Improvement of water resistance and dimensional stability of wood through titanium dioxide coating
Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt
2010-01-01
Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...
UV resistance and dimensional stability of wood modified with isopropenyl acetate.
Nagarajappa, Giridhar B; Pandey, Krishna K
2016-02-01
Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of some heat treatment parameters on the dimensional stability of AISI D2
NASA Astrophysics Data System (ADS)
Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus
2008-01-01
The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.
Celik, Hasan; Bouhrara, Mustapha; Reiter, David A.; Fishbein, Kenneth W.; Spencer, Richard G.
2013-01-01
We propose a new approach to stabilizing the inverse Laplace transform of a multiexponential decay signal, a classically ill-posed problem, in the context of nuclear magnetic resonance relaxometry. The method is based on extension to a second, indirectly detected, dimension, that is, use of the established framework of two-dimensional relaxometry, followed by projection onto the desired axis. Numerical results for signals comprised of discrete T1 and T2 relaxation components and experiments performed on agarose gel phantoms are presented. We find markedly improved accuracy, and stability with respect to noise, as well as insensitivity to regularization in quantifying underlying relaxation components through use of the two-dimensional as compared to the one-dimensional inverse Laplace transform. This improvement is demonstrated separately for two different inversion algorithms, nonnegative least squares and non-linear least squares, to indicate the generalizability of this approach. These results may have wide applicability in approaches to the Fredholm integral equation of the first kind. PMID:24035004
NASA Astrophysics Data System (ADS)
Iswanto, A. H.; Sucipto, T.; Nadeak, S. S. D.; Fatriasari, W.
2017-03-01
In general, the weakness of particleboard using urea formaldehyde (UF) resin has a low dimensional stability. This reasearch intends to improve its properties by post-treatment technique using several water repellent materials. The post-treatment effect on dimensional stability and durability properties of particleboard against to subterranean and dry termites has been evaluated. Sample was dipped into water reppelent solution namely parafin, palm oil, silicon and water proof for 3 minutes. Furthermore, they were oven dried at 50°C for 24 hours. The results showed that the density varied of 0.60 to 0.74 g/cm3. The post-treatment of particleboard increases the density value. Water absorption and thickness swelling of board were varied of 29.35% to 114.99% and 13.23 to 37.31%, respectively. This treatment also improved up the thickness swelling to 65%. The best durability of board to subterranean and dry termite attack has found on silicon and waterproof treatment, respectively.
NASA Technical Reports Server (NTRS)
Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David
2006-01-01
The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.
Influence of fiber treatment on dimensional stabilities of rattan waste composite boards
NASA Astrophysics Data System (ADS)
Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.
2018-01-01
The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.
Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time.
Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E
2015-12-01
The aim of this study was to evaluate the linear dimensional stability of different irreversible hydrocolloid materials over time. A metal mold was designed with custom trays made of thermoplastic sheets (Sabilex, sheets 0.125 mm thick). Perforations were made in order to improve retention of the material. Five impressions were taken with each of the following: Kromopan 100 (LASCOD) [AlKr], which has dimensional stability of 100 hours, and Phase Plus (ZHERMACK) [AlPh], which has dimensional stability of 48 hours. Standardized digital photographs were taken at different time intervals (0, 15, 30, 45, 60, 120 minutes; 12, 24 and 96 hours), using an "ad-hoc" device. The images were analyzed with software (UTHSCSA Image Tool) by measuring the distance between intersection of the lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. Initial and final values were (mean and standard deviation): AlKr: 16.44 (0.22) and 16.34 (0.11), AlPh: 16.40 (0.06) and 16.18 (0.06). Statistical evaluation showed significant effect of material and time factors. Under the conditions in this study, time significantly affects the linear dimensional stability of irreversible hydrocolloid materials. Sociedad Argentina de Investigación Odontológica.
ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Lucero, John M.
1996-01-01
This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.
Rebecca E. Ibach
2010-01-01
Many specialty treatments can be applied to wood to either improve its performance or change its properties. Treatments addressed in this chapter are those that make permanent changes in the shape of a wood product, improvements in dimensional stability, or improvements in performance through combinations with nonwood resources
Roger M. Rowell
1999-01-01
Many specialty treatments can be applied to wood to either improve its performance or change its properties. Treatments addressed in this chapter are those that make permanent changes in the shape of a wood product, improvements in dimensional stability, or improvements in performance through combinations with nonwood resources.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2010-01-01
A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
Integration of textile fabric and coconut shell in particleboard
NASA Astrophysics Data System (ADS)
Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.
2013-08-01
In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.
Improved ceramic heat exchange material
NASA Technical Reports Server (NTRS)
Mccollister, H. L.
1977-01-01
Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.
Residual thermal stresses in composites for dimensionally stable spacecraft applications
NASA Technical Reports Server (NTRS)
Bowles, David E.; Tompkins, Stephen S.; Funk, Joan G.
1992-01-01
An overview of NASA LaRC's research on thermal residual stresses and their effect on the dimensional stability of carbon fiber reinforced polymer-matrix composites is presented. The data show that thermal residual stresses can induce damage in polymer matrix composites and significantly affect the dimensional stability of these composites by causing permanent residual strains and changes in CTE. The magnitude of these stresses is primarily controlled by the laminate configuration and the applied temperature change. The damage caused by thermal residual stresses initiates at the fiber/matrix interface and micromechanics level analyses are needed to accurately predict it. An increased understanding of fiber/matrix interface interactions appears to be the best approach for improving a composite's resistance to thermally induced damage.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes
NASA Technical Reports Server (NTRS)
Hochen, R.; Justie, B.
1976-01-01
The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.
Acceleration and stability of a high-current ion beam in induction fields
NASA Astrophysics Data System (ADS)
Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.
2013-03-01
A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.
Tuschy, Benjamin; Berlit, Sebastian; Brade, Joachim; Sütterlin, Marc; Hornemann, Amadeus
2014-01-01
To investigate the clinical assessment of a full high-definition (HD) three-dimensional robot-assisted laparoscopic device in gynaecological surgery. This study included 70 women who underwent gynaecological laparoscopic procedures. Demographic parameters, type and duration of surgery and perioperative complications were analyzed. Fifteen surgeons were postoperatively interviewed regarding their assessment of this new system with a standardized questionnaire. The clinical assessment revealed that three-dimensional full-HD visualisation is comfortable and improves spatial orientation and hand-to-eye coordination. The majority of the surgeons stated they would prefer a three-dimensional system to a conventional two-dimensional device and stated that the robotic camera arm led to more relaxed working conditions. Three-dimensional laparoscopy is feasible, comfortable and well-accepted in daily routine. The three-dimensional visualisation improves surgeons' hand-to-eye coordination, intracorporeal suturing and fine dissection. The combination of full-HD three-dimensional visualisation with the robotic camera arm results in very high image quality and stability.
Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin
2012-04-21
Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012
DIMENSIONALLY STABLE, CORROSION RESISTANT NUCLEAR FUEL
Kittel, J.H.
1963-10-31
A method of making a uranium alloy of improved corrosion resistance and dimensional stability is described. The alloy contains from 0-9 weight per cent of an additive of zirconium and niobium in the proportions by weight of 5 to 1 1/ 2. The alloy is cold rolled, heated to two different temperatures, air-cooled, heated to a third temperature, and quenched in water. (AEC)
NASA Astrophysics Data System (ADS)
Ohtaki, Yasuaki; Arif, Muhammad; Suzuki, Akihiro; Fujita, Kazuki; Inooka, Hikaru; Nagatomi, Ryoichi; Tsuji, Ichiro
This study presents an assessment of walking stability in elderly people, focusing on local dynamic stability of walking. Its main objectives were to propose a technique to quantify local dynamic stability using nonlinear time-series analyses and a portable instrument, and to investigate their reliability in revealing the efficacy of an exercise training intervention for elderly people for improvement of walking stability. The method measured three-dimensional acceleration of the upper body, and computation of Lyapunov exponents, thereby directly quantifying the local stability of the dynamic system. Straight level walking of young and elderly subjects was investigated in the experimental study. We compared Lyapunov exponents of young and the elderly subjects, and of groups before and after the exercise intervention. Experimental results demonstrated that the exercise intervention improved local dynamic stability of walking. The proposed method was useful in revealing effects and efficacies of the exercise intervention for elderly people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, andmore » cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.« less
The stability of aluminium oxide monolayer and its interface with two-dimensional materials
NASA Astrophysics Data System (ADS)
Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie
2016-07-01
The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.
N-dimensional hypervolumes to study stability of complex ecosystems
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-01-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314
Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling
2013-01-01
The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery. PMID:24174875
Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems
NASA Astrophysics Data System (ADS)
Dai, Xiao-Lin
2014-04-01
This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD
NASA Astrophysics Data System (ADS)
Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao
Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.
NASA Astrophysics Data System (ADS)
Heri Iswanto, Apri; Hermanto, Samuel; Sucipto, Tito
2018-03-01
The objective of the research was to evaluate the effect of particle immersing treatments in acetic acid (AA) solution on dimensional stability and strength properties of particleboard. Particle was immersed in various level AA solution namely 0 (untreated), 1, 2, 3, 4% for 24 hours. Afterward, the particle was oven dried up to 5% moisture content. The amount of 12% UF resin level used for binding in manufacturing particleboard. Board size, thickness and density target in this experiment was 25 by 25 cm2, 1 cm, and 0.75 g/cm3 respectively. After mat forming, board pressed using 130°C temperature, 30 kg/cm2, and pressure for 10 minutes. The results showed that particles immersing in AA solution provide enhancement of thickness swelling (TS) parameters. Overall, 1% AA solution is the best treatment to improve dimensional stability. The similar results also showed by internal bond value. In general, the excess of 1% acetic acid level resulted in decreasing of IB value. A similar trend also occurs in modulus of rupture (MoR) and modulus of elasticity (MoE) parameters.
N-dimensional hypervolumes to study stability of complex ecosystems.
Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara
2016-07-01
Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. © 2016 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Sakaguchi, Daisaku; Sakue, Daiki; Tun, Min Thaw
2018-04-01
A three-dimensional blade of a low solidity circular cascade diffuser in centrifugal blowers is designed by means of a multi-point optimization technique. The optimization aims at improving static pressure coefficient at a design point and at a small flow rate condition. Moreover, a clear definition of secondary flow expressed by positive radial velocity at hub side is taken into consideration in constraints. The number of design parameters for three-dimensional blade reaches to 10 in this study, such as a radial gap, a radial chord length and mean camber angle distribution of the LSD blade with five control points, control point between hub and shroud with two design freedom. Optimization results show clear Pareto front and selected optimum design shows good improvement of pressure rise in diffuser at small flow rate conditions. It is found that three-dimensional blade has advantage to stabilize the secondary flow effect with improving pressure recovery of the low solidity circular cascade diffuser.
Dimensional stability of curved panels with cocured stiffeners and cobonded frames
NASA Technical Reports Server (NTRS)
Mabson, G. E.; Flynn, B. W.; Swanson, G. D.; Lundquist, R. C.; Rupp, P. L.
1993-01-01
Closed form and finite element analyses are presented for axial direction and transverse direction dimensional stability of skin/stringer panels. Several sensitivity studies are presented to illustrate the influence of various design parameters on the dimensional stability of these panels. Panel geometry, material properties (stiffness and coefficient of thermal expansion), restraint conditions and local details, such as resin fillets, all combine to influence dimensional stability, residual and assembly forces.
Three-dimensional modelling of slope stability using the Local Factor of Safety concept
NASA Astrophysics Data System (ADS)
Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger
2017-04-01
Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.
NASA Astrophysics Data System (ADS)
Sohn, Joon-Yong; Sung, Hae-Jun; Song, Joo-Myung; Shin, Junhwa; Nho, Young-Chang
2012-08-01
In this study, proton exchange membranes (PEMs) based on a poly(ethylene-co-tetrafluoroethylene) (ETFE) film were synthesized through the graft copolymerization of styrene and VTMS (vinyltrimethoxysilane), or styrene and TMSPM (3-(trimethoxysilyl) propyl methacrylate) binary monomer systems using a simultaneous irradiation method. The prepared membranes with the similar degrees of grafting were investigated by measuring ion exchange capacity, proton conductivity, water uptake, chemical stability, and dimensional stability. The results indicate that the silane-crosslinked proton exchange membrane (PEM) has not only lower water uptake and dimensional change but also high proton conductivity at low humidity condition compared to non-crosslinked poly(ethylene-co-tetrafluoroethylene)-g-poly(styrene sulfonic acid) (ETFE-g-PSSA). Also, the chemical stability of silane-crosslinked fuel cell membranes was more improved than that of non-crosslinked fuel cell membrane.
Influence of Thickness and Contact Surface Geometry of Condylar Stem of TMJ Implant on Its Stability
NASA Astrophysics Data System (ADS)
Arabshahi, Zohreh; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul; Azari, Abbas
The aim of this study is to examine the effect thickness and contact surface geometry of condylar stem of TMJ implant on its stability in total reconstruction system and evaluate the micro strain resulted in bone at fixation screw holes in jaw bone embedded with eight different designs of temporomandibular joint implants. A three dimensional model of a lower mandible of an adult were developed from a Computed Tomography scan images. Eight different TMJ implant designs and fixation screws were modeled. Three dimensional finite element models of eight implanted mandibles were analyzed. The forces assigned to the masticatory muscles for incisal clenching were applied consisting of nine important muscular loads. In chosen loading condition, The results indicated that the anatomical curvature contact surface design of TMJ implant can moderately improve the stability and the strain resulted in fixation screw holes in thinner TMJ implant was diminished in comparison with other thicknesses.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Tompkins, S. S.; Sykes, G. F.
1985-01-01
The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites.
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
CFRP composite mirrors for space telescopes and their micro-dimensional stability
NASA Astrophysics Data System (ADS)
Utsunomiya, Shin; Kamiya, Tomohiro; Shimizu, Ryuzo
2010-07-01
Ultra-lightweight and high-accuracy CFRP (carbon fiber reinforced plastics) mirrors for space telescopes were fabricated to demonstrate their feasibility for light wavelength applications. The CTE (coefficient of thermal expansion) of the all- CFRP sandwich panels was tailored to be smaller than 1×10-7/K. The surface accuracy of mirrors of 150 mm in diameter was 1.8 um RMS as fabricated and the surface smoothness was improved to 20 nm RMS by using a replica technique. Moisture expansion was considered the largest in un-predictable surface preciseness errors. The moisture expansion affected not only homologous shape change but also out-of-plane distortion especially in unsymmetrical compositions. Dimensional stability due to the moisture expansion was compared with a structural mathematical model.
Extended frequency turbofan model
NASA Technical Reports Server (NTRS)
Mason, J. R.; Park, J. W.; Jaekel, R. F.
1980-01-01
The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.
Higashino, Toshiki; Ueda, Akira; Yoshida, Junya; Mori, Hatsumi
2017-03-25
A dihydroxy-substituted benzothienobenzothiophene, BTBT(OH) 2 , was synthesized, and its charge-transfer (CT) salt, β-[BTBT(OH) 2 ] 2 ClO 4 , was successfully obtained. Thanks to the introduced hydroxy groups, a hydrogen-bonded chain structure connecting the BTBT molecules and counter anions was formed in the CT salt, which effectively increases the dimensionality of the electronic structure and consequently leads to a stable metallic state.
2010-01-01
Background We evaluated the influence of chemical disinfection and accelerated aging on the dimensional stability and detail reproduction of a silicone elastomer containing one of two opacifiers. Methods A total of 90 samples were fabricated from Silastic MDX 4-4210 silicone and divided into groups (n = 10) according to opacifier content (barium sulfate or titanium dioxide) and disinfectant solution (neutral soap, Efferdent, or 4% chlorhexidine). The specimens were disinfected 3 times per week during 60 days and then subjected to accelerated aging for 1008 hours. Dimensional stability and detail reproduction tests were performed after specimens' fabrication (baseline), chemical disinfection and periodically during accelerated aging (252, 504, and 1008 hours). The results were analyzed using 3-way repeated-measures ANOVA and the Tukey HSD test (α = 0.05). Results All groups exhibited dimensional changes over time. The opacifier (p = .314), period (p < .0001) and their interactions (p = .0041) affected the dimensional stability of the silicone. Statistical significant dimensional differences occurred between groups with (0.071) and without opacifiers (0.053). Accelerated aging influenced the dimensional stability of the samples. All groups scored 2 in the detail reproduction tests, which represents the fully reproducing of three test grooves with accurate angles. Conclusions Incorporation of opacifiers alters the dimensional stability of silicones used in facial prosthetics, but seems to have no influence on detail reproduction. Accelerated aging is responsible for most of the dimensional changes in Silastic MDX4 4210, but all dimensional changes measured in this study remained within the limits of stability necessary for this application. PMID:21162729
Dimensional stabilization of southern pines
E.T. Choong; H.M. Barnes
1969-01-01
The effectiveness of five dimensional stabilizing agents and three impregnation methods on southern pine was determined. Four southern pine species were studies in order to determine the effect of wood factors. The best dimensional stability was obtained when the wood was preswollen and the chemical was impregnated by a diffusion process. In general, polyethylene...
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
NASA Astrophysics Data System (ADS)
Entekhabi, Mozhgan Nora; Isakov, Victor
2018-05-01
In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.
Effects of phosphoramides on wood dimensional stability
Hong-Lin Lee; George C. Chen; Roger M. Rowell
2000-01-01
To evaluate the dimensional stability of phosphoramide-reacted wood, wood was reacted with a mixture which was derived from compounding phosphorus pentoxide and each of 12 amines including alkyl, halophenyl, and phenyl amines in N,N-dimethylformamide. Dimensional stability of such reacted wood was analyzed by antishrink efficiency (ASE) using the water-soak method....
Zhu, Weida; Wang, Rui; Zhang, Chunfeng; Wang, Guodong; Liu, Yunlong; Zhao, Wei; Dai, Xingcan; Wang, Xiaoyong; Cerullo, Giulio; Cundiff, Steven; Xiao, Min
2017-09-04
We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.
Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang
2018-05-08
The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.
A Study on Rotordynamic Characteristics of Swirl Brakes for Three Types of Seals
NASA Astrophysics Data System (ADS)
Xu, Wanjun; Yang, Jiangang
2017-03-01
In order to understand swirl brakes mechanisms and their influence on rotordynamic characteristics for different types of seals, a three-dimensional flow numerical simulation was presented. Three typical seals including labyrinth seal, fully partitioned damper seal and hole-pattern seal were compared under three inlet conditions of no preswirl, preswirl and preswirl with swirl brakes. FAN boundary condition was used to provide inlet preswirl. A modified identification method of effective damping was proposed. Feasibility of the swirl brakes on improving performance of damper seals was discussed. The results show that the swirl brakes influence the seal stability characteristics with whirl frequency. For the labyrinth seal the swirl brakes reverse the sign of effective damping at low frequency and improve the seal stability performance in a wide frequency range. The swirl brakes also improve the damper seals’ stability performance by increasing the low frequency effective damping and reducing their crossover frequency. Further results indicate the swirl brakes affect the rotational direction of the maximum (minimum) pressure positions and enhance the stability of the seals by reducing tangential force in each cavity.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Multi-camera volumetric PIV for the study of jumping fish
NASA Astrophysics Data System (ADS)
Mendelson, Leah; Techet, Alexandra H.
2018-01-01
Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.
Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu
2015-04-07
To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.
Then, Yoon Yee; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan; Chieng, Buong Woei
2014-01-01
In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200–230 °C) and time (30–120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication. PMID:25177865
Laboratory studies of lean combustion
NASA Technical Reports Server (NTRS)
Sawyer, R. F.; Schefer, R. W.; Ganji, A. R.; Daily, J. W.; Pitz, R. W.; Oppenheim, A. K.; Angeli, J. W.
1977-01-01
The fundamental processes controlling lean combustion were observed for better understanding, with particular emphasis on the formation and measurement of gas-phase pollutants, the stability of the combustion process (blowout limits), methods of improving stability, and the application of probe and optical diagnostics for flow field characterization, temperature mapping, and composition measurements. The following areas of investigation are described in detail: (1) axisymmetric, opposed-reacting-jet-stabilized combustor studies; (2) stabilization through heat recirculation; (3) two dimensional combustor studies; and (4) spectroscopic methods. A departure from conventional combustor design to a premixed/prevaporized, lean combustion configuration is attractive for the control of oxides of nitrogen and smoke emissions, the promotion of uniform turbine inlet temperatures, and, possibly, the reduction of carbon monoxide and hydrocarbons at idle.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping
2015-12-01
Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.
Neutron scattering studies of nano-scale wood-water interactions
Nayomi Z. Plaza Rodriguez
2017-01-01
Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding of the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My...
Iimure, Takashi; Kihara, Makoto; Sato, Kazuhiro; Ogushi, Kensuke
2015-04-01
Foam stability is a key factor of beer quality for consumers and brewers. Recent beer proteome analyses have suggested that barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) derived from barley are important for beer foam stability. In this study, BDAI-1 and ALP were purified from a Japanese commercial beer sample using salt precipitation and column chromatography. The purification level was verified using two-dimensional gel electrophoresis, mass spectrometry, and database searches. Purified BDAI-1 and ALP were added to a beer sample to compare the foam stability to that of a control beer sample. As a result, beer foam stability was significantly improved by BDAI-1 but not by ALP, thereby suggesting that BDAI-1 affects beer foam stability whereas ALP does not. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonlinear feedback in a six-dimensional Lorenz Model: impact of an additional heating term
NASA Astrophysics Data System (ADS)
Shen, B.-W.
2015-03-01
In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the steamfunction is referred to as a secondary streamfunction mode, while the two additional modes, that appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74), but slightly smaller than the one in the 5DLM (rc ~ 42.9). A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1) negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2) the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3) overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the following statement by Lorenz (1972): If the flap of a butterfly's wings can be instrumental in generating a tornado, it can equally well be instrumental in preventing a tornado. The implications of this and previous work, as well as future work, are also discussed.
Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term
NASA Astrophysics Data System (ADS)
Shen, B.-W.
2015-12-01
In this study, a six-dimensional Lorenz model (6DLM) is derived, based on a recent study using a five-dimensional (5-D) Lorenz model (LM), in order to examine the impact of an additional mode and its accompanying heating term on solution stability. The new mode added to improve the representation of the streamfunction is referred to as a secondary streamfunction mode, while the two additional modes, which appear in both the 6DLM and 5DLM but not in the original LM, are referred to as secondary temperature modes. Two energy conservation relationships of the 6DLM are first derived in the dissipationless limit. The impact of three additional modes on solution stability is examined by comparing numerical solutions and ensemble Lyapunov exponents of the 6DLM and 5DLM as well as the original LM. For the onset of chaos, the critical value of the normalized Rayleigh number (rc) is determined to be 41.1. The critical value is larger than that in the 3DLM (rc ~ 24.74), but slightly smaller than the one in the 5DLM (rc ~ 42.9). A stability analysis and numerical experiments obtained using generalized LMs, with or without simplifications, suggest the following: (1) negative nonlinear feedback in association with the secondary temperature modes, as first identified using the 5DLM, plays a dominant role in providing feedback for improving the solution's stability of the 6DLM, (2) the additional heating term in association with the secondary streamfunction mode may destabilize the solution, and (3) overall feedback due to the secondary streamfunction mode is much smaller than the feedback due to the secondary temperature modes; therefore, the critical Rayleigh number of the 6DLM is comparable to that of the 5DLM. The 5DLM and 6DLM collectively suggest different roles for small-scale processes (i.e., stabilization vs. destabilization), consistent with the following statement by Lorenz (1972): "If the flap of a butterfly's wings can be instrumental in generating a tornado, it can equally well be instrumental in preventing a tornado." The implications of this and previous work, as well as future work, are also discussed.
High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
NASA Technical Reports Server (NTRS)
Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.
2014-01-01
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
NASA Astrophysics Data System (ADS)
Xia, Huicong; Zhang, Jianan; Chen, Zhimin; Xu, Qun
2018-05-01
A facile in-situ growth strategy is employ to achieving the two-dimensional SnO2 nanosheets/one-dimensional Cu(OH)2 nanorods nanoarchitecture on Cu foil current collector (SnO2/Cu(OH)2/Cu foil), follow by modification of a uniform layer of graphene (G). Confine with the graphene layer and unique one-dimensional/two-dimensional the nanoarchitecture, the remarkably enhance electrical conductivity and structural stability of G/SnO2/Cu(OH)2/Cu foil leads to a high reversible capacity of 1080.6 mAh g-1 at a current density of 200 mA g-1, much better than the samples without graphene (512.6 mAh g-1) and Cu(OH)2 nanorod (117.4 mAh g-1). Furthermore, G/SnO2/Cu(OH)2/Cu foil electrode shows high rate capacity (600.8 mAh g-1 at 1 A g-1) and excellent cycling stability (1057.1 mAh g-1 at 200 mA g-1 even after 500 cycles). This work highlights that increasing surface and interface effects with desirable three-dimensional nanoarchitecture can open a new avenue to electrochemical performance improvement in lithium-ion battery for SnO2-base anode.
Pandey, Mohnish; Jacobsen, Karsten W; Thygesen, Kristian S
2016-11-03
Organic-inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C 4 H 9 NH 3 ) 2 MX 2 Y 2 , where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant.
Effects of chemically modified wood on bond durability
Rishawn Brandon; Rebecca E. Ibach; Charles R. Frihart
2005-01-01
Chemical modification of wood can improve its dimensional stability and resistance to biological degradation and moisture, but modification can also create a new surface for bonding. Acetylation of wood results in the loss of hydroxyl groups, making the wood more hydrophobic and reduces its ability to hydrogen-bond with the adhesive. In contrast, reacting wood with...
Effect of hot water extracted hardwood and softwood chips on particleboard properties
Manuel Raul Pelaez-Samaniego; Vikram Yadama; Tsai Garcia-Perez; Eini Lowell; Thomas Amidon
2014-01-01
The affinity of particleboard (PB) to water is one of the main limitations for using PB in moisture-rich environments. PB dimensional stability and durability can be improved by reducing the available hydroxyl groups in wood through hemicellulose removal, for example, by hot water extraction (HWE), which increases wood resistance to moisture uptake. The resulting...
NASA Astrophysics Data System (ADS)
Tian, Suyun; Zhu, Guannan; Tang, Yanping; Xie, Xiaohua; Wang, Qian; Ma, Yufei; Ding, Guqiao; Xie, Xiaoming
2018-03-01
Various graphene-based Si nanocomposites have been reported to improve the performance of active materials in Li-ion batteries. However, these candidates still yield severe capacity fading due to the electrical disconnection and fractures caused by the huge volume changes over extended cycles. Therefore, we have designed a novel three-dimensional cross-linked graphene and single-wall carbon nanotube structure to encapsulate the Si nanoparticles. The synthesized three-dimensional structure is attributed to the excellent self-assembly of carbon nanotubes with graphene oxide as well as a thermal treatment process at 900 °C. This special structure provides sufficient void spaces for the volume expansion of Si nanoparticles and channels for the diffusion of ions and electrons. In addition, the cross-linking of the graphene and single-wall carbon nanotubes also strengthens the stability of the structure. As a result, the volume expansion of the Si nanoparticles is restrained. The specific capacity remains at 1450 mAh g-1 after 100 cycles at 200 mA g-1. This well-defined three-dimensional structure facilitates superior capacity and cycling stability in comparison with bare Si and a mechanically mixed composite electrode of graphene, single-wall carbon nanotubes and silicon nanoparticles.
Responses evoked by a vestibular implant providing chronic stimulation.
Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F
2012-01-01
Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.
Vacuum Stability in Split SUSY and Little Higgs Models
NASA Astrophysics Data System (ADS)
Datta, Alakabha; Zhang, Xinmin
We study the stability of the effective Higgs potential in the split supersymmetry and Little Higgs models. In particular, we study the effects of higher dimensional operators in the effective potential on the Higgs mass predictions. We find that the size and sign of the higher dimensional operators can significantly change the Higgs mass required to maintain vacuum stability in Split SUSY models. In the Little Higgs models the effects of higher dimensional operators can be large because of a relatively lower cutoff scale. Working with a specific model we find that a contribution from the higher dimensional operator with coefficient of O(1) can destabilize the vacuum.
Fang, Ru; Leng, Xiao-jing; Wu, Xia; Li, Qi; Hao, Rui-fang; Ren, Fa-zheng; Jing, Hao
2012-01-01
The interactions between three proteins (BSA, lysozyme and myoglobin) and three flavonoids (quercetin, kaempferol and rutin) were analyzed, using three-dimensional fluorescence spectrometry in combination with UV-Vis spectrometry and Fourier transform infrared (FTIR) spectroscopy. The stabilities of unbound flavonoids and protein-bound flavonoids were compared. The correlation between the interaction and stability was analyzed. The results showed that the hydrophobic interaction was the main binding code in all proteins and flavonoids systems. However, the hydrogen bond has been involved merely in the BSA system. The stability of all three flavonoids (quercetin, kaempferol and rutin) was improved by BSA. There was a great correlation between the hydrogen bonding and the stability of the flavonoids in the presence of BSA. It suggested that the protection of BSA on the flavonoids was due to the intermolecular hydrogen bonding between BSA and flavonoid, and the stronger hydrogen bonding resulted in more protection.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.
Position of the prosthesis and the incidence of dislocation following total hip replacement.
He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song
2007-07-05
Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.
Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn
2016-08-01
Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.
ERIC Educational Resources Information Center
Brand, Stephen; Felner, Robert; Shim, Minsuk; Seitsinger, Anne; Dumas, Thaddeus
2003-01-01
Examines the structure of perceived school climate and the relationship of climate dimensions to adaptation of students who attend middle-grade-level schools. The climate scales exhibited a stable dimensional structure, high levels of internal consistency, and moderate levels of stability. Ratings of multiple climate dimensions were associated…
Physical properties of heat-treated rattan waste binderless particleboard
NASA Astrophysics Data System (ADS)
Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida
2017-07-01
The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.
Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, X.H., E-mail: drhuangxh@hotmail.com; Zhang, P.; Wu, J.B.
Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as themore » core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.« less
Muresan-Pop, Marieta; Braga, Dario; Pop, Mihaela M; Borodi, Gheorghe; Kacso, Irina; Maini, Lucia
2014-11-01
The crystal structures of the monohydrate and anhydrous forms of ambazone were determined by single-crystal X-ray diffraction (SC-XRD). Ambazone monohydrate is characterized by an infinite three-dimensional network involving the water molecules, whereas anhydrous ambazone forms a two-dimensional network via hydrogen bonds. The reversible transformation between the monohydrate and anhydrous forms of ambazone was evidenced by thermal analysis, temperature-dependent X-ray powder diffraction and accelerated stability at elevated temperature, and relative humidity (RH). Additionally, a novel ambazone acetate salt solvate form was obtained and its nature was elucidated by SC-XRD. Powder dissolution measurements revealed a substantial solubility and dissolution rate improvement of acetate salt solvated form in water and physiological media compared with ambazone forms. Also, the acetate salt solvate displayed good thermal and solution stability but it transformed to the monohydrate on storage at elevated temperature and RH. Our study shows that despite the requirement for controlled storage conditions, the acetate salt solvated form could be an alternative to ambazone when solubility and bioavailability improvement is critical for the clinical efficacy of the drug product. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Effect of gamma radiation on the stability of UV replicated composite mirrors
NASA Astrophysics Data System (ADS)
Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.
2018-04-01
Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.
Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei
2017-11-23
An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.
Habibzadeh, Sareh; Safaeian, Shima; Behruzibakhsh, Marjan; Kaviyani, Parisa; Kharazifard, Mohamadjavad
2016-01-01
Objectives: This study aimed to assess the effect of storage time and temperature on dimensional stability of impressions made with Cavex Outline zinc oxide impression paste. Materials and Methods: A round stainless steel mold with five grooves (three horizontal and two vertical) was used in this in-vitro experimental study. Cavex Outline impression paste was prepared according to the manufacturer’s instructions and applied to the mold. The mold was placed on a block and stored at 35°C and 100% humidity for setting. The impressions were poured with stone immediately and also after 30, 120, 240 and 420 minutes and 24 hours. The distance between the vertical lines on the casts was measured and compared with that in the immediately poured cast. Results: Storage in a refrigerator and at room temperature for zero to seven hours had no significant effect on dimensional stability of the impressions; however, 24 hours of storage in a refrigerator or at room temperature decreased the dimensional stability of Cavex Outline (P=0.001). Also, a significant association was found between dimensional changes following 24 hours of storage in a refrigerator (4°C) and at room temperature (23°C; P<0.01). Conclusions: The optimal pouring time of Cavex Outline impressions with stone is between zero to seven hours, and 24 hours of storage significantly decreases the dimensional stability. PMID:28392816
ASTROP2 users manual: A program for aeroelastic stability analysis of propfans
NASA Technical Reports Server (NTRS)
Narayanan, G. V.; Kaza, K. R. V.
1991-01-01
A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.
Dimensional Stability of Grout-Type Materials Used as Connections for Prefabricated Bridge Elements
DOT National Transportation Integrated Search
2016-05-01
The research presented in this report focuses on addressing performance concerns related to dimensional stability (primarily early age shrinkage) of 11 commercially available grout-type materials. Some of these grouts, especially those classified as ...
Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.
2009-01-01
Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416
NASA Astrophysics Data System (ADS)
Günther, Uwe; Zhuk, Alexander; Bezerra, Valdir B.; Romero, Carlos
2005-08-01
We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R-1 and R4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R-1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R4 model.
Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun
2013-01-01
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...
Enhanced Impact Resistance of Three-Dimensional-Printed Parts with Structured Filaments.
Peng, Fang; Zhao, Zhiyang; Xia, Xuhui; Cakmak, Miko; Vogt, Bryan D
2018-05-09
Net-shape manufacture of customizable objects through three-dimensional (3D) printing offers tremendous promise for personalization to improve the fit, performance, and comfort associated with devices and tools used in our daily lives. However, the application of 3D printing in structural objects has been limited by their poor mechanical performance that manifests from the layer-by-layer process by which the part is produced. Here, this interfacial weakness is overcome using a structured, core-shell polymer filament where a polycarbonate (PC) core solidifies quickly to define the shape, whereas an olefin ionomer shell contains functionality (crystallinity and ionic) that strengthen the interface between the printed layers. This structured filament leads to improved dimensional accuracy and impact resistance in comparison to the individual components. The impact resistance from structured filaments containing 45 vol % shell can exceed 800 J/m. The origins of this improved impact resistance are probed using X-ray microcomputed tomography. Energy is dissipated by delamination of the shell from PC near the crack tip, whereas PC remains intact to provide stability to the part after impact. This structured filament provides tremendous improvements in the critical properties for manufacture and represents a major leap forward in the impact properties obtainable for 3D-printed parts.
Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou
2017-11-20
Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1
NASA Astrophysics Data System (ADS)
Ma, Junhai; Ren, Wenbo; Zhan, Xueli
2017-04-01
Based on the study of scholars at home and abroad, this paper improves the three-dimensional IS-LM model in macroeconomics, analyzes the equilibrium point of the system and stability conditions, focuses on the parameters and complex dynamic characteristics when Hopf bifurcation occurs in the three-dimensional IS-LM macroeconomics system. In order to analyze the stability of limit cycles when Hopf bifurcation occurs, this paper further introduces the first Lyapunov coefficient to judge the limit cycles, i.e. from a practical view of the business cycle. Numerical simulation results show that within the range of most of the parameters, the limit cycle of 3D IS-LM macroeconomics is stable, that is, the business cycle is stable; with the increase of the parameters, limit cycles becomes unstable, and the value range of the parameters in this situation is small. The research results of this paper have good guide significance for the analysis of macroeconomics system.
Global analysis of an impulsive delayed Lotka-Volterra competition system
NASA Astrophysics Data System (ADS)
Xia, Yonghui
2011-03-01
In this paper, a retarded impulsive n-species Lotka-Volterra competition system with feedback controls is studied. Some sufficient conditions are obtained to guarantee the global exponential stability and global asymptotic stability of a unique equilibrium for such a high-dimensional biological system. The problem considered in this paper is in many aspects more general and incorporates as special cases various problems which have been extensively studied in the literature. Moreover, applying the obtained results to some special cases, I derive some new criteria which generalize and greatly improve some well known results. A method is proposed to investigate biological systems subjected to the effect of both impulses and delays. The method is based on Banach fixed point theory and matrix's spectral theory as well as Lyapunov function. Moreover, some novel analytic techniques are employed to study GAS and GES. It is believed that the method can be extended to other high-dimensional biological systems and complex neural networks. Finally, two examples show the feasibility of the results.
Moduli stabilising in heterotic nearly Kähler compactifications
NASA Astrophysics Data System (ADS)
Klaput, Michael; Lukas, Andre; Matti, Cyril; Svanes, Eirik E.
2013-01-01
We study heterotic string compactifications on nearly Kähler homogeneous spaces, including the gauge field effects which arise at order α'. Using Abelian gauge fields, we are able to solve the Bianchi identity and supersymmetry conditions to this order. The four-dimensional external space-time consists of a domain wall solution with moduli fields varying along the transverse direction. We find that the inclusion of α' corrections improves the moduli stabilization features of this solution. In this case, one of the dilaton and the volume modulus asymptotes to a constant value away from the domain wall. It is further shown that the inclusion of non-perturbative effects can stabilize the remaining modulus and "lift" the domain wall to an AdS vacuum. The coset SU(3)/U(1)2 is used as an explicit example to demonstrate the validity of this AdS vacuum. Our results show that heterotic nearly Kähler compactifications can lead to maximally symmetric four-dimensional space-times at the non-perturbative level.
Anwer, Shoaib; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng
2017-04-05
Low cycling stability and poor rate performance are two of the distinctive drawbacks of most electrode materials for sodium-ion batteries (SIBs). Here, inspired by natural flower structures, we take advantage of the three-dimensional (3D) hierarchical flower-like stable microstructures formed by two-dimensional (2D) nanosheets to solve these problems. By precise control of the hydrothermal synthesis conditions, a novel three-dimensional (3D) flower-like architecture consisting of 2D Na 2 Ti 3 O 7 nanosheets (Na-TNSs) has been successfully synthesized. The arbitrarily arranged but closely interlinked thin nanosheets in carnation-shaped 3D Na 2 Ti 3 O 7 microflowers (Na-TMFs) originate a good network of electrically conductive paths in an electrode. Thus, Na-TMFs can get electrons from all directions and be fully utilized for sodium-ion insertion and extraction reactions, which can improve sodium storage properties with enhanced rate capability and super cycling performance. Furthermore, the large specific surface area provides a high capacity, which can be ascribed to the pseudo-capacitance effect. The wettability of the electrolyte was also improved by the porous and crumpled structure. The remarkably improved cycling performance and rate capability of Na-TMFs make a captivating case for its development as an advanced anode material for SIBs.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
Vehicle dynamics control by using a three-dimensional stabilizer pendulum system
NASA Astrophysics Data System (ADS)
Goodarzi, A.; Naghibian, M.; Choodan, D.; Khajepour, A.
2016-12-01
Active safety systems of a vehicle normally work well on tyre-road interactions, however, these systems deteriorate in performance on low-friction road conditions. To combat this effect, an innovative idea for the yaw moment and roll dynamic control is presented in this paper. This idea was inspired by the chase and run dynamics animals like cheetahs in the nature; cheetahs have the ability to swerve while running at very high speeds. A cheetah controls its dynamics by rotating its long tail. A three-dimensional stabilizer pendulum system (3D-SPS) resembles the rotational motion of the tail of a cheetah to improve the stability and safety of a vehicle. The idea has been developed in a stand-alone 3D stabilizer pendulum system as well as in an integrated control system, which consists of an ordinary differential braking direct yaw control (DYC) and active steering control that is assisted by the 3D-SPS. The performance of the proposed 3D-SPS has been evaluated over a wide range of handling manoeuvres by using a comprehensive numerical simulation. The results show the advantage of 3D-SPS over conventional control approaches, which are ineffective on low-friction road conditions and high lateral acceleration manoeuvres. It should however be noted that the best vehicle dynamics performance is obtained when an integrated 3D-SPS and DYC and AFS is utilised.
NASA Astrophysics Data System (ADS)
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
NASA Technical Reports Server (NTRS)
Mennell, R. C.
1974-01-01
Tests were conducted to investigate various base drag reduction techniques in an attempt to improve Orbiter lift-to-drag ratios and to calculate sting interference effects on the Orbiter aerodynamic characteristics. Test conditions and facilites, and model dimensional data are presented along with the data reduction guidelines and data set/run number collation used for the studies. Aerodynamic force and moment data and the results of stability and control tests are also given.
Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors.
Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam
2013-01-01
Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays.
Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors
Kim, Hyun-Suk; Jeon, Sang Ho; Park, Joon Seok; Kim, Tae Sang; Son, Kyoung Seok; Seon, Jong-Baek; Seo, Seok-Jun; Kim, Sun-Jae; Lee, Eunha; Chung, Jae Gwan; Lee, Hyungik; Han, Seungwu; Ryu, Myungkwan; Lee, Sang Yoon; Kim, Kinam
2013-01-01
Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a “dream” display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable such TFTs, but the trade-off between device performance and stability under illumination critically limits their usability, which is related to the hampered electron-hole recombination caused by the oxygen vacancies. Here we have improved the illumination stability by substituting oxygen with nitrogen in ZnO, which may deactivate oxygen vacancies by raising valence bands above the defect levels. Indeed, the stability under illumination and electrical bias is superior to that of previous AOS-based TFTs. By achieving both mobility and stability, it is highly expected that the present ZnON TFTs will be extensively deployed in next-generation flat-panel displays. PMID:23492854
NASA Technical Reports Server (NTRS)
Hsieh, Cheng; O'Donnell, Timothy P.
1991-01-01
The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
NASA Astrophysics Data System (ADS)
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-01-01
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e
Yang, Haiquan; Lu, Xinyao; Liu, Long; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian
2013-05-01
In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes.
Yang, Haiquan; Lu, Xinyao; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R.; Du, Guocheng
2013-01-01
In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes. PMID:23455344
Using three-dimensional plant root architecture in models of shallow-slope stability.
Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia
2008-05-01
The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.
Using Three-dimensional Plant Root Architecture in Models of Shallow-slope Stability
Danjon, Frédéric; Barker, David H.; Drexhage, Michael; Stokes, Alexia
2008-01-01
Background The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Methods Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Key Results Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1·0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Conclusions Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses. PMID:17766845
Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian
2013-01-01
High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.
Reaction-Infiltration Instabilities in Fractured and Porous Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, Anthony
In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.
Hou, Chuantao; Yang, Dapeng; Liang, Bo; Liu, Aihua
2014-06-17
The power output and stability of enzyme-based biofuel cells (BFCs) is greatly dependent on the properties of both the biocathode and bioanode, which may be adapted for portable power production. In this paper, a novel highly uniform three-dimensional (3D) macroporous gold (MP-Au) film was prepared by heating the gold "supraspheres", which were synthesized by a bottom-up protein templating approach, and followed by modification of laccase on the MP-Au film by covalent immobilization. The as-prepared laccase/MP-Au biocathode exihibited an onset potential of 0.62 V versus saturated calomel electrode (SCE, or 0.86 V vs NHE, normal hydrogen electrode) toward O2 reduction and a high catalytic current of 0.61 mAcm(-2). On the other hand, mutated glucose dehydrogenase (GDH) surface displayed bacteria (GDH-bacteria) were used to improve the stability of the glucose oxidation at the bioanode. The as-assembled membraneless glucose/O2 fuel cell showed a high power output of 55.8 ± 2.0 μW cm(-2) and open circuit potential of 0.80 V, contributing to the improved electrocatalysis toward O2 reduction at the laccase/MP-Au biocathode. Moreover, the BFC retained 84% of its maximal power density even after continuous operation for 55 h because of the high stability of the bacterial surface displayed GDH mutant toward glucose oxidation. Our findings may be promising for the development of more efficient glucose BFC for portable battery or self-powered device applications.
Coherent double-color interference microscope for traceable optical surface metrology
NASA Astrophysics Data System (ADS)
Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.
2016-06-01
Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Milovich, J. L.; Hinkel, D. E.
Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes couldmore » be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.« less
Pinkney, S; Fernie, G
2001-01-01
A three-dimensional (3D) lumped-parameter model of a powered wheelchair was created to aid the development of the Rocket prototype wheelchair and to help explore the effect of innovative design features on its stability. The model was developed using simulation software, specifically Working Model 3D. The accuracy of the model was determined by comparing both its static stability angles and dynamic behavior as it passed down a 4.8-cm (1.9") road curb at a heading of 45 degrees with the performance of the actual wheelchair. The model's predictions of the static stability angles in the forward, rearward, and lateral directions were within 9.3, 7.1, and 3.8% of the measured values, respectively. The average absolute error in the predicted position of the wheelchair as it moved down the curb was 2.2 cm/m (0.9" per 3'3") traveled. The accuracy was limited by the inability to model soft bodies, the inherent difficulties in modeling a statically indeterminate system, and the computing time. Nevertheless, it was found to be useful in investigating the effect of eight design alterations on the lateral stability of the wheelchair. Stability was quantified by determining the static lateral stability angles and the maximum height of a road curb over which the wheelchair could successfully drive on a diagonal heading. The model predicted that the stability was more dependent on the configuration of the suspension system than on the dimensions and weight distribution of the wheelchair. Furthermore, for the situations and design alterations studied, predicted improvements in static stability were not correlated with improvements in dynamic stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan
2015-05-13
Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. Finally, these results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less
Aspects of the dimensional changes of jersey structures after knitting process
NASA Astrophysics Data System (ADS)
Szabo, M.; Barbu, I.; Jiaru, L.
2017-08-01
The study proposes a statistical analysis by applying a mathematical model for the study of the dimensional changes of jersey structures made of 100% cotton yarn, with 58/1 metric count of yarn. The Structures are presented as tubular knitted metrage and are designed for underwear and/or outer garments. By analysing the jersey structures, from dimensional stability point of view, there can be observed that values in the limits are within the ±2% interval, values which are considered appropriate. Following the experimental researches, there are proposed solutions for the reduction of dimensional changes on both directions of the knit, on the stich course direction and also on the stich courses in vertical direction, being analyzed the behaviour of the knitted fabrics during relaxation after knitting process. The problem of the dimensional stability of the knitted fabrics is extensive researched. The knitted structures are elastic structures, this being a reason for which dimensional stability will always be a topical theme. The jersey structures, due to the distribution of the platinum loop in the knit plane, due to the relative small number of yarn-yarn contact points that causes the threads to slide into the structure, due to the spiral of the tubular metrage structure, are among those whose dimensional stability is difficult to control. The technical characteristics of the yarns, the technical characteristics of the knitting machines and the technological parameters of the knitting machine are the elements which will be correlated in order to obtain structures with minimum dimensional changes. In order to obtain knitted structures with adequate dimensional stability, this means within ±2%, it is necessary that the dimensional changes during the relaxation periods after knitting and chemical finishing being minimum. For this, all the processes to be applied will be conducted with appropriate and uniform tensions throughout the technological flow. The relaxation periods of 72 hours should be strictly respected, folded and under standard atmospheric conditions, both after knitting and after chemical finishing. The jersey structures are plane structured made on knitting machines equiped with font. There will be analyzed the dimensional changes of the jersey structures made of 100% cotton yarn, Nm 58/1, after the relaxation after knitting process througout the corelation between the technical characteristics of the yarns, of the technological parameter of the knitting operation and of some technical characteristici of the knitting machine.
Algorithm for Stabilizing a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.
NASA Astrophysics Data System (ADS)
Armstrong, J. R.
1992-02-01
The stability of three coils, with similar parameters besides having differing strand diameters, was investigated experimentally using inductive heaters to input disturbances. One of the coils stability was also tested by doubling the inductive heated disturbance length to 10 cm. By computationally deriving approximate inductive heater input energy at 12 T, stability curves show fair agreement with zero-dimensional and one-dimensional computer predictions. Quench velocity and limiting currents also show good agreement with earlier work. Also, the stability measured on one of the coils below its limiting current by disturbing a 10 cm length of conductor was much less than the same samples stability using a 5 cm disturbance length.
Polymer-directed crystallization of atorvastatin.
Choi, Hyemin; Lee, Hyeseung; Lee, Min Kyung; Lee, Jonghwi
2012-08-01
Living organisms secrete minerals composed of peptides and proteins, resulting in "mesocrystals" of three-dimensional-assembled composite structures. Recently, this biomimetic polymer-directed crystallization technique has been widely applied to inorganic materials, although it has seldom been used with drugs. In this study, the technique was applied to the drowning-out crystallization of atorvastatin using various polymers. Nucleation and growth at optimized conditions successfully produced composite crystals with significant polymer contents and unusual characteristics. Atorvastatin composite crystals containing polyethylene glycol, polyacrylic acid, polyethylene imine, and chitosan showed a markedly decreased melting point and heat of fusion, improved stability, and sustained-release patterns. The use of hydroxypropyl cellulose yielded a unique combination of enhanced in vitro release and improved drug stability under a forced degradation condition. The formation hypothesis of unique mesocrystal structures was strongly supported by an X-ray diffraction pattern and substantial melting point reduction. This polymer-directed crystallization technique offers a novel and effective way, different from the solid dispersion approach, to engineer the release, stability, and processability of drug crystals. Copyright © 2012 Wiley Periodicals, Inc.
Yu, L; Batlle, F
2011-12-01
Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also investigated in this paper. These sensitivity analyses serve as the guidelines of construction practices and operating procedures for the MSW landfill under study. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, M.; Schumaker, W.; He, Z.-H.
2014-04-28
High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less
Capsule-odometer: a concept to improve accurate lesion localisation.
Karargyris, Alexandros; Koulaouzidis, Anastasios
2013-09-21
In order to improve lesion localisation in small-bowel capsule endoscopy, a modified capsule design has been proposed incorporating localisation and - in theory - stabilization capabilities. The proposed design consists of a capsule fitted with protruding wheels attached to a spring-mechanism. This would act as a miniature odometer, leading to more accurate lesion localization information in relation to the onset of the investigation (spring expansion e.g., pyloric opening). Furthermore, this capsule could allow stabilization of the recorded video as any erratic, non-forward movement through the gut is minimised. Three-dimensional (3-D) printing technology was used to build a capsule prototype. Thereafter, miniature wheels were also 3-D printed and mounted on a spring which was attached to conventional capsule endoscopes for the purpose of this proof-of-concept experiment. In vitro and ex vivo experiments with porcine small-bowel are presented herein. Further experiments have been scheduled.
Sharp conditions for global stability of Lotka-Volterra systems with distributed delays
NASA Astrophysics Data System (ADS)
Faria, Teresa
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.
Water repellency and dimensional stability of wood
Roger M. Rowell; W. Bart Banks
1985-01-01
A discussion of the interaction between wood and water makes clear the distinction between water repellency of wood (a rate of change) and dimensional stability (a level of equilibrium). A review of methods of treating wood follows, leading to comparison of their effectiveness, description of test procedures to evaluate treatments, and discussion of deficiencies of the...
Synchronization in oscillator networks with delayed coupling: a stability criterion.
Earl, Matthew G; Strogatz, Steven H
2003-03-01
We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.
Several vapor phase chemical treatments for dimensional stabilization of wood
H.M. Barnes; E.T. Choong; R.C. Mcllhenny
1969-01-01
A bench-scale system for the impregnation of wood with volatile compounds was constructed for the purpose of testing the system concept and evaluating various polymeric bulking materials as dimensional stabilizing agents. Provisions were incorporated for recycling the treating material, introduction of two separate materials alternately or simultaneously, timed-cycle...
Cardellach, M; Verdaguer, A; Santiso, J; Fraxedas, J
2010-06-21
The interaction of water with freshly cleaved BaF(2)(111) surfaces at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes. The images strongly suggest a high surface diffusion of water molecules on the surface indicated by the accumulation of water at step edges forming two-dimensional bilayered structures. Steps running along the 110 crystallographic directions show a high degree of hydrophilicity, as evidenced by small step-film contact angles, while steps running along other directions exhibiting a higher degree of kinks surprisingly behave in a quite opposite way. Our results prove that morphological defects such as steps can be crucial in improving two-dimensional monolayer wetting and stabilization of multilayer grown on surfaces that show good lattice mismatch with hexagonal ice.
Torres, Fernanda Ferrari Esteves; Bosso-Martelo, Roberta; Espir, Camila Galletti; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mario
2017-01-01
To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. 7. The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests.
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2003-08-01
We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.
NASA Astrophysics Data System (ADS)
Lough, James D.
The Advanced LIGO detectors will soon be online with enough sensitivity to begin detecting gravitational waves, based on conservative estimates of the rate of neutron star inspirals. These first detections are sure to be significant, however, we will always strive to do better. More questions will be asked about the nature of neutron star material, rates of black hole inspirals, electromagnetic counterparts, etc. To begin to answer all of the questions aLIGO will bring us we will need even better sensitivity in future gravitational wave detectors. This thesis addresses one aspect that will limit us in the future: angular stability of the test masses. Angular stability in advanced LIGO uses an active feedback system. We are proposing to replace the active feedback system with a passive one, eliminating sensing noise contributions. This technique uses the radiation pressure of light inside a cavity as a stable optical spring, fundamentally the same as technique developed by Corbitt, et al. with an additional degree of freedom. I will review the theory of the one dimensional technique and discuss the multidimensional control theory and angular trap setup. I will then present results from the one-dimensional trap which we have built and tested. And propose improvements for the angular trap experiment. Along the way we have discovered an interesting coupling with thermal expansion due to round trip absorption in the high reflective coatings. The front surface HR coating limits our spring stability in this experiment due to the high circulating power and small beam spot size.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
Influence of thermofixation on artificial ACL ligament dimensional and mechanical properties
NASA Astrophysics Data System (ADS)
Ben Abdessalem, S.; Jedda, H.; Skhiri, S.; Karray, S.; Dahmen, J.; Boughamoura, H.
2005-11-01
The anterior cruciate ligament (ACL) is the major articular ligamentous structure of the knee, it functions as a joint stabilizer. When ruptured, the natural ACL ligament can be replaced by a textile synthetic ligament such as a braid, knitted cord, or woven cord. Theses structures are composed of biocompatible materials such as polyester or Gore-Tex filaments. The success of an ACL replacement is widely linked to its mechanical and dimensional properties such as tensile strength, dimensional stability and resistance to abrasion. We introduced an additional treatment in the manufacturing of textile ACL ligaments based on the thermofixation of the textile structure by using textile industry stabilization techniques. Boiling water, saturated vapor and dry heat have been tested to stabilize a braided ligament made of Dacron polyester. The application of these three techniques led to shrinkage and an increase of breaking strength of the textile structure.
Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1980-01-01
A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.
Gajendran, Varun K; Szabo, Robert M; Myo, George K; Curtiss, Shane B
2009-12-01
Open or unstable metacarpal fractures frequently require open reduction and internal fixation. Locking plate technology has improved fixation of unstable fractures in certain settings. In this study, we hypothesized that there would be a difference in strength of fixation using double-row locking plates compared with single- and double-row non-locking plates in comminuted metacarpal fractures. We tested our hypothesis in a gap metacarpal fracture model simulating comminution using fourth-generation, biomechanical testing-grade composite sawbones. The metacarpals were divided into 6 groups of 15 bones each. Groups 1 and 4 were plated with a standard 6-hole, 2.3-mm plate in AO fashion. Groups 2 and 5 were plated with a 6-hole double-row 3-dimensional non-locking plate with bicortical screws aimed for convergence. Groups 3 and 6 were plated with a 6-hole double-row 3-dimensional locking plate with unicortical screws. The plated metacarpals were then tested to failure against cantilever apex dorsal bending (groups 1-3) and torsion (groups 4-6). The loads to failure in groups 1 to 3 were 198 +/- 18, 223 +/- 29, and 203 +/- 19 N, respectively. The torques to failure in groups 4 to 6 were 2,033 +/- 155, 3,190 +/- 235, and 3,161 +/- 268 N mm, respectively. Group 2 had the highest load to failure, whereas groups 5 and 6 shared the highest torques to failure (p < .05). Locking and non-locking double-row plates had equivalent bending and torsional stiffness, significantly higher than observed for the single-row non-locking plate. No other statistical differences were noted between groups. When subjected to the physiologically relevant forces of apex dorsal bending and torsion in a comminuted metacarpal fracture model, double-row 3-dimensional non-locking plates provided superior stability in bending and equivalent stability in torsion compared with double-row 3-dimensional locking plates, whereas single-row non-locking plates provided the least stability.
Progeny Clustering: A Method to Identify Biological Phenotypes
Hu, Chenyue W.; Kornblau, Steven M.; Slater, John H.; Qutub, Amina A.
2015-01-01
Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476
Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung
2015-01-01
Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems. PMID:26563740
Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung
2015-11-13
Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.
The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs
NASA Astrophysics Data System (ADS)
Hallam, P. D.; Paardekooper, S.-J.
2017-08-01
It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.
Dimensional stability of flakeboards as affected by board specific gravity and flake alignment
Robert L. Geimer
1982-01-01
The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...
Turker Dundar; Xiping Wang; Nusret As; Erkan Avci
2016-01-01
The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages...
Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson
2009-01-01
Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...
NASA Astrophysics Data System (ADS)
Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.
2009-06-01
Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.
Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.
2012-01-01
Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.
NASA Astrophysics Data System (ADS)
Zhou, Wenhan; Guo, Shiying; Liu, Xuhai; Cai, Bo; Song, Xiufeng; Zhu, Zhen; Zhang, Shengli
2018-01-01
We propose a family of hydrogenated- and halogenated-SbIV (SbIVX-2) materials that simultaneously have two-dimensional (2D) structures, high stability and appealing electronic properties. Based on first-principles total-energy and vibrational-spectra calculations, SbIVX-2 monolayers are found both thermally and dynamically stable. Varying IV and X elements can rationally tune the electronic properties of SbIVX-2 monolayers, effectively modulating the band gap from 0 to 3.42 eV. Regarding such superior stability and broad band-gap range, SbIVX-2 monolayers are expected to be synthesized in experiments and taken as promising candidates for low-dimensional electronic and optoelectronic devices, such as blue-to-ultraviolet light-emitting diodes (LED) and photodetectors.
Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.
Sanjuán, J; Korytov, D; Mueller, G; Spannagel, R; Braxmaier, C; Preston, A; Livas, J
2012-11-01
Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(-1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 °C are also shown although the requirements are not met due to temperature fluctuations in the setup.
Target coverage in image-guided stereotactic body radiotherapy of liver tumors.
Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M
2007-05-01
To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.
NASA Tech Briefs, January 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell-Based Biosensors for Monitoring Microbes; A Constant-Force Resistive Exercise Unit; GUI to Facilitate Research on Biological Damage from Radiation; On-Demand Urine Analyzer; More-Realistic Digital Modeling of a Human Body; and Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets.
Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya
2017-03-23
We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC 33 ). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.
NASA Astrophysics Data System (ADS)
Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya
2017-03-01
We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.
Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N
2016-06-28
Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.
Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho
2008-10-21
In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.
The Self-Assembly of DNA Nanostructures for use as Organizing Templates
NASA Astrophysics Data System (ADS)
Samec, Timothy; Cholewinski, Mitchell; Reamer, Nickalas; Reardon, Michael; Ford, Arlene
There is growing interest in the self-assembling capabilities of DNA to create functional nanodevices for use in cancer detection and treatment. One important reason for this interest is that DNA nanostructures are highly programmable molecules. This means that these structures allow for increased stability and control when designing biomacromolecules via adhesion of plasmonic nanoparticles and other similar materials. Our current work reports on the procedure and construction of hexagonal two-dimensional DNA lattice structures using three specific DNA single strands. We also reflect on several barriers that were presented during fabrication as well as the adaptations made to overcome the aforementioned barriers by improving the quality, reproducibility, and yield of the hexagonal two-dimensional DNA lattice as organizing templates.
Reliability enhancement of Navier-Stokes codes through convergence acceleration
NASA Technical Reports Server (NTRS)
Merkle, Charles L.; Dulikravich, George S.
1995-01-01
Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.
Dimensional Stability of Hexoloy SA® Silicon Carbide and Zerodur™ Materials for the LISA Mission
NASA Astrophysics Data System (ADS)
Preston, Alix; Cruz, Rachel J.; Thorpe, J. Ira; Mueller, Guido; Boothe, G. Trask; Delgadillo, Rodrigo; Guntaka, Sridhar R.
