Science.gov

Sample records for improved district heating

  1. Methodology for the Improvement of Large District Heating Networks

    NASA Astrophysics Data System (ADS)

    Volkova, Anna; Mashatin, Vladislav; Hlebnikov, Aleksander; Siirde, Andres

    2012-12-01

    The purpose of this paper is to offer a methodology for the evaluation of large district heating networks. The methodology includes an analysis of heat generation and distribution based on the models created in the TERMIS and EnergyPro software Data from the large-scale Tallinn district heating system was used for the approbation of the proposed methodology as a basis of the case study. The effective operation of the district heating system, both at the stage of heat generation and heat distribution, can reduce the cost of heat supplied to the consumers. It can become an important factor for increasing the number of district heating consumers and demand for the heat load, which in turn will allow installing new cogeneration plants, using renewable energy sources and heat pump technologies

  2. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  3. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  4. Modelling of the District Heating System's Operation

    NASA Astrophysics Data System (ADS)

    Vigants, Girts; Blumberga, Dagnija; Vīgants, Ģirts; Blumberga, Dagnija

    2011-01-01

    The development of a district heating systems calculation model means improvement in the energy efficiency of a district heating system, which makes it possible to reduce the heat losses, thus positively affecting the tariffs on thermal energy. In this paper, a universal approach is considered, based on which the optimal flow and temperature conditions in a district heating system network could be calculated. The optimality is determined by the least operational costs. The developed calculation model has been tested on the Ludza district heating system based on the technical parameters of this system.

  5. Minneapolis district-heating options

    NASA Astrophysics Data System (ADS)

    Stovall, T. K.; Borkowski, R. J.; Karnitz, M. A.; Strom, S.; Linwick, K.

    1981-10-01

    The feasibility of a large-scale district heating system for the Minneapolis central city area was investigated. The analysis was based on a previous city of St. Paul Hot-water district heating study and other studies done by a Swedish engineering firm. Capital costs such as building and heat source conversion, pipeline construction, and equipment were used in comparing the projected expenses of various district heating scenarios. Options such as coal, refuse-derived fuel burning, and cogeneration at the Riverside Power Station were discussed as energy supplies for a cost-effective district heating system.

  6. District heating campaign in Sweden

    SciTech Connect

    Stalebrant, R.E.

    1995-09-01

    During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted during two weeks of November 1994 and comprised advertising on commercial TV and in the press.

  7. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  8. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  9. Moorhead district heating, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, R. E.

    1981-01-01

    The feasibility of developing a demonstration cogeneration hot water district heating system was studied. The district heating system would use coal and cogenerated heat from the Moorhead power plant to heat the water that would be distributed through underground pipes to customers or their space and domestic water heating needs, serving a substantial portion of the commercial and institutional loads as well as single and multiple family residences near the distribution lines. The technical feasibility effort considered the distribution network, retrofit of the power plant, and conversion of heating systems in customers' buildings to use hot water from the system. The system would be developed over six years. The economic analysis consisted of a market assessment and development of business plans for construction and operation of the system. Rate design methodology, institutional issues, development risk, and the proposal for implementation are discussed.

  10. Hitaveita (district heating) in Akureyri

    SciTech Connect

    Flovenz, O.G.; Axelsson, G.; Arnason, F.; Finnsson, M.

    1996-11-01

    Akureyri is a town of 15,000 inhabitants located in central N-Iceland. It has been heated by geothermal energy since the end of the seventies. Prior to that, it was partly heated by electricity, but mainly with oil burners, located within individual buildings. During the period 1928-1970, several attempts were made to exploit known hot spring areas in the vicinity of Akureyri. These attempts failed. Following the jump in energy price during the oil crisis of 1973, considerable effort was put into further exploration. Based on resistivity soundings, the Laugaland field was selected for deep drilling. In 1975, this resulted in the discovery of a big feed zone, which initially yielded around 100 1/s of 90{degrees}C hot water by free flow. Two years later another big feed zone was located at the Ytri-Tjarnir geothermal field initially yielding 50 1/2 of 80{degrees}C water. Based on short-term pump tests, and simulations by the Theis model, it was estimated that these two fields together could yield 240 1/s with a water level drawdown to 190 m below the surface. This was expected to satisfy the energy need for space heating in Akureyri. In 1977, Hitaveita Akureyrar was, therefore, established. Construction of the district heating system was initiated in 1976 and most of the town had been connected in 1979.

  11. Tushino - 3 district heating project/Moscow

    SciTech Connect

    Mayer, H.W.

    1995-09-01

    The contract for supply and installation of Honeywell control equipment at the district heating plant in Moscow suburb of Tushino was signed between the Mayor of Moscow and Honeywell in December 1991. Total contract value is US$3 million. The aim is to demonstrate on a pilot project the potential energy savings and improved pleat safety which can be achieved by means of electronic control of latest design. The Honeywell contract basically covers modernization of instrumentation and control of the gas fired heating plant, comprising water preparation and 4 boilers, of 100 Gcal/h each, i.e., 400 Gcal/h total. The plant is feeding the hot water network which has 60 heat exchanger stations connected. The heat exchangers (thermal rating between 2 to 10 Gcal/h each) supply hot water mainly to residential building blocks for apartment heating and domestic hot water. Honeywell`s responsibility covers engineering, supply of TDC 3000 micro-processor based control system for the boilers and DeltaNet Excel control for the Heat Exchangers. The contract also includes installation and start-up of the total control system.

  12. Akranes and Borgarfjordur district heating system

    SciTech Connect

    Ragnarsson, A.; Hrolfsson, I.

    1998-12-01

    Akranes and Borgarnes are two towns in the western part of Iceland, about 100 km north of Reykjavik. Geothermal investigations for Akranes started as early as around 1950; but in spite of several attempts, a geothermal field, which could be utilized economically, was not found for a long period. After the increase in oil prices in the early 1970s, further studies were carried out. On the basis of the results of those studies, it was decided to build a combined district heating system for Akranes, Borgarnes, Hvanneyri (agricultural school) and some farms in the Borgarfjordur region. The water is piped from the hot spring Deildartunga, which is one of the largest hot springs in the world. Besides that, the system utilizes two wells at the farm Baer. The utilization of the hot spring makes the system different from most other district heating systems in Iceland, which are based on water from wells. Akranes and Borgarfjordur District Heating System was established in 1979. Before that time, space heating in this area was both by oil (93%) and electricity (7%). The system has now been split into three companies: one that is responsible for all the hot water production and transmission, and one district heating system for each of the two communities.

  13. New directions for district heating in the United States

    NASA Astrophysics Data System (ADS)

    Olszewski, M.; Karnitz, M. A.

    A description is given of the status of major US district heating projects and the potential impact of the newly implemented US National District Heating plan. Five major district heating projects moving into the construction and demonstration phase are described. Although all have hot water distribution systems, a variety of heat sources are utilized. These include geothermal water, industrial reject heat, and utility cogeneration using coal-fired power plants.

  14. District heating/cooling feasibility study for Jamestown, New York

    SciTech Connect

    Oliker, I.; Buffa, W.; Harms, R.; Preston, E.

    1982-12-01

    The results of the District Heating/Cooling Feasibility Study for Jamestown, NY are presented. The heat source for the system is a power plant located within the city limits. Several options for the extraction of heat from the power plant are developed and heat balances are presented. The options are based on the development of a hot water district heating system. The geography and climate of the area are discussed and the primary potential district heat district is described. The heat load assessment was based on fuel consumption data collected from a sampling of various types of structures and operations. The methodology is presented in detail followed by the block-by-block results which include the heated floor space, the annual total fuel consumed, the annual fuel consumed for comfort use, and the peak heat rate demands. The heating fuel demand and consumption for most of the major industries in the city is presented. A transmission and distribution system is developed to deliver heat from the power plant to the district heating customers. The piping design is described and the proposed pipe routing for the primary district is presented. Cost estimates are presented for the different district heating options developed. The cost of heat from the Jamestown district heating system has been determined using the required revenue approach to determine the minimum rate the utility must charge for district heat in order to break even. An analysis has also been performed to determine the maximum allowable charge for district heat that would allow consumers to recover their retrofit expenses in a five year period.

  15. District heating/cooling feasibility study for Jamestown, New York

    SciTech Connect

    Oliker, I.; Buffa, W.; Harms, R.; Preston, E.

    1982-12-01

    The report describes the results of a district heating feasibility study for Jamestown, New York based on the use of a power plant located within the city limits. Several options for the extraction of heat from the power plant were developed, with heat balances presented, based on the development of a hot water district heating system. The geography and climate of the area are discussed, as well as the primary potential heat district. The heat load assessment was based on fuel consumption data collected from a sampling of various types of structures and operations. The report presents the methodology in detail, along with block-by-block results including heated floor space, total annual fuel consumed, and peak heat rate demands. A transmission and distribution system was then developed for delivering heat from the power plant to the district heating customers.

  16. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  17. Reno Industrial Park geothermal district heating system

    SciTech Connect

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  18. District heating and cooling market assessment

    SciTech Connect

    Teotia, A.P.S.; Karvelas, D.E.; Daniels, E.J.; Anderson, J.L.

    1993-06-01

    For more than 10 years, the U.S. Department of Energy (DOE) has supported research on and development of district steam, hot-water, and chilled-water systems in the residential and commercial sectors. In 1991, DOE sponsored a research project at Argonne National Laboratory (ANL) to reestimate the national market for district heating and cooling (DHC) systems to the year 2010. ANL had previously developed a DHC market-penetration model and used it to project future market penetration. The first step in the project was to conduct a literature search to identify major data sources on historical DHC markets and any past studies on the future market potential of DHC systems. On the basis of an evaluation of the available data and methodologies for estimating market penetration of new technologies, it was concluded that ANL should develop a new econometric model for forecasting DHC markets. By using the 1989 DOE/Energy Information Administration Commercial Buildings Energy Consumption Surveys (CBECS) public-use-tape data, a model was estimated for steam, hot-water, and chilled-water demand in the buildings surveyed. The model provides estimates of building steam, hot-water, and chilled-water consumption and expenditures between now and the year 2010. The analysis shows that the total U.S. market for district steam, hot water, and chilled water could grow from 0.8 quadrillion British thermal units (quad) in 1989 to 1.0 quad by 2000 and 1.25 quad by 2010. The demand for chilled water could nearly double in the forecast period, and its share could approach one-third of the total DHC market. This model, and the results, should be of use to policymakers, researchers, and market participants involved in the planning and implementation of community-based, energy-conserving, and environmentally beneficial energy systems.

  19. Biomass district heating methodology and pilot installations for public buildings groups

    NASA Astrophysics Data System (ADS)

    Chatzistougianni, N.; Giagozoglou, E.; Sentzas, K.; Karastergios, E.; Tsiamitros, D.; Stimoniaris, D.; Stomoniaris, A.; Maropoulos, S.

    2016-11-01

    The objective of the paper is to show how locally available biomass can support a small-scale district heating system of public buildings, especially when taking into account energy audit in-situ measurements and energy efficiency improvement measures. The step-by-step methodology is presented, including the research for local biomass availability, the thermal needs study and the study for the biomass district heating system, with and without energy efficiency improvement measures.

  20. District heating and cooling: a 28-city assessment

    SciTech Connect

    Meshenberg, M.J.

    1983-08-01

    Findings of a project that assessed the potential for construction of district heating and cooling (DHC) systems in 28 US cities are presented. The project sought to determine whether DHC could promote local community and economic development. In the preliminary assessment, 17 of the cities identified up to 23 projects that could be built within three to five years. Most of these projects would rely on nonscarce heat sources such as refuse or geothermal energy, and to improve financial feasibility, the majority would cogenerate electricity along with heat. Many would use existing power plants or industrial boilers to hold down capital costs. Overall, the projects could generate as amany as 24,000 jobs and retain $165 million that otherwise could leave the communities, thereby helping to stabilize local economies.

  1. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  2. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  3. Application of imitation steam'' systems to hot water district heating and cooling systems

    SciTech Connect

    Aalto, P.J.; Chen, D.B.

    1991-10-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US DOE. This applied research was funded by the Energy Research and Development Act (94--163) for District Heating and Cooling Research. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion costs in many older buildings. The method circulates Imitation Steam, which is moist hot air, as a heating medium in standard steam radiators and steam heating coils. Based on the operation of the system during the 1989--90 and 1990--91 winter heating seasons, we conclude the following: the basic concept of using Imitation Steam was proved feasible. The performance of the system can be improved beyond the levels achieved in this installation. Imitation Steam did not cause significant corrosion in the piping system. The technology can be used by other district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are: eliminating old, inefficient boilers; lower maintenance costs; improved fuel efficiency; reduced emissions.

  4. World Energy Projection System Plus Model Documentation: District Heat Model

    EIA Publications

    2017-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  5. Districts, Unions Seek to Improve Relations

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2011-01-01

    Wrapping up a two-day conference in Denver designed to improve labor-management relations in school districts, sponsors and participants vowed to work at reforms that will be beneficial to teachers, students, and officials. Teams made up of a local superintendent, a school board representative, and the teachers' union leader descended on the Mile…

  6. Integration of Decentralized Thermal Storages Within District Heating (DH) Networks

    NASA Astrophysics Data System (ADS)

    Schuchardt, Georg K.

    2016-12-01

    Thermal Storages and Thermal Accumulators are an important component within District Heating (DH) systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized) and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  7. HPASS: a computer program for evaluation of district heating with heat pumps. Users manual

    SciTech Connect

    Sapienza, G.R.; Calm, J.M.

    1981-03-01

    HPASS (Heat Pump district heating ASSessment) is a computer program for assessment of district heating and cooling with heat pumps. The software facilitates comparison of site- and source-energy use, discounted payback, and life-cycle costs of these systems with alternative systems providing similar services. The program also performs parametric studies of these analyses. This report explains the use of HPASS; the input requirements, available outputs, and program options are described.

