgG antibodies to PRSSV which might be useful for detecting in routine surveillance assays pigs that are in the very early stages of infection and missed by conventional assays detecting only IgG antibodies. DR-ELISA is based on the double recognition of antigen by antibody. In this study, the recombinant nucleocapsid protein (N) of PRRSV was used both as the coating and the enzyme-conjugated antigen. To evaluate the sensitivity of the assay at early stages of the infection, sera from 69 pigs infected with PRRSV were collected during successive days post infection (pi) and tested. While standard methods showed low sensitivity rates before day 14 pi, DR-ELISA detected 88.4% seropositive samples at day 7 showing greater sensitivity at early stages of the infection. Further studies were carried out to assess the efficiency of the new assay, and the results showed DR-ELISA to be a sensitive and accurate method for early diagnosis of EU-PRRSV infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective.

    PubMed

    Zeng, Zhi-Cong; Hu, Shu; Huang, Sheng-Chao; Zhang, Yue-Jiao; Zhao, Wei-Xing; Li, Jian-Feng; Jiang, Chaoyang; Ren, Bin

    2016-10-04

    Electrochemical Raman spectroscopy is a powerful molecular level diagnostic technique for in situ investigation of adsorption and reactions on various material surfaces. However, there is still a big room to improve the optical path to meet the increasing request of higher detection sensitivity and spatial resolution. Herein, we proposed a novel electrochemical Raman setup based on a water immersion objective. It dramatically reduces mismatch of the refractive index in the light path. Consequently, significant improvement in detection sensitivity and spatial resolution has been achieved from both Zemax simulation and the experimental results. Furthermore, the thickness of electrolyte layer could be expanded to 2 mm without any influence on the signal collection. Such a thick electrolyte layer allows a much normal electrochemical response during the spectroelectrochemical investigations of the methanol oxidation.

  6. Improved detection following Neuro-Eye Therapy in patients with post-geniculate brain damage.

    PubMed

    Sahraie, Arash; Macleod, Mary-Joan; Trevethan, Ceri T; Robson, Siân E; Olson, John A; Callaghan, Paula; Yip, Brigitte

    2010-09-01

    Damage to the optic radiation or the occipital cortex results in loss of vision in the contralateral visual field, termed partial cortical blindness or hemianopia. Previously, we have demonstrated that stimulation in the field defect using visual stimuli with optimal properties for blindsight detection can lead to increases in visual sensitivity within the blind field of a group of patients. The present study was aimed to extend the previous work by investigating the effect of positive feedback on recovery of visual sensitivity. Patients' abilities for detection of a range of spatial frequencies within their field defect were determined using a temporal two-alternative forced-choice technique, before and after a period of visual training (n = 4). Patients underwent Neuro-Eye Therapy which involved detection of temporally modulated spatial grating patches at specific retinal locations within their field defect. Three patients showed improved detection ability following visual training. Based on our previous studies, we had hypothesised that should the occipital brain lesion extend anteriorly to the thalamus, little recovery would be expected. Here, we describe one such case who showed no improvements after extensive training. The present study provides further evidence that recovery (a) can be gradual and may require a large number of training sessions (b) can be accelerated using positive feedback and (c) may be less likely to take place if the occipital damage extends anteriorly to the thalamus.

  7. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    PubMed

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  8. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.

    PubMed

    Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  9. A three-wavelength multi-channel brain functional imager based on digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2018-02-01

    During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.

  10. Optimization of programming parameters in children with the advanced bionics cochlear implant.

    PubMed

    Baudhuin, Jacquelyn; Cadieux, Jamie; Firszt, Jill B; Reeder, Ruth M; Maxson, Jerrica L

    2012-05-01

    Cochlear implants provide access to soft intensity sounds and therefore improved audibility for children with severe-to-profound hearing loss. Speech processor programming parameters, such as threshold (or T-level), input dynamic range (IDR), and microphone sensitivity, contribute to the recipient's program and influence audibility. When soundfield thresholds obtained through the speech processor are elevated, programming parameters can be modified to improve soft sound detection. Adult recipients show improved detection for low-level sounds when T-levels are set at raised levels and show better speech understanding in quiet when wider IDRs are used. Little is known about the effects of parameter settings on detection and speech recognition in children using today's cochlear implant technology. The overall study aim was to assess optimal T-level, IDR, and sensitivity settings in pediatric recipients of the Advanced Bionics cochlear implant. Two experiments were conducted. Experiment 1 examined the effects of two T-level settings on soundfield thresholds and detection of the Ling 6 sounds. One program set T-levels at 10% of most comfortable levels (M-levels) and another at 10 current units (CUs) below the level judged as "soft." Experiment 2 examined the effects of IDR and sensitivity settings on speech recognition in quiet and noise. Participants were 11 children 7-17 yr of age (mean 11.3) implanted with the Advanced Bionics High Resolution 90K or CII cochlear implant system who had speech recognition scores of 20% or greater on a monosyllabic word test. Two T-level programs were compared for detection of the Ling sounds and frequency modulated (FM) tones. Differing IDR/sensitivity programs (50/0, 50/10, 70/0, 70/10) were compared using Ling and FM tone detection thresholds, CNC (consonant-vowel nucleus-consonant) words at 50 dB SPL, and Hearing in Noise Test for Children (HINT-C) sentences at 65 dB SPL in the presence of four-talker babble (+8 signal-to-noise ratio). Outcomes were analyzed using a paired t-test and a mixed-model repeated measures analysis of variance (ANOVA). T-levels set 10 CUs below "soft" resulted in significantly lower detection thresholds for all six Ling sounds and FM tones at 250, 1000, 3000, 4000, and 6000 Hz. When comparing programs differing by IDR and sensitivity, a 50 dB IDR with a 0 sensitivity setting showed significantly poorer thresholds for low frequency FM tones and voiced Ling sounds. Analysis of group mean scores for CNC words in quiet or HINT-C sentences in noise indicated no significant differences across IDR/sensitivity settings. Individual data, however, showed significant differences between IDR/sensitivity programs in noise; the optimal program differed across participants. In pediatric recipients of the Advanced Bionics cochlear implant device, manually setting T-levels with ascending loudness judgments should be considered when possible or when low-level sounds are inaudible. Study findings confirm the need to determine program settings on an individual basis as well as the importance of speech recognition verification measures in both quiet and noise. Clinical guidelines are suggested for selection of programming parameters in both young and older children. American Academy of Audiology.

  11. Surveillance of Space - Optimal Use of Complementary Sensors for Maximum Efficiency

    DTIC Science & Technology

    2006-04-01

    as track - before - detect [4] have been shown to allow improved sensitivity. This technique employs fast running algorithms and computing power to pre...Multifunction Radar” IEEE Signal Processing Magazine, January 2006. [4] Wallace W R “The Use of Track - Before - Detect in Pulse-Doppler Radar” IEE 490, Radar

  12. Improved porous silicon (P-Si) microarray based PSA (prostate specific antigen) immunoassay by optimized surface density of the capture antibody

    PubMed Central

    Lee, SangWook; Kim, Soyoun; Malm, Johan; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas

    2014-01-01

    Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5ngmL−1, 80pgmL−1, and 800fgmL−1 when arraying the PSA antibody, H117 at the concentration 15µgmL−1, 35µgmL−1 and 154µgmL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800fgmL−1 to 500ngmL−1. The microarray showed a LOD of 800fgmL−1 and a dynamic range of 800 fgmL−1 to 80ngmL−1 in serum spiked samples. PMID:24016590

  13. Detecting adverse events in surgery: comparing events detected by the Veterans Health Administration Surgical Quality Improvement Program and the Patient Safety Indicators.

    PubMed

    Mull, Hillary J; Borzecki, Ann M; Loveland, Susan; Hickson, Kathleen; Chen, Qi; MacDonald, Sally; Shin, Marlena H; Cevasco, Marisa; Itani, Kamal M F; Rosen, Amy K

    2014-04-01

    The Patient Safety Indicators (PSIs) use administrative data to screen for select adverse events (AEs). In this study, VA Surgical Quality Improvement Program (VASQIP) chart review data were used as the gold standard to measure the criterion validity of 5 surgical PSIs. Independent chart review was also used to determine reasons for PSI errors. The sensitivity, specificity, and positive predictive value of PSI software version 4.1a were calculated among Veterans Health Administration hospitalizations (2003-2007) reviewed by VASQIP (n = 268,771). Nurses re-reviewed a sample of hospitalizations for which PSI and VASQIP AE detection disagreed. Sensitivities ranged from 31% to 68%, specificities from 99.1% to 99.8%, and positive predictive values from 31% to 72%. Reviewers found that coding errors accounted for some PSI-VASQIP disagreement; some disagreement was also the result of differences in AE definitions. These results suggest that the PSIs have moderate criterion validity; however, some surgical PSIs detect different AEs than VASQIP. Future research should explore using both methods to evaluate surgical quality. Published by Elsevier Inc.

  14. Round-robin comparison of methods for the detection of human enteric viruses in lettuce.

    PubMed

    Le Guyader, Françoise S; Schultz, Anna-Charlotte; Haugarreau, Larissa; Croci, Luciana; Maunula, Leena; Duizer, Erwin; Lodder-Verschoor, Froukje; von Bonsdorff, Carl-Henrik; Suffredini, Elizabetha; van der Poel, Wim M M; Reymundo, Rosanna; Koopmans, Marion

    2004-10-01

    Five methods that detect human enteric virus contamination in lettuce were compared. To mimic multiple contaminations as observed after sewage contamination, artificial contamination was with human calicivirus and poliovirus and animal calicivirus strains at different concentrations. Nucleic acid extractions were done at the same time in the same laboratory to reduce assay-to-assay variability. Results showed that the two critical steps are the washing step and removal of inhibitors. The more reliable methods (sensitivity, simplicity, low cost) included an elution/concentration step and a commercial kit. Such development of sensitive methods for viral detection in foods other than shellfish is important to improve food safety.

  15. Syndromic surveillance for health information system failures: a feasibility study.

    PubMed

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-05-01

    To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65-0.85. Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures.

  16. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold

    PubMed Central

    Bruno, John G.

    2014-01-01

    Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection. PMID:25437803

  17. Erysipelothrix rhusiopathiae and Mycoplasma hyopneumoniae: the sensitivities of enzyme-linked immunosorbent assays for detecting vaccinated sows of unknown disease status using serum and colostrum, and the correlation of the results for sow serum, colostrum, and piglet serum.

    PubMed

    Jenvey, Caitlin J; Reichel, Michael P; Cockcroft, Peter D

    2015-03-01

    Due to relatively high concentrations of immunoglobulins, colostrum has the potential to improve the sensitivity of diagnostic tests for diseases in pigs when compared with serum. It is possible that colostrum could improve the sensitivity of the antibody enzyme-linked immunosorbent assay (ELISA) compared with serum. Colostrum is also essential for piglets, providing protection against infections in the first few weeks and months of life. The sensitivity of 2 commercially available ELISAs, one for the detection of Erysipelothrix rhusiopathiae and the second for Mycoplasma hyopneumoniae antibodies, when used with sow colostrum in comparison with serum was investigated. The correlation of maternal E. rhusiopathiae- and M. hyopneumoniae-specific antibody levels with specific-antibody serum levels in the piglet was also determined. The sensitivity was defined as the proportion of vaccinated sows that were correctly identified as vaccinated at a given cutoff point. The true disease status of the sows with regard to the 2 infections was unknown. Blood and colostrum samples were collected from 20 sows, 10 primiparous and 10 multiparous, and blood samples were also collected from the piglets of each sow, 48-72 hr post-farrowing. The sensitivities of both ELISAs were significantly improved when using colostrum compared with serum. Sow serum and colostrum optical density (OD) values were significantly correlated. The mean sow OD values for serum for E. rhusiopathiae and M. hyopneumoniae and colostrum for E. rhusiopathiae were significantly correlated with piglet serum OD levels. If the improved sensitivity of colostrum can be demonstrated in infected animals, this will increase the ability of the test to identify infected animals using both individual and pooled colostrum. Testing serum and/or colostrum using ELISA can be useful predictors of piglet disease-specific OD values. © 2015 The Author(s).

  18. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer.

    PubMed

    Li, Yanyan; Zhao, Manru; Wang, Haiyan

    2017-11-01

    We report a label-free peptide aptamer based biosensor for highly sensitive detection of TNT which was designed with a ternary assembly layer consisting of anti-TNT peptide aptamer (peptamer), dithiothreitol (DTT), and 6-mercaptohexanol (MCH), forming Au/peptamer-DTT/MCH. A linear relationship between the change in electron transfer resistance and the logarithm of the TNT concentration from 0.44 to 18.92 pM, with a detection limit of 0.15 pM, was obtained. In comparison, the detection limit of the aptasensor with a common binary assembly layer (Au/peptamer/MCH) was 0.15 nM. The remarkable improvement in the detection limit could be ascribed to the crucial role of the ternary assembly layer, providing an OH-richer hydrophilic environment and a highly compact surface layer with minimal surface defects, reducing the non-covalent binding (physisorption) of the peptamer and non-specific adsorption of TNT onto the electrode surface, leading to high sensitivity, and which can serve as a general sensing platform for the fabrication of other biosensors.