2006-11-01
In the LISA mission, incoming gravitational waves will modulate the distance between proof masses while laser beams monitor the optical path length changes with 20 pm/√Hz accuracy. Optical path length changes between bench components or the relative motion between the primary and secondary mirrors of the telescope need to be well below this level to result in a successful operation of LISA. The reference cavity for frequency stabilization must have a dimensional stability of a few fm/√Hz. While the effects of temperature fluctuations are well characterized in most materials at the macroscopic level (i.e. coefficients of thermal expansion), microscopic material internal processes and long term processes in the bonds between different components can dominate the dimensional stability at the pm or fm levels. Zerodur and ULE have been well studied, but the ultimate stabilities of other materials like silicon carbide or CFRP are virtually unknown. Chemical bonding techniques, like hydroxide bonding, provide significantly stronger bonds than the standard optical contacts. However, the noise levels of these bonds are also unknown. In this paper we present our latest results on the stability of silicon carbide and hydroxide bonds on Zerodur.
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
Strengthening Superconductivity in Macro-Arrays of Nanoclusters and Nanostructures
2015-02-11
general approach for creating superconducting wires based on CNT conducting cores, coated by layered superconductors; • Develop cost-effective...wire 0.5 mm diameter Thermal conductivity 6600 Wm-1K-1 (SWNT) [37] 3600 Wm-1K-1 (SWNT) [35] 640 Wm-1K-1 wet-spun CNT fibers [4] 3320 Wm-1K... conductivity , which can improve thermal stability and enhance heat dissipation of MgB2 wire. Being one-dimensional nanostructures, they can act as
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-01-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability. PMID:25255843
NASA Astrophysics Data System (ADS)
Ran, Jin; Wu, Liang; Wei, Bing; Chen, Yaoyao; Xu, Tongwen
2014-09-01
Polymeric materials as anion exchange membranes (AEMs) play an essential role in the field of energy and environment. The achievement of high performance AEMs by the precise manipulation of macromolecular architecture remains a daunting challenge. Herein, we firstly report a novel rod-coil graft copolymer AEM, possessing rigid hydrophobic main chains and soft hydrophilic graft chains. The low graft density, which can alleviate the adverse influences of ioinc graft chains on the main chains, was obtained by using the living polymerization technique. Consequently, the grafted ionic groups which result in the degradation of polymer backbone was decreased to a small degree. Moreover, the relatively long graft chains induced the nanophase separation between the hydrophobic polymer chains and hydrophilic graft chains, which creates a convinient pathway for high hydroxide ion mobility. Such an accurate molecular design simultaneously improves the hydroxide ion conductivity and alkaline stability as well as dimensional stability.
Lin, Dingchang; Liu, Yayuan; Chen, Wei; ...
2017-05-23
Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Dingchang; Liu, Yayuan; Chen, Wei
Research on lithium (Li) metal chemistry has been rapidly gaining momentum nowadays not only because of the appealing high theoretical capacity, but also its indispensable role in the next-generation Li–S and Li–air batteries. However, two root problems of Li metal, namely high reactivity and infinite relative volume change during cycling, bring about numerous other challenges that impede its practical applications. In the past, extensive studies have targeted these two root causes by either improving interfacial stability or constructing a stable host. However, efficient surface passivation on three-dimensional (3D) Li is still absent. Here in this paper, we develop a conformalmore » LiF coating technique on Li surface with commercial Freon R134a as the reagent. In contrast to solid/liquid reagents, gaseous Freon exhibits not only nontoxicity and well-controlled reactivity, but also much better permeability that enables a uniform LiF coating even on 3D Li. By applying a LiF coating onto 3D layered Li-reduced graphene oxide (Li-rGO) electrodes, highly reduced side reactions and enhanced cycling stability without overpotential augment for over 200 cycles were proven in symmetric cells. Furthermore, Li–S cells with LiF protected Li-rGO exhibit significantly improved cyclability and Coulombic efficiency, while excellent rate capability (~800 mAh g -1 at 2 C) can still be retained.« less
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
Yasuda, Satoshi; Kajiwara, Yuta; Toyoda, Yosuke; Morimoto, Kazushi; Suno, Ryoji; Iwata, So; Kobayashi, Takuya; Murata, Takeshi; Kinoshita, Masahiro
2017-07-06
G protein-coupled receptors (GPCRs), which are indispensable to life and also implicated in a number of diseases, construct important drug targets. For the efficient structure-guided drug design, however, their structural stabilities must be enhanced. An amino-acid mutation is known to possibly lead to the enhancement, but currently available experimental and theoretical methods for identifying stabilizing mutations suffer such drawbacks as the incapability of exploring the whole mutational space with minor effort and the unambiguous physical origin of the enhanced or lowered stability. In general, after the identification is successfully made for a GPCR, the whole procedure must be followed all over again for the identification for another GPCR. Here we report a theoretical strategy by which many different GPCRs can be considered at the same time. The strategy is illustrated for three GPCRs of Class A in the inactive state. We argue that a mutation of the residue at a position of N BW = 3.39 (N BW is the Ballesteros-Weinstein number), a hot-spot residue, leads to substantially higher stability for significantly many GPCRs of Class A in the inactive state. The most stabilizing mutations of the residues with N BW = 3.39 are then identified for two of the three GPCRs, using the improved version of our free-energy function. These identifications are experimentally corroborated, which is followed by the determination of new three-dimensional (3D) structures for the two GPCRs. We expect that on the basis of the strategy, the 3D structures of many GPCRs of Class A can be solved for the first time in succession.
Stability of Internal Space in Kaluza-Klein Theory
NASA Astrophysics Data System (ADS)
Maeda, K.; Soda, J.
1998-12-01
We extend a model studied by Li and Gott III to investigate a stability of internal space in Kaluza-Klein theory. Our model is a four-dimensional de-Sitter space plus a n-dimensional compactified internal space. We introduce a solution of the semi-classical Einstein equation which shows us the fact that a n-dimensional compactified internal space can be stable by the Casimir effect. The self-consistency of this solution is checked. One may apply this solution to study the issue of the Black Hole singularity.
Miao, Yue-E; Li, Fei; Zhou, Yu; Lai, Feili; Lu, Hengyi; Liu, Tianxi
2017-11-02
Tailoring the size and controlling the morphology of particular nano-architectures are considered as two promising strategies to improve the catalytic performance of metal nanocrystals towards hydrogen evolution reactions (HERs). Herein, mesoporous cobalt phosphide nanotubes (CoP-NTs) with a three-dimensional network structure have been obtained through a facile and efficient electrospinning technique combined with thermal stabilization and phosphorization treatments. The thermal stabilization process has been demonstrated to play a key role in the morphological tailoring of Co 3 O 4 nanotubes (Co 3 O 4 -NTs). As a result, the CoP-NTs show one-dimensional hollow tubular architecture instead of forming a worm-like tubular CoP structure (W-CoP-NTs) or severely aggregated CoP powder (CoP-NPs) which originate from the Co 3 O 4 nanotubes without thermal stabilization treatment and Co 3 O 4 nanoparticles, respectively. Satisfyingly, under an optimized phosphorization degree, the CoP-NT electrode exhibits a low onset overpotential of 53 mV with a low Tafel slope of 50 mV dec -1 during the HER process. Furthermore, the CoP-NT electrode is capable of driving a large cathodic current density of 10 mA cm -2 at an overpotential of 152 mV, which is much lower than those of its contrast samples, i.e. CoP-NPs (211 mV) and W-CoP-NTs (230 mV). Therefore, this work provides a feasible and general strategy for constructing three-dimensionally organized mesoporous non-noble metal phosphide nanotubes as promising alternative high-performance electrocatalysts for the commercial platinum ones.
Linear perturbations of black holes: stability, quasi-normal modes and tails
NASA Astrophysics Data System (ADS)
Zhidenko, Alexander
2009-03-01
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.
A new method for the prediction of combustion instability
NASA Astrophysics Data System (ADS)
Flanagan, Steven Meville
This dissertation presents a new approach to the prediction of combustion instability in solid rocket motors. Previous attempts at developing computational tools to solve this problem have been largely unsuccessful, showing very poor agreement with experimental results and having little or no predictive capability. This is due primarily to deficiencies in the linear stability theory upon which these efforts have been based. Recent advances in linear instability theory by Flandro have demonstrated the importance of including unsteady rotational effects, previously considered negligible. Previous versions of the theory also neglected corrections to the unsteady flow field of the first order in the mean flow Mach number. This research explores the stability implications of extending the solution to include these corrections. Also, the corrected linear stability theory based upon a rotational unsteady flow field extended to first order in mean flow Mach number has been implemented in two computer programs developed for the Macintosh platform. A quasi one-dimensional version of the program has been developed which is based upon an approximate solution to the cavity acoustics problem. The three-dimensional program applies Greens's Function Discretization (GFD) to the solution for the acoustic mode shapes and frequency. GFD is a recently developed numerical method for finding fully three dimensional solutions for this class of problems. The analysis of complex motor geometries, previously a tedious and time consuming task, has also been greatly simplified through the development of a drawing package designed specifically to facilitate the specification of typical motor geometries. The combination of the drawing package, improved acoustic solutions, and new analysis, results in a tool which is capable of producing more accurate and meaningful predictions than have been possible in the past.
Poo Chow; Timothy Harp; John A. Youngquist; Jim H. Muehl; Andrzej M. Krzysik
1999-01-01
The objective of this study was to investigate the influence of the phenol-formaldehyde resin content level (3 percent and 7 percent), and three fungi species (Poria placenta, Gleophyllum trabeum, and Polyporus versicolor) on the dimensional stability and decay resistance of high density composition boards made from plantation-grown southern pine chips. A standard ASTM...
Cairoli, Andrea; Piovani, Duccio; Jensen, Henrik Jeldtoft
2014-12-31
We propose a new procedure to monitor and forecast the onset of transitions in high-dimensional complex systems. We describe our procedure by an application to the tangled nature model of evolutionary ecology. The quasistable configurations of the full stochastic dynamics are taken as input for a stability analysis by means of the deterministic mean-field equations. Numerical analysis of the high-dimensional stability matrix allows us to identify unstable directions associated with eigenvalues with a positive real part. The overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean-field approximation is found to be a good early warning of the transitions occurring intermittently.
Vfold: a web server for RNA structure and folding thermodynamics prediction.
Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2014-01-01
The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".
NASA Astrophysics Data System (ADS)
Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu
2018-05-01
Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.
TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario
2017-01-01
Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275
Kusugal, Preethi; Chourasiya, Ritu Sunil; Ruttonji, Zarir; Astagi, Preeti; Nayak, Ajay Kumar; Patil, Abhishekha
2018-01-01
To overcome the poor dimensional stability of irreversible hydrocolloids, alternative materials were introduced. The dimensional changes of these alternatives after delayed pouring are not well studied and documented in the literature. The purpose of the study is to evaluate and compare the surface detail reproduction and dimensional stability of two irreversible hydrocolloid alternatives with an extended-pour irreversible hydrocolloid at different time intervals. All testing were performed according to the ANSI/ADA specification number 18 for surface detail reproduction and specification number 19 for dimensional change. The test materials used in this study were newer irreversible hydrocolloid alternatives such as AlgiNot FS, Algin-X Ultra FS, and Kromopan 100 which is an extended pour irreversible hydrocolloid as control. The surface detail reproduction was evaluated using stereomicroscope. The dimensional change after storage period of 1 h, 24 h, and 120 h was assessed and compared between the test materials and control. The data were analyzed using one-way ANOVA and post hoc Bonferroni test. Statistically significant results ( P < 0.001) were seen when mean scores of the tested materials were compared with respect to reproduction of 22 μm line from the metal block. Kromopan 100 showed statistically significant differences between different time intervals ( P < 0.001) and exhibited more dimensional change. Algin-X Ultra FS proved to be more accurate and dimensionally stable. Newer irreversible hydrocolloid alternative impression materials were more accurate in surface detail reproduction and exhibited minimal dimensional change after storage period of 1 h, 24 h, and 120 h than extended-pour irreversible hydrocolloid impression material.
Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.
Kim, Myunghee; Collins, Steven H
2013-06-01
Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.
NASA Astrophysics Data System (ADS)
Wang, Hang; Li, Xiaojie; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Shi, Lei; Li, Hongjun
2017-02-01
Proton currents are an integral part of the most important energy-converting structures in biology. We prepared a new type of bioinspired Nafion (Bio-Nafion) membrane composited of biofunctional SiO2 (Bio-SiO2) nanofiber and Nafion matrix. SiO2 nanofibers were prepared by electrospinning silica sol prepared from tetraethyl orthosilicate. Meanwhile, Bio-SiO2 nanofibers were synthesized by immobilizing amino acids (cysteine, serine, lysine, and glycine) on SiO2 nanofibers, which acted as efficient proton-conducting pathways that involved numerous H+ transport sites. In our study, the SiO2 nanofibers biofunctionalized with cysteine were further oxidized, and the composite membranes were designated as Nafion-Cys, Nafion-Lys, Nafion-Ser, and Nafion-Gly, respectively. We then investigated the different polar groups (sbnd SO3H, sbnd OH, and sbnd NH2) of the amino acids that contributed to membrane properties of thermal stability, water uptake (WU), dimensional stability, proton conductivity, and methanol permeability. Nafion-Cys exhibited the highest proton conductivity of 0.2424 S/cm (80 °C). Nafion-Gly showed the lowest proton conductivity and WU because glycine contains the least number of hydrophilic groups among the amino acids. Overall, the introduction of Bio-SiO2 nanofiber to composite membranes significantly improved proton conductivity, dimensional stability, and methanol permeability.
A methodology for the synthesis of robust feedback systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Milich, David Albert
1988-01-01
A new methodology is developed for the synthesis of linear, time-variant (LTI) controllers for multivariable LTI systems. The resulting closed-loop system is nominally stable and exhibits a known level of performance. In addition, robustness of the feedback system is guaranteed, i.e., stability and performance are retained in the presence of multiple unstructured uncertainty blocks located at various points in the feedback loop. The design technique is referred to as the Causality Recovery Methodology (CRM). The CRM relies on the Youla parameterization of all stabilizing compensators to ensure nominal stability of the feedback system. A frequency-domain inequality in terms of the structured singular value mu defines the robustness specification. The optimal compensator, with respect to the mu condition, is shown to be noncausal in general. The aim of the CRM is to find a stable, causal transfer function matrix that approximates the robustness characteristics of the optimal solution. The CRM, via a series of infinite-dimensional convex programs, produces a closed-loop system whose performance robustness is at least as good as that of any initial design. The algorithm is approximated by a finite dimensional process for the purposes of implementation. Two numerical examples confirm the potential viability of the CRM concept; however, the robustness improvement comes at the expense of increased computational burden and compensator complexity.
Ma, Liang; Ju, Ming-Gang; Dai, Jun; Zeng, Xiao Cheng
2018-06-21
Despite their high power conversion efficiency, the commercial applications of hybrid organic-inorganic lead (Pb) halide perovskite based solar cells are still hampered by concerns about the toxicity of Pb and the structural stability in open air. Herein, based on density-functional theory computation, we show that lead-free tin (Sn) and germanium (Ge) based two-dimensional (2D) Ruddlesden-Popper hybrid organic-inorganic perovskites with a thickness of a few unit-cells, BA2MAn-1MnI3n+1 (M = Sn or Ge, n = 2-4), possess desirable electronic, excitonic and light absorption properties, thereby showing promise for photovoltaic and/or photoelectronic applications. In particular, we show that by increasing the layer thickness of the Sn-based 2D perovskites, the bandgap can be lowered towards the optimal range (0.9-1.6 eV) for solar cells. Meanwhile, the exciton binding energy is reduced to a more optimal value. In addition, theoretical assessment indicates that the thermodynamic stability of Sn-/Ge-based 2D perovskites is notably enhanced compared to that of their 3D analogues. These features render the Sn-/Ge-based 2D hybrid perovskites with a thickness of a few tens of unit cells promising lead-free perovskites with much improved structural stabilities for photovoltaic and/or photoelectronic applications.
Admixing dredged marine clay with cement-bentonite for reduction of compressibility
NASA Astrophysics Data System (ADS)
Rahilman, Nur Nazihah Nur; Chan, Chee-Ming
2017-11-01
Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.
Geometric stability spectra of dipolar Bose gases in tunable optical lattices
NASA Astrophysics Data System (ADS)
Corson, John P.; Wilson, Ryan M.; Bohn, John L.
2013-07-01
We examine the stability of quasi-two-dimensional dipolar Bose-Einstein condensates in the presence of weak optical lattices of various geometries. We find that when the condensate possesses a roton-maxon quasiparticle dispersion, the conditions for stability exhibit a strong dependence both on the lattice geometry and the polarization tilt. This results in rich structures in the system's stability diagram akin to spectroscopic signatures. We show how these structures originate from the mode matching of rotons to the perturbing lattice. In the case of a one-dimensional lattice, some of the features emerge only when the polarization axis is tilted into the plane of the condensate. Our results suggest that the stability diagram may be used as a novel means to spectroscopically measure rotons in dipolar condensates.
A Computational Framework for Investigating the Positional Stability of Aortic Endografts
Prasad, Anamika; Xiao, Nan; Gong, Xiao-Yan; Zarins, Christopher K.; Figueroa, C. Alberto
2012-01-01
Endovascular aneurysm repair (Greenhalgh, Brown et al.) techniques have revolutionized the treatment of thoracic and abdominal aortic aneurysm disease, greatly reducing the perioperative mortality and morbidity associated with open surgical repair techniques. However, EVAR is not free of important complications such as late device migration, endoleak formation and fracture of device components that may result in adverse events such as aneurysm enlargement, need for long-term imaging surveillance and secondary interventions or even death. These complications result from the device inability to withstand the hemodynamics of blood flow and to keep its originally intended post-operative position over time. Understanding the in vivo biomechanical working environment experienced by endografts is a critical factor in improving their long-term performance. To date, no study has investigated the mechanics of contact between device and aorta in a three-dimensional setting. In this work, we developed a comprehensive Computational Solid Mechanics and Computational Fluid Dynamics framework to investigate the mechanics of endograft positional stability. The main building blocks of this framework are: i) Three-dimensional non-planar aortic and stent-graft geometrical models, ii) Realistic multi-material constitutive laws for aorta, stent, and graft, iii) Physiological values for blood flow and pressure and iv) Frictional model to describe the contact between the endograft and the aorta. We introduce a new metric for numerical quantification of the positional stability of the endograft. Lastly, in the results section, we test the framework by investigating the impact of several factors that are clinically known to affect endograft stability. PMID:23143353
Wenchao, Duan; Zhang, Peina; Xiahou, Yujiao; Song, Yahui; Bi, Cuixia; Zhan, Jie; Du, Wei; Huang, Lihui; Möhwald, Helmuth; Xia, Haibing
2018-06-21
It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m-n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle-number ratios, where m and n represent the size of Au NPs, respectively. In addition, 3D Au m-n @Pd aerogels were further synthesized on the basis of Au m-n aerogels and also bear controlled surface facets due to the formation of ultrathin Pd layers on Au m-n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m-n and Au m-n @Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent nanoparticles. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening, but also will open up a new way to improve electrocatalytic performance of three-dimensional metallic aerogels by surface regulation.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1985-01-01
Interrelated research and development activities, phased development of stepped specimen program are documented and a sequence for a specific program of machining, validation and heat treatment cycles for one material are described. Proposed work for the next phase of dimensional stability research is presented and further technology development activities are proposed.
ERIC Educational Resources Information Center
Hagekull, Berit; And Others
The purpose of the study was to establish dimensions of functioning accounting for interindividual variation in behavior in the later infancy period and to investigate the stability of the dimensional structure during the infancy period. Factor analyses were performed on parent questionnaire data for 357 infants, aged 11 to 15 months. An 8-factor…
Post-SELEX optimization of aptamers.
Gao, Shunxiang; Zheng, Xin; Jiao, Binghua; Wang, Lianghua
2016-07-01
Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.
Cho, Jeong-Hyun; Picraux, S Tom
2013-01-01
It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.
Hydrogen peroxide stabilization in one-dimensional flow columns.
Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J
2011-09-25
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.
Hydrogen peroxide stabilization in one-dimensional flow columns
NASA Astrophysics Data System (ADS)
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong
2015-03-02
Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.
Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid
2013-06-01
Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.
Dimensional stability tests over time and temperature for several low-expansion glass ceramics.
Hall, D B
1996-04-01
The dimensional stabilities of five commercially available low-expansion glass ceramics have been measured between -40 °C and +90 °C. Materials tested include Zerodur, Zerodur M, Astrositall, Clearceram 55, and Clearceram 63. With the use of a standardized thermal testing procedure, the thermal expansion, isothermal shrinkage, and hysteresis behavior of the various materials are compared with one another. A detailed comparison of three separate melts of Astrositall, two separate melts of Zerodur, and one melt of Zerodur M indicates that between -40 °C and +90 °C the dimensional stability and uniformity characteristics of two of the melts of Astrositall are somewhat better than those of the other two materials. To my knowledge, this is the first published comparison of data from these glass ceramics taken with identical test procedures.
Design of high-strength refractory complex solid-solution alloys
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.; ...
2018-03-28
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
Design of high-strength refractory complex solid-solution alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Prashant; Sharma, Aayush; Smirnov, A. V.
Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential approximation to identify alloys over five-dimensional design space with improved mechanical properties and necessary global (formation enthalpy) and local (short-range order) stability. Deformation is modeled with classical molecular dynamic simulations, validated from our first-principle data. We predict complex solid-solution alloys of improved stability with greatly enhanced modulus of elasticity (3× at 300 K)more » over near-equiatomic cases, as validated experimentally, and with higher moduli above 500 K over commercial alloys (2.3× at 2000 K). We also show that optimal complex solid-solution alloys are not described well by classical potentials due to critical electronic effects.« less
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
NASA Astrophysics Data System (ADS)
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Hubble, Ryan P; Naughton, Geraldine A; Silburn, Peter A; Cole, Michael H
2014-12-31
Exercise has been shown to improve clinical measures of strength, balance and mobility, and in some cases, has improved symptoms of tremor and rigidity in people with Parkinson's disease (PD). However, to date, no research has examined whether improvements in trunk control can remedy deficits in dynamic postural stability in this population. The proposed randomised controlled trial aims to establish whether a 12-week exercise programme aimed at improving dynamic postural stability in people with PD; (1) is more effective than education; (2) is more effective when training frequency is increased; and (3) provides greater long-term benefits than education. Forty-five community-dwelling individuals diagnosed with idiopathic PD with a falls history will be recruited. Participants will complete baseline assessments including tests of cognition, vision, disease severity, fear of falling, mobility and quality of life. Additionally, participants will complete a series of standing balance tasks to evaluate static postural stability, while dynamic postural control will be measured during walking using head and trunk-mounted three-dimensional accelerometers. Following baseline testing, participants will be randomly-assigned to one of three intervention groups, who will receive either exercise once per week, exercise 3 days/week, or education. Participants will repeat the same battery of tests conducted at baseline after the 12-week intervention and again following a further 12-week sustainability period. This study has the potential to show that low-intensity and progressive trunk exercises can provide a non-invasive and effective means for maintaining or improving postural stability for people with PD. Importantly, if the programme is noted to be effective, it could be easily performed by patients within their home environment or under the guidance of available allied health professionals. The protocol for this study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12613001175763). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble
Liu, Hang; Chu, Renzhi; Tang, Zhenan
2015-01-01
Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied. PMID:25942640
Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P
2017-10-01
Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional 1 H, 13 C and 15 N and two-dimensional 1 H- 13 C and 14 N- 1 H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the 1 H, 13 C and 14 N/ 15 N resonances. A two-dimensional 1 H- 1 H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermoelectric and phonon transport properties of two-dimensional IV-VI compounds.
Shafique, Aamir; Shin, Young-Han
2017-03-30
We explore the thermoelectric and phonon transport properties of two-dimensional monochalcogenides (SnSe, SnS, GeSe, and GeS) using density functional theory combined with Boltzmann transport theory. We studied the electronic structures, Seebeck coefficients, electrical conductivities, lattice thermal conductivities, and figures of merit of these two-dimensional materials, which showed that the thermoelectric performance of monolayer of these compounds is improved in comparison compared to their bulk phases. High figures of merit (ZT) are predicted for SnSe (ZT = 2.63, 2.46), SnS (ZT = 1.75, 1.88), GeSe (ZT = 1.99, 1.73), and GeS (ZT = 1.85, 1.29) at 700 K along armchair and zigzag directions, respectively. Phonon dispersion calculations confirm the dynamical stability of these compounds. The calculated lattice thermal conductivities are low while the electrical conductivities and Seebeck coefficients are high. Thus, the properties of the monolayers show high potential toward thermoelectric applications.
Feiten, Mirian Cristina; Di Luccio, Marco; Santos, Karine F; de Oliveira, Débora; Oliveira, J Vladimir
2017-06-01
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.
The role of earlywood and latewood properties on dimensional stability of loblolly pine
David E. Kretschmann; Steven M. Cramer
2007-01-01
The role of tree ring location and height within tree has a very significant impact on the properties of earlywood and latewood. This paper explores the role of earlywood and latewood properties on the dimensional stability of loblolly pine. Test results from isolated 1 mm by 1 mm by 30 mm pieces of earlywood and latewood show the differences in earlywood and latewood...
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events
NASA Astrophysics Data System (ADS)
Diener, Ross; Burgess, C. P.
2013-05-01
To solve the hierarchy problem, extra-dimensional models must explain why the new dimensions stabilize to the right size, and the known mechanisms for doing so require bulk scalars that couple to the branes. Because of these couplings the energetics of dimensional stabilization competes with the energetics of the Higgs vacuum, with potentially observable effects. These effects are particularly strong for one or two extra dimensions because the bulk-Higgs couplings can then be super-renormalizable or dimensionless. Experimental reach for such extra-dimensional Higgs `portals' are stronger than for gravitational couplings because they are less suppressed at low-energies. We compute how Higgs-bulk coupling through such a portal with two extra dimensions back-reacts onto properties of the Higgs boson. When the KK mass is smaller than the Higgs mass, mixing with KK modes results in an invisible Higgs decay width, missing-energy signals at high-energy colliders, and new mechanisms of energy loss in stars and supernovae. Astrophysical bounds turn out to be complementary to collider measurements, with observable LHC signals allowed by existing constraints. We comment on the changes to the Higgs mass-coupling relationship caused by Higgs-bulk mixing, and how the resulting modifications to the running of Higgs couplings alter vacuum-stability and triviality bounds.
Kusugal, Preethi; Chourasiya, Ritu Sunil; Ruttonji, Zarir; Astagi, Preeti; Nayak, Ajay Kumar; Patil, Abhishekha
2018-01-01
Purpose: To overcome the poor dimensional stability of irreversible hydrocolloids, alternative materials were introduced. The dimensional changes of these alternatives after delayed pouring are not well studied and documented in the literature. The purpose of the study is to evaluate and compare the surface detail reproduction and dimensional stability of two irreversible hydrocolloid alternatives with an extended-pour irreversible hydrocolloid at different time intervals. Materials and Methods: All testing were performed according to the ANSI/ADA specification number 18 for surface detail reproduction and specification number 19 for dimensional change. The test materials used in this study were newer irreversible hydrocolloid alternatives such as AlgiNot FS, Algin-X Ultra FS, and Kromopan 100 which is an extended pour irreversible hydrocolloid as control. The surface detail reproduction was evaluated using stereomicroscope. The dimensional change after storage period of 1 h, 24 h, and 120 h was assessed and compared between the test materials and control. The data were analyzed using one-way ANOVA and post hoc Bonferroni test. Results: Statistically significant results (P < 0.001) were seen when mean scores of the tested materials were compared with respect to reproduction of 22 μm line from the metal block. Kromopan 100 showed statistically significant differences between different time intervals (P < 0.001) and exhibited more dimensional change. Algin-X Ultra FS proved to be more accurate and dimensionally stable. Conclusions: Newer irreversible hydrocolloid alternative impression materials were more accurate in surface detail reproduction and exhibited minimal dimensional change after storage period of 1 h, 24 h, and 120 h than extended-pour irreversible hydrocolloid impression material. PMID:29599578
A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.
2017-12-01
Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Beeson, Harold D.; Newton, Barry E.; Fries, Joseph (Technical Monitor)
2000-01-01
The dimensional stability of polychlorotrifluoroethylene (PCTFE) valve seats used in oxygen regulator applications was determined by thermomechanical analysis (TMA). Two traceable grades of PCTFE were tested; Kel-F 81 and Neoflon CTFE M400H. For these particular resins, the effect of percent crystallinity, zero strength time (ZST) molecular weight, resin grade, process history (compression-molded versus extruded) on the dimensional stability and annealing behavior was determined. In addition to the traceable Kel-F 81 and Neoflon CTFE M400H grades, actual PCI'PH valve seats of differing geometry and design were tested by TMA. The PCTFE valve seats were of unspecified resin grade, although certain inferences about the grade could be drawn based on knowledge of the valve seat fabrication date. Results consistently revealed dimensional instability of varying magnitude at temperatures ranging from 40 to 70 degrees Celsius. Furthermore, some of the pre- 1 995 seats appeared to be more dimensionally stable than those fabricated after 1995. The TMA results are discussed in the context of several proposed ignition mechanisms; namely, particle impact, presence of contaminant oils and fibers, and localized heating by flow friction and/or resonance. The effect of metal constraint on the dimensional stability of PCTFE is also discussed. Finally, the effect of percent crystallinity, ZST molecular weight, resin grade, process history (compression-molded versus extruded) on the AIT, delta Hc and impact sensitivity of various types of Neoflon CTFE M400H was determined using Kel-F 81 as a control. Results show that the AIT, delta Hc and impact sensitivity were essentially independent of Neoflon CTFE process history and structure.
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.
2008-01-01
A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.
Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck
2015-11-01
The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.
Edge instability in incompressible planar active fluids
NASA Astrophysics Data System (ADS)
Nesbitt, David; Pruessner, Gunnar; Lee, Chiu Fan
2017-12-01
Interfacial instability is highly relevant to many important biological processes. A key example arises in wound healing experiments, which observe that an epithelial layer with an initially straight edge does not heal uniformly. We consider the phenomenon in the context of active fluids. Improving upon the approximation used by Zimmermann, Basan, and Levine [Eur. Phys. J.: Spec. Top. 223, 1259 (2014), 10.1140/epjst/e2014-02189-7], we perform a linear stability analysis on a two-dimensional incompressible hydrodynamic model of an active fluid with an open interface. We categorize the stability of the model and find that for experimentally relevant parameters, fingering instability is always absent in this minimal model. Our results point to the crucial role of density variation in the fingering instability in tissue regeneration.
An existence criterion for low-dimensional materials
NASA Astrophysics Data System (ADS)
Chen, Jiapeng; Wang, Biao; Hu, Yangfan
2017-10-01
The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.