  8. Energy-conserving heat pump-boiler systems for district heating

    SciTech Connect

    Taniguchi, H.; Giedt, W.H.; Kasahara, K.; Kawamura, K.; Kudo, K.; Ohta, J.

    1983-08-01

    The energy saving potential of a proposed heat pump-boiler system for district heating is analyzed. Fuel is supplied to a boiler which generates steam to drive a turbine. The turbine output is used to power a heat pump which takes energy from the environment. Introduction of a screw type expander in place of the throttling valve in the heat pump cycle is planned to increase the system performance. District heating is provided by hot water which is heated as it flows through the condensers in the heat pump and turbine cycles. Both series and parallel connected condenser arrangements are considered. Results show that the heat supplied to the water for district heating can be as high as 200 percent of the heating that would be provided by use of the fuel supplied to a conventional boiler system with a thermal efficiency of 90 percent.

  9. Co-sponsored second quarter progress review conference on district heating

    SciTech Connect

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  10. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  11. A Longitudinal Study of School Districts' Sustained Improvement

    ERIC Educational Resources Information Center

    Sampson, Pauline M.

    2011-01-01

    In this longitudinal study of one region in the state of Texas, there was an examination of district leadership and the sustaining of high student achievement for their districts. The results of this study suggest that sustained improvement of student achievement is very difficult. The districts that had sustained improvement had stable district…

  12. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  13. Use of domestic fuels for large-scale space heating and for district heating

    SciTech Connect

    Seppaelae, R.; Asplund, D.

    1980-01-01

    The aim of the study was to survey the heating systems for large-scale space heating and district heating with domestic fuels or under development in Finland, and to study alternative technico-economic applications in the size class of 0.5 - 5 MW.

  14. Ground Source Geothermal District Heating and Cooling System

    SciTech Connect

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  15. District heating feasibility for Port Jefferson, NY: Final report

    SciTech Connect

    Not Available

    1988-07-29

    This report presents the results of an investigation into the feasibility of implementing a centralized district heating system serving the Incorporated Village of Port Jefferson, New York. The study assesses the potential heating loads, develops in conceptual form the distribution system and central heating plant design and implementation plans, and evaluates the system and customer economics for both conventional boiler and cogeneration district heat sources. The placement of the heat source near the largest heat user will keep the largest pipe size to a minimum length of run. The capital costs for all phases were prepared based on previous experience and vendor's budget estimates. The costs were based on 1987 dollars and escalated to the implementation dates using a general inflation rate of 5%. Since piping is costly, the routing must be planned carefully. The disturbance that is a result of excavation can be minimized by laying the pipe under sidewalks or the shoulder. This will show a savings since replacement of concrete is simpler and less costly than road surface. A sidewalk installation requires less excavation and backfill and usually involves less interference. The recommended plan is to install an 110 KW gas turbine cogeneration plant at St. Charles Hospital. It will supply electricity to the hospital and the excess generation will be sold to LILCO. Steam from the plant would be supplied to the hospital and would also be used to generate hot water for a district heating hot water loop that would service both hospitals, the public schools, office and apartment buildings, and the downtown business district. 11 figs., 17 tabs.

  16. Key Issue: Improving the Preparation of School and District Leaders

    ERIC Educational Resources Information Center

    National Comprehensive Center for Teacher Quality, 2007

    2007-01-01

    In many schools and districts, leaders are lacking the necessary skills and preparation for the roles to which they are assigned. Improving the preparation of school and district leaders prior to hiring or promotion can help schools and districts accomplish the following goals: (1) Meet the growing need for highly qualified leaders; (2) Raise…

  17. District-Led Instructional Improvement in a Remote Town

    ERIC Educational Resources Information Center

    Fink, Ryan

    2014-01-01

    This study examined how stakeholders in one school district located in a remote town perceived the instructional improvement efforts of the district, as well as the constraints and enablers of implementing instructional reforms. A qualitative approach, consisting mainly of interviews with teachers, principals, district administrators, and other…

  18. District heating feasibility, Industrial Corridor, Jamestown, New York

    SciTech Connect

    Not Available

    1988-06-01

    The Industrial Corridor of Jamestown, New York, contains more than twenty industrial/manufacturing companies, whose thermal demands, in addition to space heating, include significant process heating loads. This study investigated in depth, the technical and economic feasibility of implementing a district heating system in the Industrial Corridor which can serve both process and space heating loads. Based upon the heat load assessment conducted, the study focused upon nine companies with the largest thermal demand. Alternative system implementation designs were considered including new conventional centralized boiler plants, gas turbine cogeneration, and both high temperature hot water and steam as the heat transport media in an underground distribution system. The study concluded that, in view of the nature of existing prospective customer loads being primarily steam based, the most economical system for near term phased development is a steam based system with a new conventional centrally located steam boiler plant. The economic potential for a cogeneration system was found to be sensitive to electricity buy back rates, which at present, are not attractive. Implementing a modern high temperature hot water system would require significant customer retrofit costs to convert their steam based systems to hot water, resulting in long and unattractive pay back periods. Unless customer hot water retrofit costs can be expended without penalty to the district system economics, hot water district heating is not considered economically feasible. Chapters describe heat load assessment; heat source analysis; system implementation; transmission and distribution systems assessment; institutional assessment; system economic analysis; and customer retrofit, economic analysis, and conclusions 20 figs., 22 tabs.

  19. Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report

    SciTech Connect

    1990-04-01

    This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heating and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.

  20. Modular cogeneration in district heating and cooling systems

    SciTech Connect

    Andrews, J.W.; Aalto, P.; Gleason, T.C.J.; Skalafuris, A.J.

    1987-12-01

    The use of prepackaged cogeneration systems of modular size (100 kWe - 10 MWe) in conjunction with district heating and cooling is proposed as a way to enhance the energy conservation potential of both cogeneration and district energy systems. This report examines the technical and institutional aspects of this marriage of technologies, and develops a research agenda whose goal is to define this potential use of cogeneration more accurately and to develop the generic technology base needed to bring it to actuality. 11 refs.

  1. District heating systems in Oradea, Romania

    SciTech Connect

    Lund, J.W.

    1997-08-01

    Oradea is located on the Crisul Repede River, in the northwestern corner of Romania almost due west of Budapest, Hungary. The city has a population around half a million people and can trace its origins back to the Neolithic Age. It was an urban settlement beginning in the 13th century and has been an economic and cultural center for the region. It is a geothermal city with 12 wells drilled within the city limits, six in the nearby Felix Spa and five in the Bors geothermal area to the west, with one doublet set at Nufarul. Currently, there are a variety of geothermal uses in the area, including space and greenhouse heating, domestic hot water supply, process heat, balneology and swimming pools. Wellhead temperatures range from 70 to 105{degrees}C with artesian flows of from 5 to 25 L/s. The present installed capacity is 25 MWt and the heat supply is estimated at 60,000 MWh per year (216,000 GJ/yr). With pumping, the production would double and adding four more doublets, the installed capacity be increased to 65 MWt.

  2. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  3. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    SciTech Connect

    Not Available

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  4. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  5. How to Compute Complex Interconnected District Heating Systems,

    DTIC Science & Technology

    1980-03-01

    valid modelling of such systems. 3. Network Hydraulic Characteristics In hot water networks the usual pipe diameters, roughnesses, and flow rates are...with cold water network flow characteristics, are shown in Table 2 and Figure 2. Table 2. Characteristic flow values of water distribution networks...conveyance costs decrease. V󈨋 ....... Figure 2. Flow domains for water networks and district heating system networks cold water I//I//I hot water

  6. A multicriteria approach to evaluate district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-07-01

    District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders.

  7. Lessons in Innovative Funding for District Improvements

    ERIC Educational Resources Information Center

    McDaniel, Gwenn

    2010-01-01

    Near the shores of Lake Superior, Michigan's Houghton-Portage Township School District is known for academic leadership and strives to provide an exceptional and secure learning environment for its students. However, like many districts around the country, Houghton-Portage is not immune to the economic restrictions. In a recent effort to address…

  8. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  9. The analysis of thermal network of district heating system from investor point of view

    NASA Astrophysics Data System (ADS)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  10. Environmental Assessment for the Bison School District Heating Plant Project, Institutional Conservation Program (ICP)

    SciTech Connect

    1995-12-31

    This environmental assessment analyzes the environmental impacts of replacing the Bison, South Dakota School District`s elementary school and high school heating system consisting of oil-fired boilers and supporting control system and piping

  11. District heating feasibility study for Jamestown, New York. Phase Two. Final report

    SciTech Connect

    Not Available

    1986-04-01

    This document presents the results of the second phase District Heating Feasibility Study for Jamestown, NY. The study takes an in-depth look at a hot water district heating system using the Jamestown municipal electric plant as the heat source and the downtown area as the primary load. The study considers phased expansion to outlying areas. This second phase study was performed in light of the findings of a first phase district heating study which determined that district heating was technically and economically feasible in Jamestown. The objective of this second phase study is to perform a detailed assessment of district heating and present the findings to the City in sufficient detail to serve as a basis for deciding whether or not to proceed with final design and construction of a district heating system. The study assesses the technical, financial and institutional feasibility of the system, recommends system ownership and financing strategies, develops a phased implementation plan, identifies prospective users and analyzes potential user performance from both a technical and economic point of view. The study concludes that a municipal district heating system financed with municipal bonds could be developed in Jamestown to economically supply heat to the downtown area and the industrial corridor. The study shows that district heating could successfully compete with alternate fuels, allowing most customers to recover their district heating retrofit costs in three to four years.

  12. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  13. Exergy-economics of a district heating system

    SciTech Connect

    Cornelissen, R.L.; Hirs, G.G.; Lie, A.B.K.; Steenderen, P. van

    1996-12-31

    The objective of this paper is to define the exergetic pay back period. This period can be used for energy efficient systems as part of a more general assessment also including financial aspects. For the conservation of the exergy of natural resources investments with a shorter exergetic pay back period will be preferable. To determine exergy savings of exergy efficient systems the exergetic life cycle assessment has been used. As an example a district heating system in combination with a cogeneration plant based on natural gas has been selected. The irreversibility taking place during the life cycle of the system due to the construction, operation, dismantling and waste processing is determined and compared with domestic central heating also based on natural gas. The analysis has been performed for four alternative district heating systems. The exergetic pay back period, defined as additional exergy invested divided by exergy saving, is shown to be between 0.07 and 1.2 years. The life cycle exergy saving varies from 24% to 49%, mainly depending on the density of the distribution system. In addition the differences in exergy saving are due to the fact that the small scale alternatives have a smaller gas turbine, which has a lower exergetic efficiency when compared with the big scale projects. There is no direct relation between the exergetic and financial pay back period in this study. However, the financial pay back period is roughly one order of magnitude higher than the exergetic pay back period. From this can be concluded that heat distribution systems with exergetic pay back periods of more than one year have unacceptable financial pay back periods.

  14. Geothermal district heating systems in the United States

    SciTech Connect

    Lund, J.W.

    1998-07-01

    There are 18 geothermal district heating systems in the Untied States. These systems use geothermal fluids from 138 F to 218 F (59 C to 103 C), with peak flow rates from 85 gpm to 4000 gpm (5 L/s to 250 L/s). Installed power varies from 0.2 MWt to 31 MWt, and annual energy use from 0.8 {times} 10{sup 9} Btu to 75 {times} 10{sup 9} Btu (0.6 GWh to 22 GWh). Thus, the total installed power is almost 100 MWt and the annual energy use is 572 {times} 10{sup 9} Btu (168 GWh). The oldest systems in operation are the Warm Springs Water District in Boise, Idaho that began operation in 1892, and the private system in Ketchum, Idaho starting in 1929, with the system on the Oregon Institute of Technology in operation since 1962, and Midland, South Dakota since 1964. The remaining systems have all been in operation for less than 20 years. Both open and closed distribution systems are used--the later type using a secondary fluid to supply the heat to the customers. Approximately half of the systems use a central mechanical plant containing heat exchangers, circulating pumps, expansion tanks and controls. Both volume and energy metering systems for customer billing are used. A variety of geothermal fluid disposal systems are used, including injection and disposal in a nearby river or stream. The energy and environmental savings, as compared to fossil fuel, amount to nearly 135,000 barrels of oil equivalent annually, and a reduction of 58,000 metric tons of carbon (coal) or 11,000 metric tons of carbon (natural gas) per year. Three systems are described.

  15. District-heating/cogeneration success keyed to planning, coordination

    SciTech Connect

    Oliker, B.I.; Gray, D.; Major, W. )

    1993-01-01

    This article describes the Jamestown (NY) district-heating (DH) system which illustrates the cost-effective incorporation of equipment and techniques into community planning to meet its hot-water and spaceheating needs. It provided experience not only in the use of the technology itself but in the harmonious interaction of concerned community sectors--governmental, technical, environmental, social--toward a common beneficial goal. Overall cooperation and strong support of the community enabled local officials to enthusiastically promote the project, obtain financing, and meet an ambitious construction schedule. Installation of the pilot system in 1984 was a milestone. The heightened public awareness that this brought about, coupled with several marketing activities, led to replacement of initial skepticism in several quarters with general enthusiasm for DH and its anticipated benefits.

  16. Continuous Improvement in Schools and Districts: Policy Considerations

    ERIC Educational Resources Information Center

    Best, Jane; Dunlap, Allison

    2014-01-01

    Discussions about improving public education often focus on outcomes without considering how schools and districts can accomplish those outcomes. Research shows that using a continuous improvement process has proven successful in healthcare, manufacturing, and technology, and may hold potential for use in education as well. This brief defines and…

  17. The Three Essentials: Improving Schools Requires District Vision, District and State Support, and Principal Leadership

    ERIC Educational Resources Information Center

    Bottoms, Gene; Schmidt-Davis, Jon

    2010-01-01

    This research is part of a comprehensive effort to pinpoint the key leadership factors that improve student achievement and increase the number of high school graduates who are ready for college and careers. In this study, SREB (Southern Regional Education Board) examined the role of the district office in providing principals with the working…

  18. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  19. Energy recovery from waste incineration: Assessing the importance of district heating networks

    SciTech Connect

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-07-15

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  20. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  1. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    NASA Technical Reports Server (NTRS)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  2. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  3. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  4. Economics of power plant district and process heating in Richland, Washington

    SciTech Connect

    Fassbender, L.L.; Bloomster, C.H.