  19. Statistical algorithms improve accuracy of gene fusion detection

    PubMed Central

    Hsieh, Gillian; Bierman, Rob; Szabo, Linda; Lee, Alex Gia; Freeman, Donald E.; Watson, Nathaniel; Sweet-Cordero, E. Alejandro

    2017-01-01

    Abstract Gene fusions are known to play critical roles in tumor pathogenesis. Yet, sensitive and specific algorithms to detect gene fusions in cancer do not currently exist. In this paper, we present a new statistical algorithm, MACHETE (Mismatched Alignment CHimEra Tracking Engine), which achieves highly sensitive and specific detection of gene fusions from RNA-Seq data, including the highest Positive Predictive Value (PPV) compared to the current state-of-the-art, as assessed in simulated data. We show that the best performing published algorithms either find large numbers of fusions in negative control data or suffer from low sensitivity detecting known driving fusions in gold standard settings, such as EWSR1-FLI1. As proof of principle that MACHETE discovers novel gene fusions with high accuracy in vivo, we mined public data to discover and subsequently PCR validate novel gene fusions missed by other algorithms in the ovarian cancer cell line OVCAR3. These results highlight the gains in accuracy achieved by introducing statistical models into fusion detection, and pave the way for unbiased discovery of potentially driving and druggable gene fusions in primary tumors. PMID:28541529

  20. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    NASA Astrophysics Data System (ADS)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  1. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    PubMed Central

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-01-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept. PMID:28856047

  2. Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Torno, M.; Chen, H.; Rosengart, A.; Nikitin, P. I.

    2008-04-01

    A novel method of highly sensitive quantitative detection of magnetic nanoparticles (MP) in biological tissues and blood system has been realized and tested in real time in vivo experiments. The detection method is based on nonlinear magnetic properties of MP and the related device can record a very small relative variation of nonlinear magnetic susceptibility up to 10-8 at room temperature, providing sensitivity of several nanograms of MP in 0.1ml volume. Real-time quantitative in vivo measurements of dynamics of MP concentration in blood flow have been performed. A catheter that carried the blood flow of a rat passed through the measuring device. After an MP injection, the quantity of MP in the circulating blood was continuously recorded. The method has also been used to evaluate the MP distribution between rat's organs. Its sensitivity was compared with detection of the radioactive MP based on isotope of Fe59. The comparison of magnetic and radioactive signals in the rat's blood and organ samples demonstrated similar sensitivity for both methods. However, the proposed magnetic method is much more convenient as it is safe, less expensive, and provides real-time measurements in vivo. Moreover, the sensitivity of the method can be further improved by optimization of the device geometry.

  3. Detection of dysplasia and carcinoma in situ by ratio fluorometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, S.; Hung, J.Y.; Kennedy, S.M.

    1992-12-01

    Fluorescence bronchoscopy was performed in 82 volunteers recruited from occupational groups at risk of exposure to asbestos and/or diesel fumes to determine whether differences in tissue autofluorescence between normal and malignant bronchial tissues can be used to improve the sensitivity of standard fiberoptic bronchoscopy in detecting dysplasic and carcinoma in situ (CIS). This study consisted of 25 nonsmokers, 40 exsmokers, and 17 current smokers with mean ages of 52, 55, and 49 yr, respectively. Tissue autofluorescence was induced by a blue light from an He-Cd laser coupled to the illumination channel of the bronchoscope and analyzed by a ratiofluorometer. Onemore » or more sites of moderate or severe dysplasia were found in 12% of the exsmokers and current smokers but in none of the nonsmoker volunteers. CIS was found in two of the exsmokers. The sensitivity of fluorescence bronchoscopy (86%) was found to be 50% better than that of conventional white-light bronchoscopy (52%) in detecting dysplasia and CIS. Pre- and post-bronchoscopy sputum cytology failed to detect these precancerous lesions. Our results suggest that fluorescence bronchoscopy may be an important new method that can improve the ability to detect and localize precancerous and/or CIS lesions.« less

  4. Near-infrared photoluminescence biosensing platform with gold nanorods-over-gallium arsenide nanohorn array.

    PubMed

    Zhang, Yiming; Jiang, Tao; Tang, Longhua

    2017-11-15

    The near-infrared (NIR) optical detection of biomolecules with high sensitivity and reliability have been expected, however, it is still a challenge. In this work, we present a gold nanorods (AuNRs)-over-gallium arsenide nanohorn-like array (GaAs NHA) system that can be used for the ultrasensitive and specific NIR photoluminescence (PL) detection of DNA and proteins. The fabrication of GaAs NHA involved the technique of colloidal lithography and inductively coupled plasma dry etching, yielding large-area and well-defined nanostructural array, and exhibiting an improved PL emission compared to the planar GaAs substrate. Importantly, we found that the DNA-bridged AuNRs attachment on NHA could further improve the PL intensity from GaAs, and thereby provide the basis for the NIR optical sensing of biological analytes. We demonstrated that DNA and thrombin could be sensitively and specifically detected, with the detection limit of 1 pM for target DNA and 10 pM for thrombin. Such ultrasensitive NIR optical platform can extend to the detection of other biomarkers and is promising for clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Improving the sensitivity and specificity of a bioanalytical assay for the measurement of certolizumab pegol.

    PubMed

    Smeraglia, John; Silva, John-Paul; Jones, Kieran

    2017-08-01

    In order to evaluate placental transfer of certolizumab pegol (CZP), a more sensitive and selective bioanalytical assay was required to accurately measure low CZP concentrations in infant and umbilical cord blood. Results & methodology: A new electrochemiluminescence immunoassay was developed to measure CZP levels in human plasma. Validation experiments demonstrated improved selectivity (no matrix interference observed) and a detection range of 0.032-5.0 μg/ml. Accuracy and precision met acceptance criteria (mean total error ≤20.8%). Dilution linearity and sample stability were acceptable and sufficient to support the method. The electrochemiluminescence immunoassay was validated for measuring low CZP concentrations in human plasma. The method demonstrated a more than tenfold increase in sensitivity compared with previous assays, and improved selectivity for intact CZP.

  6. Improved explosive collection and detection with rationally assembled surface sampling materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.

    Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple usesmore » of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yanmei; Li, Xinli; Bai, Yan

    The measurement of multiphase flow parameters is of great importance in a wide range of industries. In the measurement of multiphase, the signals from the sensors are extremely weak and often buried in strong background noise. It is thus desirable to develop effective signal processing techniques that can detect the weak signal from the sensor outputs. In this paper, two methods, i.e., lock-in-amplifier (LIA) and improved Duffing chaotic oscillator are compared to detect and process the weak signal. For sinusoidal signal buried in noise, the correlation detection with sinusoidal reference signal is simulated by using LIA. The improved Duffing chaoticmore » oscillator method, which based on the Wigner transformation, can restore the signal waveform and detect the frequency. Two methods are combined to detect and extract the weak signal. Simulation results show the effectiveness and accuracy of the proposed improved method. The comparative analysis shows that the improved Duffing chaotic oscillator method can restrain noise strongly since it is sensitive to initial conditions.« less

  8. Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection.

    PubMed

    Dago, Àngela; Navarro, Javier; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2015-08-28

    Nanomaterials are of great interest for the development of electrochemical sensors. Multi-walled carbon nanotubes and graphene were used to modify the working electrode surface of different screen-printed carbon electrodes (SPCE) with the aim of improving the sensitivity of the SPCE and comparing it with the conventional glassy carbon electrode. To assay the usability of these sensors, a HPLC methodology with amperometric detection was developed to analyze several phytochelatins in plants of Hordeum vulgare and Glycine max treated with Hg(II) or Cd(II) giving detection limits in the low μmolL(-1) range. Phytochelatins are low molecular weight peptides with the general structure γ-(Glu-Cys)n-Gly (n=2-5) which are synthesized in plants in the presence of heavy metal ions. These compounds can chelate heavy metal ions by the formation of complexes which, are transported to the vacuoles, where the toxicity is not threatening. For this reason phytochelatins are essential in the detoxification of heavy metal ions in plants. The developed HPLC method uses a mobile phase of 1% of formic acid in water with KNO3 or NaCl (pH=2.00) and 1% of formic acid in acetonitrile. Electrochemical detection at different carbon-based electrodes was used. Among the sensors tested, the conventional glassy carbon electrode offers the best sensitivity although modification improves the sensitivity of the SPCE. Glutathione and several isoforms of phytochelatin two were found in plant extracts of both studied species. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Sensitivity-Enhanced CMOS Phase Luminometry System Using Xerogel-Based Sensors.

    PubMed

    Lei Yao; Khan, R; Chodavarapu, V P; Tripathi, V S; Bright, F V

    2009-10-01

    We present the design and implementation of a phase luminometry sensor system with improved and tunable detection sensitivity achieved using a complementary metal-oxide semiconductor (CMOS) integrated circuit. We use sol-gel derived xerogel thin films as an immobilization media to house oxygen (O2) responsive luminescent molecules. The sensor operates on the principal of phase luminometry wherein a sinusoidal modulation signal is used to excite the luminophores encapsulated in the porous xerogel films and the corresponding phase shift of the emission signals is monitored. The phase shift is directly related to excited state lifetimes of the luminophores which in turn are related to the concentration of the target analyte species present in the vicinity of the luminophores. The CMOS IC, which consists of a 16 times 16 high-gain phototransistor array, current-to-voltage converter, amplifier and tunable phase shift detector, consumes an average power of 14 mW with 5-V power supply operating at a 38-kHz modulation frequency. The output of the IC is a dc voltage that corresponds to the detected luminescence phase shift with respect to the excitation signal. As a prototype, we demonstrate an oxygen sensor system by encapsulating the luminophore tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within the xerogel matrices. The sensor system showed a fast response on the order of few seconds and we obtained a detection sensitivity of 118 mV per 1% change in O2 concentration. The system demonstrates a novel concept to tune and improve the detection sensitivity for specific concentrations of the target analyte in many biomedical monitoring applications.

  10. Epstein-Barr virus glycoprotein gH/gL antibodies complement IgA-viral capsid antigen for diagnosis of nasopharyngeal carcinoma

    PubMed Central

    Tang, Lin-Quan; Zhang, Hua; Li, Yan; Liu, Wan-Li; Zhong, Qian; Zeng, Mu-Sheng; Huang, Xiao-Ming

    2016-01-01

    To determine whether measuring antibodies against Epstein-Barr virus (EBV) glycoprotein gH/gL in serum could improve diagnostic accuracy in nasopharyngeal carcinoma (NPC) cases, gH/gL expressed in a recombinant baculovirus system was used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies in two independent cohorts. Binary logistic regression analyses were performed using results from a training cohort (n = 406) to establish diagnostic mathematical models, which were validated in a second independent cohort (n = 279). Levels of serum gH/gL antibodies were higher in NPC patients than in healthy controls (p < 0.001). In the training cohort, the IgA-gH/gL ELISA had a sensitivity of 83.7%, specificity of 82.3% and area under the curve (AUC) of 0.893 (95% CI, 0.862-0.924) for NPC diagnosis. Furthermore, gH/gL maintained diagnostic capacity in IgA-VCA negative NPC patients (sensitivity = 78.1%, specificity = 82.3%, AUC = 0.879 [95% CI, 0.820 - 0.937]). Combining gH/gL and viral capsid antigen (VCA) detection improved diagnostic capacity as compared to individual tests alone in both the training cohort (sensitivity = 88.5%, specificity = 97%, AUC = 0.98 [95% CI, 0.97 - 0.991]), and validation cohort (sensitivity = 91.2%, specificity = 96.5%, AUC = 0.97 [95% CI, 0.951-0.988]). These findings suggest that EBV gH/gL detection complements VCA detection in the diagnosis of NPC and aids in the identification of patients with VCA-negative NPC. PMID:27093005

  11. Sensitive ionization of non-volatile analytes using protein solutions as spray liquid in desorption electrospray ionization mass spectrometry.

    PubMed

    Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen

    2012-12-15

    Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    PubMed

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  13. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source.

    PubMed

    Wang, Zhaoyong; Pan, Zhengqing; Fang, Zujie; Ye, Qing; Lu, Bin; Cai, Haiwen; Qu, Ronghui

    2015-11-15

    A phase-sensitive optical time-domain reflectometry (Φ-OTDR) with a temporally sequenced multi-frequency (TSMF) source is proposed. This technique can improve the system detection bandwidth without the sensing range decreasing. Up to 0.5 MHz detection bandwidth over 9.6 km is experimentally demonstrated as an example. To the best of our knowledge, this is the first time that such a high detection bandwidth over such a long sensing range is reported in Φ-OTDR-based distributed vibration sensing. The technical issues of TSMF Φ-OTDR are discussed in this Letter. This technique will help Φ-OTDR find new important foreground in long-haul distributed broadband-detection applications, such as structural-health monitoring and partial-discharge online monitoring of high voltage power cables.

  14. Novel drug and soluble target tolerant antidrug antibody assay for therapeutic antibodies bearing the P329G mutation.