A CFD analysis of blade row interactions within a high-speed axial compressor
NASA Astrophysics Data System (ADS)
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
Shao, Yuchuan; Liu, Ye; Chen, Xiaolong; Chen, Chen; Sarpkaya, Ibrahim; Chen, Zhaolai; Fang, Yanjun; Kong, Jaemin; Watanabe, Kenji; Taniguchi, Takashi; Taylor, André; Huang, Jinsong; Xia, Fengnian
2017-12-13
Recently, two-dimensional (2D) organic-inorganic perovskites emerged as an alternative material for their three-dimensional (3D) counterparts in photovoltaic applications with improved moisture resistance. Here, we report a stable, high-gain phototransistor consisting of a monolayer graphene on hexagonal boron nitride (hBN) covered by a 2D multiphase perovskite heterostructure, which was realized using a newly developed two-step ligand exchange method. In this phototransistor, the multiple phases with varying bandgap in 2D perovskite thin films are aligned for the efficient electron-hole pair separation, leading to a high responsivity of ∼10 5 A W -1 at 532 nm. Moreover, the designed phase alignment method aggregates more hydrophobic butylammonium cations close to the upper surface of the 2D perovskite thin film, preventing the permeation of moisture and enhancing the device stability dramatically. In addition, faster photoresponse and smaller 1/f noise observed in the 2D perovskite phototransistors indicate a smaller density of deep hole traps in the 2D perovskite thin film compared with their 3D counterparts. These desirable properties not only improve the performance of the phototransistor, but also provide a new direction for the future enhancement of the efficiency of 2D perovskite photovoltaics.
NASA Technical Reports Server (NTRS)
Nett, C. N.; Jacobson, C. A.; Balas, M. J.
1983-01-01
This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2002-08-01
We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.
Optimal preconditioning of lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Izquierdo, Salvador; Fueyo, Norberto
2009-09-01
A preconditioning technique to accelerate the simulation of steady-state problems using the single-relaxation-time (SRT) lattice Boltzmann (LB) method was first proposed by Guo et al. [Z. Guo, T. Zhao, Y. Shi, Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E 70 (2004) 066706-1]. The key idea in this preconditioner is to modify the equilibrium distribution function in such a way that, by means of a Chapman-Enskog expansion, a time-derivative preconditioner of the Navier-Stokes (NS) equations is obtained. In the present contribution, the optimal values for the free parameter γ of this preconditioner are searched both numerically and theoretically; the later with the aid of linear-stability analysis and with the condition number of the system of NS equations. The influence of the collision operator, single- versus multiple-relaxation-times (MRT), is also studied. Three steady-state laminar test cases are used for validation, namely: the two-dimensional lid-driven cavity, a two-dimensional microchannel and the three-dimensional backward-facing step. Finally, guidelines are suggested for an a priori definition of optimal preconditioning parameters as a function of the Reynolds and Mach numbers. The new optimally preconditioned MRT method derived is shown to improve, simultaneously, the rate of convergence, the stability and the accuracy of the lattice Boltzmann simulations, when compared to the non-preconditioned methods and to the optimally preconditioned SRT one. Additionally, direct time-derivative preconditioning of the LB equation is also studied.
Design guidelines for high dimensional stability of CFRP optical bench
NASA Astrophysics Data System (ADS)
Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe
2013-09-01
In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.
NASA Astrophysics Data System (ADS)
Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.
2018-03-01
We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.
NASA PS400: A New Temperature Solid Lubricant Coating for High Temperature Wear Applications
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Edmonds, B. J.
2009-01-01
A new solid lubricant coating, NASA PS400, has been developed for high temperature tribological applications. This plasma sprayed coating is a variant of the patented PS304 coating and has been formulated to provide higher density, smoother surface finish and better dimensional stability than PS304. PS400 is comprised of a nickel-molybdenum binder that provides strength, creep resistance and extreme oxidative and dimensional stability. Chromium oxide, silver and barium-calcium fluoride eutectic are added to the binder to form PS400.Tribological properties were evaluated with a pin-on-disk test rig in sliding contact to 650 C. Coating material samples were exposed to air, argon and vacuum at 760 C followed by cross section microscopic analysis to assess microstructure stability. Oil-Free microturbine engine hot section foil bearing tests were undertaken to assess PS400 s suitability for hot foil gas bearing applications. The preliminary results indicate that PS400 exhibits tribological characteristics comparable to the PS304 coating but with enhanced creep resistance and dimensional stability suitable for demanding, dynamic applications.
Li, Yue-Ying; Wang, Jian-Gan; Sun, Huan-Huan; Wei, Bingqing
2018-04-11
Organic dyes used in the conventional dye-sensitized solar cells (DSSCs) suffer from poor light stability and high cost. In this work, we demonstrate a new inorganic sensitized solar cell based on ordered one-dimensional semiconductor nanorod arrays of TiO 2 /NiTiO 3 (NTO) heterostructures prepared via a facile two-step hydrothermal approach. The semiconductor heterostructure arrays are highly desirable and promising for DSSCs because of their direct charge transport capability and slow charge recombination rate. The low-cost NTO inorganic semiconductor possesses an appropriate band gap that matches well with TiO 2 , which behaves like a "dye" to enable efficient light harvesting and fast electron-hole separation. The solar cells constructed by the ordered TiO 2 /NTO heterostructure photoanodes show a significantly improved power conversion efficiency, high fill factor, and more promising, outstanding life stability. The present work will open up an avenue to design heterostructured inorganics for high-performance solar cells.
NASA Technical Reports Server (NTRS)
Johnston, J. P.; Halleen, R. M.; Lezius, D. K.
1972-01-01
Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-
Quantum circuits for qubit fusion
Moussa, Jonathan Edward
2015-12-01
In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, Jonathan Edward
In this article, we consider four-dimensional qudits as qubit pairs and their qudit Pauli operators as qubit Cli ord operators. This introduces a nesting, C 2 1 C C 4 2 C C 2 3, where C m n is the n th level of the m-dimensional qudit Cli ord hierarchy. If we can convert between logical qubits and qudits, then qudit Cli ord operators are qubit non-Cli ord operators. Conversion is achieved by qubit fusion and qudit fission using stabilizer circuits that consume a resource state. This resource is a fused qubit stabilizer state with a fault-tolerant state preparationmore » using stabilizer circuits.« less
NASA Astrophysics Data System (ADS)
Albanese, Alexandre
Nanotechnology has emerged as an exciting strategy for the delivery of diagnostic and therapeutic agents into established tumors. Advancements in nanomaterial synthesis have generated an extensive number of nanoparticle designs made from different materials. Unfortunately, it remains impossible to predict a design's effectiveness for in vivo tumor accumulation. Little is known about how a nanoparticle's morphology and surface chemistry affect its interactions with cells and proteins inside the tumor tissue. This thesis focuses on the development of in vitro experimental tools to evaluate how nanoparticle design affects transport in a three-dimensional tumor tissue and stability in the tumor microenvironment. Nanoparticle transport was evaluated using a novel 'tumor-on-a-chip' system where multicellular tumor spheroids were immobilized in a microfluidic channel. This setup created a three-dimensional tumor environment displaying physiological cell density, extracellular matrix organization, and interstitial flow rates. The tumor-on-a-chip demonstrated that accumulation of nanoparticles was limited to diameters below 110 nm and was improved by receptor targeting. Nanoparticle stability in the tumor microenvironment was evaluated using media isolated from different tumor cell lines. Nanoparticle diameter and surface chemistry were important determinants of stability in cancer cell-conditioned media. Small nanoparticles with unstable surface chemistries adsorbed cellular proteins on their surface and were prone to aggregation. Nanoparticle aggregation altered cellular interactions leading to changes in cell uptake. Using a novel technique to generate different aggregate sizes possessing a uniform surface composition, it was determined that aggregation can change receptor affinity, cell internalization mechanisms and sub-cellular sequestration patterns. Data from this thesis characterize the behavior of nanoparticles within modeled tumor environments and provide some preliminary design guidelines for maximizing nanoparticle tumor accumulation. This work highlights the importance of characterizing nano-bio interactions for engineering successful nanomaterial-based delivery systems.
Nirale, Rutuja Madhukarrao; Thombre, Ram; Kubasad, Girish
2012-02-01
To compare the effect of sodium hypochlorite and microwave disinfection on the dimensional stability of denture bases without and with relining. A brass die was prepared by simulating an edentulous maxillary arch. It was used to fabricate 1.5 mm and 3 mm of thickness denture bases (n = 40). The 1.5 mm of thickness-specimens (n = 20) were relined with 1.5 mm of autopolymerizing relining resin. Five holes were prepared over crest of ridge of brass die with intimately fitting stainless steel pins which were transferred to the intaglio surface of specimens during fabrication of denture bases. For calculation of dimensional changes in denture bases, differences between the baseline area before and after disinfection of the specimens were used. The denture bases without and with relining were divided into 2 groups (each n = 20). Data were analyzed using student paired 't' and unpaired 't' test. Microwave disinfection produces significant shrinkage in both denture bases without relining (t = 17.16; P<.001) and with relining (t = 14.9; P<.001). Denture bases without relining showed more shrinkage when compared with relined denture bases after microwave disinfection (t = 6.09; P<.001). The changes in dimensional stability after sodium hypochlorite disinfection were not significant for both denture bases without relining (t = 2.19; P=.056) and denture bases with relining (t = 2.17; P=.058). Microwave disinfection leads to increased shrinkage of denture bases without and with relining. Chemical disinfection with sodium hypochlorite seems to be a safer method of disinfection with regards to physical properties such as changes in dimensional stability.
User's manual for the FLORA equilibrium and stability code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freis, R.P.; Cohen, B.I.
1985-04-01
This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.
Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions
NASA Astrophysics Data System (ADS)
Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang
2017-10-01
In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.
Two-Dimensional VO2 Mesoporous Microarrays for High-Performance Supercapacitor
NASA Astrophysics Data System (ADS)
Fan, Yuqi; Ouyang, Delong; Li, Bao-Wen; Dang, Feng; Ren, Zongming
2018-05-01
Two-dimensional (2D) mesoporous VO2 microarrays have been prepared using an organic-inorganic liquid interface. The units of microarrays consist of needle-like VO2 particles with a mesoporous structure, in which crack-like pores with a pore size of about 2 nm and depth of 20-100 nm are distributed on the particle surface. The liquid interface acts as a template for the formation of the 2D microarrays, as identified from the kinetic observation. Due to the mesoporous structure of the units and high conductivity of the microarray, such 2D VO2 microarrays exhibit a high specific capacitance of 265 F/g at 1 A/g and excellent rate capability (182 F/g at 10 A/g) and cycling stability, suggesting the effect of unique microstructure for improving the electrochemical performance.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song
2017-08-01
Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.
NASA Astrophysics Data System (ADS)
González, P. A.; Papantonopoulos, Eleftherios; Saavedra, Joel; Vásquez, Yerko
2017-03-01
We study the instability of near extremal and extremal four-dimensional anti-de Sitter charged hairy black holes to radial neutral massive and charged massless scalar field perturbations. We solve the scalar field equation by using the improved asymptotic iteration method and the time domain analysis, and we find the quasinormal frequencies. For the charged scalar perturbations, we find the superradiance condition by computing the reflection coefficient in the low-frequency limit, and we show that in the superradiance regime, which depends on the scalar hair charge, all modes of radial charged massless perturbations are unstable, indicating that the charged hairy black hole is superradiantly unstable. On the other hand, calculating the quasinormal frequencies of radial neutral scalar perturbations in this background, we find stability of the charged hairy black hole.
Xiping Wang; Christopher Adam Senalik; Robert Ross; Neal Bennett; Debbie Conner
2016-01-01
A laboratory study was conducted to investigate the effects of cedar oil and silica gel treatment on dimensional stability and mechanical performance of southern yellow pine (SYP) boards. Two hundred pieces of SYP and 100 pieces of red oak boards with a nominal dimension of 1 by 6 by 48 in. (25 by 152 by 1,219 mm) were selected for this study. The red oak boards were...
NASA Astrophysics Data System (ADS)
Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang
2009-04-01
A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.
Compensation of relector antenna surface distortion using an array feed
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.
1988-01-01
The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.
NASA Astrophysics Data System (ADS)
Golzar, M.; Azhdary Moghaddam, M.; Saghravani, S. F.; Dahrazma, B.
2018-04-01
Iron oxide nanoparticles were stabilized using poly acrylic acid (PAA) to yield stabilized slurry of Iron oxide nanoparticles. A two-dimensional physical model filled by glass beads was used to study the fate and transport of the iron oxide nanoparticles stabilized with PAA in porous media under saturated, steady-state flow conditions. Transport data for a nonreactive tracer, slurry of iron oxide nanoparticles stabilized with PAA were collected under similar flow conditions. The results show that low concentration slurry of iron oxide nanoparticles stabilized with PAA can be transported like a tracer without significant retardation. The image processing technique was employed to measure the tracer/nanoparticle concentration inside the 2-D model filled with glass beads. The groundwater flow model, Visual MODFLOW, was used to model the observed transport patterns through MT3DMS module. Finally, it was demonstrated that the numerical model MODFLOW can be used to predict the fate and transport characteristics of nanoparticles stabilized with PAA in groundwater aquifers.
Mode instability in one-dimensional anharmonic lattices: Variational equation approach
NASA Astrophysics Data System (ADS)
Yoshimura, K.
1999-03-01
The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.
2012-01-01
Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025
Graphanes: Sheets and stacking under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiao-Dong; Hand, Louis; Labet, Vanessa
2011-04-26
Eight isomeric two-dimensional graphane sheets are found in a theoretical study. Four of these nets—two built on chair cyclohexanes, two on boat—are more stable thermodynamically than the isomeric benzene, or polyacetylene. Three-dimensional crystals are built up from the two-dimensional sheets, and their hypothetical behavior under pressure (up to 300 GPa) is explored. While the three-dimensional graphanes remain, as expected, insulating or semiconducting in this pressure range, there is a remarkable inversion in stability of the five crystals studied. Two stacking polytypes that are not the most stable at ambient pressure (one based on an unusual chair cyclohexane net, the othermore » on a boat) are significantly stabilized with increasing pressure relative to stackings of simple chair sheets. The explanation may lie in the balance on intra and intersheet contacts in the extended arrays.« less
Axisymmetry breaking instabilities of natural convection in a vertical bridgman growth configuration
NASA Astrophysics Data System (ADS)
Gelfgat, A. Yu.; Bar-Yoseph, P. Z.; Solan, A.
2000-12-01
A study of the three-dimensional axisymmetry-breaking instability of an axisymmetric convective flow associated with crystal growth from bulk of melt is presented. Convection in a vertical cylinder with a parabolic temperature profile on the sidewall is considered as a representative model. The main objective is the calculation of critical parameters corresponding to a transition from the steady axisymmetric to the three-dimensional non-axisymmetric (steady or oscillatory) flow pattern. A parametric study of the dependence of the critical Grashof number Gr cr on the Prandtl number 0⩽Pr⩽0.05 (characteristic for semiconductor melts) and the aspect ratio of the cylinder 1⩽ A⩽4 ( A=height/radius) is carried out. The stability diagram Grcr(Pr, A) corresponding to the axisymmetric — three-dimensional transition is reported for the first time. The calculations are done using the spectral Galerkin method allowing an effective and accurate three-dimensional stability analysis. It is shown that the axisymmetric flow in relatively low cylinders tends to be oscillatory unstable, while in tall cylinders the instability sets in due to a steady bifurcation caused by the Rayleigh-Benard mechanism. The calculated neutral curves are non-monotonous and contain hysteresis loops. The strong dependence of the critical Grashof number and the azimuthal periodicity of the resulting three-dimensional flow indicate the importance of a comprehensive parametric stability analysis in different crystal growth configurations. In particular, it is shown that the first instability of the flow considered is always three-dimensional.
NASA Astrophysics Data System (ADS)
Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.
2018-07-01
Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.
Watanabe, Toshiki; Omata, Sadao; Odamura, Motoki; Okada, Masahumi; Nakamura, Yoshihiko; Yokoyama, Hitoshi
2006-11-01
This study aimed to evaluate our newly developed 3-dimensional digital motion-capture and reconstruction system in an animal experiment setting and to characterize quantitatively the three regional cardiac surface motions, in the left anterior descending artery, right coronary artery, and left circumflex artery, before and after stabilization using a stabilizer. Six pigs underwent a full sternotomy. Three tiny metallic markers (diameter 2 mm) coated with a reflective material were attached on three regional cardiac surfaces (left anterior descending, right coronary, and left circumflex coronary artery regions). These markers were captured by two high-speed digital video cameras (955 frames per second) as 2-dimensional coordinates and reconstructed to 3-dimensional data points (about 480 xyz-position data per second) by a newly developed computer program. The remaining motion after stabilization ranged from 0.4 to 1.01 mm at the left anterior descending, 0.91 to 1.52 mm at the right coronary artery, and 0.53 to 1.14 mm at the left circumflex regions. Significant differences before and after stabilization were evaluated in maximum moving velocity (left anterior descending 456.7 +/- 178.7 vs 306.5 +/- 207.4 mm/s; right coronary artery 574.9 +/- 161.7 vs 446.9 +/- 170.7 mm/s; left circumflex 578.7 +/- 226.7 vs 398.9 +/- 192.6 mm/s; P < .0001) and maximum acceleration (left anterior descending 238.8 +/- 137.4 vs 169.4 +/- 132.7 m/s2; right coronary artery 315.0 +/- 123.9 vs 242.9 +/- 120.6 m/s2; left circumflex 307.9 +/- 151.0 vs 217.2 +/- 132.3 m/s2; P < .0001). This system is useful for a precise quantification of the heart surface movement. This helps us better understand the complexity of the heart, its motion, and the need for developing a better stabilizer for beating heart surgery.
Tseng, I-Hsiang; Tsai, Mei-Hui; Chung, Chi-Wei
2014-08-13
Unique two-dimensional alumina nanosheets (Alns) using graphene oxide (GO) as templates are fabricated and successfully incorporated with organo-soluble polyimide (PI) to obtain highly transparent PI nanocomposite films with improved moisture barrier property. The effects of filler types and contents on water vapor transmission rate (WVTR) and transparency of PI are systematically studied. The hydroxyl groups on GO react with aluminum isopropoxide via sol-gel process to obtain alumina coverd-GO (Al-GO), and then thermal decomposition is applied to obtain Alns. Alns are the most efficient fillers among others to restrict the diffusion of water vapor within PI matrix and simultaneously maintain the transparency of PI. XRD pattern, TEM, and AFM images confirm the sheet-like morphology of Alns with ultrahigh aspect ratio. With only 0.01 wt % of Alns, the PI nanocomposite film exhibits the most significant reduction of 95% in WVTR as compared to that of pure PI film. Most importantly, the resultant PI/Alns-0.01 film exhibits excellent optical transparency and high mechanical strength and great thermal stability.
Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Jun; Kong, Lirong; Shen, Xiaoping; Chen, Quanrun; Ji, Zhenyuan; Wang, Jiheng; Xu, Keqiang; Zhu, Guoxing
2018-01-01
Three-dimensional (3D) graphene aerogel and its composite with interconnected pores have aroused continuous interests in energy storage field owning to its large surface area and hierarchical pore structure. Herein, we reported the preparation of 3D nitrogen-doped graphene/polyaniline (N-GE/PANI) composite foam for supercapacitive material with greatly improved electrochemical performance. The 3D porous structure can allow the penetration and diffusion of electrolyte, the incorporation of nitrogen doping can enhance the wettability of the active material and the number of active sites with electrolyte, and both the N-GE and PANI can ensure the high electrical conductivity of total electrode. Moreover, the synergistic effect between N-GE and PANI materials also play an important role on the electrochemical performance of electrode. Therefore, the as-prepared composite foam could deliver a high specific capacitance of 528 F g-1 at 0.1 A g-1 and a high cyclic stability with 95.9% capacitance retention after 5000 charge-discharge cycles. This study provides a new idea on improving the energy storage capacity of supercapacitors by using 3D graphene-based psedocapacitive electrode materials.
Tejo, Sampath Kumar; Kumar, Anil G; Kattimani, Vivekanand S; Desai, Priti D; Nalla, Sandeep; Chaitanya K, Krishna
2012-10-05
The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient's diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study.A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers' instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey's Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis.
2012-01-01
Background The introduction of different interocclusal recording materials has put clinicians in dilemma that which material should be used in routine clinical practice for precise recording and transferring of accurate existing occlusal records for articulation of patient’s diagnostic or working casts in the fabrication of good satisfactory prosthesis. In the era of developing world of dentistry the different materials are introduced for interocclusal record with different brand names because of this; the utility of the material is confusing for successful delivery of prosthesis with lack of in vitro or in vivo studies which will predict the property of the material with utility recommendations. Purpose of the study The aim of this multicenter research is to evaluate the time dependent linear dimensional stability of three types of interocclusal recording materials; which gives very clear idea to clinicians in regard to its usage in routine practice and recommendations for usage of the different materials. Also to find out ideal time for articulation of three types of interocclusal recording materials with accuracy. Materials and method Commercially available and ADA approved Polyether bite registration paste (Ramitec), Poly vinyl siloxane bite registration paste (Jetbite) and Zinc oxide eugenol (ZOE) bite registration paste (Super bite) were used in the study. A stainless steel die was made according to modified American dental Associations (ADA) specification no. 19. Each one of the tested materials were manipulated according to manufacturers’ instructions. The materials separated from die, 3-mins after their respective setting time, resulted in disks of standard diameter. Two parallel lines and three perpendicular lines reproduced on the surface. The distance between two parallel lines was measured at different time intervals i.e. 1 hour, 24, 48 and 72 hours by using travelling microscope (magnus) and compared with standard die measurements made according to ADA specification no.19 to find out the dimensional stability of these interocclusal recording materials. Total 120 samples were made for observation and results were subjected to statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and then Tukey’s Honestly Significant Difference (HSD) test for comparison among groups at the 0.05 level of significance. After statistical analysis of the data, results were obtained and analyzed for interpretation. Results The results shows significant difference between the dimensional stability of all three material at different intervals with p-value <0.05. Comparatively the polyether bite registration material showed less distortion with good dimensional stability compared to Poly vinyl siloxane bite (Jetbite), Zinc oxide eugenol(ZOE) bite (Super bite) at 1 hour, 24, 48, and 72 hours. Conclusion The dimensional stability decreased with increase in time and is influenced by both material factor and time factor. Polyether was found to be more dimensionally stable interocclusal recording material, which was followed by Silicone and Zinc oxide eugenol (ZOE). The dimensional stability of Polyether was good. Zinc oxide eugenol is dimensionally more unstable when compared with polyether and polyvinyl siloxane. We recommend that the polyether interocclusal records must be articulated within 48 hours and Polyvinylsiloxane interocclusal records must be articulated within 24 hours and the ZOE should be articulated within 1 hour to get a correct restoration to have very minimum distortion and maximum satisfaction without failure of prosthesis. PMID:23039395
The use of multi-dimensional flow and morphodynamic models for restoration design analysis
NASA Astrophysics Data System (ADS)
McDonald, R.; Nelson, J. M.
2013-12-01
River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to guide design elements and how this method can point out potential stability problems or other risks before designs proceed to the construction phase.
Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Masad, Jamal A.
1996-01-01
The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.
Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3
NASA Astrophysics Data System (ADS)
Correia, Simão; Figueira, Mário
2018-03-01
We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.
NASA Technical Reports Server (NTRS)
Sankar, S.; Livas, J.
2016-01-01
We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.
Huygens' inspired multi-pendulum setups: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hoogeboom, F. N.; Pogromsky, A. Y.; Nijmeijer, H.
2016-11-01
This paper examines synchronization of a set of metronomes placed on a lightweight foam platform. Two configurations of the set of metronomes are considered: a row setup containing one-dimensional coupling and a cross setup containing two-dimensional coupling. Depending on the configuration and coupling between the metronomes, i.e., the platform parameters, in- and/or anti-phase synchronized behavior is observed in the experiments. To explain this behavior, mathematical models of a metronome and experimental setups have been derived and used in a local stability analysis. It is numerically and experimentally demonstrated that varying the coupling parameters for both configurations has a significant influence on the stability of the synchronized solutions.
Modeling and Analysis of Large Amplitude Flight Maneuvers
NASA Technical Reports Server (NTRS)
Anderson, Mark R.
2004-01-01
Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.
Viscous, resistive MHD stability computed by spectral techniques
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
Stability of squashed Kaluza-Klein black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Masashi; Ishihara, Hideki; Murata, Keiju
2008-03-15
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1){approx_equal}U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Kleinmore » black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.« less
Calorimetric Determination of Thermodynamic Stability of MAX and MXene Phases
Sharma, Geetu; Naguib, Michael; Feng, Dawei; ...
2016-11-19
MXenes are layered two dimensional materials with exciting properties useful to a wide range of energy applications. They are derived from ceramics (MAX phases) by leaching and their properties reflect their resulting complex compositions which include intercalating cations and anions and water. Their thermodynamic stability is likely linked to these functional groups but has not yet been addressed by quantitative experimental measurements. We report enthalpies of formation from the elements at 25 °C measured using high temperature oxide melt solution calorimetry for a layered Ti-Al-C MAX phase, and the corresponding Ti-C based MXene. The thermodynamic stability of the Ti 3Cmore » 2T x MXene (Tx stands for anionic surface moieties, and intercalated cations) was assessed by calculating the enthalpy of reaction of the MAX phase (ideal composition Ti 3AlC 2) to form MXene, The very exothermic enthalpy of reaction confirms the stability of MXene in an aqueous environment. The surface terminations (O, OH and F) and cations (Li) chemisorbed on the surface and intercalated in the interlayers play a major role in the thermodynamic stabilization of MXene. These findings help to understand and potentially improve properties and performance by characterizing the energetics of species binding to MXene surfaces during synthesis and in energy storage, water desalination and other applications.« less
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
Thombre, Ram; Kubasad, Girish
2012-01-01
PURPOSE To compare the effect of sodium hypochlorite and microwave disinfection on the dimensional stability of denture bases without and with relining. MATERIALS AND METHODS A brass die was prepared by simulating an edentulous maxillary arch. It was used to fabricate 1.5 mm and 3 mm of thickness denture bases (n = 40). The 1.5 mm of thickness-specimens (n = 20) were relined with 1.5 mm of autopolymerizing relining resin. Five holes were prepared over crest of ridge of brass die with intimately fitting stainless steel pins which were transferred to the intaglio surface of specimens during fabrication of denture bases. For calculation of dimensional changes in denture bases, differences between the baseline area before and after disinfection of the specimens were used. The denture bases without and with relining were divided into 2 groups (each n = 20). Data were analyzed using student paired 't' and unpaired 't' test. RESULTS Microwave disinfection produces significant shrinkage in both denture bases without relining (t = 17.16; P<.001) and with relining (t = 14.9; P<.001). Denture bases without relining showed more shrinkage when compared with relined denture bases after microwave disinfection (t = 6.09; P<.001). The changes in dimensional stability after sodium hypochlorite disinfection were not significant for both denture bases without relining (t = 2.19; P=.056) and denture bases with relining (t = 2.17; P=.058). CONCLUSION Microwave disinfection leads to increased shrinkage of denture bases without and with relining. Chemical disinfection with sodium hypochlorite seems to be a safer method of disinfection with regards to physical properties such as changes in dimensional stability. PMID:22439097
Nassar, Usama; Chow, Ava K
2015-08-01
This study investigated the surface detail reproduction and dimensional stability of a vinyl polyether silicone (VPES) in comparison to a vinylpolysiloxane (VPS) material as a function of prolonged storage for up to 2 weeks. Heavy-body VPES (EXA'lence(TM) Fast Set) and VPS (Imprint(TM) 3 Quick Step) were compared. Forty impression ingots of each material were made using a stainless steel die as described by ANSI/ADA specification No. 19. Twenty impressions of each material were disinfected by immersion in a 2.5% buffered glutaraldehyde solution. Surface quality was assessed and scored immediately after making the ingots. Dimensional stability measurements were made immediately and repeated on the same ingots after 7 and 14 days storage in ambient laboratory conditions. Data were analyzed using the D'Agostino and Pearson omnibus normality test followed by two-way repeated measures ANOVA with post hoc Bonferroni tests. Values of p < 0.01 were deemed to be significant. Disinfected VPES and VPS specimens had significantly reduced dimensional changes at 7 and 14 days when compared with the nondisinfected ones (p < 0.0001). The dimensional stability of both materials was within ANSI/ADA specification No. 19's acceptable limit throughout the 2-week test period, regardless of whether they were disinfected. Out of the initial 80 ingots, 8 VPES and 1 VPS ingot scored a 2 on the surface detail test, while the remaining 71 ingots scored 1. Heavy-body fast-set VPES experienced minimal contraction in vitro after prolonged storage, though surface detail scores were not as consistent as those of the VPS tested. The least contraction occurred when the material was examined immediately after ingot production. © 2014 by the American College of Prosthodontists.
Bommert, Andrea; Rahnenführer, Jörg; Lang, Michel
2017-01-01
Finding a good predictive model for a high-dimensional data set can be challenging. For genetic data, it is not only important to find a model with high predictive accuracy, but it is also important that this model uses only few features and that the selection of these features is stable. This is because, in bioinformatics, the models are used not only for prediction but also for drawing biological conclusions which makes the interpretability and reliability of the model crucial. We suggest using three target criteria when fitting a predictive model to a high-dimensional data set: the classification accuracy, the stability of the feature selection, and the number of chosen features. As it is unclear which measure is best for evaluating the stability, we first compare a variety of stability measures. We conclude that the Pearson correlation has the best theoretical and empirical properties. Also, we find that for the stability assessment behaviour it is most important that a measure contains a correction for chance or large numbers of chosen features. Then, we analyse Pareto fronts and conclude that it is possible to find models with a stable selection of few features without losing much predictive accuracy.