    1981-04-01

    The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

  5. A Method for Monitoring the Heat Flux from an Urban District with a Single Infrared Remote Sensor

    NASA Astrophysics Data System (ADS)

    Hénon, Aurélien; Mestayer, Patrice G.

    2014-07-01

    The proposed methodology relies on the modelling capabilities of the thermo-radiative model Suc(olene) to simulate the heat and radiation energy exchanges between an actual urban district and the atmosphere. It is based on the comparison of the simulated upward infrared and sensible heat flux diurnal cycles that may be measured by elevated sensors above the three-dimensional scene, as a function of sensor position: the heat flux is a function of an equivalent surface temperature given by the infrared sensor and an equivalent heat transfer coefficient deduced from Suc(olene) simulations with the actual geometry. The method is tested against measurements obtained in the city centre of Toulouse, France during an experimental campaign in 2004-2005. To improve the computation of the heat exchanges between air and building surfaces a new algorithm is first implemented, based on an empirical model of the wind distribution within street canyons. This improvement is assessed by a direct comparison of the simulated brightness surface temperatures of the Toulouse city centre to measurements obtained with an airborne infrared sensor. The optimization of the infrared remote sensor position is finally analyzed as a function of its height above the mean roof level: it allows evaluation of the heat flux from an urban district when the three different classes of surfaces (roofs, walls, grounds) have similar contributions to the infrared flux towards the sensor, and to the heat flux into the atmosphere.

  6. District heating/feasibility study for Jamestown, New York. Phase two. Final report

    SciTech Connect

    Oliker, I.

    1986-04-01

    This report details an investigation to implement district heating in Jamestown, New York. It is a technical and economic feasibility study of a hot-water district-heating system, using a municipal electric plant as the heat source and the downtown area as a source for customers. As a result of the project, the City of Jamestown built a district-heating system that was a service to four customers in 1984 and expanded to 14 customers in 1985. The City expects it to grow in 1986 and beyond. Customers are realizing a 20 to 30% savings in heating costs. The municipal electric plant burns coal and the system so far has displaced the equivalent of 1 million gallons of oil per year.

  7. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  8. Challenges Encountered by Connecticut Partner School Districts when Implementing Legislatively Required District Improvement Plans: An Exploratory Study

    ERIC Educational Resources Information Center

    Martins, Meghan G.

    2010-01-01

    This research developed a survey that measures the degree to which challenges are experienced by school and district leaders, and teachers, when attempting to implement legislatively required District Improvement Plans (DIPs). The data indicate that there are certainly challenges when implementing DIPs and that teachers report experiencing a…

  9. Preliminary business plan: District Heating Company for the city of Handlova, Slovakia

    SciTech Connect

    1996-06-01

    The city of Handlova, Slovakia, needs to replace its district heating system, which is old, unreliable, and expensive to maintain. The current plant is owned by a state-run utility, the Slovensky Energeticky Podnik (SEP). The plan is to privatize the heating plant, acquire capital to rehabilitate the central plant (converting it to a cogeneration facility), install a new hot-water distribution system, and implement an extensive energy efficiency effort in the residential buildings on the system. System capacity is 100 MWt, with annual heat sales estimated to be 450,000 gigajoules per year (GJ/yr). The capital necessary for system improvements is estimated to be 465 million Slovakian Krowns (SK) (in 1997 price levels). The total market value of existing fixed assets that will survive the rehabilitation effort as part of the new systems is estimated at 342 million SK. There has been substantial analysis and preparation for this activity, which is documented in demand-side and supply-side technical and economic analyses, an integrated demand/supply report, and this preliminary business plan. The preparation includes investigation of ownership, management, and technology alternatives; estimation of the market value of existing assets and investment requirements; and forecasting of future cash flows. These preliminary projections indicate that the cost of heating from the new system will be reasonable from both a cost per unit of energy basis (SK/GJ) and, form the perspective of an apartment dweller in Handlova, on a total cost per year basis. Delivering heat at the projected cost will, however, require a substantial change in the way that the heating plant is run, with proportionally very large reductions in labor, operations and maintenance, and overhead charges. In addition, there will need to be significant revenues from the sale of electricity to the national grid.

  10. Characteristics of Midwest Region School Districts Identified for Improvement. Summary. Issues & Answers. REL 2012-No. 121

    ERIC Educational Resources Information Center

    van der Ploeg, Arie; Wan, Yinmei; Garcia, Alicia N.; Wraight, Sara; Burke, Matthew; Norbury, Heather; Gerdeman, R. Dean

    2012-01-01

    This report presents statistical profiles for the Midwest Region states of school districts designated as "in improvement" for school year 2009/10 under accountability provisions of the No Child Left Behind Act of 2001 and compares the prevalence and characteristics of these districts and those of districts not in improvement. It also…

  11. What Districts Can Do To Improve Instruction and Achievement in All Schools.

    ERIC Educational Resources Information Center

    Togneri, Wendy

    2003-01-01

    A study of five high-poverty districts making strides in improving student achievement revealed that these districts focused on systemwide strategies including new approaches to professional development; making decisions based on data, not instinct; and redefining leadership roles. (MLF)

  12. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  13. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    PubMed

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection.

  14. Geothermal district heating and cooling of hotel/casinos in downtown Reno, Nevada

    SciTech Connect

    Cerci, Y.; Kanoglu, M.; Cengel, Y.A.; Turner, R.H.

    1996-12-31

    In this paper, potential revenues from the proposed geothermal district heating/cooling system for the hotel/casino complexes in downtown Reno, Nevada are estimated by analyzing their actual electricity and natural gas bills during 1993 through 1994. The geothermal system appears to be feasible, and financially very attractive. The geothermal district system can meet the entire heating and cooling requirements of the hotel/casinos, generating total potential revenues of $3,486,000 per year. Also, other buildings around the downtown area such as Saint Mary`s Hospital, several motels, business complexes, Washoe County School District Building, and even the UNR campus will add extra potential revenues, if these buildings are connected to the geothermal grid. Since most buildings around the downtown use central heating and cooling system, the retrofit costs for the both system should be minimal.

  15. Improved heat-resistant garments

    NASA Technical Reports Server (NTRS)

    Johnston, R. S.

    1970-01-01

    Fabrication method for protective clothing eliminates the common heat-short by avoiding the stitch which is common to all layers, and preventing external exposure of any stitch to the outer environment. A unique overlap arrangement is described and additional protective methods are discussed.

  16. Financial planning for district heating: The Brooklyn Navy Yard project: A project report

    SciTech Connect

    Not Available

    1984-05-01

    Financial planning for the Brooklyn Navy Cogeneration and District Heating Project involved the establishment of three distinct potential markets, a determination of economic feasibility and the development of a financial structure that could accommodate the diverse social objectives of the project and the nature of the markets to be served. The Brooklyn Navy Yard (BNY) is owned by the City of New York (City) and managed by the non-profit Brooklyn Navy Yard Development Corporation for operation as an industrial park. Development of a cogeneration/district heating facility at the Navy Yard was undertaken to meet multiple community and economic development objectives.

  17. District heating/cogeneration application studies for the Minneapolis-St. Paul area. Impact of a district heating/cogeneration system on annual average SO2 air quality in the twin cities

    NASA Astrophysics Data System (ADS)

    Karnitz, M. A.; Kornegay, F. C.; McLain, H. A.; Murphy, B. D.; Raridon, R. J.; Shlatter, E. C.

    1981-03-01

    Annual average SO2 concentrations in air at ground level were determined for a base year (1976) and for a future year (1987) with and without a 2600-MW(t) district heating system. Without district heating, the SO2 concentrations in the area are predicted to increase with time because of anticipated increased substitution of oil for curtailed natural gas. Implementation of the district heating/cogeneration system is predicted to mitigate this increase of SO2 concentrations significantly. Although the total emissions will be slightly higher with district heating/cogeneration because of the substitution of coal for natural gas and oil, use of tall stacks at the cogeneration plants will permit greater dispersion of the SO2 emissions. Considerable overall energy savings, particularly in the form of natural gas and oil, will be realized with a district heating/cogeneration system.

  18. Heat Acclimation Improves Exercise Performance

    DTIC Science & Technology

    2010-01-01

    environments. Twelve trained cyclists performed tests of maximal aerobic power ( VO2max ), time-trial performance, and lactate threshold, in both cool [13...C, 30% relative humidity (RH)] and hot (38°C, 30% RH) environments before and after a 10-day heat acclimation (~50% VO2max in 40°C) program. The hot...and cool condition VO2max and lactate threshold tests were both preceded by either warm (41° C) water or thermoneutral (34°C) water immersion to

  19. Blueprint for financing geothermal district heating in California

    SciTech Connect

    Grattan, J.P.; Hansen, D.P.

    1981-03-01

    The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed. (MHR)

  20. Improving Process Heating System Performance v3

    SciTech Connect

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  1. Environmental Assessment and FONSI for the Bison School District Heating Plant Project (Institutional Conservation Program [ICP]).

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This paper examines the environmental impacts of replacing the Bison, South Dakota School District's elementary and high school heating system consisting of oil-fired boilers, and supporting electrical components with a new coal-fired boiler and supporting control system piping. Various alternative systems are also examined, including purchasing a…

  2. Direct-use geothermal district heating projects in the US. A summary

    SciTech Connect

    Fornes, A.O.

    1981-10-01

    Brief summaries of geothermal district heating projects are presented for the following: Boise, Idaho; Elko, Nevada; Ephrata, Washington; Hawthorne, Nevada; Klamath Falls, Oregon; Lakeview, Oregon; Madison County, Idaho; North Bonneville, Washington; Pagosa Springs, Colorado; Preston, Idaho; Reno, Nevada; Susanville, California; Thermopolis, Wyoming; and Utah State Prison, Utah. (MHR)

  3. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  4. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  5. TX model: a quantitative heat-loss analysis of district heating pipes by means of IR surface-temperature measurements

    NASA Astrophysics Data System (ADS)

    Zinko, Heimo; Perers, Bengt

    1995-03-01

    The aim of this study is to investigate the possibility of analyzing the temperature profile at the ground surface above buried district heating pipes in such a way that enables the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of thermography. For this purpose, the principle of the TX-model has been developed, implementing that the heat losses from pipes buried in the ground has a temperature signature on the ground surface. A qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques mostly makes use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss in Watt/m. The basic idea is that the integral of the temperature variation across the pipe, called TX, is a function of the heat loss, but affected by some other parameters such as depth, heat diffusivity and so on. In order to analyze the parameters influencing the TX-factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is relatively unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at a testfield in Studsvik, Sweden, with electrically controlled pipe heat losses and long term monitoring of the surface temperature profile and TX factor with temperature sensors at the ground surface. The quantitative TX model for heat loss

  6. Improved ceramic heat exchanger materials

    NASA Technical Reports Server (NTRS)

    Rauch, H. W.

    1980-01-01

    The development and evaluation of materials for potential application as heat exchanger structures in automotive gas turbine engines is discussed. Test specimens in the form of small monolithic bars were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by short and long term cycling at temperatures up to 1200 C. The material finally selected, GE-7808, consists of the oxides, ZrO2-MgO-Al2O3-S1O2, and is described generically as ZrMAS. The original version was based on a commercially available cordierite (MAS) frit. However, a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm diameter were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm. The test data show that GE-7808 is significantly more stable at 1100 C in the presence of sodium than the aluminosilicate reference materials. In addition, thermal exposure up to 1100 C, with and without sodium present, results in essentially no change in thermal expansion of GE-7808.

  7. Feasibility Study for the Ivano-Frankivsk District Heating Repowering: Analysis of Options

    SciTech Connect

    Markel, L.; Popelka, A.; Laskarevsky, V.

    2002-03-20

    Part of the U.S. Initiative on Joint Implementation with the Ukraine Inter-Ministerial Commission on Climate Change, financed by the US Department of Energy. The project was implemented by a team consisting of the US company SenTech, Inc. and the Ukrainian company Esco-West. The main objective of the effort was to assess available alternatives of Ivano-Frankivsk (I-F) District Heating repowering and provide information for I-F's investment decision process. This study provides information on positive and negative technical and economic aspects of available options. Three options were analyzed for technical merit and economic performance: 1. Installation of cogeneration system based on Gas Turbine (GT) and Heat Recovery Heat Exchanger with thermal capacity of 30 MW and electrical capacity of 13.5 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. Equipment in this Option was sized for longest operating hours, about 8000 based on the available summer baseload. 2. Installation of Gas Turbine Combined Cycle (GTCC) and Heat Recovery Steam Generator (HRSG) with thermal capacity 45 MW and electrical capacity of 58.7 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. The equipment was sized for medium, shoulder season thermal load, and some cooling was assumed during the summer operation for extension of operating hours for electricity production. 3. Retrofit of six existing boilers (NGB) with total thermal capacity of 255.9 MW by installation of modern control system and minor upgrades. This option assumes only heat production with minimum investment. The best economic performance and the largest investment cost would result from alternative GTCC. This alternative has positive Net Present Value (NPV) with discount rate lower than about 12%, and has IRR slightly above 12%. The

  8. Assessment of district heating/cooling potential in Holland, Michigan. Final report

    SciTech Connect

    Not Available

    1982-07-01

    A study undertaken to evaluate the potential for district heating/cooling (DHC) in the City of Holland, Michigan is documented. The purpose of the study was to assess the concept of delivering energy from a centralized source (or several sources) through a piping network to many end users for heating domestic hot water, space heating, space cooling and industrial process use. The Holland community was involved through representation of various businesses, agencies and community groups as part of an Assessment Work Group (AWG) membership. The AWG worked throughout the study with the BPW staff and consultants. Conclusions and recommendations of the study reflect the joint effort.