    PubMed

    Wessels, Uwe; Schick, Eginhard; Ritter, Mirko; Kowalewsky, Frank; Heinrich, Julia; Stubenrauch, Kay

    2017-06-01

    Bridging immunoassays for detection of antidrug antibodies (ADAs) are typically susceptible to high concentrations of residual drug. Sensitive drug-tolerant assays are, therefore, needed. An immune complex assay to detect ADAs against therapeutic antibodies bearing Pro329Gly mutation was established. The assay uses antibodies specific for the Pro329Gly mutation for capture and human soluble Fcγ receptor for detection. When compared with a bridging assay, the new assay showed similar precision, high sensitivity to IgG1 ADA and dramatically improved drug tolerance. However, it was not able to detect early (IgM-based) immune responses. Applied in combination with a bridging assay, the novel assay serves as orthogonal assay for immunogenicity assessment and allows further characterization of ADA responses.

  15. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic

    NASA Astrophysics Data System (ADS)

    Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.

    2016-02-01

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  16. Prevention of bacterial foodborne disease using nanobiotechnology.

    PubMed

    Billington, Craig; Hudson, J Andrew; D'Sa, Elaine

    2014-01-01

    Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing.

  17. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors

    PubMed Central

    2018-01-01

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011

  18. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors.

    PubMed

    Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie

    2018-06-13

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.

  19. Decreased sensitivity associated with an altered formulation of a commercially available kit for detection of protein carbonyls

    PubMed Central

    Wang, Ping; Powell, Saul R.

    2010-01-01

    Carbonylation is a commonly studied form of oxidative modification to proteins which can be conveniently detected using commercially available kits. The most common of these kits is the Oxyblot™ Protein Oxidation Detection Kit (Chemicon/Millipore). Over the past year we have observed severely diminished sensitivity of these kits which was shown to be a result of a change in the formulation of one of the components supplied in the kit. This component, the 10X 2,4-dinitrophenylhydrazine derivatization solution, which had previously been dissolved in 100% trifluoroacetic acid (TFA), was now dissolved in 2N hydrochloric acid, which according to our results is not acid enough. Further, we observed that upon storage even DNPH dissolved in TFA is subject to degradation. Based on these studies, we make recomendations that should improve the sensitivity and reproducibilty of this assay. PMID:20230891

  20. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    PubMed

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  1. A facile approach to construct versatile signal amplification system for bacterial detection.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi; Lv, Dandan

    2014-01-01

    In this work, a facile approach to design versatile signal amplification system for bacterial detection has been presented. Bio-recognition elements and signaling molecules can be immobilized on the surface of Fe₃O₄@MnO₂ nanomaterials with the help of bioinspired polydopamine (PDA). Fe₃O₄@MnO₂ nanoplates were chosen as carrier for bio-recognizing and signaling molecules because this kind of nanomaterial was superparamagnetic and the existence of MnO₂ could enhance the polymerization of dopamine due to its strong oxidative ability. This nanocomposite system was versatile because PDA around Fe₃O₄@MnO₂ nanoplates provided a stable and convenient platform for immobilization of biological and chemical materials, and various kinds of bio-recognizing and signaling molecules could be immobilized by reaction with pendant amino groups of dopamine to meet different detection requirements. Since a substantial amount of signaling molecules were immobilized on the surface of the nanocomposites, so the sensitivity of detection would be improved when the prepared nanocomposites were selectively conjugated with target pathogen. In the experimental section, a sandwich-type electrochemical biosensor was developed to verify the amplified bacterial detection sensitivity. Concanavalin A (conA) and ferrocene (Fc) were chosen as bio-recognition elements and signaling molecules for detection of Desulforibrio caledoiensis, respectively. The conA and Fc modified nanocomposites were conjugated on electrode by the selective recognition between conA and target bacteria, and the bacterial population was obtained by quantification of the electrochemical signal of Fc moieties. The experimental results showed that the detection sensitivity for D. caledoiensis was improved by taking advantage of this signal amplification system. © 2013 Elsevier B.V. All rights reserved.

  2. Detecting DNA methylation of the BCL2, CDKN2A and NID2 genes in urine using a nested methylation specific polymerase chain reaction assay to predict bladder cancer.

    PubMed

    Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-12-01

    Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Occupancy Modeling for Improved Accuracy and Understanding of Pathogen Prevalence and Dynamics

    PubMed Central

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%. PMID:25738709

  4. Occupancy modeling for improved accuracy and understanding of pathogen prevalence and dynamics

    USGS Publications Warehouse

    Colvin, Michael E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2015-01-01

    Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmonOncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population:Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.

  5. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing

    PubMed Central

    Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P.; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G.; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M.; Davidow, Amy; Denkinger, Claudia M.; Persing, David; Kwiatkowski, Robert; Jones, Martin

    2017-01-01

    ABSTRACT The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. PMID:28851844

  6. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  7. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  8. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Airborne Particulate Threat Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less

  10. The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays.

    PubMed

    Zhan, Li; Guo, Shuang-Zhuang; Song, Fayi; Gong, Yan; Xu, Feng; Boulware, David R; McAlpine, Michael C; Chan, Warren C W; Bischof, John C

    2017-12-13

    Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log 10 to 6 log 10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.

  11. Detecting determinism with improved sensitivity in time series: rank-based nonlinear predictability score.

    PubMed

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  12. Detecting determinism with improved sensitivity in time series: Rank-based nonlinear predictability score

    NASA Astrophysics Data System (ADS)

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G.

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  13. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The impact of alternative diagnoses on the utility of influenza-like illness case definition to detect the 2009 H1N1 pandemic.

    PubMed

    Rumoro, Dino P; Bayram, Jamil D; Silva, Julio C; Shah, Shital C; Hallock, Marilyn M; Gibbs, Gillian S; Waddell, Michael J

    2012-01-01

    To investigate the impact of excluding cases with alternative diagnoses on the sensitivity and specificity of the Centers for Disease Control and Prevention's (CDC) influenza-like illness (ILI) case definition in detecting the 2009 H1N1 influenza, using Geographic Utilization of Artificial Intelligence in Real-Time for Disease Identification and Alert Notification, a disease surveillance system. Retrospective cross-sectional study design. Emergency department of an urban tertiary care academic medical center. 1,233 ED cases, which were tested for respiratory viruses from September 5, 2009 to May 5, 2010. The main outcome measures were positive predictive value, negative predictive value, sensitivity, specificity, and accuracy of the ILI case definition (both including and excluding alternative diagnoses) to detect H1N1. There was a significant decrease in sensitivity (chi2 = 9.09, p < 0.001) and significant improvement in specificity (chi2 = 179, p < 0.001), after excluding cases with alternative diagnoses. When early detection of an influenza epidemic is of prime importance, pursuing alternative diagnoses as part of CDC's ILI case definition may not be warranted for public health reporting due to the significant decrease in sensitivity, in addition to the resources required for detecting these alternative diagnoses.

  15. Increasing sensitivity of pulse EPR experiments using echo train detection schemes.

    PubMed

    Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Making perceptual learning practical to improve visual functions.

    PubMed

    Polat, Uri

    2009-10-01

    Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.

  17. Availability of tissue rinse liquid-based cytology for the rapid diagnosis of sentinel lymph node metastasis and improved bilateral detection by photodynamic eye camera.

    PubMed

    Kato, Hidenori; Ohba, Yoko; Yamazaki, Hiroyuki; Minobe, Shin-Ichiro; Sudo, Satoko; Todo, Yukiharu; Okamoto, Kazuhira; Yamashiro, Katsushige

    2015-08-01

    On sentinel lymph node navigation surgery for early invasive cervical cancers, to gain high sensitivity and specificity, the sentinel nodes should be detected bilaterally and pathological diagnosis should be sensitive to detect micrometastasis. To improve these problems, we tried tissue rinse liquid-based cytology and the photodynamic eye. From 2005 to 2013, 102 patients with Stage Ib1 uterine cervical cancer were subjected to sentinel lymph node navigation surgery with Technetium-99 m colloid and blue dye. For the recent 11 patients with whom bilateral sentinel node detection was not available, the photodynamic eye was selectively examined. The detected sentinel node was cut along the minor axis into 2 mm slices, soaked in 10 ml CytoRich red and then subjected to tissue rinse liquid-based cytology at the time of surgery. With the accumulation of 102 Ib1 patients subjected to sentinel lymph node navigation surgery, the bilateral sentinel node detection rate was 67.7%. The photodynamic eye was examined for the recent 11 patients who did not have bilateral signals. Out of the 11, 10 patients obtained bilateral signals successfully. During the period of examining the photodynamic eye, a total of 34 patients were subjected to sentinel lymph node navigation surgery. Thus, the overall bilateral detection rate increased to 97% in this subset. Two hundred and five lymph nodes were available as sentinel nodes. The sensitivity of tissue rinse liquid-based cytology was 91.7%, and the specificity was 100%. False positivity was 0% and false negativity was 8.3%. Detection failure was observed only with one micrometastasis and one case of isolated tumor cells. Combination of photodynamic eye detection and tissue rinse liquid-based cytology pathology can be a promising method for more rewarding sentinel node detection. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles.

    PubMed

    Liang, Wenbin; Zhuo, Ying; Xiong, Chengyi; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    A sensitive electrochemiluminescent (ECL) sandwich immunosensor was proposed herein based on the tris (2-phenylpyridine) iridium [Ir(ppy) 3 ] doped silica nanoparticles (SiO 2 @Ir) with improved ECL emission as signal probes and glucose oxidase (GOD)-based in situ enzymatic reaction to generate H 2 O 2 for efficiently quenching the ECL emission of SiO 2 @Ir. Typically, the SiO 2 @Ir not only increased the loading amount of Ir(ppy) 3 as ECL indicators with high ECL emission, but also improved their water-solubility, which efficiently enhanced the ECL emission. Furthermore, by the efficient quench effect of H 2 O 2 from in situ glucose oxidase (GOD)-based enzymatic reaction on the ECL emission of SiO 2 @Ir, a signal-off ECL immunsensor could be established for sensitive assay. With N-terminal of the prohormone brain natriuretic peptide (BNPT) as a model, the proposed ECL assay performed high sensitivity and low detection limit. Importantly, the proposed sensitive ECL strategy was not only suitable for the detection of BNPT for acute myocardial infarction, but also revealed a new avenue for early diagnosis of various diseases via proteins, nucleotide sequence, microRNA and cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Terahertz wave electro-optic measurements with optical spectral filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  20. Current status of direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Liu, Jianglai; Chen, Xun; Ji, Xiangdong

    2017-03-01

    Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.

  1. Improving mass candidate detection in mammograms via feature maxima propagation and local feature selection.

    PubMed

    Melendez, Jaime; Sánchez, Clara I; van Ginneken, Bram; Karssemeijer, Nico

    2014-08-01

    Mass candidate detection is a crucial component of multistep computer-aided detection (CAD) systems. It is usually performed by combining several local features by means of a classifier. When these features are processed on a per-image-location basis (e.g., for each pixel), mismatching problems may arise while constructing feature vectors for classification, which is especially true when the behavior expected from the evaluated features is a peaked response due to the presence of a mass. In this study, two of these problems, consisting of maxima misalignment and differences of maxima spread, are identified and two solutions are proposed. The first proposed method, feature maxima propagation, reproduces feature maxima through their neighboring locations. The second method, local feature selection, combines different subsets of features for different feature vectors associated with image locations. Both methods are applied independently and together. The proposed methods are included in a mammogram-based CAD system intended for mass detection in screening. Experiments are carried out with a database of 382 digital cases. Sensitivity is assessed at two sets of operating points. The first one is the interval of 3.5-15 false positives per image (FPs/image), which is typical for mass candidate detection. The second one is 1 FP/image, which allows to estimate the quality of the mass candidate detector's output for use in subsequent steps of the CAD system. The best results are obtained when the proposed methods are applied together. In that case, the mean sensitivity in the interval of 3.5-15 FPs/image significantly increases from 0.926 to 0.958 (p < 0.0002). At the lower rate of 1 FP/image, the mean sensitivity improves from 0.628 to 0.734 (p < 0.0002). Given the improved detection performance, the authors believe that the strategies proposed in this paper can render mass candidate detection approaches based on image location classification more robust to feature discrepancies and prove advantageous not only at the candidate detection level, but also at subsequent steps of a CAD system.

  2. A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift.

    PubMed

    Jin, Gui; Sun, Jian; Qin, Mingxin; Tang, Qinghua; Xu, Lin; Ning, Xu; Xu, Jia; Pu, Xianjie; Chen, Mingsheng

    2014-02-15

    Cerebral hemorrhage, which is an important clinical problem, is often monitored and studied using expensive devices, such as magnetic resonance imaging (MRI) and positron emission tomography (PET) that are unavailable in economically underdeveloped regions. Magnetic induction tomography (MIT) is a new type of non-contact, non-invasive, and low-cost detection technology, and exhibits prospects for wide application, especially for the detection of brain diseases. However, the previous studies on MIT have focused on laboratory models and rarely on in vivo applications because the induced signals produced by biological tissues are notably weak. Based on the symmetry between the two brain hemispheres and the fact that a local brain hemorrhage will not affect the contra-lateral hemisphere, a symmetric cancellation-type sensor detection system, which is characterized by one excitation coil and two receiving coils, was designed to improve the detection sensitivity of MIT. This method was subsequently used to detect the occurrence of cerebral hematomas in rabbits. The average phase drift induced by a 3-ml injection of autologous blood was 1.885°, which is a fivefold improvement compared with the traditional single excitation coil and single receiving coil method. The results indicate that this system has high sensitivity and anti-interference ability and high practical value. © 2013 Published by Elsevier B.V.