Jujare, Ravikanth Haridas; Varghese, Rana Kalappattil; Singh, Vishwa Deepak; Gaurav, Amit
2016-01-01
Introduction Dental professionals are exposed to a wide variety of microorganisms which calls for use of effective infection control procedures in the dental office and laboratories that can prevent cross-contamination that could extend to dentists, dental office staff, dental technicians as well as patients. This concern has led to a renewed interest in denture sterilization and disinfection. Heat polymerized dentures exhibit dimensional change during disinfection procedure. Aim The purpose of this study was to determine the influence of different types of widely used laboratory disinfecting agents on the dimensional stability of heat-cured denture acrylic resins and to compare the dimensional stability of three commercially available heat-cured denture acrylic resins in India. Materials and Methods Twelve specimens of uniform dimension each of three different brands namely Stellon, Trevalon and Acralyn-H were prepared using circular metal disc. Chemical disinfectants namely 2% alkaline glutaraldehyde, 1% povidone-iodine, 0.5% sodium hypochlorite and water as control group were used. Diameter of each specimen was measured before immersion and after immersion with time interval of 1 hour and 12 hours. The data was evaluated statistically using one way analysis of variance. Results All the specimens in three disinfectants and in water exhibited very small amount of linear expansion. Among three disinfectants, specimens in 2% alkaline glutaraldehyde exhibited least(0.005mm) and water showed highest (0.009mm) amount of dimensional change. Among resins, Trevalon showed least (0.067mm) and Acralyn-H exhibited highest (0.110mm) amount of dimensional change. Conclusion Although, all the specimens of three different brands of heat-cured denture acrylic resins exhibited increase in linear dimensional change in all the disinfectants and water, they were found to be statistically insignificant. PMID:27134996
Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong
2012-03-01
To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1985-01-01
A three-dimensional, linear stability analysis of a baroclinic flow for Richardson number, Ri, of order unity is presented. The model considered is a thin horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the complete set of governing, nonlinear equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in a closed form. The stability analysis is also based on the complete set of equations; and perturbation possessing zonal, meridional, and vertical structures were considered. Numerical methods were developed for the stability problem which results in a stiff, eighth-order, ordinary differential eigenvalue problem. The previous work on three-dimensional baroclinic instability for small Ri was extended to a more realistic model involving the Prandtl number, sigma, and the Ekman number, E, and to finite growth rates and a wider range of the zonal wavenumber.
Enhanced Stability of Lithium Metal Anode by using a 3D Porous Nickel Substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lu; Canfield, Nathan L.; Chen, Shuru
Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated thatmore » the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.« less
Enhanced Stability of Li Metal Anode by using a 3D Porous Nickel Substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lu; Canfield, Nathan L.; Chen, Shuru
2018-03-02
Lithium (Li) metal is considered the “holy grail” anode for high energy density batteries, but its applications in rechargeable Li metal batteries are still hindered by the formation of Li dendrites and low Coulombic efficiency for Li plating/stripping. An effective strategy to stabilize Li metal is by embedding Li metal anode in a three-dimensional (3D) current collector. Here, a highly porous 3D Ni substrate is reported to effectively stabilize Li metal anode. Using galvanostatic intermittent titration technique combined with scanning electron microscopy, the underlying mechanism on the improved stability of Li metal anode is revealed. It is clearly demonstrated thatmore » the use of porous 3D Ni substrate can effectively suppress the formation of “dead” Li and forms a dense surface layer, whereas a porous “dead” Li layer is accumulated on the 2D Li metal which eventually leads to mass transport limitations. X-ray photoelectron spectroscopy results further revealed the compositional differences in the solid-electrolyte interphase layer formed on the Li metal embedded in porous 3D Ni substrate and the 2D copper substrate.« less
NASA Astrophysics Data System (ADS)
Ni, Lubin; Zhang, Wang; Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming; Piao, Yuanzhe; Diao, Guowang
2017-02-01
Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. This study shed new lights to the construction of three dimensional self-assembled graphene materials and their urgent applications in energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuandong; Liu, Kewei; Zhu, Yu
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
Sun, Yuandong; Liu, Kewei; Zhu, Yu
2017-07-31
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
NASA Astrophysics Data System (ADS)
Zhou, Yi; Tang, Yan; Deng, Qinyuan; Liu, Junbo; Wang, Jian; Zhao, Lixin
2017-08-01
Dimensional metrology for micro structure plays an important role in addressing quality issues and observing the performance of micro-fabricated products. In white light interferometry, the proposed method is expected to measure three-dimensional topography through modulation depth in spatial frequency domain. A normalized modulation depth is first obtained in the xy plane (image plane) for each CCD image individually. After that, the modulation depth of each pixel is analyzed along the scanning direction (z-axis) to reshape the topography of micro samples. Owing to the characteristics of modulation depth in broadband light interferometry, the method could effectively suppress the negative influences caused by light fluctuations and external irradiance disturbance. Both theory and experiments are elaborated in detail to verify that the modulation depth-based method can greatly level up the stability and sensitivity with satisfied precision in the measurement system. This technique can achieve an improved robustness in a complex measurement environment with the potential to be applied in online topography measurement such as chemistry and medical domains.
NASA Astrophysics Data System (ADS)
Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie; Li, Qingbiao; Li, Guoqing; Zhang, Guoliang
2015-10-01
Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu2O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu2O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu2O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu2O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Soganci, Gokce; Cinar, Duygu; Caglar, Alper; Yagiz, Ayberk
2018-05-31
The aim of this study was to determine and compare the dimensional changes of polyether and vinyl polyether siloxane impression materials under immersion disinfection with two different disinfectants in three time periods. Impressions were obtained from an edentulous master model. Sodium hypochlorite (5.25%) and glutaraldehyde (2%) were used for disinfection and measurements were done 30 min later after making impression before disinfection, after required disinfection period (10 min), and after 24 h storage at room temperature. Impressions were scanned using 3D scanner with 10 microns accuracy and 3D software was used to evaluate the dimensional changes with superimpositioning. Positive and negative deviations were calculated and compared with master model. There was no significant difference between two elastomeric impression materials (p>0.05). It was concluded that dimensional accuracy and stability of two impression materials were excellent and similar.
Conducting linear chains of sulphur inside carbon nanotubes
Fujimori, Toshihiko; Morelos-Gómez, Aarón; Zhu, Zhen; Muramatsu, Hiroyuki; Futamura, Ryusuke; Urita, Koki; Terrones, Mauricio; Hayashi, Takuya; Endo, Morinobu; Young Hong, Sang; Chul Choi, Young; Tománek, David; Kaneko, Katsumi
2013-01-01
Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (~800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ~450–650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ~90 GPa to become metallic. PMID:23851903
Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E
2010-01-01
Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.
2007-03-01
Finite -dimensional regulators for a class of infinite dimensional systems ,” Systems and Control Letters, 3 (1983), 7-12. [11] B...semiglobal stabilizability by encoded state feedback,” to appear in Systems and Control Letters. 22 29. C. De Persis, A. Isidori, “Global stabilization of...nonequilibrium setting, for both finite and infinite dimensional control systems . Our objectives for distributed parameter systems included
Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.
2018-01-01
The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258
Aldalbahi, Ali; Rahaman, Mostafizur; Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N
2018-01-01
The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.
Dazard, Jean-Eudes; Rao, J Sunil
2012-07-01
The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.
Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data
Dazard, Jean-Eudes; Rao, J. Sunil
2012-01-01
The paper addresses a common problem in the analysis of high-dimensional high-throughput “omics” data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel “similarity statistic”-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called ‘MVR’ (‘Mean-Variance Regularization’), downloadable from the CRAN website. PMID:22711950
NASA Astrophysics Data System (ADS)
Kocaefe, Duygu; Saha, Sudeshna
2012-04-01
High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and chain scission of Csbnd N of urethane linkages.
Development of processing techniques for advanced thermal protection materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna S.
1995-01-01
The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.
Materials for interocclusal records and their ability to reproduce a 3-dimensional jaw relationship.
Ockert-Eriksson, G; Eriksson, A; Lockowandt, P; Eriksson, O
2000-01-01
The purpose of this study was to determine if accuracy and dimensional stability of vinyl polysiloxanes and irreversible hydrocolloids stabilized by a tray used for fixed prosthodontics, removable partial, and complete denture cases are comparable to those of waxes and record rims and if storage time (24 hours or 6 days) affects dimensional stability of the tested materials. Two waxes, two record rims, three vinyl polysiloxanes, and one irreversible hydrocolloid (alginate) were examined. Three pairs of master casts with measuring steel rods were mounted on an articulator (initial position). Five records were made of each material, and the upper cast was remounted after 24 hours or 6 days so that deviations from the initial position could be measured. Vinyl polysiloxanes reinforced by a stabilization tray were the most accurate materials able to reproduce a settled interocclusal position. Mounting casts (fixed prosthodontics cases) without records gave accuracy similar to wax records. Record rims used for removable partial and complete denture cases produced lesser accuracy than vinyl polysiloxanes and irreversible hydrocolloid stabilized by a tray. Accuracy was not significantly affected by storage time. The results show that accuracy of vinyl polysiloxanes and irreversible hydrocolloids reinforced by a tray is superior to that of record rims with regard to the complete denture case and is among the most accurate with regard to the removable partial denture case. For fixed prosthodontics, however, reinforcement is unnecessary.
Two-dimensional imaging of gas temperature and concentration based on hyperspectral tomography
NASA Astrophysics Data System (ADS)
Xin, Ming-yuan; Jin, Xing; Wang, Guang-yu; Song, Junling
2016-10-01
Two-dimensional imaging of gas temperature and concentration is realized by hyperspectral tomography, which has the characteristics of using multi-wavelengths absorption spectral information, so that the imaging could be accomplished in a small number of projections and viewing angles. A temperature and concentration model is established to simulate the combustion conditions and a total number of 10 near-infrared absorption spectral information of H2O is used. An improved simulated annealing algorithm by adjusting search step is performed the main search algorithm for the tomography. By adding random errors into the absorption area information, the stability of the algorithm is tested, and the results are compared with the reconstructions provided by algebraic reconstruction technique which takes advantage of 2 spectral information contents in imaging. The results show that the two methods perform equivalent in low-level noise environment, but at high-level, hyperspectral tomography turns out to be more stable.
The evolution of image-guided lumbosacral spine surgery.
Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C
2015-04-01
Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.
Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors.
Jiang, Lili; Ren, Zhifeng; Chen, Shuo; Zhang, Qinyong; Lu, Xiong; Zhang, Hongping; Wan, Guojiang
2018-03-13
This paper reports a novel loofah-derived hierarchical scaffold to obtain three-dimensional biocarbon-graphene-TiO 2 (BC-G-TiO 2 ) composite materials as electrodes for supercapacitors. The loofah scaffold was first loaded with G and TiO 2 by immersing, squeezing, and loosening into the mixed solution of graphene oxide and titania, and then carbonized at 900 °C to form the BC-G-TiO 2 composite. The synergistic effects of the naturally hierarchical biocarbon structure, graphene, and TiO 2 nanoparticles on the electrochemical properties are analyzed. The biocarbon provides a high interconnection and an easy accessibility surface for the electrolyte. Graphene bridged the BC and TiO 2 nanoparticles, improved the conductivity of the BC-G-TiO 2 composite, and increased the electron transfer efficiency. TiO 2 nanoparticles also contributed to the pesudocapacitance and electrochemical stability.
Humbird, David; Trendewicz, Anna; Braun, Robert; ...
2017-01-12
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
[Degenerative adult scoliosis].
García-Ramos, C L; Obil-Chavarría, C A; Zárate-Kalfópulos, B; Rosales-Olivares, L M; Alpizar-Aguirre, A; Reyes-Sánchez, A A
2015-01-01
Adult scoliosis is a complex three-dimensional rotational deformity of the spine, resulting from the progressive degeneration of the vertebral elements in middle age, in a previously straight spine; a Cobb angle greater than 10° in the coronal plane, which also alters the sagittal and axial planes. It originates an asymmetrical degenerative disc and facet joint, creating asymmetrical loads and subsequently deformity. The main symptom is axial, radicular pain and neurological deficit. Conservative treatment includes drugs and physical therapy. The epidural injections and facet for selectively blocking nerve roots improves short-term pain. Surgical treatment is reserved for patients with intractable pain, radiculopathy and/ or neurological deficits. There is no consensus for surgical indications, however, it must have a clear understanding of the symptoms and clinical signs. The goal of surgery is to decompress neural elements with restoration, modification of the three-dimensional shape deformity and stabilize the coronal and sagittal balance.
Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
NASA Astrophysics Data System (ADS)
Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang
2013-12-01
Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbird, David; Trendewicz, Anna; Braun, Robert
A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less
Sousa-Neto, M D; Guimarães, L F; Saquy, P C; Pécora, J D
1999-07-01
In the present study, we investigated the effect of the addition of different grades of gum rosins and hydrogenated resins to Grossman cement on dimensional stability, solubility and disintegration. pH and conductivity, which may affect these properties, were also determined. The experiments were performed according to Specification 57 of the American Dental Association for root canal cements using Grossman cements containing three gum rosins (grades X, WW, and WG) and two hydrogenated resins (Staybelite and Staybelite ester 10). The results showed that the solubility, disintegration, and dimensional stability of Grossman cement containing Staybelite and Staybelite ester 10 were inferior to the values considered acceptable by the American Dental Association Specification 57.
The exponential behavior and stabilizability of the stochastic magnetohydrodynamic equations
NASA Astrophysics Data System (ADS)
Wang, Huaqiao
2018-06-01
This paper studies the two-dimensional stochastic magnetohydrodynamic equations which are used to describe the turbulent flows in magnetohydrodynamics. The exponential behavior and the exponential mean square stability of the weak solutions are proved by the application of energy method. Furthermore, we establish the pathwise exponential stability by using the exponential mean square stability. When the stochastic perturbations satisfy certain additional hypotheses, we can also obtain pathwise exponential stability results without using the mean square stability.
Song, Yunna; Li, Yuehai; Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning
2018-04-01
In the article, graphene oxide (GO) was prepared by flake graphite, nitric acid and peroxyacetic acid via the sonochemical method and characterized, and polyvinyl alcohol carbonate/GO composite (PVAC/GO composite) was synthesized by polyvinyl alcohol (PVA), dimethyl carbonate (DMC) and GO via the approach of transesterification in the case of ultrasonic-microwave synergistic effects and characterized, and three-dimensional PVAC/GO sponge (3D PVAC/GO sponge) was manufactured by PVAC/GO composite via the foaming approach and characterized, and the thermal stability and surface resistivity of 3D PVAC/GO sponge were investigated. Based on those, it had been attested that PVAC polymer was structured by DMC and PVA and had the six-membered lactone rings and the ether bonds, and PVAC/GO composite was constituted by 2D GO lattice and PVAC polymer, and 3D PVAC/GO sponge was constructed by PVAC/GO composite, and the surface resistivity of 3D PVAC/GO sponge with 0.00, 0.60, 1.20, 1.80 and 2.40 g of GO were 9.07 × 10 7 , 6.02 × 10 7 , 4.65 × 10 7 , 2.47 × 10 7 and 1.06 × 107 O/sq, and the thermal stability of 3D PVAC/GO sponge had improved. Copyright © 2017 Elsevier B.V. All rights reserved.
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Doping-stabilized two-dimensional black phosphorus.
Xuan, Xiaoyu; Zhang, Zhuhua; Guo, Wanlin
2018-05-03
Two-dimensional (2D) black phosphorus (BP) has attracted broad interests but remains to be synthesized. One of the issues lies in its large number of 2D allotropes with highly degenerate energies, especially 2D blue phosphorus. Here, we show that both nitrogen and hole-carrier doping can lift the energy degeneracy and locate 2D BP in a deep global energy minimum, while arsenic doping favours the formation of 2D blue phosphorus, attributed to a delicate interplay between s-p overlapping and repulsion of lone pairs. Chemically inert substrates, e.g. graphene and hexagonal boron nitride, can be synergic with carrier doping to stabilize the BP further over other 2D allotropes, while frequently used metal substrates severely reduce the stability of 2D BP. These results not only offer new insight into the structural stability of 2D phosphorus but also suggest a promising pathway towards the chemical synthesis of 2D BP.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Evans, K. S.
1974-01-01
The three dimensional equations of motion for a cable connected space station--counterweight system are developed using a Lagrangian formulation. The system model employed allows for cable and end body damping and restoring effects. The equations are then linearized about the equilibrium motion and nondimensionalized. To first degree, the out-of-plane equations uncouple from the inplane equations. Therefore, the characteristic polynomials for the in-plane and out-of-plane equations are developed and treated separately. From the general in-plane characteristic equation, necessary conditions for stability are obtained. The Routh-Hurwitz necessary and sufficient conditions for stability are derived for the general out-of-plane characteristic equation. Special cases of the in-plane and out-of-plane equations (such as identical end masses, and when the cable is attached to the centers of mass of the two end bodies) are then examined for stability criteria.
NASA Astrophysics Data System (ADS)
Wang, Lanning; Chen, Weimin; Li, Lizhen
2017-06-01
This paper is concerned with the problems of dissipative stability analysis and control of the two-dimensional (2-D) Fornasini-Marchesini local state-space (FM LSS) model. Based on the characteristics of the system model, a novel definition of 2-D FM LSS (Q, S, R)-α-dissipativity is given first, and then a sufficient condition in terms of linear matrix inequality (LMI) is proposed to guarantee the asymptotical stability and 2-D (Q, S, R)-α-dissipativity of the systems. As its special cases, 2-D passivity performance and 2-D H∞ performance are also discussed. Furthermore, by use of this dissipative stability condition and projection lemma technique, 2-D (Q, S, R)-α-dissipative state-feedback control problem is solved as well. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
On the Asymptotic Stability of Steady Flows with Nonzero Flux in Two-Dimensional Exterior Domains
NASA Astrophysics Data System (ADS)
Guillod, Julien
2017-05-01
The Navier-Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2-perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically decaying flux carrier with flux {| Φ | < 2 π} and a small subcritically decaying term. Under the central symmetry assumption, the general hypothesis is also proven for any critically decaying steady solutions under a suitable smallness condition.
Three-dimensional phase-field simulations of directional solidification
NASA Astrophysics Data System (ADS)
Plapp, Mathis
2007-05-01
The phase-field method has become the method of choice for simulating microstructural pattern formation during solidification. One of its main advantages is that time-dependent three-dimensional simulations become feasible, which makes it possible to address long-standing questions of pattern stability and pattern selection. Here, a brief introduction to the phase-field model and its implementation is given, and its capabilities are illustrated by examples taken from the directional solidification of binary alloys. In particular, the morphological stability of hexagonal cellular arrays and of eutectic lamellar patterns is investigated.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1983-01-01
This report documents the results of a dimensional stability analysis of seventeen stepped specimens that were used in the evaluation of factors influencing warpage in metallic alloys being used for cryogenic wind tunnel models. Specimens used in the analysis were manufactured from 18Ni 200 Grade Maaraging steel, PH13-8Mo, and A-286 stainless steel. Quantitative data are provided on the behavior of the specimens due to the effects of both machining and cryogenic cycling effects.
Dimensional-stability studies of candidate space-telescope mirror-substrate materials
NASA Technical Reports Server (NTRS)
Jerke, J. M.; Platt, R. J., Jr.
1972-01-01
The effects of aging, vacuum exposure, and thermal cycling on the dimensional stability of mirror-substrate materials, fused silica, Cer-Vit, Kanigen-coated beryllium, polycrystalline silicon, and U.L.E. fused silica were investigated. A multiple-beam interferometer was used to determine nonrecoverable surface-shape changes of the 12.7-cm-diameter mirrors with substrates of these materials. Thermal cycling and aging in vacuum produced the largest changes, but only a few were as large as 1/30 wavelength, where the wavelength was 632.8 nm.
Adaptive Discontinuous Evolution Galerkin Method for Dry Atmospheric Flow
2013-04-02
standard one-dimensional approximate Riemann solver used for the flux integration demonstrate better stability, accuracy as well as reliability of the...discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the standard one-dimensional approximate Riemann solver used...instead of a standard one- dimensional approximate Riemann solver , the flux integration within the discontinuous Galerkin method is now realized by
The stability to two-dimensional wakes and shear layers at high Mach numbers
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.
1991-01-01
This study is concerned with the stability properties of laminar free-shear-layer flows, and in particular symmetric two-dimensional wakes, for the supersonic through the hypersonic regimes. Emphasis is given to the use of proper wake profiles that satisfy the equations of motion at high Reynolds numbers. In particular the inviscid stability of a developing two-dimensional wake is studied as it accelerates at the trailing edge of a splitter plate. The nonparallelism of the flow is a leading-order effect in the calculation of the basic state, which is obtained numerically. Neutral stability characteristics are computed and the hypersonic stability is obtained by increasing the Mach number. It is found that the stability characteristics are altered significantly as the wake develops. Multiple modes (secondary modes) are found in the near wake that are closely related to the corresponding Blasius ones, but as the wake develops mode multiplicity is delayed to higher and higher Mach numbers. At a distance of about one plate length from the trailing edge, there is only one mode in a Mach number range of 0-20. The dominant mode emerging at all wake stations, and for high enough Mach numbers, is the so-called vorticity mode that is centered around the generalized inflection point layer. The structure of the dominant mode is also obtained analytically for all streamwise wake locations and it is shown how the far-wake limit is approached. Asymptotic results for the hypersonic mixing layer given by a tanh and a Lock distribution are also given.
Dimensional stability of concrete slabs on grade.
DOT National Transportation Integrated Search
2012-10-01
Drying shrinkage is one of the major causes of cracking in concrete slabs on grade. The moisture : difference between the top and bottom surface of the slabs causes a dimensional or shrinkage gradient : to develop through the depth of the slabs...
Templated Sphere Phase Liquid Crystals for Tunable Random Lasing
Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang
2017-01-01
A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283
Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases
NASA Astrophysics Data System (ADS)
Vriend, Gert; Eijsink, Vincent
1993-08-01
Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability of the NP by a large amount are located in a relatively weak region (or more precisely, they affect a local unfolding pathway with a relatively low free energy of activation). One weak region, that is supposedly important in the early steps of NP unfolding, has been determined in the NP of B. stearothermophilus. After eliminating this weakest link a drastic increase in thermostability was observed and the search for the second-weakest link, or the second-lowest energy local unfolding pathway is now in progress. Hopefully, this approach can be used to unravel the entire early phase of unfolding.
Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei
2016-02-07
In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-01-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Lee, Hyunjoon; Lim, Taeho; Kim, Hyun-Jong; Kwon, Oh Joong
2017-10-01
With emerging stability issues in fuel cell technology, a non-conventional catalyst not supported on carbon materials has been highlighted because it can avoid negative influences of carbon support materials on the stability, such as carbon corrosion. The nanostructured thin film catalyst is representative of non-conventional catalysts, which shows improved stability, enhanced mass specific activity, and fast mass transfer at high current densities. However, the nanostructured thin film catalyst usually requires multi-step processes for fabrication, making its mass production complex and irreproducible. We introduce a Pt-Cu alloy nanostructured thin film catalyst, which can be simply prepared by electrodeposition. By using hydrogen bubbles as a template, a three-dimensional free-standing foam of Cu was electrodeposited directly on the micro-porous layer/carbon paper and it was then displaced with Pt by simple immersion. The structure characterization revealed that a porous thin Pt-Cu alloy catalyst layer was successfully formed on the micro-porous layer/carbon paper. The synthesized Pt-Cu alloy catalyst exhibited superior durability compared to a conventional Pt/C in single cell test.
Joint evolution of multiple social traits: a kin selection analysis
Brown, Sam P.; Taylor, Peter D.
2010-01-01
General models of the evolution of cooperation, altruism and other social behaviours have focused almost entirely on single traits, whereas it is clear that social traits commonly interact. We develop a general kin-selection framework for the evolution of social behaviours in multiple dimensions. We show that whenever there are interactions among social traits new behaviours can emerge that are not predicted by one-dimensional analyses. For example, a prohibitively costly cooperative trait can ultimately be favoured owing to initial evolution in other (cheaper) social traits that in turn change the cost–benefit ratio of the original trait. To understand these behaviours, we use a two-dimensional stability criterion that can be viewed as an extension of Hamilton's rule. Our principal example is the social dilemma posed by, first, the construction and, second, the exploitation of a shared public good. We find that, contrary to the separate one-dimensional analyses, evolutionary feedback between the two traits can cause an increase in the equilibrium level of selfish exploitation with increasing relatedness, while both social (production plus exploitation) and asocial (neither) strategies can be locally stable. Our results demonstrate the importance of emergent stability properties of multidimensional social dilemmas, as one-dimensional stability in all component dimensions can conceal multidimensional instability. PMID:19828549
Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza
2014-11-01
Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey's post-hoc test (P<0.05). Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates.
Fan, Yi; Huang, Ming-Wei; Zheng, Lei; Zhao, Yi-Jiao; Zhang, Jian-Guo
2015-11-24
To evaluate seed stability after permanent implantation in the parotid gland and periparotid region via a three-dimensional reconstruction of CT data. Fifteen patients treated from June 2008 to June 2012 at Peking University School and Hospital of Stomatology for parotid gland tumors with postoperative adjunctive (125)I interstitial brachytherapy were retrospectively reviewed in this study. Serial CT data were obtained during follow-up. Mimics and Geomagic Studio software were used for seed reconstruction and stability analysis, respectively. Seed loss and/or migration outside of the treated area were absent in all patients during follow-up (23-71 months). Total seed cluster volume was maximized on day 1 post-implantation due to edema and decreased significantly by an average of 13.5 % (SD = 9.80 %; 95 % CI, 6.82-17.68 %) during the first two months and an average of 4.5 % (SD = 3.60 %; 95 % CI, 2.29-6.29 %) during the next four months. Volume stabilized over the subsequent six months. (125)I seed number and location were stable with a general volumetric shrinkage tendency in the parotid gland and periparotid region. Three-dimensional seed reconstruction of CT images is feasible for visualization and verification of implanted seeds in parotid brachytherapy.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad
2016-01-01
Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad
2016-01-01
This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions.
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; ...
2017-08-30
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; Mao, Lingling; Spanopoulos, Ioannis; Liu, Jian; Kontsevoi, Oleg Y.; Chen, Michelle; Sarma, Debajit; Zhang, Yongbo; Wasielewski, Michael R.; Kanatzidis, Mercouri G.
2017-01-01
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI3. The three-dimensional ASnI3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI3−xBrx. We show that en can serve as a new A cation capable of achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells. PMID:28875173
Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.
2003-01-01
This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.
HDMR methods to assess reliability in slope stability analyses
NASA Astrophysics Data System (ADS)
Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna
2014-05-01
Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky-soil masses) resulting in sliding mechanisms have been investigated in this study. The reliability indices values drawn from the HDRM method have been compared with conventional approaches as neural networks: the efficiency of HDRM is shown in the case studied. References Chowdhury R., Rao B.N. and Prasad A.M. 2009. High-dimensional model representation for structural reliability analysis. Commun. Numer. Meth. Engng, 25: 301-337. Chowdhury R. and Rao B. 2010. Probabilistic Stability Assessment of Slopes Using High Dimensional Model Representation. Computers and Geotechnics, 37: 876-884.
Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional
NASA Astrophysics Data System (ADS)
Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi
2017-11-01
Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.
CFRP Dimensional Stability Investigations for Use on the LISA Mission Telescope
NASA Technical Reports Server (NTRS)
Sanjuan, J.; Korytov, D.; Spector, A.; Mueller, G.; Preston, A.; Livas, J.; Freise, A.; Dixon, G.
2011-01-01
The Laser Interferometer Space Antenna (LISA) is a mission designed to detect low frequency gravitational-waves. In order for LISA to succeed in its goal of direct measurement of gravitational waves, many subsystems must work together to measure the distance between proof masses on adjacent spacecraft. One such subsystem, the telescope, plays a critical role as it is the laser transmission and reception link between spacecraft. Not only must the material that makes up the telescope support structure be strong, stiff and light, but it must have a dimensional stability of better than 1 pm Hz(exp -1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micron over the mission lifetime. CFRP is the current baseline materiaL however, it has not been tested to the pico-meter level as required by the LISA mission. In this paper we present dimensional stability results, outgassing effects occurring in the cavity and discuss its feasibility for use as the telescope spacer for the LISA spacecraft.
Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus
NASA Astrophysics Data System (ADS)
Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas
2017-11-01
Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.
Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control
NASA Astrophysics Data System (ADS)
Varan, Metin; Akgul, Akif
2018-04-01
In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.
NASA Astrophysics Data System (ADS)
Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang
2016-01-01
Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h
Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport
NASA Astrophysics Data System (ADS)
Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.
2011-12-01
Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.
Controller Synthesis for Periodically Forced Chaotic Systems
NASA Astrophysics Data System (ADS)
Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo
Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.
Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen
2015-07-01
In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times. Electronic supplementary information (ESI) available: SEM images of the twist-first hybrid fiber, TEM images of SWCNT/PEDOT hybrid bundles, Raman spectra and FTIR spectra of the hybrid electrodes, CVs of the pristine, bended and wound supercapacitor, transmittance spectra of the pristine and stretched supercapacitor, demo video of the supercapacitor. See DOI: 10.1039/c5nr03027g
NASA Technical Reports Server (NTRS)
Bristow, D. R.; Grose, G. G.
1978-01-01
The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral
2002-01-01
An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.
Observations of two-dimensional monolayer zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com; Nayak, Sanjeev K.; Chelliah, Pandian
2016-03-15
Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. Themore » study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.« less
NASA Astrophysics Data System (ADS)
Yang, Dan; Ni, Wei; Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun; Zhang, Yun; Wu, Hao; Li, Xiaodong; Wang, Bin
2017-08-01
Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li-S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li+ ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g-1 at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg-1 and power density of 1901 Wh kg-1, which greatly improve the energy/power density of traditional lithium-sulfur batteries and will be promising for further commercial applications.
NASA Astrophysics Data System (ADS)
Hou, Peng-Fei; Zhang, Yang
2017-09-01
Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.
NASA Astrophysics Data System (ADS)
Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.
2011-10-01
Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).
A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades
NASA Technical Reports Server (NTRS)
McCarthy, Thomas Robert
1996-01-01
A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2002-01-01
Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.
Xu, Jiawei; Xu, Chen; Mao, Yuanqing; Zhang, Jincheng; Li, Huiwu; Zhu, Zhenan
2016-06-01
We sought to evaluate posterosuperior placement of the acetabular component at the true acetabulum during acetabular reconstruction in patients with Crowe type-IV developmental dysplasia of the hip. Using pelvic computed tomography and image processing, we developed a two-dimensional mapping technique to demonstrate the distribution of preoperative three-dimensional cup coverage at the true acetabulum, determined the postoperative location of the acetabular cup, and calculated postoperative three-dimensional coverage for 16 Crowe type-IV dysplastic hips in 14 patients with a mean age of 52 years (33-78 years) who underwent total hip arthroplasty. Mean follow-up was 6.3 years (5.5-7.3 years). On preoperative mapping, the maximum three-dimensional coverage using a 44-mm cup was 87.31% (77.36%-98.14%). Mapping enabled the successful replacement of 16 hips using a mean cup size of 44.13 mm (42-46 mm) with posterosuperior placement of the cup. Early weight-bearing and no prosthesis revision or loosening during follow-up were achieved in all patients. The postoperative two-dimensional coverage on anteroposterior radiographs and three-dimensional coverage were 96.15% (89.49%-100%) and 83.42% (71.81%-98.50%), respectively. This technique may improve long-term implant survival in patients with Crowe-IV developmental dysplasia of the hip undergoing total hip arthroplasty by allowing the use of durable bearings, increasing host bone coverage, ensuring initial stability, and restoring the normal hip center. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei
2017-10-19
An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.