  9. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    PubMed

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production.

  10. Improved heat switch for gas sorption compressor

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1985-01-01

    Thermal conductivities of the charcoal bed and the copper matrix for the gas adsorption compressor were measured by the concentric-cylinder method. The presence of the copper matrix in the charcoal bed enhanced the bed conductance by at least an order of magnitude. Thermal capacities of the adsorbent cell and the heat leaks to two compressor designs were measured by the transient method. The new gas adsorption compressor had a heat switch that could transfer eight times more heat than the previous one. The cycle time for the new prototype compressor is also improved by a factor of eight to within the minute range.

  11. Achieving Coherence in District Improvement: Managing the Relationship between the Central Office and Schools

    ERIC Educational Resources Information Center

    Johnson, Susan Moore; Marietta, Geoff; Higgins, Monica C.; Mapp, Karen L.; Grossman, Allen

    2015-01-01

    "Achieving Coherence in District Improvement" focuses on a problem of practice faced by educational leaders across the nation: how to effectively manage the relationship between the central office and schools. The book is based on a study of five large urban districts that have demonstrated improvement in student achievement. The…

  12. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    NASA Astrophysics Data System (ADS)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  13. Economic tradeoffs between energy conservation measures and district heating in a large US city

    SciTech Connect

    Pine, G D; Sullivan, W G; Eksel, M; Karnitz, M A

    1982-01-01

    An examination is made of the economic implications of applying end-user conservation measures to buildings that are served by a proposed district heating system in the Minneapolis-St. Paul area. End-user conservation is a demand-side conservation strategy typified by changes in building operating procedures and changes in the building shell. District heating with cogeneration is a supply-side conservation method that allows scarce fossil fuels to be more efficiently converted into thermal and electrical energy. Technically these two conservation methods can be applied simultaneously to a densely populated urban are such as Minneapolis-St. Paul, but the implementation of one tends to reduce the economic feasibility of the other. This analysis suggests that building coservation measures will be difficult to justify economically in buildings that are connected to the proposed Minneapolis-St. Paul system.

  14. Demand for waste as fuel in the swedish district heating sector: a production function approach.

    PubMed

    Furtenback, Orjan

    2009-01-01

    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  15. Short Duration Base Heating Test Improvements

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Dagostino, Mark G.; Engel, Bradley A.; Engel, Carl D.

    1999-01-01

    Significant improvements have been made to a short duration space launch vehicle base heating test technique. This technique was first developed during the 1960's to investigate launch vehicle plume induced convective environments. Recent improvements include the use of coiled nitrogen buffer gas lines upstream of the hydrogen / oxygen propellant charge tubes, fast acting solenoid valves, stand alone gas delivery and data acquisition systems, and an integrated model design code. Technique improvements were successfully demonstrated during a 2.25% scale X-33 base heating test conducted in the NASA/MSFC Nozzle Test Facility in early 1999. Cost savings of approximately an order of magnitude over previous tests were realized due in large part to these improvements.

  16. Economic Assessment of Rural District Heating by Bio-Steam Supplied by a Paper Mill in Canada

    ERIC Educational Resources Information Center

    Marinova, Mariya; Beaudry, Catherine; Taoussi, Abdelaziz; Trepanier, Martin; Paris, Jean

    2008-01-01

    The article investigates the feasibility of district heating in a small town adjacent to a Kraft pulp mill in eastern Canada. A detailed heat demand analysis is performed for all buildings using a geographical information system and archived data provided by the municipality. The study shows that the entire space heating requirement of the town…

  17. Application of Service Oriented Architecture for Sensors and Actuators in District Heating Substations

    PubMed Central

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-01-01

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  18. Minnesota Project: district heating and cooling through power plant retrofit and distribution network. Final report. Phase 1. [Minnesota Project

    SciTech Connect

    1980-01-01

    Appendices are presented for the Minnesota Project: District Heating and Cooling Through Power Plant Retrofit and Distribution Network. These are: SYNTHA results (SYNTHA II is a proprietary program of the SYNTHA Corporation); Market Survey Questionnaire: Environmental Review Procedures; Public Service Commission Regulation of District Heating; Energy Use Normalization Procedures; Power Plant Description; Letters of Commitment; Bond Opinion and Issuance; and Marvin Koeplin Letter, Chairman of Public Service Commission, Moorehead, Minnesota.

  19. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  20. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1987-01-01

    This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).

  1. Central Office Transformation for District-Wide Teaching and Learning Improvement

    ERIC Educational Resources Information Center

    Honig, Meredith I.; Copland, Michael A.; Rainey, Lydia; Lorton, Juli Anna; Newton, Morena

    2010-01-01

    This report summarizes main results from a national study of how leaders in urban school district central offices fundamentally transformed their work and relationships with schools to support districtwide teaching and learning improvement. All three study districts had been posting gains in student achievement and credited their progress, in…

  2. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  3. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  4. Experiences in School Improvement. The Story of 16 American Districts.

    ERIC Educational Resources Information Center

    Paulu, Nancy

    This booklet describes the results of "Project Education Reform," a partnership involving the U.S. Department of Education, 8 state governors, and 16 school districts--2 in each participating state--representing a cross-section of the nation. It was generally agreed that a good basis for needed educational changes were the 13…

  5. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1988-01-01

    This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.

  6. Heat pump having improved defrost system

    DOEpatents

    Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  7. Heat pump having improved defrost system

    DOEpatents

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  8. Towards Improved Estimates of Ocean Heat Flux

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Hollman, Rainer; Kent, Elisabeth; Haines, Keith

    2014-05-01

    Recommendations and priorities for ocean heat flux research are for instance outlined in recent CLIVAR and WCRP reports, eg. Yu et al (2013). Among these is the need for improving the accuracy, the consistency, and the spatial and temporal resolution of air-sea fluxes over global as well as at region scales. To meet the main air-sea flux requirements, this study is aimed at obtaining and analyzing all the heat flux components (latent, sensible and radiative) at the ocean surface over global oceans using multiple satellite sensor observations in combination with in-situ measurements and numerical model analyses. The fluxes will be generated daily and monthly for the 20-year (1992-2011) period, between 80N and 80S and at 0.25deg resolution. Simultaneous estimates of all surface heat flux terms have not yet been calculated at such large scale and long time period. Such an effort requires a wide range of expertise and data sources that only recently are becoming available. Needed are methods for integrating many data sources to calculate energy fluxes (short-wave, long wave, sensible and latent heat) across the air-sea interface. We have access to all the relevant, recently available satellite data to perform such computations. Yu, L., K. Haines, M. Bourassa, M. Cronin, S. Gulev, S. Josey, S. Kato, A. Kumar, T. Lee, D. Roemmich: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. INTERNATIONAL CLIVAR PROJECT OFFICE, 2013: International CLIVAR Publication Series No 189. http://www.clivar.org/sites/default/files/ICPO189_WHOI_fluxes_workshop.pdf

  9. Ten years of experience of district heat supply from a retrofitted power plant

    SciTech Connect

    Gronquist, R.J.; Gustafson, D.; Champ, D.V.

    1995-06-01

    This paper addresses the development and operation of the Jamestown District Heating System in the City of Jamestown, new York. The conception of the systems through the initial feasibility studies is discussed, followed by the development of the system through phased implementation and the current status of operation. The planning aspects which contributed to the successful development of this system are highlighted and the customer savings are cited. Finally, problems encountered with the development and operation of the system and their solutions are examined.

  10. Institutional and financial guide to geothermal district heating, serial no. 2

    NASA Astrophysics Data System (ADS)

    1982-03-01

    General planning considerations which affect nearly every community are reviewed, and alternative operating structures which are available to communities are reviewed, including local governments, nonprofit cooperatives, private enterprises, and joint ventures. The financing options available to publicly-owned and privately-owned district heating systems are then summarized. The geothermal production and distribution activities most appropriate to each type of operating structure are reviewed, along with typical equity and debt funding sources. The tax advantages for private developers are described, as are the issues of customer contracts and service prices, and customer retrofit financing. The treatment is limited to an introductory overview.

  11. Leakage and blockage detection in water network of district heating system

    SciTech Connect

    Jiang, Y.; Chen, H.; Li, J.

    1996-11-01

    A new procedure has been designed to discover the leakage or blocked branch in the water network of a district heating system. The main feature of this procedure is taking the network as a whole system and making the detection according to the distribution of pressures measured at some points in the network. As the information from the measured data can be used with maximum efficiency, the required number of sensors can be reduced significantly. Influence from errors in some sensors can also be reduced greatly. The basic idea of this method is presented first. The procedure is then described step by step. A numerical example is given for illustration at the end.

  12. Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system

    SciTech Connect

    McKay, F.; McKay, G.; McKay, S.; Flynn, T.

    1995-12-31

    Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

  13. Damages of the Tallinn District Heating Networks and Indicative Parameters for an Estimation of the Networks General Condition

    NASA Astrophysics Data System (ADS)

    Hlebnikov, Aleksandr; Volkova, Anna; Dzuba, Olga; Poobus, Arvi; Kask, Ülo

    2010-01-01

    District heating networks in Estonia are mostly old and in bad condition. The state of the district heating networks of Tallinn is typical for the rest of Estonian DH networks. The paper includes an analysis of the Tallinn district heating networks. Valid data about damages in district heating systems received for the last 12 years were used for an analysis of the network damages. Different types of network damages are analysed: external corrosion, internal corrosion, defect of installation, factory defects, defect of construction and other reasons. The scale of damages for the different elements of networks is compared in the paper: armature, compensator, construction and pipes. The main factors which influence damages in district heating networks are the age of networks, the quality of construction works and the network operation conditions. The damage quantity dependence on the age of networks is also defined and analysed in the paper. The scale of damages can be diminished by reducing the average age of the networks. This is possible by replacing old pipelines and other network system elements. The pipes average age changes for a 20 year period are simulated according to different intensities of renovation works.

  14. Cooking utensil with improved heat retention

    DOEpatents

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  15. Cooking utensil with improved heat retention

    DOEpatents

    Potter, Thomas F.; Benson, David K.; Burch, Steven D.

    1997-01-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  16. Assessment of impact of advanced energy transmission fluids on district heating and cooling systems (Phase 1)

    SciTech Connect

    Kasza, K.E.; Chen, M.M.

    1987-09-01

    Argonne National Laboratory (ANL), under sponsorship of the US Department of Energy (DOE) Office of Buildings and Community Systems, has embarked upon a comprehensive, long-range program to develop high-performance advanced energy transmission fluids for use in district heating and cooling (DHC) systems. ANL has the lead technical role in this DOE program. These advanced fluids will substantially reduce flow frictional losses and enhance energy transfer. In system enhancement scoping studies conducted by ANL, the fluids yielded potentially significant upfront capital equipment cost reductions by allowing the use of smaller pipes, pumps, heat exchangers, and storage tanks as well as reductions in operational costs. This report presents the first-phase results of assessment of impact of the advanced fluids on DHC systems. Future reports will focus on assessment of impact on hardware performance, capital eqiupment, and operation costs. 9 refs., 30 figs., 2 tab.

  17. Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts.

    PubMed

    Schlader, Zachary J; Ganio, Matthew S; Pearson, James; Lucas, Rebekah A I; Gagnon, Daniel; Rivas, Eric; Kowalske, Karen J; Crandall, Craig G

    2015-07-01

    Burn survivors with extensive skin grafts have impaired heat dissipation and thus heat tolerance. This study tested the hypothesis that heat acclimation (HA) improves these factors in this population. Thirty-four burn survivors were stratified into highly [>40% body surface area (BSA) grafted, n = 15] and moderately (17-40% BSA grafted, n = 19) grafted groups. Nine healthy nonburned subjects served as controls. Subjects underwent 7 days of HA involving 90 min of exercise at ∼ 50% peak oxygen uptake in 40°C, 30% relative humidity. On days 1 and 7, subjects exercised in the heat at a fixed rate of metabolic heat production. Pre-HA, all controls and 18/19 subjects in the 17-40% group completed 90 min of exercise. Conversely, heat exercise tolerance was lower (P < 0.01) in the > 40% group, with 7/15 subjects not completing 90 min of exercise. Post-HA, heat exercise tolerance was similar between groups (P = 0.39) as all subjects, except one, completed 90 min of exercise. Pre-HA, the magnitude of the increase in internal temperature during exercise occurred sequentially (P ≤ 0.03) according to BSA grafted (>40%: 1.6 ± 0.5°C; 17-40%: 1.2 ± 0.3°C; control: 0.9 ± 0.2°C). HA attenuated (P < 0.01) increases in internal temperature in the control (by 0.2 ± 0.3°C), 17-40% (by 0.3 ± 0.3°C), and > 40% (by 0.3 ± 0.4°C) groups, the magnitude of which was similar between groups (P = 0.42). These data indicate that HA improves heat tolerance and dissipation in burn survivors with grafted skin, and the magnitude of these improvements are not influenced by the extent of skin grafting.

  18. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  19. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  20. Base heating methodology improvements, volume 1

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Reardon, John E.; Somers, Richard E.; Fulton, Michael S.; Smith, Sheldon D.; Pergament, Harold

    1992-01-01

    This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years.

  1. Heat-shrinkable film improves adhesive bonds

    NASA Technical Reports Server (NTRS)

    Johns, J. M.; Reed, M. W.

    1980-01-01

    Pressure is applied during adhesive bonding by wrapping parts in heat-shrinkable plastic film. Film eliminates need to vacuum bag or heat parts in expensive autoclave. With procedure, operators are trained quickly, and no special skills are required.