  3. Validation of an automated seizure detection algorithm for term neonates

    PubMed Central

    Mathieson, Sean R.; Stevenson, Nathan J.; Low, Evonne; Marnane, William P.; Rennie, Janet M.; Temko, Andrey; Lightbody, Gordon; Boylan, Geraldine B.

    2016-01-01

    Objective The objective of this study was to validate the performance of a seizure detection algorithm (SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies from 2 centres. Methods EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the gold standard. The SDA was tested on the EEGs at a range of sensitivity settings. Annotations from the expert and SDA were compared using event and epoch based metrics. The effect of seizure duration on SDA performance was also analysed. Results Between sensitivity settings of 0.5 and 0.3, the algorithm achieved seizure detection rates of 52.6–75.0%, with false detection (FD) rates of 0.04–0.36 FD/h for event based analysis, which was deemed to be acceptable in a clinical environment. Time based comparison of expert and SDA annotations using Cohen’s Kappa Index revealed a best performing SDA threshold of 0.4 (Kappa 0.630). The SDA showed improved detection performance with longer seizures. Conclusion The SDA achieved promising performance and warrants further testing in a live clinical evaluation. Significance The SDA has the potential to improve seizure detection and provide a robust tool for comparing treatment regimens. PMID:26055336

  4. A ratiometric strategy -based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid.

    PubMed

    Li, Xueyan; Kan, Xianwen

    2018-04-30

    In this study, a ratiometric strategy-based electrochemical sensor was developed by electropolymerization of thionine (THI) and β-cyclodextrin (β-CD) composite films on a glassy carbon electrode surface for imidacloprid (IMI) detection. THI played the role of an inner reference element to provide a built-in correction. In addition, the modified β-CD showed good selective enrichment for IMI to improve the sensitivity and anti-interference ability of the sensor. The current ratio between IMI and THI was calculated as the detected signal for IMI sensing. Compared with common single-signal sensing, the proposed ratiometric strategy showed a higher linear range and a lower limit of detection of 4.0 × 10-8-1.0 × 10-5 mol L-1 and 1.7 × 10-8 mol L-1, respectively, for IMI detection. On the other hand, the ratiometric strategy endowed the sensor with good accuracy, reproducibility, and stability. The sensor was also used for IMI determination in real samples with satisfactory results. The simple, effective, and reliable way reported in this study can be further used to prepare ratiometric strategy-based electrochemical sensors for the selective and sensitive detection of other compounds with good accuracy and stability.

  5. Effectiveness of Computer-Aided Detection in Community Mammography Practice

    PubMed Central

    Abraham, Linn; Taplin, Stephen H.; Geller, Berta M.; Carney, Patricia A.; D’Orsi, Carl; Elmore, Joann G.; Barlow, William E.

    2011-01-01

    Background Computer-aided detection (CAD) is applied during screening mammography for millions of US women annually, although it is uncertain whether CAD improves breast cancer detection when used by community radiologists. Methods We investigated the association between CAD use during film-screen screening mammography and specificity, sensitivity, positive predictive value, cancer detection rates, and prognostic characteristics of breast cancers (stage, size, and node involvement). Records from 684 956 women who received more than 1.6 million film-screen mammograms at Breast Cancer Surveillance Consortium facilities in seven states in the United States from 1998 to 2006 were analyzed. We used random-effects logistic regression to estimate associations between CAD and specificity (true-negative examinations among women without breast cancer), sensitivity (true-positive examinations among women with breast cancer diagnosed within 1 year of mammography), and positive predictive value (breast cancer diagnosed after positive mammograms) while adjusting for mammography registry, patient age, time since previous mammography, breast density, use of hormone replacement therapy, and year of examination (1998–2002 vs 2003–2006). All statistical tests were two-sided. Results Of 90 total facilities, 25 (27.8%) adopted CAD and used it for an average of 27.5 study months. In adjusted analyses, CAD use was associated with statistically significantly lower specificity (OR = 0.87, 95% confidence interval [CI] = 0.85 to 0.89, P < .001) and positive predictive value (OR = 0.89, 95% CI = 0.80 to 0.99, P = .03). A non-statistically significant increase in overall sensitivity with CAD (OR = 1.06, 95% CI = 0.84 to 1.33, P = .62) was attributed to increased sensitivity for ductal carcinoma in situ (OR = 1.55, 95% CI = 0.83 to 2.91; P = .17), although sensitivity for invasive cancer was similar with or without CAD (OR = 0.96, 95% CI = 0.75 to 1.24; P = .77). CAD was not associated with higher breast cancer detection rates or more favorable stage, size, or lymph node status of invasive breast cancer. Conclusion CAD use during film-screen screening mammography in the United States is associated with decreased specificity but not with improvement in the detection rate or prognostic characteristics of invasive breast cancer. PMID:21795668

  6. Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.

    PubMed

    Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel

    2013-12-01

    We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.

  7. Data-driven approach of CUSUM algorithm in temporal aberrant event detection using interactive web applications.

    PubMed

    Li, Ye; Whelan, Michael; Hobbs, Leigh; Fan, Wen Qi; Fung, Cecilia; Wong, Kenny; Marchand-Austin, Alex; Badiani, Tina; Johnson, Ian

    2016-06-27

    In 2014/2015, Public Health Ontario developed disease-specific, cumulative sum (CUSUM)-based statistical algorithms for detecting aberrant increases in reportable infectious disease incidence in Ontario. The objective of this study was to determine whether the prospective application of these CUSUM algorithms, based on historical patterns, have improved specificity and sensitivity compared to the currently used Early Aberration Reporting System (EARS) algorithm, developed by the US Centers for Disease Control and Prevention. A total of seven algorithms were developed for the following diseases: cyclosporiasis, giardiasis, influenza (one each for type A and type B), mumps, pertussis, invasive pneumococcal disease. Historical data were used as baseline to assess known outbreaks. Regression models were used to model seasonality and CUSUM was applied to the difference between observed and expected counts. An interactive web application was developed allowing program staff to directly interact with data and tune the parameters of CUSUM algorithms using their expertise on the epidemiology of each disease. Using these parameters, a CUSUM detection system was applied prospectively and the results were compared to the outputs generated by EARS. The outcome was the detection of outbreaks, or the start of a known seasonal increase and predicting the peak in activity. The CUSUM algorithms detected provincial outbreaks earlier than the EARS algorithm, identified the start of the influenza season in advance of traditional methods, and had fewer false positive alerts. Additionally, having staff involved in the creation of the algorithms improved their understanding of the algorithms and improved use in practice. Using interactive web-based technology to tune CUSUM improved the sensitivity and specificity of detection algorithms.

  8. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2012-02-08

    Nanosensors based on the unique electronic properties of nanotubes and nanowires offer high sensitivity and have the potential to revolutionize the field of Point-of-Care (POC) medical diagnosis. The direct current (dc) detection of a wide array of organic and inorganic molecules has been demonstrated on these devices. However, sensing mechanism based on measuring changes in dc conductance fails at high background salt concentrations, where the sensitivity of the devices suffers from the ionic screening due to mobile ions present in the solution. Here, we successfully demonstrate that the fundamental ionic screening effect can be mitigated by operating single-walled carbon nanotube field effect transistor as a high-frequency biosensor. The nonlinear mixing between the alternating current excitation field and the molecular dipole field can generate mixing current sensitive to the surface-bound biomolecules. Electrical detection of monolayer streptavidin binding to biotin in 100 mM buffer solution is achieved at a frequency beyond 1 MHz. Theoretical modeling confirms improved sensitivity at high frequency through mitigation of the ionic screening effect. The results should promise a new biosensing platform for POC detection, where biosensors functioning directly in physiologically relevant condition are desired. © 2012 American Chemical Society

  9. Liquid-phase exfoliated graphene as highly-sensitive sensor for simultaneous determination of endocrine disruptors: diethylstilbestrol and estradiol.

    PubMed

    Hu, Lintong; Cheng, Qin; Chen, Danchao; Ma, Ming; Wu, Kangbing

    2015-01-01

    It is quite important to develop convenient and rapid analytical methods for trace levels of endocrine disruptors because they heavily affect health and reproduction of humans and animals. Herein, graphene was easily prepared via one-step exfoliation using N-methyl-2-pyrrolidone as solvent, and then used to construct an electrochemical sensor for highly-sensitive detection of diethylstilbestrol (DES) and estradiol (E2). On the surface of prepared graphene film, two independent and greatly-increased oxidation waves were observed at 0.28V and 0.49V for DES and E2. The remarkable signal enlargements indicated that the detection sensitivity was improved significantly. The influences of pH value, amount of graphene and accumulation time on the oxidation signals of DES and E2 were discussed. As a result, a highly-sensitive and rapid electrochemical method was newly developed for simultaneous detection of DES and E2. The values of detection limit were evaluated to be 10.87 nM and 4.9 nM for DES and E2. Additionally, this new method was successfully used in lake water samples and the accuracy was satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Sensitivity enhancement of fluorescence detection in CE by coupling and conducting excitation light with tapered optical fiber.

    PubMed

    Yang, Xiupei; Huo, Feng; Yuan, Hongyan; Zhang, Bo; Xiao, Dan; Choi, Martin M F

    2011-01-01

    This paper reports the enhancement of sensitivity of detection for in-column fiber optic-induced fluorescence detection system in CE by tapered optical fiber (TOF). Two types of optical fiber, TOF and conventional cylindrical optical fiber (COF), were employed to construct the CE (TOF-CE and COF-CE) and were compared for sensitivity to riboflavin (RF). The fluorescence intensities from a RF sample with excitation light sources and fibers at various coupling angles were investigated. The fluorescence signal from TOF-CE was ca. ten times that of COF-CE. In addition, the detection performance of four excitation light source-fiber configurations including Laser-TOF, Laser-COF, LED-TOF, and LED-COF were compared. The LODs for RF were 0.21, 0.82, 0.80, and 7.5 nM, respectively, for the four excitation light source-fiber configurations. The results demonstrate that the sensitivity obtained by LED-TOF is close to that of Laser-COF. Both Laser-TOF and LED-TOF can greatly improve the sensitivity of detection in CE. TOF has the major attribute of collecting and focusing the excitation light intensity. Thus, the sensitivity obtained by LED-TOF without focusing lens is just same as that of LED-COF with a focusing lens. This demonstrates that the CE system can be further simplified by eliminating the focusing lens for excitation light. LED-TOF-CE and LED-COF-CE system were applied to the separation and determination of RF in real sample (green tea), respectively. The tapered fiber optic-induced fluorescence detection system in CE is an ideal tool for trace analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Barinaga, Charles J.

    1995-01-01

    An improvement to the system and method for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity.

  12. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance.

    PubMed

    Hu, Jinming; Li, Changhua; Liu, Shiyong

    2010-01-19

    We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.

  13. Automated analysis of retinal images for detection of referable diabetic retinopathy.

    PubMed

    Abràmoff, Michael D; Folk, James C; Han, Dennis P; Walker, Jonathan D; Williams, David F; Russell, Stephen R; Massin, Pascale; Cochener, Beatrice; Gain, Philippe; Tang, Li; Lamard, Mathieu; Moga, Daniela C; Quellec, Gwénolé; Niemeijer, Meindert

    2013-03-01

    The diagnostic accuracy of computer detection programs has been reported to be comparable to that of specialists and expert readers, but no computer detection programs have been validated in an independent cohort using an internationally recognized diabetic retinopathy (DR) standard. To determine the sensitivity and specificity of the Iowa Detection Program (IDP) to detect referable diabetic retinopathy (RDR). In primary care DR clinics in France, from January 1, 2005, through December 31, 2010, patients were photographed consecutively, and retinal color images were graded for retinopathy severity according to the International Clinical Diabetic Retinopathy scale and macular edema by 3 masked independent retinal specialists and regraded with adjudication until consensus. The IDP analyzed the same images at a predetermined and fixed set point. We defined RDR as more than mild nonproliferative retinopathy and/or macular edema. A total of 874 people with diabetes at risk for DR. Sensitivity and specificity of the IDP to detect RDR, area under the receiver operating characteristic curve, sensitivity and specificity of the retinal specialists' readings, and mean interobserver difference (κ). The RDR prevalence was 21.7% (95% CI, 19.0%-24.5%). The IDP sensitivity was 96.8% (95% CI, 94.4%-99.3%) and specificity was 59.4% (95% CI, 55.7%-63.0%), corresponding to 6 of 874 false-negative results (none met treatment criteria). The area under the receiver operating characteristic curve was 0.937 (95% CI, 0.916-0.959). Before adjudication and consensus, the sensitivity/specificity of the retinal specialists were 0.80/0.98, 0.71/1.00, and 0.91/0.95, and the mean intergrader κ was 0.822. The IDP has high sensitivity and specificity to detect RDR. Computer analysis of retinal photographs for DR and automated detection of RDR can be implemented safely into the DR screening pipeline, potentially improving access to screening and health care productivity and reducing visual loss through early treatment.