The edge of supersymmetry: Stability walls in heterotic theory
Anderson, Lara B.; Gray, James; Lukas, Andre; ...
2009-05-15
We explicitly describe, in the language of four-dimensional N = 1 supersymmetric field theory, what happens when the moduli of a heterotic Calabi-Yau compactification change so as to make the internal non-Abelian gauge fields non-supersymmetric. At the edge of the region in Kähler moduli space where supersymmetry can be preserved, an additional anomalous U(1) gauge symmetry appears in the four-dimensional theory. The D-term contribution to the scalar potential associated to this U(1) attempts to force the system back into a supersymmetric configuration and provides a consistent low-energy description of gauge bundle stability.
The stochastic energy-Casimir method
NASA Astrophysics Data System (ADS)
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Stochastic Stabilityfor Contracting Lorenz Maps and Flows
NASA Astrophysics Data System (ADS)
Metzger, R. J.
In a previous work [M], we proved the existence of absolutely continuous invariant measures for contracting Lorenz-like maps, and constructed Sinai-Ruelle-Bowen measures f or the flows that generate them. Here, we prove stochastic stability for such one-dimensional maps and use this result to prove that the corresponding flows generating these maps are stochastically stable under small diffusion-type perturbations, even though, as shown by Rovella [Ro], they are persistent only in a measure theoretical sense in a parameter space. For the one-dimensional maps we also prove strong stochastic stability in the sense of Baladi and Viana[BV].
THE FUEL ELEMENT GRAPHITE. Project DRAGON.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, L.W.; Price, M.S.T.
1963-01-15
The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Odonnell, Timothy P. (Inventor); Hsieh, Cheng H. (Inventor)
1994-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Hsieh, Cheng H. (Inventor); Odonnell, Timothy P. (Inventor)
1995-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Li, Lin-an; Wang, Teng; Wang, Yi
2018-05-01
We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.
Siren, J; Ovaskainen, O; Merilä, J
2017-10-01
The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.
Dimensional stability in composite cone beam computed tomography
Kopp, S; Ottl, P
2010-01-01
An automated increase in the field of view (FOV) for multipurpose cone beam CT (CBCT) by “stitching” (joining) up to three component volumes to yield a larger composite volume must still ensure dimensional stability, especially if the image is to form the basis for a surgical splint. Dimensional stability, image discrepancies and the influence of movement artefacts between exposures were evaluated. The first consumer installation of the Kodak 9000 three-dimensional (3D) extraoral imaging system with stitching software was used for the evaluation of a human mandible with three endodontic instruments as markers. The distances between several reproducible points were measured directly and the results compared with the values measured on screen. Displacements of the mandible along all axes between exposures as well as angular displacements were conducted to test the capability of the system. The standard deviations (SD) of the results for the vertical distances varied between 0.212 mm and 0.409 mm (approximately 1–2 voxels; range, 0.6–1.3 mm) and may be considered the systematic error. The SD of the results for the horizontal and diagonal distances varied between 0.195 mm and 0.571 mm (approximately 1–3 voxels; range, 0.6–1.7 mm) if the group with overall horizontal angulations of 10° and a central rotation of 20° was omitted. In conclusion, the evaluated stitching software is a useful tool to expand the options of combined CBCT with an initial small FOV by allowing a merger of up to three component volumes to yield a larger FOV of about 80 × 80 × 37 mm. The dimensional stability was acceptable when seen in relation to the induced disturbance. Further evaluation of this composite CBCT/digital imaging and communications in medicine system for subsequent splint fabrication may yield promising results. PMID:21062945
Routh's algorithm - A centennial survey
NASA Technical Reports Server (NTRS)
Barnett, S.; Siljak, D. D.
1977-01-01
One hundred years have passed since the publication of Routh's fundamental work on determining the stability of constant linear systems. The paper presents an outline of the algorithm and considers such aspects of it as the distribution of zeros and applications of it that relate to the greatest common divisor, the abscissa of stability, continued fractions, canonical forms, the nonnegativity of polynomials and polynomial matrices, the absolute stability, optimality and passivity of dynamic systems, and the stability of two-dimensional circuits.
Li, Na; Fan, Xialian; Tang, Keyong; Zheng, Xuejing; Liu, Jie; Wang, Baoshi
2016-04-01
In this study, three-dimensional (3D) nanocomposite scaffolds, as potential substrates for skin tissue engineering, were fabricated by freeze drying the mixture of type I collagen extracted from porcine skin and polyvinyl pyrrolidone (PVP)-coated titanium dioxide (TiO2) nanoparticles. This procedure was performed without any cross-linker or toxic reagents to generate porosity in the scaffold. Both morphology and thermal stability of the nanocomposite scaffold were examined. The swelling behavior, mechanical properties and hydrolytic degradation of the composite scaffolds were carefully investigated. Our results revealed that collagen, PVP and TiO2 are bonded together by four main hydrogen bonds, which is an essential action for the formation of nanocomposite scaffold. Using Coasts-Redfern model, we were able to calculate the thermal degradation apparent activation energy and demonstrated that the thermal stability of nanocomposites is dependent on amount of PVP incorporated. Furthermore, SEM images showed that the collagen fibers are wrapped and stabilized on scaffolds by PVP molecules, which improve the ultimate tensile strength (UTS). The UTS of PVP-contained scaffold is four times higher than that of scaffold without PVP, whereas ultimate percentage of elongation (UPE) is decreased, and PVP can enhance the degradation resistance. Copyright © 2015 Elsevier B.V. All rights reserved.
Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.
Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz
2017-10-09
Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asymptotic analysis of stability for prismatic solids under axial loads
NASA Astrophysics Data System (ADS)
Scherzinger, W.; Triantafyllidis, N.
1998-06-01
This work addresses the stability of axially loaded prismatic beams with any simply connected crosssection. The solids obey a general class of rate-independent constitutive laws, and can sustain finite strains in either compression or tension. The proposed method is based on multiple scale asymptotic analysis, and starts with the full Lagrangian formulation for the three-dimensional stability problem, where the boundary conditions are chosen to avoid the formation of boundary layers. The calculations proceed by taking the limit of the beam's slenderness parameter, ɛ (ɛ 2 ≡ area/length 2), going to zero, thus resulting in asymptotic expressions for the critical loads and modes. The analysis presents a consistent and unified treatment for both compressive (buckling) and tensile (necking) instabilities, and is carried out explicitly up to o( ɛ4) in each case. The present method circumvents the standard structural mechanics approach for the stability problem of beams which requires the choice of displacement and stress field approximations in order to construct a nonlinear beam theory. Moreover, this work provides a consistent way to calculate the effect of the beam's slenderness on the critical load and mode to any order of accuracy required. In contrast, engineering theories give accurately the lowest order terms ( O( ɛ2)—Euler load—in compression or O(1)—maximum load—in tension) but give only approximately the next higher order terms, with the exception of simple section geometries where exact stability results are available. The proposed method is used to calculate the critical loads and eigenmodes for bars of several different cross-sections (circular, square, cruciform and L-shaped). Elastic beams are considered in compression and elastoplastic beams are considered in tension. The O( ɛ2) and O( ɛ4) asymptotic results are compared to the exact finite element calculations for the corresponding three-dimensional prismatic solids. The O( ɛ4) results give significant improvement over the O( ɛ2) results, even for extremely stubby beams, and in particular for the case of cross-sections with commensurate dimensions.
Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns
NASA Astrophysics Data System (ADS)
Konishi, Keiji; Hara, Naoyuki
2018-05-01
This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.
Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.
2016-01-01
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067
Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels
2011-06-01
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Hu, Nantao; Zhang, Liling; Yang, Chao; ...
2016-01-22
Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less
Dukes, Madeline J.; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Jerome, W. Gray; de Jonge, Niels
2011-01-01
Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3 nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under the electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells. PMID:21440635
Plasma-enhanced atomic layer deposition for plasmonic TiN
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Hammack, Aaron T.; Aloni, Shaul; Ogletree, D. Frank; Olynick, Deirdre L.; Dhuey, Scott; Stadler, Bethanie J. H.; Schwartzberg, Adam M.
2016-09-01
This work presents the low temperature plasma-enhanced atomic layer deposition (PE-ALD) of TiN, a promising plasmonic synthetic metal. The plasmonics community has immediate needs for alternatives to traditional plasmonic materials (e.g. Ag and Au), which lack chemical, thermal, and mechanical stability. Plasmonic alloys and synthetic metals have significantly improved stability, but their growth can require high-temperatures (>400 °C), and it is difficult to control the thickness and directionality of the resulting film, especially on technologically important substrates. Such issues prevent the application of alternative plasmonic materials for both fundamental studies and large-scale industrial applications. Alternatively, PE-ALD allows for conformal deposition on a variety of substrates with consistent material properties. This conformal coating will allow the creation of exotic three-dimensional structures, and low-temperature deposition techniques will provide unrestricted usage across a variety of platforms. The characterization of this new plasmonic material was performed with in-situ spectroscopic ellipsometry as well as Auger electron spectroscopy for analysis of TiN film sensitivity to oxide cross-contamination. Plasmonic TiN films were fabricated, and a chlorine plasma etch was found to pattern two dimensional gratings as a test structure. Optical measurements of 900 nm period gratings showed reasonable agreement with theoretical modeling of the fabricated structures, indicating that ellipsometry models of the TiN were indeed accurate.
In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing flui...
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
Uncontrolled Stability in Freely Flying Insects
NASA Astrophysics Data System (ADS)
Melfi, James, Jr.; Wang, Z. Jane
2015-11-01
One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.
Pukrop, R; Gentil, I; Steinbring, I; Steinmeyer, E
2001-10-01
The Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ) assesses 18 traits to provide a systematic representation of the overall domain of personality disorders. We tested the cross-cultural stability of the prediction that four higher-order factors (Emotional Dysregulation, Dissocial Behavior, Inhibitedness, and Compulsivity) underlie the 18 basic traits. A total of 81 patients who were primarily treated for an Axis II personality disorder and N = 166 healthy control patients completed the German version of the DAPP-BQ. Results clearly confirmed cross-cultural stability of the postulated four-factor structure in both samples, accounting for 74.7% (clinical sample), and 65.7% (nonclinical sample) of the total variance. All four higher-order factors showed specific correlational relationships with dimensional assessments of DSM-IV personality disorders.
Adiabatic Invariant Approach to Transverse Instability: Landau Dynamics of Soliton Filaments.
Kevrekidis, P G; Wang, Wenlong; Carretero-González, R; Frantzeskakis, D J
2017-06-16
Consider a lower-dimensional solitonic structure embedded in a higher-dimensional space, e.g., a 1D dark soliton embedded in 2D space, a ring dark soliton in 2D space, a spherical shell soliton in 3D space, etc. By extending the Landau dynamics approach [Phys. Rev. Lett. 93, 240403 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.240403], we show that it is possible to capture the transverse dynamical modes (the "Kelvin modes") of the undulation of this "soliton filament" within the higher-dimensional space. These are the transverse stability or instability modes and are the ones potentially responsible for the breakup of the soliton into structures such as vortices, vortex rings, etc. We present the theory and case examples in 2D and 3D, corroborating the results by numerical stability and dynamical computations.
Three-dimensional baroclinic instability of a Hadley cell for small Richardson number
NASA Technical Reports Server (NTRS)
Antar, B. N.; Fowlis, W. W.
1983-01-01
For the case of a baroclinic flow whose Richardson number, Ri, is of order unity, a three-dimensional linear stability analysis is conducted on the basis of a model for a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The Hadley cell basic state and stability analysis are both based on the Navier-Stokes and energy equations, and perturbations possessing zonal, meridional, and vertical structures are considered. An attempt is made to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl and Ekman numbers, as well as to finite growth rates and a wider range of the zonal wavenumber. In general, it is found that the symmetric modes of maximum growth are not purely symmetric, but have a weak zonal structure.
Rohanian, Ahmad; Ommati Shabestari, Ghasem; Zeighami, Somayeh; Samadi, Mohammad Javad; Shamshiri, Ahmad Reza
2014-01-01
Objectives: Some manufacturers claim to have produced new irreversible hydro-colloids that are able to maintain their dimensional stability during storage. The present study evaluated the effect of storage time on dimensional stability of three alginates: Hydrogum 5, Tropicalgin and Alginoplast. Materials and Methods: In this experimental in-vitro trial, a total of 90 alginate impressions were made from a Dentoform model using Hydrogum 5, Tropicalgin and Alginoplast alginates. The impressions were stored in a sealed plastic bag without a damp paper towel for 0, 24, 48, 72 and 120 hours and then poured with type III dental stone. Cross-arch (facial of 6 to facial of 6 on the opposite side) and antero-posterior (distal of right first molar to the ipsilateral central incisor) measurements were made with a digital caliper on the casts. Data were analyzed by two-way and one-way ANOVA and Tukey’s post-hoc test (P<0.05). Results: Alginate type and the pouring time significantly affected the dimensional stability of alginate impressions (both Ps<0.001). Pouring of Hydrogum 5 impressions can be delayed for up to 120 hours without significant dimensional changes. Alginoplast impressions may be poured after 72 hours, but Tropicalgin should be poured immediately and the storage time should not be more than 24 hours. Conclusion: Immediate pouring of alginate impressions provides the highest accuracy in reproducing the teeth and adjacent tissues; however, this study demonstrated that pouring may be delayed for up to five days using extended-pour (Hydrogum 5) alginates. PMID:25628695
Nassar, Usama; Flores-Mir, Carlos; Heo, Giseon; Torrealba, Ysidora
2017-06-01
Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at α = 0.05. The discs mean contraction was below 0.5% at all test times ranging from 0.200 ± 0.014 to 0.325 ± 0.007. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups ( P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong
2015-07-29
The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. Themore » higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.« less
Luo, Yuting; Li, Xu; Cai, Xingke; Zou, Xiaolong; Kang, Feiyu; Cheng, Hui-Ming; Liu, Bilu
2018-05-22
The development of abundant and cheap electrocatalysts for the hydrogen evolution reaction (HER) has attracted increasing attention over recent years. However, to achieve low-cost HER electrocatalysis, especially in alkaline media, is still a big challenge due to the sluggish water dissociation kinetics as well as the poor long-term stability of catalysts. In this paper we report the design and synthesis of a two-dimensional (2D) MoS 2 confined Co(OH) 2 nanoparticle electrocatalyst, which accelerates water dissociation and exhibits good durability in alkaline solutions, leading to significant improvement in HER performance. A two-step method was used to synthesize the electrocatalyst, starting with the lithium intercalation of exfoliated MoS 2 nanosheets followed by Co 2+ exchange in alkaline media to form MoS 2 intercalated with Co(OH) 2 nanoparticles (denoted Co-Ex-MoS 2 ), which was fully characterized by spectroscopic studies. Electrochemical tests indicated that the electrocatalyst exhibits superior HER activity and excellent stability, with an onset overpotential and Tafel slope as low as 15 mV and 53 mV dec -1 , respectively, which are among the best values reported so far for the Pt-free HER in alkaline media. Furthermore, density functional theory calculations show that the cojoint roles of Co(OH) 2 nanoparticles and MoS 2 nanosheets result in the excellent activity of the Co-Ex-MoS 2 electrocatalyst, and the good stability is attributed to the confinement of the Co(OH) 2 nanoparticles. This work provides an imporant strategy for designing HER electrocatalysts in alkaline solutions, and can, in principle, be expanded to other materials besides the Co(OH) 2 and MoS 2 used here.
Chien, Po-Hsiu; Feng, Xuyong; Tang, Mingxue; Rosenberg, Jens T; O'Neill, Sean; Zheng, Jin; Grant, Samuel C; Hu, Yan-Yan
2018-04-19
All-solid-state rechargeable batteries embody the promise for high energy density, increased stability, and improved safety. However, their success is impeded by high resistance for mass and charge transfer at electrode-electrolyte interfaces. Li deficiency has been proposed as a major culprit for interfacial resistance, yet experimental evidence is elusive due to the challenges associated with noninvasively probing the Li distribution in solid electrolytes. In this Letter, three-dimensional 7 Li magnetic resonance imaging (MRI) is employed to examine Li distribution homogeneity in solid electrolyte Li 10 GeP 2 S 12 within symmetric Li/Li 10 GeP 2 S 12 /Li batteries. 7 Li MRI and the derived histograms reveal Li depletion from the electrode-electrolyte interfaces and increased heterogeneity of Li distribution upon electrochemical cycling. Significant Li loss at interfaces is mitigated via facile modification with a poly(ethylene oxide)/bis(trifluoromethane)sulfonimide Li salt thin film. This study demonstrates a powerful tool for noninvasively monitoring the Li distribution at the interfaces and in the bulk of all-solid-state batteries as well as a convenient strategy for improving interfacial stability.
Yu, Yue
2016-01-01
Recently, biosensors have been widely used for the detection of bacteria, viruses and other toxins. Electrodes, as commonly used transducers, are a vital part of electrochemical biosensors. The coverage of the droplets can change significantly based on the hydrophobicity of the microelectrode surface materials. In the present research, screen-printed interdigitated microelectrodes (SPIMs), as one type of planar microelectrode, were applied to investigate the influence of droplet coverage on electrochemical response. Furthermore, three dimensional (3D) printing technology was employed to print smart devices with different diameters based on the nesting concept. Theoretical explanations were proposed to elucidate the influence of the droplet coverage on the electrochemical response. 3D-printed ring devices were used to incubate the SPIMs and the analytical performances of the SPIMs were tested. According to the results obtained, our device successfully improved the stability of the signal responses and eliminated irregular signal changes to a large extent. Our proposed method based on the nesting concept provides a promising method for the fabrication of stable electrochemical biosensors. We also introduced two types of electrode bases to improve the signal stability. PMID:27635356
Luo, Yan; Li, Jiao; Huang, Jianguo
2016-11-29
A new bioinspired hierarchical nanofibrous silver-nanoparticle/anatase-rutile-titania (Ag-NP/A-R-titania) composite was fabricated by employing a natural cellulose substance (e.g., commercial laboratory cellulose filter paper) as the structural scaffold template, which was composed of anatase-phase titania (A-titania) nanotubes with rutile-phase titania (R-titania) nanoneedles grown on the surfaces and further silver nanoparticles (AgNPs) immobilized thereon. As it was employed as an anode material for lithium-ion batteries (LIBs), high reversible capacity, enhanced rate performance, and excellent cycling stability were achieved as compared with those of the corresponding cellulose-substance-derived nanotubular A-titania, R-titania, heterogeneous anatase/rutile titania (A-R-titania) composite, and commercial P25 powder. This benefited from its unique porous cross-linked three-dimensional structure inherited from the initial cellulose substance scaffold, which enhances the sufficient electrode/electrolyte contact, relieves the severe volume change upon cycling, and improves the amount of lithium-ion storage; moreover, the high loading content of the silver component in the composite improves the electrical conductivity of the electrode. The structural integrity of the composite was maintained upon long-term charge/discharge cycling, indicating its significant stability.
Hot Electrons Regain Coherence in Semiconducting Nanowires
NASA Astrophysics Data System (ADS)
Reiner, Jonathan; Nayak, Abhay Kumar; Avraham, Nurit; Norris, Andrew; Yan, Binghai; Fulga, Ion Cosma; Kang, Jung-Hyun; Karzig, Toesten; Shtrikman, Hadas; Beidenkopf, Haim
2017-04-01
The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves nonmonotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Pèrot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.
R. Sam Williams; Regis Miller; John Gangstad
2001-01-01
Ten tropical hardwoods from Bolivia were evaluated for weathering performance (erosion rate, dimensional stability, warping, surface checking, and splitting). The wood species were Amburana cearensis (roble), Anadenanthera macrocarpa (curupau), Aspidosperma cylindrocarpon (jichituriqui), Astronium urundeuva (cuchi), Caesalpinia cf. pluviosa (momoqui), Diplotropis...
Nonlinear stability of Taylor's vortex array
NASA Technical Reports Server (NTRS)
Lin, S. P.; Tobak, M.
1987-01-01
It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.
Behavioral Dimensions in One-Year-Olds and Dimensional Stability in Infancy.
ERIC Educational Resources Information Center
Hagekull, Berit; And Others
1980-01-01
The dimensional structure of infants' behavioral repertoire was shown to be highly stable over 3 to 15 months of age. Factor analysis of parent questionnaire data produced seven factors named Intensity/Activity, Regularity, Approach-Withdrawal, Sensory Sensitivity, Attentiveness, Manageability and Sensitivity to New Food. An eighth factor,…
Discrete elliptic solitons in two-dimensional waveguide arrays
NASA Astrophysics Data System (ADS)
Ye, Fangwei; Dong, Liangwei; Wang, Jiandong; Cai, Tian; Li, Yong-Ping
2005-04-01
The fundamental properties of discrete elliptic solitons (DESs) in the two-dimensional waveguide arrays were studied. The DESs show nontrivial spatial structures in their parameters space due to the introduction of the new freedom of ellipticity, and their stability is closely linked to their propagation directions in the transverse plane.
The stability of full dimensional KAM tori for nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Cong, Hongzi; Liu, Jianjun; Shi, Yunfeng; Yuan, Xiaoping
2018-04-01
In this paper, it is proved that the full dimensional invariant tori obtained by Bourgain [J. Funct. Anal., 229 (2005), no. 1, 62-94] is stable in a very long time for 1D nonlinear Schrödinger equation with periodic boundary conditions.
Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices
NASA Astrophysics Data System (ADS)
da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro
2010-10-01
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
NASA Astrophysics Data System (ADS)
Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.
2016-05-01
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
Real-time simulation of large-scale floods
NASA Astrophysics Data System (ADS)
Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.
2016-08-01
According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave
NASA Astrophysics Data System (ADS)
Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai
Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.
On l(1): Optimal decentralized performance
NASA Technical Reports Server (NTRS)
Sourlas, Dennis; Manousiouthakis, Vasilios
1993-01-01
In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.
A new approach to simulating collisionless dark matter fluids
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Abel, Tom; Kaehler, Ralf
2013-09-01
Recently, we have shown how current cosmological N-body codes already follow the fine grained phase-space information of the dark matter fluid. Using a tetrahedral tessellation of the three-dimensional manifold that describes perfectly cold fluids in six-dimensional phase space, the phase-space distribution function can be followed throughout the simulation. This allows one to project the distribution function into configuration space to obtain highly accurate densities, velocities and velocity dispersions. Here, we exploit this technique to show first steps on how to devise an improved particle-mesh technique. At its heart, the new method thus relies on a piecewise linear approximation of the phase-space distribution function rather than the usual particle discretization. We use pseudo-particles that approximate the masses of the tetrahedral cells up to quadrupolar order as the locations for cloud-in-cell (CIC) deposit instead of the particle locations themselves as in standard CIC deposit. We demonstrate that this modification already gives much improved stability and more accurate dynamics of the collisionless dark matter fluid at high force and low mass resolution. We demonstrate the validity and advantages of this method with various test problems as well as hot/warm dark matter simulations which have been known to exhibit artificial fragmentation. This completely unphysical behaviour is much reduced in the new approach. The current limitations of our approach are discussed in detail and future improvements are outlined.
Guo, Qi; Shen, Shu-Ting
2016-04-29
There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations. The derivative of the reproducing kernel function is a wavelet function, which has local properties and sensitivities to singularity. Therefore, study on the application of reproducing kernel would be advantageous. Applying new mathematical theory to the numerical solution of the ventricular muscle model so as to improve its precision in comparison with other methods at present. A two-dimensional reproducing kernel function inspace is constructed and applied in computing the solution of two-dimensional cardiac tissue model by means of the difference method through time and the reproducing kernel method through space. Compared with other methods, this method holds several advantages such as high accuracy in computing solutions, insensitivity to different time steps and a slow propagation speed of error. It is suitable for disorderly scattered node systems without meshing, and can arbitrarily change the location and density of the solution on different time layers. The reproducing kernel method has higher solution accuracy and stability in the solutions of the two-dimensional cardiac tissue model.
Design of a probe for two-dimensional small angle detection
NASA Astrophysics Data System (ADS)
He, Haixia; Wang, Xuanze; Zhong, Yuning; Yang, Liangen; Cao, Hongduan
2008-10-01
A novel two-dimensional small angle probe is introduced, which is based on principle of auto-collimation and utilizes quadrant Si-photoelectric detector (QPD) as detection device. AC modulation, AC magnification and absolute value demodulation are incorporated to restrain the DC excursion caused by background light and noise etc and to improve the sensitivity and stability of angle detection. To ensure that while the laser is shining, the current signal (converted into voltage signal) of QPD also is linear to the AC modulation voltage, this paper adopted AC modulation signal (5400Hz) with a DC offset. AC magnification circuit with reasonable parameters is designed to inhibit DC drift and the impact of industrial frequency noise and to ensure good amplification to signal frequency at the same time. A piezoelectric-driven micro-angle generator is designed to demarcate the angle. The calibration data are input to single chip, and the measurement of angles can be shown in SMC1602A.
A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Zhengju; Hu, Yanjie; Jiang, Hao; Li, Chunzhong
2014-01-01
A three-dimensional ordered mesoporous carbon (OMC)/carbon nanotubes (CNTs) nanocomposite is prepared via a two-step procedure. Firstly, OMC is synthesized through a co-assembly strategy associated with the incorporation of Ni nanoparticles. Then Ni nanoparticles are used as catalyst for the growth of CNTs. The introduction of CNTs into OMC can construct a 3D conductive network, greatly improving the rate performance of the nanocomposites. The nanocomposite with optimal CNTs content, when applied as supercapacitor electrodes, exhibits a high specific capacitance (338.1 F g-1 at 1 A g-1), excellent rate capability (130.2 F g-1 at 50 A g-1) and high cycling stability (91.6% capacity retention after 4000 cycles) in 6 M KOH aqueous solution. Such intriguing electrochemical performance is mainly attributed to the synergistic effects between OMC and CNTs. It is reckoned that the present 3D OMC/CNTs nanocomposite can serve as a promising electrode material for supercapacitors.
NASA Astrophysics Data System (ADS)
Liu, Runru; Wen, Dongdong; Zhang, Xueyu; Wang, Dejun; Yang, Qiang; Yuan, Beilei; Lü, Wei
2018-06-01
In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s‑1 (393 F g‑1) is higher than that of RGO/MnO2 (260 F g‑1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.
Laser Brazing with Beam Scanning: Experimental and Simulative Analysis
NASA Astrophysics Data System (ADS)
Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.
Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.
Stability analysis of unsteady ablation fronts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-08-01
The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-11-08
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Monodisperse Multidimensional Nanostructures via Centrifugal Separation
NASA Astrophysics Data System (ADS)
Shin, Yu Jin
Anisotropic nanomaterials, including zero-dimensional metallic nanoparticles (MNPs), one-dimensional single-walled carbon nanotubes (SWCNTs), and two-dimensional few-layer black phosphorous (FL-P) exhibit interesting structure-dependent properties that could be exploited in biomedicine, plasmonics, and optoelectronics. In this thesis, centrifugation sorting of these nanomaterials is utilized for structure refinement, investigation of structure-dependent optical response, and applications in biomedical imaging and plasmonics. Nobel NMPs show unique shape- and size-dependent optical properties. Controlled synthetic methods are developed to manipulate the structure of these NMPs, but intrinsically produce dispersions of polydisperse NPs with various shape and size, and synthetic byproducts. Here, we describe a facile strategy for separating small (edge length <100 nm) faceted gold NPs: rhombic dodecahedra (RD) and obtuse triangular bipyramids (BPs), which form simultaneously during synthesis but are hard to separate via commercial filters. By utilizing centrifugation of the as-synthesized mixture in a shallow density gradient centrifugation (DGC), we are able to isolate a high purity of BPs (>80%) and subsequently achieve a 2.5 fold enhancement in refractive index sensitivity, comparable to the unsorted mixture. This shallow DGC approach is robust and reliable, and therefore can be applied to other metal nanostructures for concomitant improvements in plasmonic properties and applications. Using the identical separation strategy in the previous study, we are able to enrich gold nanostars as a function of branch number. In particular, we explore different variants of density gradient media to ensure compatibility with the star shape and colloid stability. We determine that sucrose is compatible with nanostars stability and surface functionalizaton. The refined population of gold stars are functionalized with Gd(III)-DNA to act as MRI contrast agents, and thus enables us to investigate how populations of nanostars with different branch numbers contribute to the relaxivity of surface bound Gd(III)-DNA. It is shown that the increased relaxivity of DNA-Gd star is correlated with increased number of star branches, not with increased size of the stars. Therefore, shape is a new parameter which can be tuned in the design of NP-based MRI contrast agent. These findings can also improve the performance of functionalized anisotropic nanoconjugates which have potential for applications such as lowering detection limits for sensors and diagnostics, or enabling new modes of self-assembly. Finally, we have broadened the scope of DGC to other dimensional nanomaterials: 1D-SWCNTs and 2D-FL-P. Despite their tunable and structure-dependent optical properties, intrinsic structural heterogeneity and poor quantum efficiency limit their potential applications. Therefore, DGC is employed to separate the SWCNTs and FL-P by length and the number of layers, respectively, thereby incorporating them into optical cavity structures for enhancing their luminescence properties. These fundamental studies of low-dimensional nanomaterials assist in the design process for optoelectronic device fabrication.
Three-dimensional evaluation of postural stability in Parkinson's disease with mobile technology.
Ozinga, Sarah J; Koop, Mandy Miller; Linder, Susan M; Machado, Andre G; Dey, Tanujit; Alberts, Jay L
2017-01-01
Postural instability is a hallmark of Parkinson's disease. Objective metrics to characterize postural stability are necessary for the development of treatment algorithms to aid in the clinical setting. The aim of this project was to validate a mobile device platform and resultant three-dimensional balance metric that characterizes postural stability. A mobile Application was developed, in which biomechanical data from inertial sensors within a mobile device were processed to characterize movement of center of mass in the medial-lateral, anterior-posterior and trunk rotation directions. Twenty-seven individuals with Parkinson's disease and 27 age-matched controls completed various balance tasks. A postural stability metric quantifying the amplitude (peak-to-peak) of sway acceleration in each movement direction was compared between groups. The peak-to-peak value in each direction for each individual with Parkinson's disease across all trials was expressed as a normalized value of the control data to identify individuals with severe postural instability, termed Cleveland Clinic-Postural Stability Index. In all conditions, the balance metric for peak-to-peak was significantly greater in Parkinson's disease compared to controls (p < 0.01 for all tests). The balance metric, in conjunction with mobile device sensors, provides a rapid and systematic metric for quantifying postural stability in Parkinson's disease.