  2. Compact laser through improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1975-01-01

    A 16-joule-pulse laser has been developed in which a boron nitride heat-conductor enclosure is used to remove heat from the elements. Enclosure is smaller and lighter than systems in which cooling fluids are used.

  3. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    PubMed Central

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  4. RESTful M2M gateway for remote wireless monitoring for district central heating networks.

    PubMed

    Cheng, Bo; Wei, Zesan

    2014-11-27

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented.

  5. District heating/cooling potential in New York City. phase 1. Final report

    SciTech Connect

    McLoughlin, G.T.; Kuo, R.P.; Karol, J.

    1983-02-01

    New York City through its Energy Office has identified and evaluated the technical and economic feasibility of district heating and cooling at three locations: Brooklyn Navy Yard, Kings County Medical Complex, and the S.W. Brooklyn Incinerator. Of these the Navy Yard has the most immediate potential for implementation. The Navy Yard has an extensive steam and electrical system that has not been used since the Navy turned most of the property over to New York City more than a decade ago. By remodeling several of the smaller boilers still in place or purchasing new boilers, an ample supply of steam and hot water can be produced. The steam will be used for heating and industrial process for the industrial tenants now occupying the former yards. Hot water will be sold to the New York City Housing Authority to heat between 3,500 and 5,000 nearby public housing units operated by the authority. Electricity will be cogenerated using present generators that will be overhauled. It is expected that some of the electricity will be used directly to supply power to a planned nearby Red Hook Sewage Treatment plant, while most will be sold to the industrial tenants of the Navy Yard. Studies will continue to determine the best market for excess power.

  6. A life cycle evaluation of wood pellet gasification for district heating in British Columbia.

    PubMed

    Pa, Ann; Bi, Xiaotao T; Sokhansanj, Shahab

    2011-05-01

    The replacement of natural gas combustion for district heating by wood waste and wood pellets gasification systems with or without emission control has been investigated by a streamlined LCA. While stack emissions from controlled gasification systems are lower than the applicable regulations, compared to the current base case, 12% and 133% increases are expected in the overall human health impacts for wood pellets and wood waste, respectively. With controlled gasification, external costs and GHG emission can be reduced by 35% and 82% on average, respectively. Between wood pellets and wood waste, wood pellets appear to be the better choice as it requires less primary energy and has a much lower impact on the local air quality.

  7. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  8. Education and the Economy: Boosting the District of Columbia's Economy by Improving High School Graduation Rates

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2011

    2011-01-01

    Building on its previous work examining education and the economy, the Alliance for Excellent Education (the Alliance), with generous support from State Farm[R], analyzed the economies of all fifty states and the District of Columbia to determine the economic benefits that states could see by improving high school graduation rates. Using a…

  9. Research-Practice Partnerships: A Strategy for Leveraging Research for Educational Improvement in School Districts

    ERIC Educational Resources Information Center

    Coburn, Cynthia E.; Penuel, William R.; Geil, Kimberly E.

    2013-01-01

    Pressures are increasing on educational policy and practice to use research to guide improvement. Recently there have been concerted efforts to forge new and different kinds of relationships between researchers and practitioners. School districts across the country are developing a new kind of partnership with researchers. These research-practice…

  10. The District Leadership Challenge: Empowering Principals to Improve Teaching and Learning

    ERIC Educational Resources Information Center

    Bottoms, Gene; Fry, Betty

    2009-01-01

    Principals can profoundly influence student achievement by leading school change, but they cannot turn schools around by themselves. District leaders need to create working conditions that support and encourage change for improved achievement, rather than hindering principals' abilities to lead change. This report includes principals' perceptions…

  11. Improving Students' Readiness for College: Homewood-Flossmoor High School, Illinois District 233. Case Study

    ERIC Educational Resources Information Center

    ACT, Inc., 2004

    2004-01-01

    This paper illustrates how Homewood-Flossmoor High School, Illinois District 233 addressed the decline in its student achievement results and improved college readiness among its students. This sharp decline caused school officials to stop and reevaluate what they were doing. A review of the facts led to a clear conclusion: "Rigorous…

  12. Improving Interagency Collaboration: Effective Strategies Used by High-Performing Local Districts and Communities

    ERIC Educational Resources Information Center

    Noonan, Patricia M.; Morningstar, Mary E.; Erickson, Amy Gaumer

    2008-01-01

    Young adults with disabilities often depend on linkages and supports from adult agencies to achieve high-quality adult outcomes. However, interagency collaboration has emerged as a major area of difficulty and a critical area in need of improvement for school districts throughout the United States. Based on the input of research participants from…

  13. Classroom Walkthroughs: Does Such an Approach to Supervision Contribute to District Improvement?

    ERIC Educational Resources Information Center

    Fields, Cary

    2013-01-01

    The purpose of this study was to examine what types of data collection currently exist and what kind of information should be provided through a walkthrough observation process that attempts to enhance teaching practice, contribute to student learning and assist a district's overall improvement planning. In fulfilling this purpose the…

  14. School Improvement Change Grant Community Survey, Final Report. A Report to Toluca Community Unit School District #2, El Paso Community Unit School District #375, Lowpoint-Washburn Community Unit School District #21, Minonk-Dana-Rutland Community Unit School District #108, and Roanoke-Benson Community Unit School District #60.

    ERIC Educational Resources Information Center

    O'Connell, Patricia A.; And Others

    This report presents the results of a collaborative study undertaken by five rural, unit school districts in Illinois to provide data to be used in planning for school improvement. Information was gathered from on-site visits by teams of constituents from other districts and through a survey of perceptions of local community persons regarding…

  15. Particle emissions from district heating units operating on three commonly used biofuels

    NASA Astrophysics Data System (ADS)

    Wierzbicka, A.; Lillieblad, L.; Pagels, J.; Strand, M.; Gudmundsson, A.; Gharibi, A.; Swietlicki, E.; Sanati, M.; Bohgard, M.

    The aim of this study was to characterise particle emissions from district heating units operating on three commonly used biofuels: forest residues, pellets and sawdust. Boilers used in the three district heating units were of moving grate type, with the maximum thermal output between 1 and 1.5 MW. The measurements were done after multicyclones, the only particle removal devices installed, therefore the direct emissions to ambient air were characterised. Number and mass size distributions were determined. Elemental composition of the particles was determined by particle induced X-ray emissions analysis (PIXE) and thermal-optical analysis. Particles' morphology was assessed on the basis of transmission electron microscopy (TEM). Total number concentration of emitted particles with aerodynamic diameter smaller than 5 μm (PM5) at medium operation load ranged from 6.3 to 7.7×10 7 particles/cm n3, with the slightly higher values from combustion of forest residues. PM5 mass concentration at medium load from low pressure impactor measurements ranged between 51 and 120 mg/m n3, with the highest values from unit operating on forest residues. Both PM5 mass and total number concentrations were dominated by fine mode contributions i.e. particles with aerodynamic diameter smaller than 1 μm (PM1). Elements determined by PIXE ( Z>12) contributed to 21-34% of PM1 mass, of which K, S, Cl and Ca contributed to 18-33% of PM1 mass, and Zn, Mn, Fe, Cr, Pb and Cd to 1-3%. Emitted concentrations of heavy metals depended on type of the fuel and operating load. Particulate organic (OC) and elemental (EC) carbon contribution to PM1 ranged from 1-19% and 0-56%, respectively. Particulate OC concentrations strongly depended on the operation load regardless the type of the fuel, while EC concentrations seemed to depend both on load and the type of the fuel. Considering the potential public health implications of the obtained results, further research is needed to carefully assess the impact

  16. Complex Heat Exchangers for Improved Performance

    NASA Astrophysics Data System (ADS)

    Bran, Gabriela Alejandra

    After a detailed literature review, it was determined that there was a need for a more comprehensive study on the transient behavior of heat exchangers. Computational power was not readily available when most of the work on transient heat exchangers was done (1956 - 1986), so most of these solutions have restrictions, or very specific assumptions. More recently, authors have obtained numerical solutions for more general problems (2003 - 2013), but they have investigated very specific conditions, and cases. For a more complex heat exchanger (i.e. with heat generation), the transient solutions from literature are no longer valid. There was a need to develop a numerical model that relaxes the restrictions of current solutions to explore conditions that have not been explored. A one dimensional transient heat exchanger model was developed. There are no restrictions on the fluids and wall conditions. The model is able to obtain a numerical solution for a wide range of fluid properties and mass flow rates. Another innovative characteristic of the numerical model is that the boundary and initial conditions are not limited to constant values. The boundary conditions can be a function of time (i.e. sinusoidal signal), and the initial conditions can be a function of position. Four different cases were explored in this work. In the first case, the start-up of a system was investigated where the whole system is assumed to be at the same temperature. In the second case, the new steady state in case one gets disrupted by a smaller inlet temperature step change. In the third case, the new steady state in case one gets disrupted by a step change in one of the mass flow rates. The response of these three cases show that there are different transient behaviors, and they depend on the conditions imposed on the system. The fourth case is a system that has a sinusoidal time varying inlet temperature for one of the flows. The results show that the sinusoidal behavior at the inlet

  17. Genomic Selection Improves Heat Tolerance in Dairy Cattle.

    PubMed

    Garner, J B; Douglas, M L; Williams, S R O; Wales, W J; Marett, L C; Nguyen, T T T; Reich, C M; Hayes, B J

    2016-09-29

    Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events.

  18. Genomic Selection Improves Heat Tolerance in Dairy Cattle

    PubMed Central

    Garner, J. B.; Douglas, M. L.; Williams, S. R. O; Wales, W. J.; Marett, L. C.; Nguyen, T. T. T.; Reich, C. M.; Hayes, B. J.

    2016-01-01

    Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events. PMID:27682591

  19. Heat Exchange System Improvement Saves Energy and Improves Production at a Winery

    SciTech Connect

    2001-08-01

    In 2000, Fetzer Vineyards implemented a project to improve its process heating cycle at its Hopland Winery in Hopland, California. In an effort to reduce expenditures on natural gas, Fetzer reviewed their wine process heating cycle and discovered that they could reduce their natural gas purchases and improve efficiency by installing a heat exchanger.

  20. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    SciTech Connect

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  1. A Village Route to Early Childhood Education: An Iowa District Partners with Its Community to Improve Kindergarten Readiness

    ERIC Educational Resources Information Center

    Almanza, Julio; Reynolds, Ethel; Schulte, Kathy; Long, Betty

    2009-01-01

    This article features Davenport Community Schools, Iowa's third largest school district that has partnered with its community to improve kindergarten readiness. The district created the Children's Village model to provide preschool classes taught by certified early childhood instructors and serve children from six weeks to five years of age in…

  2. Can a District-Level Teacher Salary Incentive Policy Improve Teacher Recruitment and Retention? Policy Brief 13-4

    ERIC Educational Resources Information Center

    Hough, Heather J.; Loeb, Susanna

    2013-01-01

    In this policy brief, Heather Hough and Susanna Loeb examine the effect of the Quality Teacher and Education Act of 2008 (QTEA) on teacher recruitment, retention, and overall teacher quality in the San Francisco Unified School District (SFUSD). They provide evidence that a salary increase can improve a school district's attractiveness within their…

  3. Implementing Efficiencies in SEA Systems to Provide Differentiated Services to Support District and School Improvement. Benchmark. No. 1

    ERIC Educational Resources Information Center

    Redding, S.

    2013-01-01

    Differentiating state services to support district and school improvement makes sense for two reasons: (1) support is most effective when targeted to the specific needs of the district or school, based on both performance data and diagnostic data about prevailing operational and professional practice; and (2) state resources of time and money are…

  4. Using School Performance Data to Drive School and Education District Office Accountability and Improvement: The Case of Ghana

    ERIC Educational Resources Information Center

    Prew, Martin; Quaigrain, Kenneth

    2010-01-01

    This article looks at a school management tool that allows school managers and education district offices to review the performance of their schools and use the broad-based data to undertake orchestrated planning with districts planning delivery based on the needs of schools and in support of school improvement plans. The review process also…

  5. Increase of unit efficiency by improved waste heat recovery

    SciTech Connect

    Bauer, G.; Lankes, F.

    1998-07-01

    For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

  6. Global carbon impacts of using forest harvest residues for district heating in Vermont

    SciTech Connect

    McLain, H.A.

    1998-07-01

    Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

  7. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  8. Improved ceramic heat exchanger materials. Final report

    SciTech Connect

    Rauch, H.W. Sr.; McCreight, L.R.

    1980-12-01

    Numerous compositions were developed and evaluated for potential application as heat exchanger structures in automotive gas turbine engines. Test specimens were evaluated for thermal expansion and dimensional stability before and after exposure to sea salt and sulfuric acid, followed by thermal cycling up to 1200/sup 0/C. Materials which survived the screening tests were considered for fabrication into honeycomb form. The material finally selected, GE-7808, consists of the oxides, ZrO/sub 2/-MgO-Al/sub 2/O/sub 3/-SiO/sub 2/, and is described generically as ZrMAS. The original version on which the primary work was done was based on a commercially available cordierite (MAS) frit. Late in the program, however a clay/talc mixture was demonstrated to be a satisfactory very low cost source of the cordierite (MAS) phase. Several full size honeycomb regenerator cores, about 10.2 cm thick and 55 cm dia were fabricated from both the frit and mineral versions of GE-7808. The honeycomb cells in these cores had rectangular dimensions of about 0.5 mm x 2.5 mm and a wall thickness of approximately 0.2 mm (0.008''). Test specimens cut from the cores were evaluated. The multi-phase materials developed in this program demonstrated that their refractoriness and rheological behavior enabled them to retain shape and orientation of the gas passages parallel to the axis much better than some single phase (glass ceramic) materials. The test data show that GE-7808 is significantly more stable at 1100/sup 0/C in the presence of sodium than the Corning 9460 aluminosilicate reference materials.Overall assessment of GE-7808 properties, ease of material preparation, noncritical materials utilized and ready adaptability to honeycomb fabrication qualify this new material as a candidate for heat exchanger applications in automotive gas turbine engines.