  14. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  15. A hybrid method based on Band Pass Filter and Correlation Algorithm to improve debris sensor capacity

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Shaoping; Liu, Haokuo; Tomovic, Mileta M.; Chao, Zhang

    2017-01-01

    The inductive debris detection is an effective method for monitoring mechanical wear, and could be used to prevent serious accidents. However, debris detection during early phase of mechanical wear, when small debris (<100 um) is generated, requires that the sensor has high sensitivity with respect to background noise. In order to detect smaller debris by existing sensors, this paper presents a hybrid method which combines Band Pass Filter and Correlation Algorithm to improve sensor signal-to-noise ratio (SNR). The simulation results indicate that the SNR will be improved at least 2.67 times after signal processing. In other words, this method ensures debris identification when the sensor's SNR is bigger than -3 dB. Thus, smaller debris will be detected in the same SNR. Finally, effectiveness of the proposed method is experimentally validated.

  16. Comparison of Standard Automated Perimetry, Short-Wavelength Automated Perimetry, and Frequency-Doubling Technology Perimetry to Monitor Glaucoma Progression

    PubMed Central

    Hu, Rongrong; Wang, Chenkun; Gu, Yangshun; Racette, Lyne

    2016-01-01

    Abstract Detection of progression is paramount to the clinical management of glaucoma. Our goal is to compare the performance of standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology (FDT) perimetry in monitoring glaucoma progression. Longitudinal data of paired SAP, SWAP, and FDT from 113 eyes with primary open-angle glaucoma enrolled in the Diagnostic Innovations in Glaucoma Study or the African Descent and Glaucoma Evaluation Study were included. Data from all tests were expressed in comparable units by converting the sensitivity from decibels to unitless contrast sensitivity and by expressing sensitivity values in percent of mean normal based on an independent dataset of 207 healthy eyes with aging deterioration taken into consideration. Pointwise linear regression analysis was performed and 3 criteria (conservative, moderate, and liberal) were used to define progression and improvement. Global mean sensitivity (MS) was fitted with linear mixed models. No statistically significant difference in the proportion of progressing and improving eyes was observed across tests using the conservative criterion. Fewer eyes showed improvement on SAP compared to SWAP and FDT using the moderate criterion; and FDT detected less progressing eyes than SAP and SWAP using the liberal criterion. The agreement between these test types was poor. The linear mixed model showed a progressing trend of global MS overtime for SAP and SWAP, but not for FDT. The baseline estimate of SWAP MS was significantly lower than SAP MS by 21.59% of mean normal. FDT showed comparable estimation of baseline MS with SAP. SWAP and FDT do not appear to have significant benefits over SAP in monitoring glaucoma progression. SAP, SWAP, and FDT may, however, detect progression in different glaucoma eyes. PMID:26886602

  17. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  18. Detection of Pseudomonas savastanoi pv. savastanoi in olive plants by enrichment and PCR.

    PubMed

    Penyalver, R; García, A; Ferrer, A; Bertolini, E; López, M M

    2000-06-01

    The sequence of the gene iaaL of Pseudomonas savastanoi EW2009 was used to design primers for PCR amplification. The iaaL-derived primers directed the amplification of a 454-bp fragment from genomic DNA isolated from 70 strains of P. savastanoi, whereas genomic DNA from 93 non-P. savastanoi isolates did not yield this amplified product. A previous bacterial enrichment in the semiselective liquid medium PVF-1 improved the PCR sensitivity level, allowing detection of 10 to 100 CFU/ml of plant extract. P. savastanoi was detected by the developed enrichment-PCR method in knots from different varieties of inoculated and naturally infected olive trees. Moreover, P. savastanoi was detected in symptomless stem tissues from naturally infected olive plants. This enrichment-PCR method is more sensitive and less cumbersome than the conventional isolation methods for detection of P. savastanoi.

  19. Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    PubMed Central

    Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim

    2015-01-01

    Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273

  20. Detection of Multiple Pathogens in Serum Using Silica-Encapsulated Nanotags in a Surface-Enhanced Raman Scattering-Based Immunoassay.

    PubMed

    Neng, Jing; Li, Yina; Driscoll, Ashley J; Wilson, William C; Johnson, Patrick A

    2018-06-06

    A robust immunoassay based on surface-enhanced Raman scattering (SERS) has been developed to simultaneously detect trace quantities of multiple pathogenic antigens from West Nile virus, Rift Valley fever virus, and Yersinia pestis in fetal bovine serum. Antigens were detected by capture with silica-encapsulated nanotags and magnetic nanoparticles conjugated with polyclonal antibodies. The magnetic pull-down resulted in aggregation of the immune complexes, and the silica-encapsulated nanotags provided distinct spectra corresponding to each antigen captured. The limit of detection was ∼10 pg/mL in 20% fetal bovine serum, a significant improvement over previous studies in terms of sensitivity, level of multiplexing, and medium complexity. This highly sensitive multiplex immunoassay platform provides a promising method to detect various antigens directly in crude serum samples without the tedious process of sample preparation, which is desirable for on-site diagnostic testing and real-time disease monitoring.

  1. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Lei; Huang, Youju; Wang, Jingyun; Rong, Yun; Lai, Weihua; Zhang, Jiawei; Chen, Tao

    2015-05-19

    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.

  2. LC-MS-based characterization of the peptide reactivity of chemicals to improve the in vitro prediction of the skin sensitization potential.

    PubMed

    Natsch, Andreas; Gfeller, Hans

    2008-12-01

    A key step in the skin sensitization process is the formation of a covalent adduct between skin sensitizers and endogenous proteins and/or peptides in the skin. Based on this mechanistic understanding, there is a renewed interest in in vitro assays to determine the reactivity of chemicals toward peptides in order to predict their sensitization potential. A standardized peptide reactivity assay yielded a promising predictivity. This published assay is based on high-performance liquid chromatography with ultraviolet detection to quantify peptide depletion after incubation with test chemicals. We had observed that peptide depletion may be due to either adduct formation or peptide oxidation. Here we report a modified assay based on both liquid chromatography-mass spectrometry (LC-MS) analysis and detection of free thiol groups. This approach allows simultaneous determination of (1) peptide depletion, (2) peptide oxidation (dimerization), (3) adduct formation, and (4) thiol reactivity and thus generates a more detailed characterization of the reactivity of a molecule. Highly reactive molecules are further discriminated with a kinetic measure. The assay was validated on 80 chemicals. Peptide depletion could accurately be quantified both with LC-MS detection and depletion of thiol groups. The majority of the moderate/strong/extreme sensitizers formed detectable peptide adducts, but many sensitizers were also able to catalyze peptide oxidation. Whereas adduct formation was only observed for sensitizers, this oxidation reaction was also observed for two nonsensitizing fragrance aldehydes, indicating that peptide depletion might not always be regarded as sufficient evidence for rating a chemical as a sensitizer. Thus, this modified assay gives a more informed view of the peptide reactivity of chemicals to better predict their sensitization potential.

  3. A modified single-tube one-step product-enhanced reverse transcriptase (mSTOS-PERT) assay with heparin as DNA polymerase inhibitor for specific detection of RTase activity.

    PubMed

    Fan, Xiao-Yong; Lü, Guo-Zhen; Wu, Li-Na; Chen, Jing-Hua; Xu, Wen-Qing; Zhao, Chun-Nü; Guo, Sheng-Qi

    2006-12-01

    Current regulations and recommendations proposed for the production of vaccines in continuous cell lines of any origin demand that these be free of exogenous viruses, particularly retroviruses. Recently, the ultra-sensitive product-enhanced reverse transcriptase (PERT) assay can be used to detect minute of reverse transcriptase (RTase) in single retroviral particle and is 10(6) times more sensitive than the conventional RTase assays. However, coincidental with this increase in sensitivity is an increase in false-positive reactions derived from contaminating cellular DNA polymerases, which are known to have RTase-like activities. To develop a modified single-tube one-step PERT (mSTOS-PERT) assay with improvements on decreasing significantly the level of false-positive reactions, and to evaluate the mSTOS-PERT assay for sensitivity and specificity. Ampliwaxtrade mark was used to compartmentalize the reverse transcription (RT) and PCR step in the same micro-tube with more efficiency and reproducibility, while maintaining the high sensitivity. The DNA amplification products were separated by 2% agarose gel electrophoresis, and then analyzed by non-isotopic Southern blot hybridization. A wide variety of cell lines used in biologicals production were detected to validate the improved mSTOS-PERT assay. The detection limit for the mSTOS-PERT assay was at least 10(-9)U, when using AMV-RTase as a positive control. Furthermore, heparin involvement in the RT step can eliminate completely the false-positive PERT signals which are exhibited by cellular polymerases such as DNA-dependent DNA polymerase alpha, gamma released by cell death. Most mammalian cells (MRC-5, Vero, WISH, 2BS, RK-13, MDCK, etc.) are PERT-negative in cell supernatants. Some PERT-positive signals in cell lysates were found to be introduced by the cellular DNA polymerases and could be inhibited specifically by heparin. Chick cells derived from either chick embryo fibroblasts (CEF) or allantoic fluid from SPF embryonated eggs, murine hybridoma cell SP2/0, etc., contained authentic RTase activities, which could not be inactivated by heparin. The improved mSTOS-PERT assay described here may distinguish the genuine RTase activity from cellular polymerases with high sensitivity and specificity, and is rapid and easy to perform to screen for the possible contamination of minute retroviruses in the cell substrates used in vaccine production.

  4. Investigations of Novel Sensor Technology for Explosive Specific Detection

    DTIC Science & Technology

    2009-12-01

    considered impractical due to oxidation , however, a zinc analogue was synthesized to improve the photostability. [67] They concluded that AcrH2 is...of 2,4-dinitrotoluene in a γ- CD/metal oxide matrix and its sensitive detection via a cyclic surface polarization impedance (cSPI) method”, Chemistry...sensor ........................................................................................... 40 6.3.13 Nanofibrous membranes

  5. Computational modeling and experimental validation of odor detection behaviours of classically conditioned parasitic wasp, Microplitis croceipes.

    USDA-ARS?s Scientific Manuscript database

    To further improve the sensitivity of odor¬ and odor concentration detection of the Wasp Hound, searching behaviors of a food-conditioned wasp in a confined area with the conditioning odor were recorded. The experiments were recorded using a video camera. First, the wasps are individually hand condi...

  6. Near-infrared surface-enhanced fluorescence using silver nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Furtaw, Michael D.

    Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmon-active nanostructures of dye-labeled protein and silver nanoparticles in solution, with the intent of providing a simple solution that may be readily adopted by current fluorescence users in the life science research community. First, it is shown that inner-filtering, re-absorption of the emitted photons, can red-shift the optimal fluorophore spectrum away from the resonant frequency of the plasmon-active nanostructure. It is also shown that, under certain conditions, the quality factor may be a better indicator of SEF than the commonly accepted overlap of the fluorophore spectrum with the plasmon resonance of the nanostructure. Next, it is determined that streptavidin is the best choice for carrier protein, among the most commonly used dye-labeled detection antibodies, to enable the largest fluorescence enhancement when labeled with IRDye 800CW and used in combination with silver nanoparticles in solution. It is shown that the relatively small and symmetric geometry of streptavidin enables substantial electromagnetic-field confinement when bound to silver nanoparticles, leading to strong and reproducible enhancement. The role of silver nanoparticle aggregation is demonstrated in a droplet-based microfluidic chip and further optimized in a standard microtiter-plate format. A NIR-SEF technology based on aggregation with optimized salt concentration demonstrates a fluorescence signal enhancement up to 2530-fold while improving the limit-of-detection over 1000-fold. Finally, the NIR-SEF technology is applied to demonstrate 42-fold improvement in sensitivity of the clinically-relevant biomarker, alpha-fetoprotein, along with a 16-fold improvement in limit-of-detection.

  7. Binaural comodulation masking release: Effects of masker interaural correlation

    PubMed Central

    Hall, Joseph W.; Buss, Emily; Grose, John H.

    2007-01-01

    Binaural detection was examined for a signal presented in a narrow band of noise centered on the on-signal masking band (OSB) or in the presence of flanking noise bands that were random or comodulated with respect to the OSB. The noise had an interaural correlation of 1.0 (No), 0.99 or 0.95. In No noise, random flanking bands worsened Sπ detection and comodulated bands improved Sπ detection for some listeners but had no effect for other listeners. For the 0.99 or 0.95 interaural correlation conditions, random flanking bands were less detrimental to Sπ detection and comodulated flanking bands improved Sπ detection for all listeners. Analyses based on signal detection theory indicated that the improvement in Sπ thresholds obtained with comodulated bands was not compatible with an optimal combination of monaural and binaural cues or to across-frequency analyses of dynamic interaural phase differences. Two accounts consistent with the improvement in Sπ thresholds in comodulated noise were (1) envelope information carried by the flanking bands improves the weighting of binaural cues associated with the signal; (2) the auditory system is sensitive to across-frequency differences in ongoing interaural correlation. PMID:17225415

  8. Apparatus and method for detecting flaws in conductive material

    DOEpatents

    Hockey, Ronald L.; Riechers, Douglas M.