Spectral stability of unitary network models
NASA Astrophysics Data System (ADS)
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Stability Test for Transient-Temperature Calculations
NASA Technical Reports Server (NTRS)
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
Thermal expansion of composites: Methods and results. [large space structures
NASA Technical Reports Server (NTRS)
Bowles, D. E.; Tenney, D. R.
1981-01-01
The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.
NASA Technical Reports Server (NTRS)
Lane, Marc; Hsieh, Cheng; Adams, Lloyd
1989-01-01
In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.
The role of stabilization centers in protein thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magyar, Csaba; Gromiha, M. Michael; Sávoly, Zoltán
2016-02-26
The definition of stabilization centers was introduced almost two decades ago. They are centers of noncovalent long range interaction clusters, believed to have a role in maintaining the three-dimensional structure of proteins by preventing their decay due to their cooperative long range interactions. Here, this hypothesis is investigated from the viewpoint of thermal stability for the first time, using a large protein thermodynamics database. The positions of amino acids belonging to stabilization centers are correlated with available experimental thermodynamic data on protein thermal stability. Our analysis suggests that stabilization centers, especially solvent exposed ones, do contribute to the thermal stabilizationmore » of proteins. - Highlights: • Stabilization centers contribute to thermal stabilization of protein structures. • Stabilization center content correlates with melting temperature of proteins. • Exposed stabilization center content correlates with stability even in hyperthermophiles. • Stability changing mutations are frequently found at stabilization centers.« less
Reactivity, stability, and strength performance capacity in motor sports.
Baur, H; Müller, S; Hirschmüller, A; Huber, G; Mayer, F
2006-11-01
Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. To compare reaction time, stability performance capacity, and strength performance capacity of élite racing drivers with those of age-matched, physically active controls. Eight élite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at +30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. The reaction time of the racing drivers was significantly faster than the controls (p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p>0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved.
An algorithm for engineering regime shifts in one-dimensional dynamical systems
NASA Astrophysics Data System (ADS)
Tan, James P. L.
2018-01-01
Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.
Pal, P K; Kamble, Suresh S; Chaurasia, Ranjitkumar Rampratap; Chaurasia, Vishwajit Rampratap; Tiwari, Samarth; Bansal, Deepak
2014-06-01
The present study was done to evaluate the dimensional stability and surface quality of Type IV gypsum casts retrieved from disinfected elastomeric impression materials. In an in vitro study contaminated impression material with known bacterial species was disinfected with disinfectants followed by culturing the swab sample to assess reduction in level of bacterial colony. Changes in surface detail reproduction of impression were assessed fallowing disinfection. All the three disinfectants used in the study produced a 100% reduction in colony forming units of the test organisms. All the three disinfectants produced complete disinfection, and didn't cause any deterioration in surface detail reproduction. How to cite the article: Pal PK, Kamble SS, Chaurasia RR, Chaurasia VR, Tiwari S, Bansal D. Evaluation of dimensional stability and surface quality of type IV gypsum casts retrieved from disinfected elastomeric impression materials. J Int Oral Health 2014;6(3):77-81.
NASA Astrophysics Data System (ADS)
Enyashin, A. N.; Ivanovskii, A. L.
2013-11-01
The structural, electronic properties and stability of the new MXene compounds—two-dimensional pristine carbonitrides Ti3C2-xNx and their hydroxylated derivatives Ti3C2-xNx(OH)2 are studied by means of DFTB calculations. The genesis of the properties is discussed in the sequence: binary MXenes Ti3C2 (Ti3N2)→hydroxylated forms Ti3C2(OH)2 (Ti3N2(OH)2)→pristine MXene Ti3C2-xNx→hydroxylated Ti3C2-xNx(OH)2. All examined materials are metallic-like. The most favorable type of OH-covering is presented by the occupation of the hollow sites between three neighboring carbon (nitrogen) atoms. Two-dimensional MXene carbonitrides with random distribution of C and N atoms are found to be thermodynamically more favorable.
Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters
NASA Astrophysics Data System (ADS)
Ferrari, P.; Hussein, H. A.; Heard, C. J.; Vanbuel, J.; Johnston, R. L.; Lievens, P.; Janssens, E.
2018-05-01
We analyze in detail how the interplay between electronic structure and cluster geometry determines the stability and the fragmentation channels of single Pd-doped cationic Au clusters, PdA uN-1+ (N =2 -20 ). For this purpose, a combination of photofragmentation experiments and density functional theory calculations was employed. A remarkable agreement between the experiment and the calculations is obtained. Pd doping is found to modify the structure of the Au clusters, in particular altering the two-dimensional to three-dimensional transition size, with direct consequences on the stability of the clusters. Analysis of the electronic density of states of the clusters shows that depending on cluster size, Pd delocalizes one 4 d electron, giving an enhanced stability to PdA u6 + , or remains with all 4 d10 electrons localized, closing an electronic shell in PdA u9 + . Furthermore, it is observed that for most clusters, Au evaporation is the lowest-energy decay channel, although for some sizes Pd evaporation competes. In particular, PdA u7 + and PdA u9 + decay by Pd evaporation due to the high stability of the A u7 + and A u9 + fragmentation products.
Dynamical behavior and Jacobi stability analysis of wound strings
NASA Astrophysics Data System (ADS)
Lake, Matthew J.; Harko, Tiberiu
2016-06-01
We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.
Improved performance of InSe field-effect transistors by channel encapsulation
NASA Astrophysics Data System (ADS)
Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin
2018-06-01
Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.
Assessing the extent, stability, purity and properties of silanised detonation nanodiamond
NASA Astrophysics Data System (ADS)
Duffy, Emer; Mitev, Dimitar P.; Thickett, Stuart C.; Townsend, Ashley T.; Paull, Brett; Nesterenko, Pavel N.
2015-12-01
The functionalisation of nanodiamond is a key step in furthering its application in areas such as surface coatings, drug delivery, bio imaging and other biomedical avenues. Accordingly, analytical methods for the detailed characterisation of functionalised nano-material are of great importance. This work presents an alternative approach for the elemental analysis of zero-dimensional nanocarbons, specifically detonation nanodiamond (DND) following purification and functionalisation procedures. There is a particular emphasis on the presence of silicon, both for the purified DND and after its functionalisation with silanes. Five different silylation procedures for purified DND were explored and assessed quantitatively using inductively coupled plasma-mass spectrometry (ICP-MS) for analysis of dilute suspensions. A maximum Si loading of 29,300 μg g-1 on the DND was achieved through a combination of silylating reagents. The presence of 28 other elements in the DND materials was also quantified by ICP-MS. The characterisation of Si-bond formation was supported by FTIR and XPS evaluation of relevant functional groups. The thermal stability of the silylated DND was examined by thermogravimetric analysis. Improved particle size distribution and dispersion stability resulted from the silylation procedure, as confirmed by dynamic light scattering and capillary zone electrophoresis.
Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A
2017-04-01
To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dimensionally Stable Ether-Containing Polyimide Copolymers
NASA Technical Reports Server (NTRS)
Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.
[How to make your own custom cutting guides for both mandibular and fibular stair step osteotomies?
Rem, K; Bosc, R; De Kermadec, H; Hersant, B; Meningaud, J-P
2017-12-01
Using tailored cutting guides for osteocutaneous free fibula flap in complex mandibular reconstruction after cancer resection surgery constitutes a substantial improvement. Autonomously conceiving and manufacturing the cutting guides within a plastic surgery department with computer-aided design (CAD) and three-dimensional (3D) printing allows planning more complex osteotomies, such as stair-step osteotomies, in order to achieve more stable internal fixations. For the past three years, we have been producing by ourselves patient-tailored cutting guides using CAD and 3D printing. Osteotomies were virtually planned, making the cutting lines more complex in order to optimize the internal fixation stability. We also printed reconstructed mandible templates and shaped the reconstruction plates on them. We recorded data including manufacturing techniques and surgical outcomes. Eleven consecutive patients were operated on for an oral cavity cancer. For each patient, we planned the fibular and mandibular stair-step osteotomies and we produced tailored cutting guides. In all patients, we achieved to get immediately stable internal fixations and in 10 patients, a complete bone consolidation after 6 months. Autonomously manufacturing surgical cutting guides for mandibular reconstruction by free fibula flap is a significant improvement, regarding ergonomics and precision. Planning stair-step osteotomies to perform complementary internal fixation increases contact surface and congruence between the bone segments, thus improving the reconstructed mandible stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Fault-tolerant logical gates in quantum error-correcting codes
NASA Astrophysics Data System (ADS)
Pastawski, Fernando; Yoshida, Beni
2015-01-01
Recently, S. Bravyi and R. König [Phys. Rev. Lett. 110, 170503 (2013), 10.1103/PhysRevLett.110.170503] have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically local circuit and are thus fault tolerant by construction. In particular, they show that, for local stabilizer codes in D spatial dimensions, locality-preserving gates are restricted to a set of unitary gates known as the D th level of the Clifford hierarchy. In this paper, we explore this idea further by providing several extensions and applications of their characterization to qubit stabilizer and subsystem codes. First, we present a no-go theorem for self-correcting quantum memory. Namely, we prove that a three-dimensional stabilizer Hamiltonian with a locality-preserving implementation of a non-Clifford gate cannot have a macroscopic energy barrier. This result implies that non-Clifford gates do not admit such implementations in Haah's cubic code and Michnicki's welded code. Second, we prove that the code distance of a D -dimensional local stabilizer code with a nontrivial locality-preserving m th -level Clifford logical gate is upper bounded by O (LD +1 -m) . For codes with non-Clifford gates (m >2 ), this improves the previous best bound by S. Bravyi and B. Terhal [New. J. Phys. 11, 043029 (2009), 10.1088/1367-2630/11/4/043029]. Topological color codes, introduced by H. Bombin and M. A. Martin-Delgado [Phys. Rev. Lett. 97, 180501 (2006), 10.1103/PhysRevLett.97.180501; Phys. Rev. Lett. 98, 160502 (2007), 10.1103/PhysRevLett.98.160502; Phys. Rev. B 75, 075103 (2007), 10.1103/PhysRevB.75.075103], saturate the bound for m =D . Third, we prove that the qubit erasure threshold for codes with a nontrivial transversal m th -level Clifford logical gate is upper bounded by 1 /m . This implies that no family of fault-tolerant codes with transversal gates in increasing level of the Clifford hierarchy may exist. This result applies to arbitrary stabilizer and subsystem codes and is not restricted to geometrically local codes. Fourth, we extend the result of Bravyi and König to subsystem codes. Unlike stabilizer codes, the so-called union lemma does not apply to subsystem codes. This problem is avoided by assuming the presence of an error threshold in a subsystem code, and a conclusion analogous to that of Bravyi and König is recovered.
Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Wang, Chengtao; Sun, Baoguo
2017-08-01
The influence of calcium-induced droplet heteroaggregation on the formation and physicochemical stability of mixed lutein and DHA emulsions was studied. Heteroaggregation was induced by mixing oppositely charged lactoferrin (LF)-coated lutein and whey protein isolate (WPI)-coated DHA emulsions with different CaCl 2 concentrations at pH 6.0. The droplet size, zeta-potential, transmission-physical stability and microstructure behavior (CLSM and Cryo-SEM) of single-protein emulsions and mixed emulsions were measured as a function of different CaCl 2 concentrations. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined during storage. The physical stability of the mixed emulsions could be modulated by controlling CaCl 2 concentrations. Microstructure behavior indicated that a mixed emulsion with 30 mM CaCl 2 promoted more droplets to form a special three-dimensional network and microcluster structures. The chemical stability of the mixed lutein and DHA emulsions was obviously enhanced by the addition of 30 mM CaCl 2 . The decreased surface areas of the DHA and lutein droplets and the physical barrier of the network of heteroaggregates against transition metals and free radicals could mainly explain the improvement in chemical stability. Calcium-induced droplet aggregation may be useful for creating specific food structures that lead to desirable physicochemical properties of multiple functional components.
Flores-Mir, Carlos; Heo, Giseon; Torrealba, Ysidora
2017-01-01
PURPOSE Vinyl polyether silicone (VPES) has a different composition from other elastomeric impression materials as it combines vinyl polysiloxane (VPS) and polyether (PE). Therefore, it is important to study its properties and behavior under different test conditions. This study investigated the dimensional stability of 5 VPES consistencies when stored for up to 2 weeks, with and without using a standard disinfection procedure. MATERIALS AND METHODS 40 discs of each VPES consistency (total 200) were made using a stainless steel die and ring as described by ANSI /ADA specification No. 19. 20 discs of each material were immersed in a 2.5% buffered glutaraldehyde solution for 30 minutes. Dimensional stability measurements were calculated immediately after fabrication and repeated on the same discs after 7 and 14 days of storage. The data was analyzed using two-way ANOVA with a significance level set at α = 0.05. RESULTS The discs mean contraction was below 0.5% at all test times ranging from 0.200 ± 0.014 to 0.325 ± 0.007. Repeated measures ANOVA showed a statistically significant difference after 2-week storage between the disinfected and non-disinfected groups (P < .001). Although there was no statistically significant difference between the materials at the time of fabrication, the contraction of the materials increased with storage for 1 and 2 weeks. CONCLUSION The dimensional changes of VPES impression discs after disinfection and prolonged storage complied with ANSI/ADA standard. The tested VPES impression materials were dimensionally stable for clinical use after disinfection for 30 minutes in glutaraldehyde and storage for up to 2 weeks. PMID:28680549
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2017-03-01
In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.
Ultrastable laser array at 633 nm for real-time dimensional metrology
NASA Astrophysics Data System (ADS)
Lawall, John; Pedulla, J. Marc; Le Coq, Yann
2001-07-01
We describe a laser system for very-high-accuracy dimensional metrology. A sealed-cavity helium-neon laser is offset locked to an iodine-stabilized laser in order to realize a secondary standard with higher power and less phase noise. Synchronous averaging is employed to remove the effect of the frequency modulation present on the iodine-stabilized laser. Additional lasers are offset locked to the secondary standard for use in interferometry. All servo loops are implemented digitally. The offset-locked lasers have intrinsic linewidths of the order of 2.5 kHz and exhibit a rms deviation from the iodine-stabilized laser below 18 kHz. The amplitude noise is at the shot-noise limit for frequencies above 700 kHz. We describe and evaluate the system in detail, and include a discussion of the noise associated with various types of power supplies.
Subbarao, Udumula; Sarkar, Sumanta; Jana, Rajkumar; Bera, Sourav S; Peter, Sebastian C
2016-06-06
We conceptually selected the compounds REPb3 (RE = Eu, Yb), which are unstable in air, and converted them to the stable materials in ambient conditions by the chemical processes of "nanoparticle formation" and "dimensional reduction". The nanoparticles and the bulk counterparts were synthesized by the solvothermal and high-frequency induction furnace heating methods, respectively. The reduction of the particle size led to the valence transition of the rare earth atom, which was monitored through magnetic susceptibility and X-ray absorption near edge spectroscopy (XANES) measurements. The stability was checked by X-ray diffraction and thermogravimetric analysis over a period of seven months in oxygen and argon atmospheres and confirmed by XANES. The nanoparticles showed outstanding stability toward aerial oxidation over a period of seven months compared to the bulk counterpart, as the latter one is more prone to the oxidation within a few days.
Liu, Ya; Wang, Zhenhong
2014-05-01
In most prior research, positive affect has been consistently found to promote cognitive flexibility. However, the motivational dimensional model of affect assumes that the influence of positive affect on cognitive processes is modulated by approach-motivation intensity. In the present study, we extended the motivational dimensional model to the domain of cognitive control by examining the effect of low- versus high-approach-motivated positive affect on the balance between cognitive flexibility and stability in an attentional-set-shifting paradigm. Results showed that low-approach-motivated positive affect promoted cognitive flexibility but also caused higher distractibility, whereas high-approach-motivated positive affect enhanced perseverance but simultaneously reduced distractibility. These results suggest that the balance between cognitive flexibility and stability is modulated by the approach-motivation intensity of positive affective states. Therefore, it is essential to incorporate motivational intensity into studies on the influence of affect on cognitive control.
Takahashi, Lauren; Takahashi, Keisuke
2017-03-27
An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.
Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng
2015-04-07
One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skomoroshko, Petr V; Vilensky, Victor A; Hammouda, Ahmed I; Fletcher, Matt D A; Solomin, Leonid N
2015-04-01
The Ortho-SUV frame (OSF) is a novel hexapod circular external fixator which draws upon the innovation of the Ilizarov method and the advantages of hexapod construction in the three-dimensional control of bone segments. Stability of fixation is critical to the success or failure of an external circular fixator for fracture or osteotomy healing. In vitro biomechanical modelling study was performed comparing the stability of the OSF under load in both original form and after dynamisation to the Ilizarov fixator in all zones of the femur utilising optimal frame configuration. A superior performance of the OSF in terms of resistance to deforming forces in both original and dynamised forms over that of the original Ilizarov fixator was found. The OSF shows higher rigidity than the Ilizarov in the control of forces acting upon the femur. This suggests better stabilisation of femoral fractures and osteotomies and thus improved healing with a reduced incidence of instability-related bone segment deformity, non-union and delayed union.
Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru
2013-08-01
In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.
Vibration and flutter characteristics of the SR7L large-scale propfan
NASA Technical Reports Server (NTRS)
August, Richard; Kaza, Krishna Rao V.
1988-01-01
An investigation of the vibration characteristics and aeroelastic stability of the SR7L Large-Scale Advanced Propfan was performed using a finite element blade model and an improved aeroelasticity code. Analyses were conducted for different blade pitch angles, blade support conditions, number of blades, rotational speeds, and freestream Mach numbers. A finite element model of the blade was used to determine the blade's vibration behavior and sensitivity to support stiffness. The calculated frequencies and mode shape obtained with this model agreed well with the published experimental data. A computer code recently developed at NASA Lewis Research Center and based on three-dimensional, unsteady, lifting surface aerodynamic theory was used for the aeroelastic analysis to examine the blade's stability at a cruise condition of Mach 0.8 at 1700 rpm. The results showed that the blade is stable for that operating point. However, a flutter condition was predicted if the cruise Mach number was increased to 0.9.
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.
Korkut, Süleyman; Kök, M Samil; Korkut, Derya Sevim; Gürleyen, Tuğba
2008-04-01
Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on technological properties of Red-bud maple (Acer trautvetteri Medw.) wood were examined. Samples obtained from Düzce Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures (120 degrees C, 150 degrees C and 180 degrees C) and for varying durations (2h, 6h and 10h). The technological properties of heat-treated wood samples and control samples were tested. Compression strength parallel to grain, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength, and tension strength perpendicular to grain were determined. The results showed that technological strength values decreased with increasing treatment temperature and treatment times. Red-bud maple wood could be utilized by using proper heat treatment techniques with minimal losses in strength values in areas where working, and stability such as in window frames, are important factors.
Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production
NASA Astrophysics Data System (ADS)
Zheng, Y. C.; Yu, X. H.; Yang, J.
2017-06-01
Biodiesel has recently gained extensive attention. Catalysts play an important role in producing biodiesel by transesterification reaction. In this study, CaO-CeO2 catalysts are developed as the solid base catalyst. Using PDMS-PEO as a structure-directing agent, the prepared CaO-CeO2 catalysts have a three-dimensional interconnected porous structure, which benefits the transesterification reaction. While the added Ce slightly decreases the catalytic activity, the stability of the catalyst shows remarkable improvement. Considering the catalytic activity and stability, the best catalyst is determined to be catalyst 0.15-1073 (Ce/Ca molar ratio of 0.15 and calcination temperature of 1073 K). Under optimum reaction conditions, the biodiesel yield reaches to 97.5% and metal leaching is 117.7 ppm. For catalyst 0.15-1073 regenerated after four reaction cycles, the biodiesel yield is 94.1%. The results reveal that the CaO-CeO2 catalyst has good potential for application in large-scale biodiesel production in the future.
Grilo, Carlos M.; Shea, M. Tracie; Sanislow, Charles A.; Skodol, Andrew E.; Gunderson, John G.; Stout, Robert L.; Pagano, Maria E.; Yen, Shirley; Morey, Leslie C.; Zanarini, Mary C.; McGlashan, Thomas H.
2012-01-01
The authors examined the stability of schizotypal (STPD), borderline (BPD), avoidant (AVPD) and obsessive– compulsive (OCPD) personality disorders (PDs) over 2 years of prospective multiwave follow-up. Six hundred thirty-three participants recruited at 4 collaborating sites who met criteria for 1 or more of the 4 PDs or for major depressive disorder (MDD) without PD were assessed with semistructured interviews at baseline, 6, 12, and 24 months. Lifetable survival analyses revealed that the PD groups had slower time to remission than the MDD group. Categorically, PD remission rates range from 50% (AVPD) to 61% (STPD) for dropping below diagnostic threshold on a blind 24-month reassessment but range from 23% (STPD) to 38% (OCPD) for a more stringent definition of improvement. Dimensionally, these findings suggest that PDs may be characterized by maladaptive trait constellations that are stable in their structure (individual differences) but can change in severity or expression over time. PMID:15482035
Double-bundle ACL reconstruction can improve rotational stability.
Yagi, Masayoshi; Kuroda, Ryosuke; Nagamune, Kouki; Yoshiya, Shinichi; Kurosaka, Masahiro
2007-01-01
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228
Selective AuCl3 doping of graphene for reducing contact resistance of graphene devices
NASA Astrophysics Data System (ADS)
Choi, Dong-Chul; Kim, Minwoo; Song, Young Jae; Hussain, Sajjad; Song, Woo-Seok; An, Ki-Seok; Jung, Jongwan
2018-01-01
Low contact resistance between metal-graphene contacts remains a well-known challenge for building high-performance two dimensional materials devices. In this study, CVD-grown graphene film was doped via AuCl3 solution selectively only to metal (Ti/Au) contact area to reduce the contact resistances without compromising the channel properties of graphene. With 10 mM-AuCl3 doping, doped graphene exhibited low contact resistivity of ∼897 Ω μm, which is lower than that (∼1774 Ω μm) of the raw graphene devices. The stability of the contact resistivity in atmospheric environment was evaluated. The contact resistivity increased by 13% after 60 days in an air environment, while the sheet resistance of doped graphene increased by 50% after 30 days. The improved stability of the contact resistivity of AuCl3-doped graphene could be attributed to the fact that the surface of doped-graphene is covered by Ti/Au electrode and the metal prevents the diffusion of AuCl3.
Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C
2015-04-01
The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
Highly flexible, nonflammable and free-standing SiC nanowire paper
NASA Astrophysics Data System (ADS)
Chen, Jianjun; Liao, Xin; Wang, Mingming; Liu, Zhaoxiang; Zhang, Judong; Ding, Lijuan; Gao, Li; Li, Ye
2015-03-01
Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites.Flexible paper-like semiconductor nanowire materials are expected to meet the criteria for some emerging applications, such as components of flexible solar cells, electrical batteries, supercapacitors, nanocomposites, bendable or wearable electronic or optoelectronic components, and so on. As a new generation of wide-bandgap semiconductors and reinforcements in composites, SiC nanowires have advantages in power electronic applications and nanofiber reinforced ceramic composites. Herein, free-standing SiC nanowire paper consisting of ultralong single-crystalline SiC nanowires was prepared through a facile vacuum filtration approach. The ultralong SiC nanowires were synthesized by a sol-gel and carbothermal reduction method. The flexible paper composed of SiC nanowires is ~100 nm in width and up to several hundreds of micrometers in length. The nanowires are intertwisted with each other to form a three-dimensional network-like structure. SiC nanowire paper exhibits high flexibility and strong mechanical stability. The refractory performance and thermal stability of SiC nanowire paper were also investigated. The paper not only exhibits excellent nonflammability in fire, but also remains well preserved without visible damage when it is heated in an electric oven at a high temperature (1000 °C) for 3 h. With its high flexibility, excellent nonflammability, and high thermal stability, the free-standing SiC nanowire paper may have the potential to improve the ablation resistance of high temperature ceramic composites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00776c
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Dreyer, Michael E.
2010-01-01
Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.
NASA Astrophysics Data System (ADS)
Alessi, Roberto; Pham, Kim
2016-02-01
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.
Ma, Xuekai; Driben, Rodislav; Malomed, Boris A.; Meier, Torsten; Schumacher, Stefan
2016-01-01
We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case. PMID:27703235
Aeroelastic stability analyses of two counter rotating propfan designs for a cruise missile model
NASA Technical Reports Server (NTRS)
Mahajan, Aparajit J.; Lucero, John M.; Mehmed, Oral; Stefko, George L.
1992-01-01
Aeroelastic stability analyses were performed to insure structural integrity of two counterrotating propfan blade designs for a NAVY/Air Force/NASA cruise missile model wind tunnel test. This analysis predicted if the propfan designs would be flutter free at the operating conditions of the wind tunnel test. Calculated stability results are presented for the two blade designs with rotational speed and Mach number as the parameters. A aeroelastic analysis code ASTROP2 (Aeroelastic Stability and Response of Propulsion Systems - 2 Dimensional Analysis), developed at LeRC, was used in this project. The aeroelastic analysis is a modal method and uses the combination of a finite element structural model and two dimensional steady and unsteady cascade aerodynamic models. This code was developed to analyze single rotation propfans but was modified and applied to counterrotating propfans for the present work. Modifications were made to transform the geometry and rotation of the aft rotor to the same reference frame as the forward rotor, to input a non-uniform inflow into the rotor being analyzed, and to automatically converge to the least stable aeroelastic mode.
On fully three-dimensional resistive wall mode and feedback stabilization computationsa)
NASA Astrophysics Data System (ADS)
Strumberger, E.; Merkel, P.; Sempf, M.; Günter, S.
2008-05-01
Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes. In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Köppendörfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].
On fully three-dimensional resistive wall mode and feedback stabilization computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strumberger, E.; Merkel, P.; Sempf, M.
2008-05-15
Resistive walls, located close to the plasma boundary, reduce the growth rates of external kink modes to resistive time scales. For such slowly growing resistive wall modes, the stabilization by an active feedback system becomes feasible. The fully three-dimensional stability code STARWALL, and the feedback optimization code OPTIM have been developed [P. Merkel and M. Sempf, 21st IAEA Fusion Energy Conference 2006, Chengdu, China (International Atomic Energy Agency, Vienna, 2006, paper TH/P3-8] to compute the growth rates of resistive wall modes in the presence of nonaxisymmetric, multiply connected wall structures and to model the active feedback stabilization of these modes.more » In order to demonstrate the capabilities of the codes and to study the effect of the toroidal mode coupling caused by multiply connected wall structures, the codes are applied to test equilibria using the resistive wall structures currently under debate for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)] and ASDEX Upgrade [W. Koeppendoerfer et al., Proceedings of the 16th Symposium on Fusion Technology, London, 1990 (Elsevier, Amsterdam, 1991), Vol. 1, p. 208].« less
Wang, Lin; Liu, Baiquan; Zhao, Xin; Demir, Hilmi Volkan; Gu, Haoshuang; Sun, Handong
2018-06-13
All-inorganic cesium halide perovskite nanocrystals have attracted much interest in optoelectronic applications for the sake of the readily adjustable band gaps, high photoluminescence quantum yield, pure color emission, and affordable cost. However, because of the ineluctable utilization of organic surfactants during the synthesis, the structural and optical properties of CsPbBr 3 nanocrystals degrade upon transforming from colloidal solutions to solid thin films, which plagues the device operation. Here, we develop a novel solvent-assisted surface engineering strategy, producing high-quality CsPbBr 3 thin films for device applications. A good solvent is first introduced as an assembly trigger to conduct assembly in a one-dimensional direction, which is then interrupted by adding a nonsolvent. The nonsolvent drives the adjacent nanoparticles connecting in a two-dimensional direction. Assembled CsPbBr 3 nanocrystal thin films are densely packed and very smooth with a surface roughness of ∼4.8 nm, which is highly desirable for carrier transport in a light-emitting diode (LED) device. Meanwhile, the film stability is apparently improved. Benefiting from this facile and reliable strategy, we have achieved remarkably improved performance of CsPbBr 3 nanocrystal-based LEDs. Our results not only enrich the methods of nanocrystal surface engineering but also shed light on developing high-performance LEDs.
Shan, Xinyuan; Zhang, Shen; Zhang, Na; Chen, Yujin; Gao, Hong; Zhang, Xitian
2018-01-15
Three-dimensional (3D) MoS 2 @carbon fibers (CFs) hierarchical architectures are successfully synthesized via a simple hydrothermal method and subsequent annealing. MoS 2 nanoflakes are grown on the twine carbon fibers of the carbonized waste cotton cloth. The twine CFs can provide a short diffusion path for ions in electrolyte, enhance the specific surface area, and improve the conductivity of the 3D MoS 2 @CFs hierarchical architectures with high mass loading of 4.4mgcm -2 . The 3D MoS 2 @CFs hierarchical architectures as the electrode material can achieve a high reversible areal capacity (5.2mAhcm -2 at 2.5mAcm -2 ) and exhibit an excellent rate performance. In addition, CFs are prepared by simply carbonizing the waste cotton and then used as carbon source, which is low-cost and eco-friendly. We also found that the Mo nanoparticles produced during the charge/discharge process exist in the hierarchical architectures during cycling and can improve the conductivity of the entire system as well as the cycling stability. Therefore, MoS 2 @CFs nanocomposites as electrode materials manifest a significant application potential for high-performance Li-ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
An Analysis of the Oil-Whirl Instability
NASA Astrophysics Data System (ADS)
Schultz, William W.; Han, Heng-Chu; Boyd, John P.; Schumack, Mark
1997-11-01
We investigate the hydrodynamic stability of a rotating journal translating inside a stationary bearing. A long (two-dimensional) journal bearing separated by a Newtonian non-cavitating lubricant is studied for shaft stability. Spectral element methods, perturbation methods, and linear stability analyses are used. The influences of fluid inertia, eccentricity, ellipticity, shaft mass, and finite gap on hydrodynamic stability are explored. Lubrication theory using Reynolds equation ignoring fluid inertia leads to erroneous conclusions. Without fluid inertia, the shaft is always unstable. However, the journal is conditionally stable even in the limit Rearrow 0 if fluid inertia is included. Increasing eccentricity helps stabilize a whirling shaft. Non-circular shaft bearings, for example elliptical bearings, are observed to have better dynamic stability.