  9. Peripheral Sweat Gland Function Improves With Humid Heat Acclimation

    DTIC Science & Technology

    2009-04-01

    Individual variations in structure and function of human eccrine sweat gland . Am. j. Physio!. 245, R203-R208. strydom, N.B .. Wyndham, e.H., Williams, e.G...Naval Health Research Center Peripheral Sweat Gland Function Improves With Humid Heat Acclimation . M. J. Buono S. L. Martha...Biology E!.SFVILR journal homepage: www.elsevier.com/locate/jtherbio Peripheral sweat gland function is improved with humid heat acclimation Michael

  10. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  11. Base fluid in improving heat transfer for EV car battery

    NASA Astrophysics Data System (ADS)

    Bin-Abdun, Nazih A.; Razlan, Zuradzman M.; Shahriman, A. B.; Wan, Khairunizam; Hazry, D.; Ahmed, S. Faiz; Adnan, Nazrul H.; Heng, R.; Kamarudin, H.; Zunaidi, I.

    2015-05-01

    This study examined the effects of base fluid (as coolants) channeling inside the heat exchanger in the process of the increase in thermal conductivity between EV car battery and the heat exchanger. The analysis showed that secondary cooling system by means of water has advantages in improving the heat transfer process and reducing the electric power loss on the form of thermal energy from batteries. This leads to the increase in the efficiency of the EV car battery, hence also positively reflecting the performance of the EV car. The present work, analysis is performed to assess the design and use of heat exchanger in increasing the performance efficiency of the EV car battery. This provides a preface to the use this design for nano-fluids which increase and improve from heat transfer.

  12. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, Hun C.; Fang, Ho T.

    1987-01-01

    The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).

  13. Improving paediatric and neonatal care in rural district hospitals in the highlands of Papua New Guinea: a quality improvement approach

    PubMed Central

    Sa’avu, Martin; Duke, Trevor; Matai, Sens

    2014-01-01

    Background In developing countries such as Papua New Guinea (PNG), district hospitals play a vital role in clinical care, training health-care workers, implementing immunization and other public health programmes and providing necessary data on disease burdens and outcomes. Pneumonia and neonatal conditions are a major cause of child admission and death in hospitals throughout PNG. Oxygen therapy is an essential component of the management of pneumonia and neonatal conditions, but facilities for oxygen and care of the sick newborn are often inadequate, especially in district hospitals. Improving this area may be a vehicle for improving overall quality of care. Method A qualitative study of five rural district hospitals in the highlands provinces of Papua New Guinea was undertaken. A structured survey instrument was used by a paediatrician and a biomedical technician to assess the quality of paediatric care, the case-mix and outcomes, resources for delivery of good-quality care for children with pneumonia and neonatal illnesses, existing oxygen systems and equipment, drugs and consumables, infection-control facilities and the reliability of the electricity supply to each hospital. A floor plan was drawn up for the installation of the oxygen concentrators and a plan for improving care of sick neonates, and a process of addressing other priorities was begun. Results In remote parts of PNG, many district hospitals are run by under-resourced non-government organizations. Most hospitals had general wards in which both adults and children were managed together. Paediatric case-loads ranged between 232 and 840 patients per year with overall case-fatality rates (CFR) of 3–6% and up to 15% among sick neonates. Pneumonia accounts for 28–37% of admissions with a CFR of up to 8%. There were no supervisory visits by paediatricians, and little or no continuing professional development of staff. Essential drugs were mostly available, but basic equipment for the care of sick

  14. Assessment of feasibility of a district heating and cooling system for Ecorse, Michigan. Final report, 1981-1982

    SciTech Connect

    Hock, M.J.; Cason, D. Jr

    1982-10-01

    The City of Ecorse is an older industrial suburb of Detroit with an economy much related to the automobile industry. Ecorse conducted an assessment of the feasibility of building a district heating system which would service an 80 acre redevelopment area in the heart of the community. The system would utilize waste heat in the form of hot water from either of two electric generating plants, or a steel mill, or a nearby chemical plant located within the city. The estimated price of cogenerated thermal energy from one of the power plants was quite competitive. However, the 1980-1985 economy of Ecorse was so weak that the study found no real customer base for the heat in the target redevelopment area.

  15. Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery.

    PubMed

    Sohel, M Imroz; Jack, Michael

    2010-12-01

    In an integrated geothermal biorefinery, low-grade geothermal heat is used as process heat to allow the co-products of biofuel production to become available for higher-value uses. In this paper we consider integrating geothermal heat into a biochemical lignocellulosic biorefinery so that the lignin-enriched residue can be used either as a feedstock for chemicals and materials or for on-site electricity generation. Depending on the relative economic value of these two uses, we can maximize revenue of a biorefinery by judicious distribution of the lignin-enriched residue between these two options. We quantify the performance improvement from integrating geothermal energy for an optimized system. We then use a thermodynamic argument to show that integrating geothermal heat into a biorefinery represents an improvement in overall resource utilization efficiency in all cases considered. Finally, possible future technologies for electricity generation are considered which could improve this efficiency further.

  16. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  17. The Role of Districts in Fostering Instructional Improvement Lessons from Three Urban Districts Partnered with the Institute for Learning

    ERIC Educational Resources Information Center

    Marsh, Julie A.; Kerr, Kerri A.; Ikemoto, Gina S.; Darilek, Hilary; Suttorp, Marika; Zimmer, Ron W.; Barney, Heather

    2005-01-01

    The current high-stakes accountability environment brought on by the federal No Child Left Behind Act (NCLB) places great pressure on school districts to demonstrate success by meeting yearly progress goals for student achievement and eventually demonstrating that all students achieve at high standards. In particular, many urban school…

  18. Radiocarbon AMS at IOP: System improvements and dating of groundwater from Bhadrak district, Orissa

    NASA Astrophysics Data System (ADS)

    Prasad, G. V. Ravi; Dutta, K.; Ray, D. K.

    2008-04-01

    The radiocarbon AMS facility at Institute of Physics, Bhubaneswar is based on a 3 MV tandem accelerator. In this paper, we present the recent improvements to the AMS system at this general purpose accelerator facility. We report an effective method of overcoming terminal voltage instability often met with in switching between AMS and other modes of operation of the accelerator. We report the radiocarbon measurements made on connate groundwater samples from the Bhadrak district of Orissa state (eastern India) to identify the regions that require artificial recharge.

  19. Improvement of heat dissipation for polydimethylsiloxane microchip electrophoresis.

    PubMed

    Zhang, Yuan; Bao, Ning; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2004-11-19

    Effective removing of Joule heat in polymer-based microchip system is an important factor for high efficient separation because of lower heat conductivity of polymers than silica or glass. In this paper, a new kind of polydimethylsiloxane (PDMS) microchip electrophoresis system integrated with a laser-induced fluorescence detector has been successfully constructed on the basis of a commercial heat sink for computer CPU (central processor unit). Experimental results on separation current using high concentration running buffers demonstrated that heat dissipation of PDMS/PDMS microchip system was significantly improved. Furthermore, with this integrated system, theoretical plate number of fluorescein using 100 mM phosphate-buffered saline + 1 mM sodium dodecyl sulfate as running buffer was determined to be 2750 (for 2.5-cm separation channel, corresponding to 110,000/m). This high separation efficiency demonstrated that such heat sink-based polymer microchip system could be effectively applied for high-concentration buffers.

  20. Summary of hydrologic conditions in the Reedy Creek Improvement District, central Florida

    USGS Publications Warehouse

    German, Edward R.

    1986-01-01

    The Reedy Creek Improvement is an area of about 43 square miles in southwestern Orange and northwestern Osceola Counties, Florida. A systematic program of hydrologic data collection in the Reedy Creek Improvement District and vicinity provided data for assessing the impact of development, mostly the Walt Disney World Theme Park and related development on the hydrology. Data collected include stream discharge, water quality, groundwater levels, lakes levels, and climatological. Rainfall has been less than the long-term average in the Reedy Creek Improvement District since development began in 1968. The deficient rainfall has reduced stream discharge, lowered groundwater and lake levels, and possibly affected water quality in the area. Groundwater levels and lake levels have declined since 1970. However, the coincidence of below-average rainfall with the period of development makes it impossible to assess the effect of pumping on declines. Occurrence of toxic metals does not relate to development, but distribution of insecticides and herbicides does appear to relate to development. Specific conductance, phosphorous, and nitrate concentrations have increased in Reedy Creek since 1970, probably due to disposal of treated wastes. (USGS)

  1. Evidence from district level inputs to improve quality of care for maternal and newborn health: interventions and findings

    PubMed Central

    2014-01-01

    District level healthcare serves as a nexus between community and district level facilities. Inputs at the district level can be broadly divided into governance and accountability mechanisms; leadership and supervision; financial platforms; and information systems. This paper aims to evaluate the effectivness of district level inputs for imporving maternal and newborn health. We considered all available systematic reviews published before May 2013 on the pre-defined district level interventions and included 47 systematic reviews. Evidence suggests that supervision positively influenced provider’s practice, knowledge and client/provider satisfaction. Involving local opinion leaders to promote evidence-based practice improved compliance to the desired practice. Audit and feedback mechanisms and tele-medicine were found to be associated with improved immunization rates and mammogram uptake. User-directed financial schemes including maternal vouchers, user fee exemption and community based health insurance showed significant impact on maternal health service utilization with voucher schemes showing the most significant positive impact across all range of outcomes including antenatal care, skilled birth attendant, institutional delivery, complicated delivery and postnatal care. We found insufficient evidence to support or refute the use of electronic health record systems and telemedicine technology to improve maternal and newborn health specific outcomes. There is dearth of evidence on the effectiveness of district level inputs to improve maternal newborn health outcomes. Future studies should evaluate the impact of supervision and monitoring; electronic health record and tele-communication interventions in low-middle-income countries. PMID:25208460

  2. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  3. Empowering districts to target priorities for improving child health service in Uganda using change management and rapid assessment methods

    PubMed Central

    Odaga, John; Henriksson, Dorcus K.; Nkolo, Charles; Tibeihaho, Hector; Musabe, Richard; Katusiime, Margaret; Sinabulya, Zaccheus; Mucunguzi, Stephen; Mbonye, Anthony K.; Valadez, Joseph J.

    2016-01-01

    Background Local health system managers in low- and middle-income countries have the responsibility to set health priorities and allocate resources accordingly. Although tools exist to aid this process, they are not widely applied for various reasons including non-availability, poor knowledge of the tools, and poor adaptability into the local context. In Uganda, delivery of basic services is devolved to the District Local Governments through the District Health Teams (DHTs). The Community and District Empowerment for Scale-up (CODES) project aims to provide a set of management tools that aid contextualised priority setting, fund allocation, and problem-solving in a systematic way to improve effective coverage and quality of child survival interventions. Design Although the various tools have previously been used at the national level, the project aims to combine them in an integral way for implementation at the district level. These tools include Lot Quality Assurance Sampling (LQAS) surveys to generate local evidence, Bottleneck analysis and Causal analysis as analytical tools, Continuous Quality Improvement, and Community Dialogues based on Citizen Report Cards and U reports. The tools enable identification of gaps, prioritisation of possible solutions, and allocation of resources accordingly. This paper presents some of the tools used by the project in five districts in Uganda during the proof-of-concept phase of the project. Results All five districts were trained and participated in LQAS surveys and readily adopted the tools for priority setting and resource allocation. All districts developed health operational work plans, which were based on the evidence and each of the districts implemented more than three of the priority activities which were included in their work plans. Conclusions In the five districts, the CODES project demonstrated that DHTs can adopt and integrate these tools in the planning process by systematically identifying gaps and setting

  4. Heat storage in forest biomass improves energy balance closure

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  5. A continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers: improvements

    SciTech Connect

    Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    1999-02-01

    Spiral plate heat exchangers as adsorbers have been proposed, and a prototype heat regenerative adsorption refrigerator using activated carbon-methanol pair has been developed and tested. Various improvements have been made, the authors get a specific cooling power for 2.6 kg-ice/day-kg adsorbent at the condition of generation temperature lower than 100 C. Discussions on the arrangements of thermal cycles and influences of design are shown.

  6. West Contra Costa Unified School District Assessment and Improvement Plan: Facilities Management.

    ERIC Educational Resources Information Center

    2001

    This report analyzes the conditions of school facilities in Contra Costa Unified School District, California. The district had been prohibited from participating in the state's school facilities funding program because of a very heavy debt burden and near-bankruptcy of the district. The report begins by summarizing findings in the areas of…

  7. Comparing District Achievement to Improve Decision Making in Clark County, Nevada. Vignette

    ERIC Educational Resources Information Center

    American Institutes for Research, 2012

    2012-01-01

    In response to changing demographics, a tightening budget, and drastic achievement gaps (white students outperform Latino students on standardized tests) the Clark County School District in Nevada (the fifth largest district in the country) commissioned, in 2011, an educational and operational efficiency review. The district commissioned the…

  8. Improved Method for Determining the Heat Capacity of Metals

    ERIC Educational Resources Information Center

    Barth, Roger; Moran, Michael J.

    2014-01-01

    An improved procedure for laboratory determination of the heat capacities of metals is described. The temperature of cold water is continuously recorded with a computer-interfaced temperature probe and the room temperature metal is added. The method is more accurate and faster than previous methods. It allows students to get accurate measurements…

  9. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    NASA Astrophysics Data System (ADS)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  10. Photoreversible micellar solution as a smart drag-reducing fluid for use in district heating/cooling systems.