    1999-01-01

    The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.

  9. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  10. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    PubMed Central

    Ronkainen, Niina J.; Okon, Stanley L.

    2014-01-01

    Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700

  11. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets

    PubMed Central

    Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid

    2015-01-01

    Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the sensitivity of the diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in our study population was underestimated by 8% compared to the new assays. Our findings highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in community surveillance and for monitoring interventions to better describe malaria epidemiology and inform malaria elimination efforts. PMID:25734259

  13. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion.

    PubMed

    Dassanayake, Rohana P; Orrú, Christina D; Hughson, Andrew G; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A; Knowles, Donald P; Schneider, David A

    2016-03-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200  mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10(- )3 dilution within 15  h. Our findings indicate that RT-QuIC was at least 10,000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples.

  14. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion

    PubMed Central

    Dassanayake, Rohana P.; Orrú, Christina D.; Hughson, Andrew G.; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A.; Knowles, Donald P.; Schneider, David A.

    2016-01-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200 mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10− 3 dilution within 15 h. Our findings indicate that RT-QuIC was at least 10 000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples. PMID:26653410

  15. Improved catalyzed reporter deposition, iCARD.

    PubMed

    Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene

    2014-06-18

    Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.

  16. Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia

    PubMed Central

    Huang, Chang-Bing; Lu, Zhong-Lin; Zhou, Yifeng

    2010-01-01

    What underlies contrast sensitivity improvements in adults with anisometropic amblyopia following perceptual learning in grating contrast detection? In this paper, we adopted the external noise approach (Z.-L. Lu & B. A. Dosher, 1998) to identify the mechanisms underlying perceptual learning in adults with anisometropic amblyopia. By measuring contrast thresholds in a range of external noise conditions at two performance levels (79.3% and 70.7%), we found that a mixture of internal additive noise reduction and external noise exclusion underlay training induced contrast sensitivity improvements in adults with anisometropic amblyopia. In comparison, normal adults exhibited only small amount of external noise exclusion under the same training conditions. The results suggest that neural plasticity may be more robust in amblyopia, lending further support of perceptual learning as a potential treatment for adult amblyopia. PMID:20053087

  17. Design and implementation of JOM-3 Overhauser magnetometer analog circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jiang, Xue; Zhao, Jianchang; Zhang, Shuang; Guo, Xin; Zhou, Tingting

    2017-09-01

    Overhauser magnetometer, a kind of static-magnetic measurement system based on the Overhauser effect, has been widely used in archaeological exploration, mineral resources exploration, oil and gas basin structure detection, prediction of engineering exploration environment, earthquakes and volcanic eruotions, object magnetic measurement and underground buried booty exploration. Overhauser magnetometer plays an important role in the application of magnetic field measurement for its characteristics of small size, low power consumption and high sensitivity. This paper researches the design and the application of the analog circuit of JOM-3 Overhauser magnetometer. First, the Larmor signal output by the probe is very weak. In order to obtain the signal with high signal to noise rstio(SNR), the design of pre-amplifier circuit is the key to improve the quality of the system signal. Second, in this paper, the effectual step which could improve the frequency characters of bandpass filter amplifier circuit were put forward, and theoretical analysis was made for it. Third, the shaping circuit shapes the amplified sine signal into a square wave signal which is suitable for detecting the rising edge. Fourth, this design elaborated the optimized choice of tuning circuit, so the measurement range of the magnetic field can be covered. Last, integrated analog circuit testing system was formed to detect waveform of each module. By calculating the standard deviation, the sensitivity of the improved Overhauser magnetometer is 0.047nT for Earth's magnetic field observation. Experimental results show that the new magnetometer is sensitive to earth field measurement.

  18. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators.

  19. [Sensitivity and specificity of the breast screening program in the Isere region based on positive results between 1991 and 1999].

    PubMed

    Garnier, A; Poncet, F; Billette De Villemeur, A; Exbrayat, C; Bon, M F; Chevalier, A; Salicru, B; Tournegros, J M

    2009-06-01

    The screening program guidelines specify that the call back rate of women for additional imaging (positive mammogram) should not exceed 7% at initial screening, and 5% at subsequent screening. Materials and methods. Results in the Isere region (12%) have prompted a review of the correlation between the call back rate and indicators of quality (detection rate, sensitivity, specificity, positive predictive value) for the radiologists providing interpretations during that time period. Three groups of radiologists were identified: the group with call back rate of 10% achieved the best results (sensitivity: 92%, detection rate: 0.53%, specificity: 90%). The group with lowest call back rate (7.7%) showed insufficient sensitivity (58%). The last group with call back rate of 18.3%, showed no improvement in sensitivity (82%) and detection rate (0.53%), but showed reduced specificity (82%). The protocol update in 2001 does not resolve this problematic situation and national results continue to demonstrate a high percentage of positive screening mammograms. A significant increase in the number of positive screening examinations compared to recommended guidelines is not advantageous and leads to an overall decrease in the quality of the screening.

  20. Evaluation of RealStar Reverse Transcription–Polymerase Chain Reaction Kits for Filovirus Detection in the Laboratory and Field

    PubMed Central

    Rieger, Toni; Kerber, Romy; El Halas, Hussein; Pallasch, Elisa; Duraffour, Sophie; Günther, Stephan; Ölschläger, Stephan

    2016-01-01

    Background. Diagnosis of Ebola virus (EBOV) disease (EVD) requires laboratory testing. Methods. The RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and the derived RealStar Zaire Ebolavirus RT-PCR kit were validated using in vitro transcripts, supernatant of infected cell cultures, and clinical specimens from patients with EVD. Results. The Filovirus Screen kit detected EBOV, Sudan virus, Taï Forest virus, Bundibugyo virus, Reston virus, and Marburg virus and differentiated between the genera Ebolavirus and Marburgvirus. The amount of filovirus RNA that could be detected with a probability of 95% ranged from 11 to 67 RNA copies/reaction on a LightCycler 480 II. The Zaire Ebolavirus kit is based on the Filovirus Screen kit but was optimized for detection of EBOV. It has an improved signal-to-noise ratio at low EBOV RNA concentrations and is somewhat more sensitive than the Filovirus kit. Both kits show significantly lower analytical sensitivity on a SmartCycler II. Clinical evaluation revealed that the SmartCycler II, compared with other real-time PCR platforms, decreases the clinical sensitivity of the Filovirus Screen kit to diagnose EVD at an early stage. Conclusions. The Filovirus Screen kit detects all human-pathogenic filoviruses with good analytical sensitivity if performed on an appropriate real-time PCR platform. High analytical sensitivity is important for early diagnosis of EVD. PMID:27549586

  1. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    PubMed Central

    Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems. PMID:25856081

  2. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOEpatents

    Kieper, Douglas Arthur [Seattle, WA; Majewski, Stanislaw [Morgantown, WV; Welch, Benjamin L [Hampton, VA

    2012-07-03

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  3. Method to improve cancerous lesion detection sensitivity in a dedicated dual-head scintimammography system

    DOEpatents

    Kieper, Douglas Arthur [Newport News, VA; Majewski, Stanislaw [Yorktown, VA; Welch, Benjamin L [Hampton, VA

    2008-10-28

    An improved method for enhancing the contrast between background and lesion areas of a breast undergoing dual-head scintimammographic examination comprising: 1) acquiring a pair of digital images from a pair of small FOV or mini gamma cameras compressing the breast under examination from opposing sides; 2) inverting one of the pair of images to align or co-register with the other of the images to obtain co-registered pixel values; 3) normalizing the pair of images pixel-by-pixel by dividing pixel values from each of the two acquired images and the co-registered image by the average count per pixel in the entire breast area of the corresponding detector; and 4) multiplying the number of counts in each pixel by the value obtained in step 3 to produce a normalization enhanced two dimensional contrast map. This enhanced (increased contrast) contrast map enhances the visibility of minor local increases (uptakes) of activity over the background and therefore improves lesion detection sensitivity, especially of small lesions.

  4. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE PAGES

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-04-22

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  5. Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-04-01

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized device can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). In addition, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.

  6. Ultra-sensitive magnetic microscopy with an optically pumped magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Jin; Savukov, Igor Mykhaylovich

    Optically pumped magnetometers (OPMs) based on lasers and alkali-metal vapor cells are currently the most sensitive non-cryogenic magnetic field sensors. Many applications in neuroscience and other fields require high-resolution, high-sensitivity magnetic microscopic measurements. In order to meet this demand we combined a cm-size spin-exchange relaxation-free (SERF) OPM and flux guides (FGs) to realize an ultra-sensitive FG-OPM magnetic microscope. The FGs serve to transmit the target magnetic flux to the OPM thus improving both the resolution and sensitivity to small magnetic objects. We investigated the performance of the FG-OPM device using experimental and numerical methods, and demonstrated that an optimized devicemore » can achieve a unique combination of high resolution (80 μm) and high sensitivity (8.1 pT/). Additionally, we also performed numerical calculations of the magnetic field distribution in the FGs to estimate the magnetic noise originating from the domain fluctuations in the material of the FGs. We anticipate many applications of the FG-OPM device such as the detection of micro-biological magnetic fields; the detection of magnetic nano-particles; and non-destructive testing. From our theoretical estimate, an FG-OPM could detect the magnetic field of a single neuron, which would be an important milestone in neuroscience.« less

  7. Detection and Characterization of Cancer Cells and Pathogenic Bacteria Using Aptamer-Based Nano-Conjugates

    PubMed Central

    Gedi, Vinayakumar; Kim, Young-Pil

    2014-01-01

    Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery. PMID:25268922

  8. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  9. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    PubMed

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  10. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  11. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA.

    PubMed Central

    Turteltaub, K W; Felton, J S; Gledhill, B L; Vogel, J S; Southon, J R; Caffee, M W; Finkel, R C; Nelson, D E; Proctor, I D; Davis, J C

    1990-01-01

    Accelerator mass spectrometry (AMS) is used to determine the amount of carcinogen covalently bound to mouse liver DNA (DNA adduct) following very low-level exposure to a 14C-labeled carcinogen. AMS is a highly sensitive method for counting long-lived but rare cosmogenic isotopes. While AMS is a tool of importance in the earth sciences, it has not been applied in biomedical research. The ability of AMS to assay rare isotope concentrations (10Be, 14C, 26Al, 41Ca, and 129I) in microgram amounts suggests that extension to the biomedical sciences is a natural and potentially powerful application of the technology. In this study, the relationship between exposure to low levels of 2-amino-3,8-dimethyl[2-14C]imidazo[4,5-f]quinoxaline and formation of DNA adducts is examined to establish the dynamic range of the technique and the potential sensitivity for biological measurements, as well as to evaluate the relationship between DNA adducts and low-dose carcinogen exposure. Instrument reproducibility in this study is 2%; sensitivity is 1 adduct per 10(11) nucleotides. Formation of adducts is linearly dependent on dose down to an exposure of 500 ng per kg of body weight. With the present measurements, we demonstrate at least 1 order of magnitude improvement over the best adduct detection sensitivity reported to date and 3-5 orders of magnitude improvement over other methods used for adduct measurement. An additional improvement of 2 orders of magnitude in sensitivity is suggested by preliminary experiments to develop bacterial hosts depleted in radiocarbon. Expanded applications involving human subjects, including clinical applications, are now expected because of the great detection sensitivity and small sample size requirements of AMS. PMID:2371271

  12. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp; Fujita, Hiroshi; Yamamuro, Osamu

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using anmore » active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules using PET/CT images.« less

  13. Syndromic surveillance for health information system failures: a feasibility study

    PubMed Central

    Ong, Mei-Sing; Magrabi, Farah; Coiera, Enrico

    2013-01-01

    Objective To explore the applicability of a syndromic surveillance method to the early detection of health information technology (HIT) system failures. Methods A syndromic surveillance system was developed to monitor a laboratory information system at a tertiary hospital. Four indices were monitored: (1) total laboratory records being created; (2) total records with missing results; (3) average serum potassium results; and (4) total duplicated tests on a patient. The goal was to detect HIT system failures causing: data loss at the record level; data loss at the field level; erroneous data; and unintended duplication of data. Time-series models of the indices were constructed, and statistical process control charts were used to detect unexpected behaviors. The ability of the models to detect HIT system failures was evaluated using simulated failures, each lasting for 24 h, with error rates ranging from 1% to 35%. Results In detecting data loss at the record level, the model achieved a sensitivity of 0.26 when the simulated error rate was 1%, while maintaining a specificity of 0.98. Detection performance improved with increasing error rates, achieving a perfect sensitivity when the error rate was 35%. In the detection of missing results, erroneous serum potassium results and unintended repetition of tests, perfect sensitivity was attained when the error rate was as small as 5%. Decreasing the error rate to 1% resulted in a drop in sensitivity to 0.65–0.85. Conclusions Syndromic surveillance methods can potentially be applied to monitor HIT systems, to facilitate the early detection of failures. PMID:23184193

  14. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  15. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  16. Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015.