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
A spectral clustering search algorithm for predicting shallow landslide size and location
Dino Bellugi; David G. Milledge; William E. Dietrich; Jim A. McKean; J. Taylor Perron; Erik B. Sudderth; Brian Kazian
2015-01-01
The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multi-dimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is...
ERIC Educational Resources Information Center
Lane, Suzanne; And Others
1995-01-01
Over 5,000 students participated in a study of the dimensionality and stability of the item parameter estimates of a mathematics performance assessment developed for the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) Project. Results demonstrate the test's dimensionality and illustrate ways to examine use of the…
Characterization of Juvenile wood in Lodgepole Pine in the Intermountain West
Thomas M. Gorman; David E. Kretschmann
2012-01-01
Juvenile wood (core wood) is typically characterized as being less dimensionally stable and having lower mechanical properties than mature wood. Determination of the age of transition from juvenile wood to mature wood can provide basic information needed to assess dimensional stability and better utilize small-diameter trees growing in the intermountain west as solid-...
Cadmium sulfide anchored in three-dimensional graphite cage for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Chen, Liang; Zuo, Yinze; Zhang, Yu; Gao, Yanmin
2018-05-01
Cadmium sulfide (CdS) nanoparticles were anchored in a three-dimensional (3D) graphite cage for high performance supercapacitors. Significantly, the graphite cage intensified the construction of electroactive materials and facilitated the transfer of ions. As a result, the 3D-CdS/graphite cage revealed a great thermal stability and high specific capacitance (511 F/g at 5 A/g). Additionally, the 3D-CdS/graphite//reduced graphene oxide (rGO) asymmetric supercapacitor revealed a high energy density (30.4 Wh/kg at a power density of 800 W/kg) and long-term cycling stability (90.1% retention after 5000 cycles at 10 A/g) for practical applications.
A semi-implicit level set method for multiphase flows and fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri; Maitre, Emmanuel
2016-06-01
In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1999-01-01
A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.
Mizukami, Masato; Yamaguchi, Joji; Nemoto, Naru; Kawajiri, Yuko; Hirata, Hirooki; Uchiyama, Shingo; Makihara, Mitsuhiro; Sakata, Tomomi; Shimoyama, Nobuhiro; Oda, Kazuhiro
2011-07-20
A 128×128 three-dimensional MEMS optical switch module and a switching-control algorithm for high-speed connection and optical power stabilization are described. A prototype switch module enables the simultaneous switching of all optical paths. The insertion loss is less than 4.6 dB and is 2.3 dB on average. The switching time is less than 38 ms and is 8 ms on average. We confirmed that the maximum optical power can be obtained and optical power stabilization control is possible. The results confirm that the module is suitable for practical use in optical cross-connect systems. © 2011 Optical Society of America
van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat
2011-07-15
Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.
Wu, Yifan; Gan, Ling; Zhang, Shupeng; Song, Haiou; Lu, Chang; Li, Wentao; Wang, Zheng; Jiang, Bicun; Li, Aimin
2018-08-15
A novel composite bimetallic electrode, palladium-nickel/multi-walled carbon nanotubes/graphite felt (Pd-Ni/MWCNTs/GF), was synthesized for the electrocatalytic hydrodechlorination of 4-chlorophenol (4-CP). GF with a three-dimensional structure was used as the electrode substrate, and doped with MWCNTs, which can improve the GF conductivity and serve as a skeleton for metal loading. Ni and Pd were deposited on the electrode surface stepwise to obtain a well-aligned, highly active and stable Pd-Ni/MWCNTs/GF electrode. The Pd-Ni/MWCNTs/GF cathode showed a high reactivity for the electrocatalytic hydrodechlorination of 4-CP; up to 100% removal of 4-CP was achieved within 30 min, and followed pseudo-first-order kinetics with a rate constant of 0.162 min -1 . Compared with other cathodes, the Pd-Ni/MWCNTs/GF electrode showed superior performance in 4-CP reduction. Excessive current will lower the reaction efficiency and current efficiency because of hydrogen evolution, and acidic solution conditions are more conducive to electrocatalytic reactions. Experiments confirmed that the Ni had a small amount of loss under acidic conditions but remained stable under neutral and alkaline conditions, whereas the loss of Pd for different pH values was constantly low. In cycle tests, the bimetallic electrode exhibits a better reactivity and stability than the single-metal Pd electrode in the long-term. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xin; Ye, Ke; Sun, Ce; Zhang, Hongyu; Zhu, Kai; Cheng, Kui; Wang, Guiling; Cao, Dianxue
2017-07-15
Pd-Au/TiC electrodes with various three-dimensional structures are obtained by the pulsed potential electro-deposition in PdCl 2 /HAuCl 4 electrolytes. The morphologies of Pd-Au/TiC composite catalysts are significantly dependent on the component of deposited solutions. The surface appearance of Pd-Au catalysts changes from rime-shaped structure, to feather-like construction, then to pineapple root-like structure and finally to flower-like configuration with the increase of PdCl 2 content in electrolytes. These particular three-dimensional structures may be very suitable for H 2 O 2 electro-reduction, which assures a high utilization of Pd-Au catalysts and provides a large specific surface area. The electro-catalytic activities of H 2 O 2 reduction on the Pd-Au/TiC electrodes improve as increasing the Pd content in Pd-Au alloy catalysts. The pineapple root-like Pd 5 Au 1 /TiC electrode reveals remarkably excellent electrochemical property and desirable stability for catalyzing H 2 O 2 reduction in acid media. The direct peroxide-peroxide fuel cells with a 10 cm 3 min -1 flow rate display the open circuit voltage (OCV) of 0.85V and the peak power density of 56.5mWcm -2 at 155mAcm -2 with desirable cell stability, which is much higher than those previously reported. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
One-dimensional terahertz imaging of surfactant-stabilized dodecane-brine emulsion
NASA Astrophysics Data System (ADS)
Nickel, Daniel Vincent
Terahertz line-images of surfactant-stabilized dodecane(C12H 26)-brine emulsions are obtained by translating the emulsified region through the focus of a terahertz time-domain spectrometer, capturing a time-domain waveform at each vertical position. From these images, relative dodecane content, emulsion size, and stability can be extracted to evaluate the efficacy of the surfactant in solvating the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing.
NASA Astrophysics Data System (ADS)
Mangang, M.; Seifert, H. J.; Pfleging, W.
2016-02-01
Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.
Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.
2006-01-01
The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.
NASA Astrophysics Data System (ADS)
Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui
The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.
The role of surface vorticity during unsteady separation
NASA Astrophysics Data System (ADS)
Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán
2018-04-01
Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.
Maxillary Hypoplasia With Congenital Oligodontia Treated by Maxillary Distraction Osteogenesis.
Mishima, Sayaka; Yamaguchi, Takako; Watanabe, Takuma; Komatani, Toru; Nakao, Kazumasa; Takahashi, Katsu; Bessho, Kazuhisa
2018-02-27
It is known that congenitally missing teeth can often cause differences in craniofacial morphology; however, there are few reported cases of orthognathic surgical treatment for these patients. Herein, the authors report a rare case of maxillary hypoplasia with congenital oligodontia treated by maxillary distraction osteogenesis with internal device. A 17-year-old male presenting with multiple tooth agenesis and maxillary recession was referred to our hospital for orthognathic surgical treatment. Preoperative simulation surgery was performed using Full-Color 3-dimensional salt model. After surgery, improvement in maxillary recession and occlusal stability was observed. This report demonstrates the advantages of the method used herein, which includes reduction in operating time with increase in the safety of the procedure.
Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhun; Zhong, Xiaoliang; Yan, Hui
2016-01-14
Hybridized two-dimensional materials incorporating domains from the hexagonal boron nitride (h-BN) and graphene is an interesting branch of materials science due to their highly tunable electronic properties. In the present study, we investigate the hydrogenated two-dimensional (2D) h-BN/C superlattices (SLs) with zigzag edges using first-principles calculations. We found that the domain width, the phase ratio, and the vertical dipole orientation all have significant influence on the stability of SLs. The electronic reconstruction is associated with the lateral polar discontinuities at the zigzag edges and the vertically polarized (B2N2H4)(m) domains, which modifies the electronic structures and the spatial potential of themore » SLs significantly. Furthermore, we demonstrate that the hydrogenated 2D h-BN/C SLs can be applied in engineering the electronic structure of graphene: laterally-varying doping can be achieved by taking advantage of the spatial variation of the surface potential of the SLs. By applying an external vertical electric field on these novel bidirectional heterostructures, graphene doping levels and band offsets can be tuned to a wide range, such that the graphene doping profile can be switched from the bipolar (p-n junction) to unipolar (n(+)-n junction) mode. It is expected that such bidirectional heterostructures provide an effective approach for developing novel nanoscale electronic devices and improving our understanding of the fundamentals of low-dimensional materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
NASA Astrophysics Data System (ADS)
Bae, Jinho; Kim, Hyoung Woo; Kang, In Ho; Yang, Gwangseok; Kim, Jihyun
2018-03-01
We have demonstrated a β-Ga2O3 metal-semiconductor field-effect transistor (MESFET) with a high off-state breakdown voltage (344 V), based on a quasi-two-dimensional β-Ga2O3 field-plated with hexagonal boron nitride (h-BN). Both the β-Ga2O3 and h-BN were mechanically exfoliated from their respective crystal substrates, followed by dry-transfer onto a SiO2/Si substrate for integration into a high breakdown voltage quasi-two-dimensional β-Ga2O3 MESFETs. N-type conducting behavior was observed in the fabricated β-Ga2O3 MESFETs, along with a high on/off current ratio (>106) and excellent current saturation. A three-terminal off-state breakdown voltage of 344 V was obtained, with a threshold voltage of -7.3 V and a subthreshold swing of 84.6 mV/dec. The distribution of electric fields in the quasi-two-dimensional β-Ga2O3 MESFETs was simulated to analyze the role of the dielectric h-BN field plate in improving the off-state breakdown voltage. The stability of the field-plated β-Ga2O3 MESFET in air was confirmed after storing the MESFET in ambient air for one month. Our results pave the way for unlocking the full potential of β-Ga2O3 for use in a high-power nano-device with an ultrahigh breakdown voltage.
NASA Astrophysics Data System (ADS)
Robbins, Chandan Morris
The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and Georgia's students are better equipped to become tomorrow's leaders. INDEX WORDS: Biofilm, Escherichia coli, Quorum sensing, LuxS, Autoinducer-2, Microbial ecology
Hatamleh, Muhanad M; Yeung, Elizabeth; Osher, Jonas; Huppa, Chrisopher
2017-05-01
Hemimandibular hyperplasia is characterized by an obvious overgrowth in the size of the mandible on one side, which can extend up to the midline causing facial asymmetry. Surgical resection of the overgrowth depends heavily on the skill and experience of the surgeon. This report describes a novel methodology of applying three-dimensional computer-aided-design and computer-aided-manufacturing principles in improving the outcome of surgery in 2 mandibular hyperplasia patients. Both patients had their cone beam computer tomography (CBCT) scan performed. CMF Pro Plan software (v. 2.1) was used to process the scan data into virtual 3-dimensional models of the maxilla and mandible. Head tilt was adjusted manually by following horizontal reference. Facial asymmetry secondary to mandibular hypertrophy was obvious on frontal and lateral views. Simulation functions were followed including mirror imaging of the unaffected mandibular side into the hyperplastic side and position was optimized by translation and orientation functions. Reconstruction of virtual symmetry was assessed and checked by running 3-dimensional measurements. Then, subtraction functions were used to create a 3-dimensional template defining the outline of the lower mandibular osteotomy needed. Precision of mandibular teeth was enhanced by amalgamating the CBCT scan with e-cast scan of the patient lower teeth. 3-Matic software (v. 10.0) was used in designing cutting guide(s) that define the amount of overgrowth to be resected. The top section of the guide was resting on the teeth hence ensuring stability and accuracy while positioning it. The guide design was exported as an .stl file and printed using in-house 3-dimensional printer in biocompatible resin. Three-dimensional technologies of both softwares (CMF Pro Plan and 3-Matic) are accurate and reliable methods in the diagnosis, treatment planning, and designing of cutting guides that optimize surgical correction of hemimandibular hyperplasia at timely and cost-effect manner.
Liu, Y.; Lopes, P. P.; Cha, W.; ...
2017-02-10
Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Lopes, P. P.; Cha, W.
Dissolution is critical to nanomaterial stability, especially for partially dealloyed nanoparticle catalysts. Unfortunately, highly active catalysts are often not stable in their reactive environments, preventing widespread application. Thus, focusing on the structure–stability relationship at the nanoscale is crucial and will likely play an important role in meeting grand challenges. Recent advances in imaging capability have come from electron, X-ray, and other techniques but tend to be limited to specific sample environments and/or two-dimensional images. Here, we report investigations into the defect-stability relationship of silver nanoparticles to voltage-induced electrochemical dissolution imaged in situ in three dimensional detail by Bragg coherent diffractivemore » imaging. We first determine the average dissolution kinetics by stationary probe rotating disk electrode in combination with inductively coupled plasma mass spectrometry, which allows in situ measurement of Ag+ ion formation. We then observe the dissolution and redeposition processes in single nanocrystals, providing unique insight about the role of surface strain, defects, and their coupling to the dissolution chemistry. Finally, the methods developed and the knowledge gained go well beyond a “simple” silver electrochemistry and are applicable to all electrocatalytic reactions where functional links between activity and stability are controlled by structure and defect dynamics.« less
High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)
2002-01-01
In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.
Non-volatile copolymer compositions for fabricating gel element microarrays
Golova, Julia B.; Chernov, Boris K.; Perov, Alexander N.; Reynolds, Jennifer; Linger, Yvonne L.; Kukhtin, Alexander; Chandler, Darrell P.
2011-01-01
By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer (2-(hydroxyethyl) methacrylamide; HEMAA) was used that possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Non-specific binding of single stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element array manufacture, we expect it (in combination with new cross-linkers described herein) to find widespread application in microarray science. PMID:22033291
High Tensile Strength Amalgams for In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2006-01-01
Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.
Status of the Combustion Devices Injector Technology Program at the NASA MSFC
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James
2005-01-01
To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.
Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2003-01-01
In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.
Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu
2014-11-01
Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and primary stability. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Demajo, Jean Karl; Cassar, Valter; Farrugia, Cher; Millan-Sango, David; Sammut, Charles; Valdramidis, Vasilis; Camilleri, Josette
2016-01-01
The aim of this study was to assess the antimicrobial activity of chemical disinfectants on alginate and silicone impression materials. The effect of chemical disinfectants on the dimensional stability of the impression materials was also assessed. For the microbiologic assessment, impressions of the maxillary arch were taken from 14 participants, 7 using alginate and 7 using an addition silicone. The impressions were divided into three sections. Each section was subjected to spraying with MD 520 or Minuten or no disinfection (control), respectively. Antimicrobial action of the chemical disinfectants was assessed by measuring microbial counts in trypticase soy agar (TSA) media and expressing the results in colony-forming units/cm2. The surface area of the dental impressions was calculated by scanning a stone cast using computer-aided design/computer-assisted manufacture and analyzing the data using a custom computer program. The dimensional stability of the impression materials after immersion in disinfectants was assessed by measuring the linear displacement of horizontally restrained materials using a traveling microscope. The percent change in length over 3 hours was thus determined. Alginate exhibited a higher microbial count than silicone. MD 520 eliminated all microbes as opposed to Minuten. The bacterial growth after Minuten disinfection was almost twice as much for alginate than for addition silicone impressions. The chemical disinfectants affected the alginate dimensional stability. Minuten reduced the shrinkage sustained by alginate during the first hour of storage. Alginate harbors three times more microorganisms than silicone impression material. Chemical disinfection by glutaraldehyde-based disinfectant was effective in eliminating all microbial forms for both alginate and silicone without modifying the dimensional stability. Alcohol-based disinfectants, however, reduced the alginate shrinkage during the first 90 minutes of setting. The current studies also propose another method to report the surface area based on accurate estimation by 3D image analysis.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
A survey of the role of thermodynamic stability in viscous flow
NASA Technical Reports Server (NTRS)
Horne, W. C.; Smith, C. A.; Karamcheti, K.
1991-01-01
The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.
Dimensional quantization effects in the thermodynamics of conductive filaments
NASA Astrophysics Data System (ADS)
Niraula, D.; Grice, C. R.; Karpov, V. G.
2018-06-01
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
Dimensional quantization effects in the thermodynamics of conductive filaments.
Niraula, D; Grice, C R; Karpov, V G
2018-06-29
We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.
Internal consistency and stability of the CANTAB neuropsychological test battery in children.
Syväoja, Heidi J; Tammelin, Tuija H; Ahonen, Timo; Räsänen, Pekka; Tolvanen, Asko; Kankaanpää, Anna; Kantomaa, Marko T
2015-06-01
The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-assessed test battery widely use in different populations. The internal consistency and 1-year stability of CANTAB tests were examined in school-age children. Two hundred-thirty children (57% girls) from five schools in the Jyväskylä school district in Finland participated in the study in spring 2011. The children completed the following CANTAB tests: (a) visual memory (pattern recognition memory [PRM] and spatial recognition memory [SRM]), (b) executive function (spatial span [SSP], Stockings of Cambridge [SOC], and intra-extra dimensional set shift [IED]), and (c) attention (reaction time [RTI] and rapid visual information processing [RVP]). Seventy-four children participated in the follow-up measurements (64% girls) in spring 2012. Cronbach's alpha reliability coefficient was used to estimate the internal consistency of the nonhampering test, and structural equation models were applied to examine the stability of these tests. The reliability and the stability could not be determined for IED or SSP because of the nature of these tests. The internal consistency was acceptable only in the RTI task. The 1-year stability was moderate-to-good for the PRM, RTI, and RVP. The SSP and IED showed a moderate correlation between the two measurement points. The SRM and the SOC tasks were not reliable or stable measures in this study population. For research purposes, we recommend using structural equation modeling to improve reliability. The results suggest that the reliability and the stability of computer-based test batteries should be confirmed in the target population before using them for clinical or research purposes. (c) 2015 APA, all rights reserved).
For numerical differentiation, dimensionality can be a blessing!
NASA Astrophysics Data System (ADS)
Anderssen, Robert S.; Hegland, Markus
Finite difference methods, such as the mid-point rule, have been applied successfully to the numerical solution of ordinary and partial differential equations. If such formulas are applied to observational data, in order to determine derivatives, the results can be disastrous. The reason for this is that measurement errors, and even rounding errors in computer approximations, are strongly amplified in the differentiation process, especially if small step-sizes are chosen and higher derivatives are required. A number of authors have examined the use of various forms of averaging which allows the stable computation of low order derivatives from observational data. The size of the averaging set acts like a regularization parameter and has to be chosen as a function of the grid size h. In this paper, it is initially shown how first (and higher) order single-variate numerical differentiation of higher dimensional observational data can be stabilized with a reduced loss of accuracy than occurs for the corresponding differentiation of one-dimensional data. The result is then extended to the multivariate differentiation of higher dimensional data. The nature of the trade-off between convergence and stability is explicitly characterized, and the complexity of various implementations is examined.
Superspace and global stability in general relativity
NASA Astrophysics Data System (ADS)
Gurzadyan, A. V.; Kocharyan, A. A.
A framework is developed enabling the global analysis of the stability of cosmological models using the local geometric characteristics of the infinite-dimensional superspace, i.e. using the generalized Jacobi equation reformulated for pseudo-Riemannian manifolds. We give a direct formalism for dynamical analysis in the superspace, the requisite equation pertinent for stability analysis of the universe by means of generalized covariant and Fermi derivative is derived. Then, the relevant definitions and formulae are retrieved for cosmological models with a scalar field.
Xia, Hong; Luo, Zhendong
2017-01-01
In this study, we devote ourselves to establishing a stabilized mixed finite element (MFE) reduced-order extrapolation (SMFEROE) model holding seldom unknowns for the two-dimensional (2D) unsteady conduction-convection problem via the proper orthogonal decomposition (POD) technique, analyzing the existence and uniqueness and the stability as well as the convergence of the SMFEROE solutions and validating the correctness and dependability of the SMFEROE model by means of numerical simulations.
NASA Astrophysics Data System (ADS)
Zhou, Ming De; Liu, Tian Shu
The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies
NASA Technical Reports Server (NTRS)
Chen, Y.- J.; Davis, S. H.
1999-01-01
A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy
NASA Astrophysics Data System (ADS)
Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine
2015-07-01
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.
Optical mounts for harsh environments
NASA Astrophysics Data System (ADS)
Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.
2009-08-01
Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.
A dimensionally split Cartesian cut cell method for hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert
2018-07-01
We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.
Stability and chaos in Kustaanheimo-Stiefel space induced by the Hopf fibration
NASA Astrophysics Data System (ADS)
Roa, Javier; Urrutxua, Hodei; Peláez, Jesús
2016-07-01
The need for the extra dimension in Kustaanheimo-Stiefel (KS) regularization is explained by the topology of the Hopf fibration, which defines the geometry and structure of KS space. A trajectory in Cartesian space is represented by a four-dimensional manifold called the fundamental manifold. Based on geometric and topological aspects classical concepts of stability are translated to KS language. The separation between manifolds of solutions generalizes the concept of Lyapunov stability. The dimension-raising nature of the fibration transforms fixed points, limit cycles, attractive sets, and Poincaré sections to higher dimensional subspaces. From these concepts chaotic systems are studied. In strongly perturbed problems, the numerical error can break the topological structure of KS space: points in a fibre are no longer transformed to the same point in Cartesian space. An observer in three dimensions will see orbits departing from the same initial conditions but diverging in time. This apparent randomness of the integration can only be understood in four dimensions. The concept of topological stability results in a simple method for estimating the time-scale in which numerical simulations can be trusted. Ideally, all trajectories departing from the same fibre should be KS transformed to a unique trajectory in three-dimensional space, because the fundamental manifold that they constitute is unique. By monitoring how trajectories departing from one fibre separate from the fundamental manifold a critical time, equivalent to the Lyapunov time, is estimated. These concepts are tested on N-body examples: the Pythagorean problem, and an example of field stars interacting with a binary.
Asada, Toichiro; Douskos, Christos; Markellos, Panagiotis
2011-01-01
The stability of equilibrium and the possibility of generation of business cycles in a discrete interregional Kaldorian macrodynamic model with fixed exchange rates are explored using numerical methods. One of the aims is to illustrate the feasibility and effectiveness of the numerical approach for dynamical systems of moderately high dimensionality and several parameters. The model considered is five-dimensional with four parameters, the speeds of adjustment of the goods markets and the degrees of economic interactions between the regions through trade and capital movement. Using a grid search method for the determination of the region of stability of equilibrium in two-dimensional parameter subspaces, and coefficient criteria for the flip bifurcation - and Hopf bifurcation - curve, we determine the stability region in several parameter ranges and identify Hopf bifurcation curves when they exist. It is found that interregional cycles emerge only for sufficient interregional trade. The relevant threshold is predicted by the model at 14 - 16 % of trade transactions. By contrast, no minimum level of capital mobility exists in a global sense as a requirement for the emergence of interregional cycles; the main conclusion being, therefore, that cycles may occur for very low levels of capital mobility if trade is sufficient. Examples of bifurcation and Lyapunov exponent diagrams illustrating the occurrence of cycles or period doubling, and examples of the development of the occurring cycles, are given. Both supercritical and subcritical bifurcations are found to occur, the latter type indicating coexistence of a point and a cyclical attractor.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
Radion stabilization in higher curvature warped spacetime
NASA Astrophysics Data System (ADS)
Das, Ashmita; Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra
2018-02-01
We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + α R^2 in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane.
Stability of a laminar premixed supersonic free shear layer with chemical reactions
NASA Technical Reports Server (NTRS)
Menon, S.; Anderson, J. D., Jr.; Pai, S. I.
1984-01-01
The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.
NASA Astrophysics Data System (ADS)
Li, Donglin; Zhang, Wei; Sun, Ru; Yong, Hong-Tuan-Hua; Chen, Guangqi; Fan, Xiaoyong; Gou, Lei; Mao, Yiyang; Zhao, Kun; Tian, Miao
2016-06-01
Exploring a new method to fabricate small-sized nanofibers is essential to achieve superior performances for energy conversion and storage devices. Here, a novel soft-template strategy is developed to synthesize a three-dimensionally ordered macroporous (3DOM) architecture constructed from small-sized nanofibers. The effectiveness of a nanofiber-assembled three-dimensional inverse opal material as an electrode for high-rate lithium-ion batteries is demonstrated. The small-sized Li2FeSiO4/C composite nanofibers with a diameter of 20-30 nm are grown by employing a tri-block copolymer P123 as a structure directing agent. Accordingly, the macro-mesoporous hierarchical 3DOM architecture constructed from Li2FeSiO4/C nanofibers is further templated from P123 for the nanofibers and a polystyrene colloidal crystal array for the 3DOM architecture. We find that the thermal stability of the nanofiber morphology depends on the self-limited growth of Li2FeSiO4 nanocrystals in a crystalline-amorphous hybrid. As a cathode for a lithium-ion battery, the 3D hierarchical macro-mesoporous cathodes exhibit outstanding high-rate and ultralong-life performances with a capacity retention of 84% after 1500 cycles at 5 C in the voltage window of 1.5-4.5 V, which is greatly improved compared with a simple 3DOM Li2FeSiO4/C nanocomposite.Exploring a new method to fabricate small-sized nanofibers is essential to achieve superior performances for energy conversion and storage devices. Here, a novel soft-template strategy is developed to synthesize a three-dimensionally ordered macroporous (3DOM) architecture constructed from small-sized nanofibers. The effectiveness of a nanofiber-assembled three-dimensional inverse opal material as an electrode for high-rate lithium-ion batteries is demonstrated. The small-sized Li2FeSiO4/C composite nanofibers with a diameter of 20-30 nm are grown by employing a tri-block copolymer P123 as a structure directing agent. Accordingly, the macro-mesoporous hierarchical 3DOM architecture constructed from Li2FeSiO4/C nanofibers is further templated from P123 for the nanofibers and a polystyrene colloidal crystal array for the 3DOM architecture. We find that the thermal stability of the nanofiber morphology depends on the self-limited growth of Li2FeSiO4 nanocrystals in a crystalline-amorphous hybrid. As a cathode for a lithium-ion battery, the 3D hierarchical macro-mesoporous cathodes exhibit outstanding high-rate and ultralong-life performances with a capacity retention of 84% after 1500 cycles at 5 C in the voltage window of 1.5-4.5 V, which is greatly improved compared with a simple 3DOM Li2FeSiO4/C nanocomposite. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07783d
Three-dimensional analysis of tokamaks and stellarators
Garabedian, Paul R.
2008-01-01
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
Hu, Rui
2017-03-27
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
An Advanced One-Dimensional Finite Element Model for Incompressible Thermally Expandable Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
Here, this paper provides an overview of a new one-dimensional finite element flow model for incompressible but thermally expandable flow. The flow model was developed for use in system analysis tools for whole-plant safety analysis of sodium fast reactors. Although the pressure-based formulation was implemented, the use of integral equations in the conservative form ensured the conservation laws of the fluid. A stabilization scheme based on streamline-upwind/Petrov-Galerkin and pressure-stabilizing/Petrov-Galerkin formulations is also introduced. The flow model and its implementation have been verified by many test problems, including density wave propagation, steep gradient problems, discharging between tanks, and the conjugate heatmore » transfer in a heat exchanger.« less
NASA Astrophysics Data System (ADS)
Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.
2015-12-01
We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.
Three-Dimensional Stability of Slopes and Excavations
2009-12-01
BIH f3 30° 45° 60° 75° 90° 0·5 - 21·741 16-979 12-428 0·6 - 27·618 18·561 14· 048 10·995 0· 8 52·325 22·362 15·236 11·372 9·349 1·0 39·136 19-672...W911NF-08-1-0376 611102 Form Approved OMB NO. 0704-0188 53315-EV.9 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8 ...To) Standard Form 298 (Rev 8 /98) Prescribed by ANSI Std. Z39.18 - Three-dimensional stability of slopes and excavations Report Title ABSTRACT
Method of thermal strain hysteresis reduction in metal matrix composites
NASA Technical Reports Server (NTRS)
Dries, Gregory A. (Inventor); Tompkins, Stephen S. (Inventor)
1987-01-01
A method is disclosed for treating graphite reinforced metal matrix composites so as to eliminate thermal strain hysteresis and impart dimensional stability through a large thermal cycle. The method is applied to the composite post fabrication and is effective on metal matrix materials using graphite fibers manufactured by both the hot roll bonding and diffusion bonding techniques. The method consists of first heat treating the material in a solution anneal oven followed by a water quench and then subjecting the material to a cryogenic treatment in a cryogenic oven. This heat treatment and cryogenic stress reflief is effective in imparting a dimensional stability and reduced thermal strain hysteresis in the material over a -250.degree. F. to +250.degree. F. thermal cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenlong; Bisset, R. N.; Ticknor, Christopher
In the present work, we explore the existence, stability, and dynamics of single- and multiple-vortex-ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states in the vicinity of the linear limit for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particlemore » picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. In conclusion, we examine some representative instability scenarios of the multi-ring dynamics, including breakup and reconnections, as well as the transient formation of vortex lines.« less
Rios, M P; Morgano, S M; Stein, R S; Rose, L
1996-10-01
Currently available impression materials were not designed for disinfection or sterilization, and it is conceivable that disinfectants may adversely affect impressions. This study evaluated the accuracy and dimensional stability of polyether (Permadyne/Impregum) and polyvinyl siloxane (Express) impression materials retained by their adhesives in two different acrylic resin tray designs (perforated and nonperforated) when the materials were immersed for either 30 or 60 minutes in three high-level disinfectants. Distilled water and no solution served as controls. A stainless steel test analog similar to ADA specification No. 19 was used. A total of 400 impressions were made with all combinations of impression materials, tray designs, disinfectant, and soaking times. Samples were evaluated microscopically before and after immersion and 48 hours after soaking. Results indicated that these two impression materials were dimensionally stable. Because the results emphasized the stability and accuracy of the impression complex under various conditions, dentists can perform disinfection procedures similar to the protocol of this study without concern for clinically significant distortion of the impression.
Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles.
Spoor, C W
1983-01-01
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.
Stability of Thin Liquid Sheet Flows
NASA Technical Reports Server (NTRS)
McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.
1997-01-01
A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.