    PubMed

    Shi, Haifeng; Ge, Wu; Oh, Hyuntaek; Pattison, Sean M; Huggins, Jacob T; Talmon, Yeshayahu; Hart, David J; Raghavan, Srinivasa R; Zakin, Jacques L

    2013-01-08

    A photoresponsive micellar solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can be reversibly switched between a drag reduction (DR) mode and an efficient heat transfer (EHT) mode by light irradiation. The DR mode is advantageous during fluid transport, and the EHT mode is favored when the fluid passes through heat exchangers. This smart fluid is an aqueous solution of cationic surfactant oleyl bis(2-hydroxyethyl)methyl ammonium chloride (OHAC, 3.4 mM) and the sodium salt of 4-phenylazo benzoic acid (ACA, 2 mM). Initially, ACA is in a trans configuration and the OHAC/ACA solution is viscoelastic and exhibits DR (of up to 80% relative to pure water). At the same time, this solution is not effective for heat transfer. Upon UV irradiation, trans-ACA is converted to cis-ACA, and in turn, the solution is converted to its EHT mode (i.e., it loses its viscoelasticity and DR) but it now has a heat-transfer capability comparable to that of water. Subsequent irradiation with visible light reverts the fluid to its viscoelastic DR mode. The above property changes are connected to photoinduced changes in the nanostructure of the fluid. In the DR mode, the OHAC/trans-ACA molecules assemble into long threadlike micelles that impart viscoelasticity and DR capability to the fluid. Conversely, in the EHT mode the mixture of OHAC and cis-ACA forms much shorter cylindrical micelles that contribute to negligible viscoelasticity and effective heat transfer. These nanostructural changes are confirmed by cryo-transmission electron microscopy (cryo-TEM), and the photoisomerization of trans-ACA and cis-ACA is verified by (1)H NMR.

  11. Performance improvement of optical fiber coupler with electric heating versus gas heating.

    PubMed

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping

    2010-08-20

    Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.

  12. Nuclear reactor fuel element having improved heat transfer

    DOEpatents

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  13. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  14. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  15. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    SciTech Connect

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations.

  16. Local problems, local solutions: improving tuberculosis control at the district level in Malawi.

    PubMed Central

    Kelly, P. M.

    2001-01-01

    OBJECTIVE: To examine the causes of a low cure rate at the district level of a tuberculosis (TB) control programme and to formulate, implement, and evaluate an intervention to improve the situation. METHODS: The study setting was Mzuzu (population 60,000), where the annual smear-positive pulmonary TB incidence was 160 per 100,000 and the human immunodeficiency virus (HIV) seroprevalence was 67% among TB patients. There is one TB treatment unit, but several other organizations are involved with TB control. An examination of case-holding activities was carried out, potential areas for improvement were identified, and interventions performed. FINDINGS: In 1990-91, the cure rate was 24% among smear-positive cases (29% among survivors to end of treatment). Problems identified included a fragmented TB control programme; inadequate training and supervision; suboptimal recording of patients' addresses; and nonadherence to national TB control programme protocols. These problems were addressed, and in 1992-93 the cure rate rose to 68% (relative risk (RR) = 2.85 (95% confidence interval (CI) = 1.63, 4.96)) and to 92% among survivors to the end of treatment (RR = 3.12 (95% CI = 1.84, 5.29)). High cure rates are therefore achievable despite high HIV prevalence. CONCLUSIONS: Simple, inexpensive, local programmatic interventions can dramatically improve TB case holding. This study demonstrates the need for evaluation, training, and supervision at all levels of the programme. PMID:11242817

  17. Combined Space and Water Heating: Next Steps to Improved Performance

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  18. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, March 1, 1980-January 31, 1984. Volume IV

    SciTech Connect

    Not Available

    1984-01-31

    This volume contains the following: discussion of cost estimating methodology, detailed cost estimates of Hudson No. 2 retrofit, intermediate thermal plant (Kearny No. 12) and local heater plants; transmission and distribution cost estimate; landfill gas cost estimate; staged development scenarios; economic evaluation; fuel use impact; air quality impact; and alternatives to district heating.

  19. "Educational Improvement in Majority Negro School Districts in Seventeen Southern and Border States" (AERA Symposium, Los Angeles, 1969).

    ERIC Educational Resources Information Center

    Hall, Morrill M.; And Others

    The symposium presented at the 1969 American Educational Research Association meeting was concerned with program development for rural isolated school districts and the opportunities for research opened through this project for educational improvement. The papers from the symposium describe an on-going program which can have great influence in…

  20. 2011-12 District Improvement Initiatives Evaluation. Eye on Evaluation. D&A Report No.12.12

    ERIC Educational Resources Information Center

    Bulgakov-Cooke, Dina

    2013-01-01

    Seven district improvement initiatives were implemented in 2011-12 in the Wake County Public School System (WCPSS). All were well designed and coordinated, with common goal setting processes and use of common monitoring tools. All initiatives either met or partially met 2011-12 goals. Some were more successful in showing student outcomes, with the…

  1. Using Systems Thinking to Leverage Technology for School Improvement: Lessons Learned from Award-Winning Secondary Schools/Districts

    ERIC Educational Resources Information Center

    Levin, Barbara B.; Schrum, Lynne

    2013-01-01

    This paper offers lessons learned about what it takes to successfully leverage technology for school improvement based on a cross-case analysis of eight award-winning secondary schools/districts around the United States. The researchers analyzed data from 150 interviews, 30 focus groups, and more than 300 hours of observation in 150 classrooms,…

  2. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  3. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  4. Feasibility of cogenerated district heating and cooling for North Loop project

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-03-01

    A thermal-economic analysis was performed in order to determine feasibility of cogeneration with central heating and cooling for Chicago's North Loop Development Project. Heating, cooling and electrical loads were predicted by using energy data according to use and floor area, representative of downtown Chicago. The central facility proposed would supply cogenerated heating for a part of the development's demand and about one half of the cooling demand by means of combined conventional and cogeneration equipment together on the 4-pipe distribution system. Electricity would also be distributed and used to substantially displace purchases. Additional options are also discussed and, if economical, could make implementation more attractive. Four alternatives involving gas turbines and diesels were selected for study and are reported. Energy savings extend over the assumed 25 years of the project and are indexed to inflation and fuel-cost escalation. It would appear that cogeneration could assist economic development of the North Loop Project.

  5. The Student Voice Collaborative: An Effort to Systematize Student Participation in School and District Improvement

    ERIC Educational Resources Information Center

    Sussman, Ari

    2015-01-01

    This chapter recounts the first 3 years of the Student Voice Collaborative (SVC) in New York City, a district supported student leadership initiative that engages high school aged youth in school reform work at school and district levels. Based on his experiences developing and running the SVC, the author identifies nine design and implementation…

  6. Primed for Reform: A District's Use of Existing Assets to Drive Improvement

    ERIC Educational Resources Information Center

    Region IX Equity Assistance Center at WestEd, 2014

    2014-01-01

    This brief reports on the early stages and initial successes of turnaround efforts in a California school district. With administrators and educators in the midst of implementing a robust reform agenda, there are clear signs that the district is on the rise. The reform initiatives have stopped a downward slide in student attendance, behavior, and…

  7. Urban District Central Office Transformation for Teaching and Learning Improvement: Beyond a Zero-Sum Game

    ERIC Educational Resources Information Center

    Honig, Meredith I.; Lorton, Juli Swinnerton; Copland, Michael A.

    2009-01-01

    Over the past 15 years, a growing number of mid-sized to large school district central offices have engaged in radical reforms to strengthen teaching and learning for all students districtwide. Such efforts mark a significant change in urban educational governance. The authors call these efforts "district central office transformation for teaching…

  8. A Comparative Case Study of the Role of the School District in Influencing School Improvement: Supporting and Turning around Low-Performing Schools

    ERIC Educational Resources Information Center

    Kelly, Christopher

    2016-01-01

    The purpose of this study was to examine the efforts of school districts in developing and sustaining their capacity to improve student achievement in response to increased accountability. The study sought to confirm what the research says regarding the role of the school district in influencing school improvement. While there is a significant…

  9. Improving the Material Response for Slow Heat of Energetic Materials

    SciTech Connect

    Nichols, A L

    2010-03-08

    The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to overpressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.

  10. Improvement in performance of heat exchanger fitted with twisted tape

    SciTech Connect

    Sivashanmugam, P.; Sundaram, S.

    1999-04-01

    The improvement in performance of a double pipe heat exchanger fitted with twisted tape as a turbulence promoter with twist ratios of 15.649, 8.54, 5.882, 4.95, and 4.149 was experimentally studied. A maximum percentage gain of 44.7% in energy transfer rate was obtained for the twisted tape of twist ratio 4.149. For all twist ratios, the gain decreases with the Reynolds number and becomes constant for Reynolds numbers greater than 3,000. The smaller the twist ratio is, the larger the gain in energy for a specific Reynolds number.

  11. Combined Space and Water Heating: Next Steps to Improved Performance

    SciTech Connect

    B. Schoenbauer; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  12. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  13. Preferential heating using transurethral thermoablation (T3) improves clinical results

    NASA Astrophysics Data System (ADS)

    Ramsey, Ernest W.; Miller, Paul D.; Parsons, Keith

    1997-05-01

    Transurethral microwave thermotherapy (TUMT) has been widely reported for the treatment of benign prostatic hyperplasia (BPH) but with variable results. This is likely due to the inability to develop and maintain high intraprostatic temperatures. The T3 device has a preferential heating pattern which prevents shutdowns as a result of rectal heating thus allowing continuous energy delivery throughout the therapy. High temperatures greater than 70 degrees Celsius are maintained resulting in extensive coagulative necrosis in the transitional zone. Treatment was performed in an outpatient clinic using topical anaesthesia with occasional low dose I.V. analgesia. One hundred and fifty-four patients have been treated in 3 centers using a similar protocol. Inclusion criteria required an AUA symptom score greater than or equal to 9 and a peak uroflow rate less than or equal to 12 ml/sec. Mean prostate size was 40.6 cc. One hundred and eighteen patients have been followed for at least 12 months, and 58 for 24 months. AUA symptom score decreased from a mean of 19.8 to 8.9 (12 M), and 7.6 (24 M). Improvement was seen in all 7 symptoms evaluated. Peak flow rates increased from a mean of 9.3 to 13.4 (12 M), and 13.1 (24 M). Improvement in symptom score and peak flow was observed across all prostate sizes. By 2 years, 15 patients had dropped out of the study, 8 for alternative treatment (6 TURP, 1 bladder neck incision, 1 urethrotomy) and 7 for administrative or other reasons. Treatment with the T3 device provides excellent improvement in symptoms, flow rates and patients satisfaction. T3 fulfills the criteria for an effective, minimally invasive, outpatient treatment for symptomatic BPH.

  14. Can district nurses and care home staff improve bowel care for older people using a clinical benchmarking tool?

    PubMed

    Goodman, Claire; L Davies, Sue; Norton, Christine; Fader, Mandy; Morris, Jackie; Wells, Mandy; Gage, Heather

    2013-12-01

    A quasi-experimental study tested a clinical benchmarking tool (Essence of Care) to improve bowel-related care for older people living in six care homes. In the intervention care homes, district nurses and care home staff used the clinical benchmarking tool to discuss and plan how to improve bowel care for residents. In the control care homes, staff were provided with detailed information about the residents and continence services contact details. The intervention was acceptable to care home and district nursing staff, and possible to incorporate into existing working patterns. The study did not demonstrate a significant reduction in bowel-related problems, although there was evidence in one care home of reduction in episodes of avoidable faecal incontinence. At an individual level of care, there were observable benefits, and examples of person-centred care were prompted through participating in the intervention and improved staff awareness. Clinical benchmarking tools can be used to structure discussion between district nurses and care home staff to review and plan care for residents. However, it takes time to achieve change and embedding this kind of approach requires either robust pre-existing working relationships or the involvement of a facilitator.

  15. Cool Mist Irrigation Improves Heat Dissipation during Surgical Bone Drilling.

    PubMed

    Siljander, Breana R; Wang, Anthony C; Zhang, Lihui; Shih, Albert J; Sullivan, Stephen E; Tai, Bruce L

    2014-08-01

    Objective High-speed drilling generates heat in small cavities and may pose a risk for neurovascular tissues. We hypothesize that a continuous pressurized cold mist could be an alternative approach for better cooling during drilling of bone to access cranial lesions. This study aims to examine this idea experimentally. Design Ex-vivo drilling tests with controlled speed, feed, and depth were performed on cortical bone samples. Thermocouples were embedded underneath the drilling path to compare the temperature rises under mist cooling (at 3°C, < 300 mL/h) and flood irrigation (at 22°C, > 800 mL/h). Results A significant difference exists between these two systems (p value < 0.05). The measured temperature was ∼ 4°C lower for mist cooling than for flood irrigation, even with less than a third of the flow rate. Conclusion Experimental data indicate the capability of mist cooling to reduce heat generation while simultaneously enabling flow reduction and targeted cooling. An improved field of view in an extremely narrow access corridor may be achieved with this technology.

  16. Improved Differential Evolution for Combined Heat and Power Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Jena, C.; Basu, M.; Panigrahi, C. K.

    2016-04-01

    This paper presents an improved differential evolution to solve non-smooth non-convex combined heat and power economic dispatch (CHPED) problem. Valve-point loading and prohibited operating zones of conventional thermal generators are taken into account. Differential evolution (DE) exploits the differences of randomly sampled pairs of objective vectors for its mutation process. Consequently the variation between vectors will outfit the objective function toward the optimization process and therefore provides efficient global optimization capability. However, although DE is shown to be precise, fast as well as robust, its search efficiency will be impaired during solution process with fast descending diversity of population. This paper proposes Gaussian random variable instead of scaling factor which improves search efficiency. The effectiveness of the proposed method has been verified on four test systems. The results of the proposed approach are compared with those obtained by other evolutionary methods. It is found that the proposed improved differential evolution based approach is able to provide better solution.