    PubMed

    Faye, Oumar; Faye, Ousmane; Soropogui, Barré; Patel, Pranav; El Wahed, Ahmed Abd; Loucoubar, Cheikh; Fall, Gamou; Kiory, Davy; Magassouba, N'Faly; Keita, Sakoba; Kondé, Mandy Kader; Diallo, Alpha Amadou; Koivogui, Lamine; Karlberg, Helen; Mirazimi, Ali; Nentwich, Oliver; Piepenburg, Olaf; Niedrig, Matthias; Weidmann, Manfred; Sall, Amadou Alpha

    2015-01-01

    In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement.

  17. pH responsive label-assisted click chemistry triggered sensitivity amplification for ultrasensitive electrochemical detection of carbohydrate antigen 24-2.

    PubMed

    Zheng, Yun; Zhao, Lihua; Ma, Zhanfang

    2018-05-15

    Sensitivity amplification strategy by implementing click chemistry in the construction of biosensing interface can efficiently improve the performance of immunosensor. Herein, we developed a sandwich-type amperometric immunosensor for ultrasensitive detection of carbohydrate antigen 24-2 (CA 242) based on pH responsive label-assisted click chemistry triggered sensitivity amplification strategy. The sensitivity of amperometric immunosensor relies on the current response differences (ΔI) caused by per unit concentration target analyte. The pH responsive Cu 2+ -loaded polydopamine (CuPDA) particles conjugated with detection antibodies were employed as labels, which can release Cu(II) ions by regulating pH. In the presence of ascorbic acid (reductant), Cu(II) ions were reduced to Cu(I) ions. Azide-functionalized double-stranded DNA (dsDNA) as signal enhancer was immobilized on the substrate through Cu + -catalyzed azide/alkyne cycloaddition reaction. With the help of the click reaction, the ΔI caused by target was elevated prominently, resulting in sensitivity amplification of the immunosensor. Under optimal condition, the proposed immunosensor exhibited excellent performance with linear range from 0.0001 to 100 U mL -1 and ultralow detection limit of 20.74 μU mL -1 . This work successfully combines click chemistry with pH-responsive labels in sandwich-type amperometric immunosensor, providing a promising sensitivity amplification strategy to construct immunosensing platform for analysis of other tumor marker. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.

    2014-05-01

    Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.

  19. A feasibility study of automatic lung nodule detection in chest digital tomosynthesis with machine learning based on support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung

    2017-03-01

    The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.

  20. Part-per-trillion level detection of estradiol by competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels.

    PubMed

    Zhu, Shengchao; Zhang, Qin; Guo, Liang-Hong

    2008-08-22

    Fluorescent organic dyes are currently the standard signal-generating labels used in microarray quantification. However, new labeling strategies are needed to meet the demand for high sensitivity in the detection of low-abundance proteins and small molecules. In this report, a long-chain DNA/dye conjugate was used to attach multiple fluorescence labels on antibodies to improve signal intensity and immunoassay sensitivity. Compared with the 30 base-pair (bp) oligonucleotide used in our previous work [Q. Zhang, L.-H. Guo, Bioconjugate Chem. 18 (2007) 1668-1672], conjugation of a 219 bp DNA in solution with a fluorescent DNA binder SYBR Green I resulted in more than sixfold increase in signal intensity, consistent with the increase in bp number. In a direct immunoassay for the detection of goat anti-mouse IgG in a mouse IgG-coated 96-well plate, the long DNA conjugate label also produced higher fluorescence than the short one, accompanied by about 15-fold improvement in the detection limit. To demonstrate its advantage in real applications, the DNA/dye conjugate was employed in the competitive immunoassay of 17beta-estradiol, a clinically and environmentally important analyte. The biotin-terminated DNA was attached to biotinylated anti-estradiol antibody through the biotin/streptavidin/biotin bridge after the immuno-reaction was completed, followed by conjugation with SYBR Green I. The limit of detection for 17beta-estradiol is 1.9 pg mL(-1), which is 200-fold lower than the assay using fluorescein-labeled antibodies. The new multiple labeling strategy uses readily available reagents, and is also compatible with current biochip platform. It has great potential in the sensitive detection of protein and antibody microarrays.

  1. Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material.

    PubMed

    Cheng, Yo Ching; Hannaoui, Samia; John, Theodore Ralph; Dudas, Sandor; Czub, Stefanie; Gilch, Sabine

    2017-09-29

    The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrP Sc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrP Sc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.

  2. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Barinaga, C.J.

    1995-06-13

    An improvement to the system and method is disclosed for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity. 10 figs.

  3. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T.

    PubMed

    Boyacioğlu, Rasim; Schulz, Jenni; Koopmans, Peter J; Barth, Markus; Norris, David G

    2015-10-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less affected by variation in T2*, and because of the potential for separating BOLD and non-BOLD signal components. MBME further reduces TR thus increasing the potential reduction in physiological noise. In this study we used FSL-FIX to clean ME and MBME resting state and task fMRI data (both 3.5mm isotropic). After noise correction, the detection of resting state networks improves with more non-artifactual independent components being observed. Additional activation clusters for task data are discovered for MBME data (increased sensitivity) whereas existing clusters become more localized for resting state (improved spatial specificity). The results obtained indicate that MBME is superior to ME at high field strengths. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The sensitivity of EGRET to gamma ray polarization

    NASA Astrophysics Data System (ADS)

    Mattox, John R.

    1990-05-01

    A Monte Carlo simulation shows that EGRET (Energetic Gamma-Ray Experimental Telescope) does not even have sufficient sensitivity to detect 100 percent polarized gamma-rays. This is confirmed by analysis of calibration data. A Monte Carlo study shows that the sensitivity of EGRET to polarization peaks around 100 MeV. However, more than 10 5 gamma-ray events with 100 percent polarization would be required for a 3 sigma significance detection - more than available from calibration, and probably more than will result from a single score source during flight. A drift chamber gamma ray telescope under development (Hunter and Cuddapah 1989) will offer better sensitivity to polarization. The lateral position uncertainty will be improved by an order of magnitude. Also, if pair production occurs in the drift chamber gas (xenon at 2 bar) instead of tantalum foils, the effects of multiple Coulomb scattering will be reduced.

  5. Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution

    PubMed Central

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-01-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351

  6. Skew projection of echo-detected EPR spectra for increased sensitivity and resolution

    NASA Astrophysics Data System (ADS)

    Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.

    2013-06-01

    The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.

  7. Spectroelectrochemical Sensors: New Polymer Films for Improved Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Laura K.; Seliskar, Carl J.; Bryan, Samuel A.

    2014-10-31

    The selectivity of an optical sensor can be improved by combining optical detection with electrochemical oxidation or reduction of the target analyte to change its spectral properties. The changing signal can distinguish the analyte from interferences with similar spectral properties that would otherwise interfere. The analyte is detected by measuring the intensity of the electrochemically modulated signal. In one form this spectroelectrochemical sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Sensitivity reliesmore » in part on a large change in molar absorptivity between the two oxidation states used for electrochemical modulation of the optical signal. A critical part of the sensor is the ion selective film. It should preconcentrate the analyte and exclude some interferences. At the same time the film must not interfere with the electrochemistry or the optical detection. Therefore, since the debut of the sensor’s concept one major focus of our group has been developing appropriate films for different analytes. Here we report the development of a series of quaternized poly(vinylpyridine)-co-styrene (QPVP-co-S) anion exchange films for use in spectroelectrochemical sensors to enable sensitive detection of target anionic analytes in complex samples. The films were either 10% or 20% styrene and were prepared with varying degrees of quaternized pyridine groups, up to 70%. Films were characterized with respect to thickness with spectroscopic ellipsometry, degree of quaternization with FTIR, and electrochemically and spectroelectrochemically using the anions ferrocyanide and pertechnetate.« less

  8. Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins.

    PubMed

    Eom, Han Young; Park, So-Young; Kim, Min Kyung; Suh, Joon Hyuk; Yeom, Hyesun; Min, Jung Won; Kim, Unyong; Lee, Jeongmi; Youm, Jeong-Rok; Han, Sang Beom

    2010-06-25

    Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B(1), -B(2), -B(3), -B(4), -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis Express C18 column (100 mm x 4.6 mm, 2.7 microm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD. Copyright 2010 Elsevier B.V. All rights reserved.

  9. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode.

    PubMed

    Fayazfar, H; Afshar, A; Dolati, M; Dolati, A

    2014-07-11

    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0×10(-15)-1.0×10(-7)M, with a detection limit of 1.0×10(-17)M (S/N=3). The prepared sensor also showed good stability (14 days), reproducibility (RSD=2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types. Copyright © 2014. Published by Elsevier B.V.

  10. Easy one pot synthesis of NiO/Nitrogen doped carbon spheres for highly sensitive enzyme free amperometric glucose sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Yin, Haoyong; Gong, Jianying; Al-Furjan, M. S. H.; Nie, Qiulin

    2018-06-01

    The NiO/Nitrogen doped carbon sphere (NiO/NCS) composites were successfully achieved via an easy one pot synthetic method with urea acting as both nitrogen source and Ni precipitator. The electrocatalytic performances of the obtained NiO/NCS modified glass carbon electrodes showed superior activity for direct electrocatalytic oxidation of glucose than that of nitrogen free NiO/carbon sphere (NiO/CS), which might be due to the synergistic effect of the properties of NCS and NiO nanoparticles. The introduce of nitrogen can improve the conductivity of the NiO/NCS and accordingly accelerate the electron transport within the composites, which was very beneficial to improve the sensitivity to glucose detection for NiO/NCS modified electrodes. The NiO/NCS electrodes exhibited two corresponding linear regions of 1-800 μM and 4-9 mM with the sensitivity of 398.57 μA mM-1 cm-2 and 17.81 μA mM-1 cm-2, and the detection limit of 0.25 μM and 0.05 mM respectively. Moreover, the NiO/NCS composites have also exhibited good selectivity by adding certain amount of urea, NaCl, L-proline, L-valine, L-Leucine and ascorbic acid into the 0.1 M NaOH solution, respectively. The high sensitivity, wide glucose detection range and good selectivity of the electrodes may ensure its potential applications in the clinical diagnosis of diabetes.

  11. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  12. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  13. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  14. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  15. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  16. Designing novel nano-immunoassays: antibody orientation versus sensitivity

    NASA Astrophysics Data System (ADS)

    Puertas, S.; Moros, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Grazú, V.; de la Fuente, J. M.

    2010-12-01

    There is a growing interest in the use of magnetic nanoparticles (MNPs) for their application in quantitative and highly sensitive biosensors. Their use as labels of biological recognition events and their detection by means of some magnetic method constitute a very promising strategy for quantitative high-sensitive lateral-flow assays. In this paper, we report the importance of nanoparticle functionalization for the improvement of sensitivity for a lateral-flow immunoassay. More precisely, we have found that immobilization of IgG anti-hCG through its polysaccharide moieties on MNPs allows more successful recognition of the hCG hormone. Although we have used the detection of hCG as a model in this work, the strategy of binding antibodies to MNPs through its sugar chains reported here is applicable to other antibodies. It has huge potential as it will be very useful for the development of quantitative and high-sensitive lateral-flow assays for its use on human and veterinary, medicine, food and beverage manufacturing, pharmaceutical, medical biologics and personal care product production, environmental remediation, etc.

  17. Improvements to the YbF electron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Sauer, B. E.; Rabey, I. M.; Devlin, J. A.; Tarbutt, M. R.; Ho, C. J.; Hinds, E. A.

    2017-04-01

    The standard model of particle physics predicts that the permanent electric dipole moment (EDM) of the electron is very nearly zero. Many extensions to the standard model predict an electron EDM just below current experimental limits. We are currently working to improve the sensitivity of the Imperial College YbF experiment. We have implemented combined laser-radiofrequency pumping techniques which both increase the number of molecules which participate in the EDM experiment and also increase the probability of detection. Combined, these techniques give nearly two orders of magnitude increase in the experimental sensitivity. At this enhanced sensitivity magnetic effects which were negligible become important. We have developed a new way to construct the electrodes for electric field plates which minimizes the effect of magnetic Johnson noise. The new YbF experiment is expected to comparable in sensitivity to the most sensitive measurements of the electron EDM to date. We will also discuss laser cooling techniques which promise an even larger increase in sensitivity.

  18. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation

    NASA Astrophysics Data System (ADS)

    Korobko, M.; Kleybolte, L.; Ast, S.; Miao, H.; Chen, Y.; Schnabel, R.

    2017-04-01

    The shot-noise limited peak sensitivity of cavity-enhanced interferometric measurement devices, such as gravitational-wave detectors, can be improved by increasing the cavity finesse, even when comparing fixed intracavity light powers. For a fixed light power inside the detector, this comes at the price of a proportional reduction in the detection bandwidth. High sensitivity over a large span of signal frequencies, however, is essential for astronomical observations. It is possible to overcome this standard sensitivity-bandwidth limit using nonclassical correlations in the light field. Here, we investigate the internal squeezing approach, where the parametric amplification process creates a nonclassical correlation directly inside the interferometer cavity. We theoretically analyze the limits of the approach and measure 36% increase in the sensitivity-bandwidth product compared to the classical case. To our knowledge, this is the first experimental demonstration of an improvement in the sensitivity-bandwidth product using internal squeezing, opening the way for a new class of optomechanical force sensing devices.

  19. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates.

    PubMed

    Lin, Yanna; Dai, Yuxue; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Zhu, Xiaodong; Liu, Hao; Luo, Chuannan

    2018-05-15

    In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H 2 O 2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10 -12 -2.2 × 10 -10 mol/L with a detection limit of 2.1 × 10 -13 mol/L. The proposed method was successfully used for adenosine detection in biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  1. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

    PubMed

    Grewal, Dilraj S; Tanna, Angelo P

    2013-03-01

    With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.

  2. [Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].

    PubMed

    Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua

    2013-11-01

    The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.

  3. Clinical Anaemia Detection in Children of Varied Skin Complexion: A Community-based Study in Southeast, Nigeria.

    PubMed

    Ughasoro, Maduka Donatus; Madu, Anazoeze Jude; Kela-Eke, Iheoma Clara

    2017-02-01

    Clinicians rely on clinical detection of pallor to diagnose anaemia. This makes it important to evaluate the effect of different skin complexions on the accuracy of the pallor in diagnosing anaemia in children. Clinicians conducted blind-independent physical examination, and their reports were compared with HemoCue 301 haemoglobin estimated with. The sensitivity and specificity were calculated. A total of 573 children were reviewed by 27 healthcare workers. The prevalence of anaemia was high. The highest prevalence was among children between the age of 4 and 12 months (urban 63.4% and rural 69.2%). Anaemia was detected better among dark-skinned children. Conjunctivae and palm pallor had the highest sensitivity (78.6% and 69.2%, respectively). Clinical pallor is a good screening assessment for anaemia but not diagnostic. Its sensitivity and specificity vary among different sites and skin complexions. Thus combining findings at any of the sites can improve detection of anaemia in children. © The Author [2016]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  5. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  6. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection

    PubMed Central

    Chang, Yuqing; Yang, Bo; Zhao, Xue; Linhardt, Robert J.

    2012-01-01

    A quantitative and highly sensitive method for the analysis of glycosaminoglycan (GAG)-derived disaccharides is presented that relies on capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection. This method enables complete separation of seventeen GAG-derived disaccharides in a single run. Unsaturated disaccharides were derivatized with 2-aminoacridone (AMAC) to improve sensitivity. The limit of detection was at the attomole level and about 100-fold more sensitive than traditional CE-ultraviolet detection. A CE separation timetable was developed to achieve complete resolution and shorten analysis time. The RSD of migration time and peak areas at both low and high concentrations of unsaturated disaccharides are all less than 2.7% and 3.2%, respectively, demonstrating that this is a reproducible method. This analysis was successfully applied to cultured Chinese hamster ovary cell samples for determination of GAG disaccharides. The current method simplifies GAG extraction steps, and reduces inaccuracy in calculating ratios of heparin/heparan sulfate to chondroitin sulfate/dermatan sulfate, resulting from the separate analyses of a single sample. PMID:22609076

  7. A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang

    2017-07-01

    Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.

  8. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents.

    PubMed

    Lee, Joon Hwan; Park, Jae Yeon; Min, Kyoungseon; Cha, Hyung Joon; Choi, Suk Soon; Yoo, Young Je

    2010-03-15

    To detect organophosphate chemicals, which are used both as pesticides and as nerve agents, a novel biosensor based on organophosphorus hydrolase was developed. By using mesoporous carbon (MC) and carbon black (CB) as an anodic layer, the sensitivity of the sensor to p-nitrophenol (PNP), which is the product of the organophosphorus hydrolase reaction, was greatly improved. The MC/CB/glass carbon (GC) layer exhibited an enhanced amperometric response relative to a carbon nanotube (CNT)-modified electrode because it promoted electron transfer of enzymatically generated phenolic compounds (p-nitrophenol). The well-ordered nanopores, many edge-plane-like defective sites (EDSs), and high surface area of the MC resulted in increased sensitivity, and allowed for nanomolar-range detection of the analyte paraoxon. Thus, MCs are suitable for use in real-time biosensors. Under the optimized experimental conditions, the biosensor had a detection limit of 0.12 microM (36 ppb) and a sensitivity of 198 nA/microM for paraoxon. (c) 2009 Elsevier B.V. All rights reserved.

  9. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    PubMed

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  10. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection.

    PubMed

    Ma, Haiyan; Ran, Congcong; Li, Mengjiao; Gao, Jinglin; Wang, Xinyu; Zhang, Lina; Bian, Jing; Li, Junmei; Jiang, Ye

    2018-04-01

    Mycotoxins are potential food pollutants produced by fungi. Among them, aflatoxins (AFs) are the most toxic. Therefore, AFs were selected as models, and a sensitive, simple and green graphene oxide (GO)-based stir bar sorptive extraction (SBSE) method was developed for extraction and determination of AFs with high performance liquid chromatography-laser-induced fluorescence detector (HPLC-LIF). This method improved the sensitivity of AFs detection and solved the deposition difficulty of the direct use of GO as adsorbent. Several parameters including a spiked amount of NaCl, stirring rate, extraction time and desorption time were investigated. Under optimal conditions, the quantitative method had low limits of detection of 2.4-8.0 pg/mL, which were better than some reported AFs analytical methods. The developed method has been applied to soy milk samples with good recoveries ranging from 80.5 to 102.3%. The prepared GO-based SBSE can be used as a sensitive screening technique for detecting AFs in soy milk.

  11. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  12. Drivers of Emerging Infectious Disease Events as a Framework for Digital Detection.

    PubMed

    Olson, Sarah H; Benedum, Corey M; Mekaru, Sumiko R; Preston, Nicholas D; Mazet, Jonna A K; Joly, Damien O; Brownstein, John S

    2015-08-01

    The growing field of digital disease detection, or epidemic intelligence, attempts to improve timely detection and awareness of infectious disease (ID) events. Early detection remains an important priority; thus, the next frontier for ID surveillance is to improve the recognition and monitoring of drivers (antecedent conditions) of ID emergence for signals that precede disease events. These data could help alert public health officials to indicators of elevated ID risk, thereby triggering targeted active surveillance and interventions. We believe that ID emergence risks can be anticipated through surveillance of their drivers, just as successful warning systems of climate-based, meteorologically sensitive diseases are supported by improved temperature and precipitation data. We present approaches to driver surveillance, gaps in the current literature, and a scientific framework for the creation of a digital warning system. Fulfilling the promise of driver surveillance will require concerted action to expand the collection of appropriate digital driver data.

  13. Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Rafya, R.

    2018-06-01

    Surface plasmon resonance (SPR) has become an important optical biosensing technology due to its real-time, label-free, and noninvasive nature. These techniques allow for rapid and ultra-sensitive detection of biological analytes, with applications in medical diagnostics, environmental monitoring, and agriculture. SPR is widely used in the detection of biomolecular interactions, and improvements are required for both sensitivity and in vivo uses for practical applications. In this study, we developed an SPR biosensor to provide a highly sensitive and specific approach to early-stage detection of viral and malignant diseases, such as cancer tumors, for which biomarker detection is very important. A cancer cell line (HeLa cells) with biomarker Rodamine 6G was experimentally analyzed in vitro with our constructed SPR biosensor. It was observed that the biosensor can offer a potentially powerful solution for tumor screening with dominant angular shift. The angular shift for both regents is dominant with a time curve at a wavelength of 632.8 nm of a He–Ne laser. We have successfully captured and detected a biomarker in vitro for cancer diagnostics using the developed instrument.

  14. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed Central

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-01-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096

  15. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization

    PubMed Central

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2014-01-01

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528

  16. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-02-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.

  17. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    NASA Astrophysics Data System (ADS)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  18. Do race-specific definitions of short long bones improve the detection of down syndrome on second-trimester genetic sonograms?

    PubMed

    Harper, Lorie M; Gray, Diana; Dicke, Jeffrey; Stamilio, David M; Macones, George A; Odibo, Anthony O

    2010-02-01

    The purpose of this study was to determine whether the use of race-specific definitions of short femur and humerus lengths improves Down syndrome detection. This was a retrospective cohort study over 16 years. For each self-reported maternal race (white, African American, Hispanic, and Asian), we evaluated the efficiency of Down syndrome detection using published race-specific formulas compared with a standard formula for short femur and humerus lengths (observed versus expected lengths < or =0.91 and < or =0.89, respectively). The sensitivity, specificity, and 95% confidence intervals for each parameter were compared. Screening performance was compared by areas under the receiver operating characteristic curves. Of 58,710 women, 209 (0.3%) had a diagnosis of a fetus with Down syndrome. Although the race-based formula increased sensitivity in each population, the increase was statistically significant only in the white population, whereas a decrease in specificity was statistically significant in all 4 populations, as denoted by nonoverlapping confidence intervals. The area under the receiver operating characteristic curve for the model using the race-specific definition of short femur length was 0.67 versus 0.65 compared with the standard definition, and for humerus length it was 0.70 versus 0.71. The use of race-based formulas for the determination of short femur and humerus lengths did not significantly improve the detection rates for Down syndrome.

  19. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase.

    PubMed

    Du, Yi-Chen; Jiang, Hong-Xin; Huo, Yan-Fang; Han, Gui-Mei; Kong, De-Ming

    2016-03-15

    As an isothermal nucleic acid amplification technique, strand displacement amplification (SDA) reaction has been introduced in G-quadruplex DNAzyme-based sensing system to improve the sensing performance. To further provide useful information for the design of SDA-amplified G-quadruplex DNAzyme-based sensors, the effects of nicking site number in SDA template DNA were investigated. With the increase of the nicking site number from 1 to 2, enrichment of G-quadruplex DNAzyme by SDA is changed from a linear amplification to an exponential amplification, thus greatly increasing the amplification efficiency and subsequently improving the sensing performance of corresponding sensing system. The nicking site number cannot be further increased because more nicking sites might result in high background signals. However, we demonstrated that G-quadruplex DNAzyme enrichment efficiency could be further improved by introducing a cross-triggered SDA strategy, in which two templates each has two nicking sites are used. To validate the proposed cross-triggered SDA strategy, we used it to develop a sensing platform for the detection of uracil-DNA glycosylase (UDG) activity. The sensor enables sensitive detection of UDG activity in the range of 1 × 10(-4)-1 U/mL with a detection limit of 1 × 10(-4)U/mL. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database.

    PubMed

    Nakajima, Kenichi; Okuda, Koichi; Watanabe, Satoru; Matsuo, Shinro; Kinuya, Seigo; Toth, Karin; Edenbrandt, Lars

    2018-03-07

    An artificial neural network (ANN) has been applied to detect myocardial perfusion defects and ischemia. The present study compares the diagnostic accuracy of a more recent ANN version (1.1) with the initial version 1.0. We examined 106 patients (age, 77 ± 10 years) with coronary angiographic findings, comprising multi-vessel disease (≥ 50% stenosis) (52%) or old myocardial infarction (27%), or who had undergone coronary revascularization (30%). The ANN versions 1.0 and 1.1 were trained in Sweden (n = 1051) and Japan (n = 1001), respectively, using 99m Tc-methoxyisobutylisonitrile myocardial perfusion images. The ANN probabilities (from 0.0 to 1.0) of stress defects and ischemia were calculated in candidate regions of abnormalities. The diagnostic accuracy was compared using receiver-operating characteristics (ROC) analysis and the calculated area under the ROC curve (AUC) using expert interpretation as the gold standard. Although the AUC for stress defects was 0.95 and 0.93 (p = 0.27) for versions 1.1 and 1.0, respectively, that for detecting ischemia was significantly improved in version 1.1 (p = 0.0055): AUC 0.96 for version 1.1 (sensitivity 87%, specificity 96%) vs. 0.89 for version 1.0 (sensitivity 78%, specificity 97%). The improvement in the AUC shown by version 1.1 was also significant for patients with neither coronary revascularization nor old myocardial infarction (p = 0.0093): AUC = 0.98 for version 1.1 (sensitivity 88%, specificity 100%) and 0.88 for version 1.0 (sensitivity 76%, specificity 100%). Intermediate ANN probability between 0.1 and 0.7 was more often calculated by version 1.1 compared with version 1.0, which contributed to the improved diagnostic accuracy. The diagnostic accuracy of the new version was also improved in patients with either single-vessel disease or no stenosis (n = 47; AUC, 0.81 vs. 0.66 vs. p = 0.0060) when coronary stenosis was used as a gold standard. The diagnostic ability of the ANN version 1.1 was improved by retraining using the Japanese database, particularly for identifying ischemia.

Top