  17. Infrared Heating for Improved Safety and Processing Efficiency of Dry-Roasted Almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of infrared (IR) heating technology was investigated for improving safety and processing efficiency of dry-roasted almonds. Almonds were roasted at 130, 140 and 150°C with three different methods: IR heating, sequential infrared and hot air (SIRHA) heating, and traditional hot air (HA) heat...

  18. Impact of extension interventions in improving livelihood of dairy farmers of Nadia district of West Bengal, India.

    PubMed

    Garai, Suman; Garai, Sanchita; Maiti, Sanjit; Meena, B S; Ghosh, M K; Bhakat, Champak; Dutta, T K

    2017-03-01

    Livestock is a one of the major sources of livelihood for most of the small and marginal farmers in India, particularly for rural households who live in below poverty line. Extension interventions have long been seen as a key element for enabling farmers to obtain information and technologies that can improve their livelihoods. It is also recognized that extension is an important factor in promoting dairy development. Ex-post-facto cause to effect research design was applied in this study to trace out the impact of extension interventions in improving knowledge, attitude, adoption towards scientific dairy farming practices and improvement in milk production of dairy animal and income from dairying which will be resulted into improved livelihood of rural poor in Nadia district of West Bengal, India. Therefore, 60 dairy farmers of experimental villages who were considered as beneficiaries and 60 dairy farmers of control villages who were considered as non-beneficiaries were selected as sample for the study. It was found that beneficiaries had significantly higher score in all the five components of livelihood improvement with its all sub components, i.e., knowledge, attitude, adoption of scientific dairy farming practices, milk production per household per day and monthly income from dairying except disease control, and marketing component of adoption. Hence, it may be concluded that extension interventions had a significant impact on improving livelihood of rural dairy farmers in Nadia district of West Bengal, India.

  19. Maze of Mistrust: How District Politics and Cross Talk Are Stalling Efforts to Improve Public Education

    ERIC Educational Resources Information Center

    Farkas, Steve; Duffett, Ann

    2014-01-01

    In 1993, the Kettering Foundation and Public Agenda released a report titled "Divided Within, Besieged Without: The Politics of Education in Four American School Districts." The study's attention to communities was distinct from the conventional focus on the technical issues of school administration and funding, and it reported on what…

  20. Improving Immunization Coverage in a Rural School District in Pierce County, Washington

    ERIC Educational Resources Information Center

    Peterson, Robin M.; Cook, Carolyn; Yerxa, Mary E.; Marshall, James H.; Pulos, Elizabeth; Rollosson, Matthew P.

    2012-01-01

    Washington State has some of the highest percentages of school immunization exemptions in the country. We compared school immunization records in a rural school district in Pierce County, Washington, to immunization records in the state immunization information system (IIS) and parent-held records. Correcting school immunization records resulted…

  1. Improving Attainment across a Whole District: School Reform through Peer Tutoring in a Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Tymms, Peter; Merrell, Christine; Thurston, Allen; Andor, John; Topping, Keith; Miller, David

    2011-01-01

    Districts are an important unit for administrative purposes, but they vary little in their impact on students' attainment, at least in the UK. Further, government attempts to raise attainment are often disappointing. The project described in this article aimed to engage schools in reform to change students' attainment and attitudes in schools…

  2. Leveraging Title I: A University-District Partnership to Improve K-12 Literacy. Case Study

    ERIC Educational Resources Information Center

    Alliance for Excellent Education, 2006

    2006-01-01

    In an initiative designed to help teachers meet the Highly Qualified Teacher requirement of the No Child Left Behind (NCLB) Act, the Arlington Independent School District (AISD) in Arlington, Texas has partnered with Texas Woman's University (TWU) to offer a master's degree in reading to any teachers working in Title I schools. This initiative is…

  3. Born to Fail? Some Lessons from a National Programme to Improve Education in Poor Districts

    ERIC Educational Resources Information Center

    Abrantes, Pedro; Roldao, Cristina; Amaral, Patricia; Mauritti, Rosario

    2013-01-01

    The article analyses the main benefits of a Portuguese programme, launched in 1996, which was designed to support schools in segregated districts (TEIPs). The first part of the article presents a theoretical framework, before moving on to the main features of the TEIP programme in contemporary Portuguese society and education. An explanation of…

  4. Improving Information Dissemination Impact on Districts and Schools. Knowledge Brief Number 5.

    ERIC Educational Resources Information Center

    Mills, Stephen R.

    The California Department of Education commissioned a study to help guide ongoing information dissemination practices to the educational community. A pilot study, department of education staff interviews, and field interviews preceded document tracking. Phone interviews were conducted with district administrators, principals, and teachers…

  5. Developing a strategy for improving efficiency in the heating sector in central and eastern Europe

    SciTech Connect

    Meyer, A.S.

    1995-12-31

    Heating is a vital energy service in Central and Eastern Europe, but the current delivery mechanisms are riddled with problems. District heating (DH) in its present technical form and with the present management structures is an inefficient system which produces expensive heat. Customers cannot control it and react to overheating by opening windows, even in winter. DH facilities together with other forms of individual heating are responsible for air pollution, causing severe impacts on the health of urban residents. The issues relating to DH are discussed, the first World Bank activities and experiences with projects in Poland are analyzed, and the cornerstones of a strategy to support future World Bank financing and the development of sound heating policies in CEE are presented.

  6. Chicago, IL Adapts to Improve Extreme Heat Preparedness

    EPA Pesticide Factsheets

    Recognizing that heat waves are expected to increase in Chicago due to climate change,–supported by the Chicago Climate Impacts Report, the city adopted a comprehensive set of actions to reduce deaths from extreme heat events.

  7. Improving Heat Health Resilience through Urban Infrastructure Planning and Design

    EPA Pesticide Factsheets

    This webinar will explore ways in which public health and environmental agencies can collaborate to reduce the heat island effect, increase resilience to extreme heat events, and help each other further their respective missions.

  8. Dysart Unified School District: How One School District Used Collaborative Planning to Improve Outcomes for All Students. From the Field. Digital Learning Series

    ERIC Educational Resources Information Center

    Slaven, Chip; Hall, Sara; Schwartzbeck, Terri Duggan; Jones, Rachel; Wolf, Mary Ann

    2013-01-01

    The Dysart Unified School District (Dysart) in Arizona covers 140 square miles and serves numerous communities, including the cities of Surprise and El Mirage and some unincorporated areas of Maricopa County. At one time the fastest-growing school system in Arizona, Dysart has tripled in size since 2000. The district continues to grow, and in…

  9. Mounting improves heat-sink contact with beryllia washer

    NASA Technical Reports Server (NTRS)

    1966-01-01

    To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.

  10. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

  11. Leather Coated with Mixtures of Humectant and Antioxidants to Improve UV and Heat Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultraviolet (UV) and heat resistance are very important qualities for leather products. We recently developed an environmentally friendly finishing process for improving the UV- and heat resistance of automobile upholstery leather. We previously reported and demonstrated some promising results fro...

  12. Neck-cooling improves repeated sprint performance in the heat

    PubMed Central

    Sunderland, Caroline; Stevens, Ryan; Everson, Bethan; Tyler, Christopher J.

    2015-01-01

    The present study evaluated the effect of neck-cooling during exercise on repeated sprint ability in a hot environment. Seven team-sport playing males completed two experimental trials involving repeated sprint exercise (5 × 6 s) before and after two 45 min bouts of a football specific intermittent treadmill protocol in the heat (33.0 ± 0.2°C; 53 ± 2% relative humidity). Participants wore a neck-cooling collar in one of the trials (CC). Mean power output and peak power output declined over time in both trials but were higher in CC (540 ± 99 v 507 ± 122 W, d = 0.32; 719 ± 158 v 680 ± 182 W, d = 0.24 respectively). The improved power output was particularly pronounced (d = 0.51–0.88) after the 2nd 45 min bout but the CC had no effect on % fatigue. The collar lowered neck temperature and the thermal sensation of the neck (P < 0.001) but had no effect on heart rate, fluid loss, fluid consumption, lactate, glucose, plasma volume change, cortisol, or thermal sensation (P > 0.05). There were no trial differences but interaction effects were demonstrated for prolactin concentration and rating of perceived exertion (RPE). Prolactin concentration was initially higher in the collar cold trial and then was lower from 45 min onwards (interaction trial × time P = 0.04). RPE was lower during the football intermittent treadmill protocol in the collar cold trial (interaction trial × time P = 0.01). Neck-cooling during exercise improves repeated sprint performance in a hot environment without altering physiological or neuroendocrinological responses. RPE is reduced and may partially explain the performance improvement. PMID:26594177

  13. Neck-cooling improves repeated sprint performance in the heat.

    PubMed

    Sunderland, Caroline; Stevens, Ryan; Everson, Bethan; Tyler, Christopher J

    2015-01-01

    The present study evaluated the effect of neck-cooling during exercise on repeated sprint ability in a hot environment. Seven team-sport playing males completed two experimental trials involving repeated sprint exercise (5 × 6 s) before and after two 45 min bouts of a football specific intermittent treadmill protocol in the heat (33.0 ± 0.2°C; 53 ± 2% relative humidity). Participants wore a neck-cooling collar in one of the trials (CC). Mean power output and peak power output declined over time in both trials but were higher in CC (540 ± 99 v 507 ± 122 W, d = 0.32; 719 ± 158 v 680 ± 182 W, d = 0.24 respectively). The improved power output was particularly pronounced (d = 0.51-0.88) after the 2nd 45 min bout but the CC had no effect on % fatigue. The collar lowered neck temperature and the thermal sensation of the neck (P < 0.001) but had no effect on heart rate, fluid loss, fluid consumption, lactate, glucose, plasma volume change, cortisol, or thermal sensation (P > 0.05). There were no trial differences but interaction effects were demonstrated for prolactin concentration and rating of perceived exertion (RPE). Prolactin concentration was initially higher in the collar cold trial and then was lower from 45 min onwards (interaction trial × time P = 0.04). RPE was lower during the football intermittent treadmill protocol in the collar cold trial (interaction trial × time P = 0.01). Neck-cooling during exercise improves repeated sprint performance in a hot environment without altering physiological or neuroendocrinological responses. RPE is reduced and may partially explain the performance improvement.

  14. Improving district facility readiness: a 12-month evaluation of a data-driven health systems strengthening intervention in rural Rwanda

    PubMed Central

    Iyer, Hari S.; Kamanzi, Emmanuel; Mugunga, Jean Claude; Finnegan, Karen; Uwingabiye, Alice; Shyaka, Edward; Niyonzima, Saleh; Hirschhorn, Lisa R.; Drobac, Peter C.

    2015-01-01

    Background While health systems strengthening (HSS) interventions are recommended by global health policy experts to improve population health in resource-limited settings, few examples exist of evaluations of HSS interventions conducted at the district level. In 2009, a partnership between Partners In Health (PIH), a non-governmental organization, and the Rwandan Ministry of Health (RMOH) was provided funds to implement and evaluate a district-level HSS intervention in two rural districts of Rwanda. Design The partnership provided limited funds to 14 health centers for targeted systems support in 2010; six others received support prior to the intervention (reference). RMOH health systems norms were mapped across the WHO HSS framework, scored from 0 to 10 and incorporated into a rapid survey assessing 11 domains of facility readiness. Stakeholder meetings allowed partnership leaders to review results, set priorities, and allocate resources. Investments included salary support, infrastructure improvements, medical equipment, and social support for patients. We compared facility domain scores from the start of the intervention to 12 months and tested for correlation between change in score and change in funding allocation to assess equity in our approach. Results We found significant improvements among intervention facilities from baseline to 12 months across several domains [infrastructure (+4, p=0.0001), clinical services (+1.2, p=0.03), infection and sanitation control (+0.6, p=0.03), medical equipment (+1.0, p=0.02), information use (+2, p=0.002)]. Composite score across domains improved from 6.2 at baseline to 7.4 at 12 months (p=0.002). Across facilities, 50% had composite scores greater than the average score among reference facilities (7.4) at 12 months compared to none at baseline. Conclusions Rapid facility surveys, stakeholder engagement, and information feedback can be used for gap analysis and resource allocation. This approach can achieve effective use

  15. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  16. Concerning the improvement of solar heating and cooling systems

    NASA Astrophysics Data System (ADS)

    Rashidov, Iu. K.

    It is suggested that systems of solar heating and cooling can be simplified by the use of 'organized hydrothermal processes' (OHP) in the elements (e.g., circulation systems and heat storage units) of such systems. This paper defines and classifies such processes. Design diagrams are presented for two types of systems: (1) a heating, hot-water, and storage system with one-phase OHPs; and (2) a gravity-assisted heat pipe and an adsorption-type solar refrigeration system with two-phase OHPs.

  17. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.

    PubMed

    Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A

    2012-11-01

    A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers.

  18. Thin Film Heat Flux Sensor of Improved Design

    NASA Technical Reports Server (NTRS)

    Fralick, Gus; Wrbanek, John; Blaha, Charles

    2002-01-01

    A new design for a thin film heat flux sensor is presented. It is easier to fabricate than previous designs, for a given heat flux has an order of magnitude larger signal, and is more easily scalable than previous designs. Transient and steady state data are also presented.

  19. Improving Heat Transfer Performance of Printed Circuit Boards

    NASA Technical Reports Server (NTRS)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  20. Computer simulation for improving radio frequency (RF) heating uniformity of food products: a review.

    PubMed

    Huang, Zhi; Marra, Francesco; Subbiah, Jeyamkondan; Wang, Shaojin

    2016-11-28

    Radio frequency (RF) heating has great potential for achieving rapid and volumetric heating in foods, providing safe and high quality food products due to deep penetration depth, moisture self-balance effects, and leaving no chemical residues. However, the non-uniform heating problem (usually resulting in hot and cold spots in the heated product) needs to be resolved. The inhomogeneous temperature distribution not only affects the quality of the food but also raises the issue of food safety when the microorganisms or insects may not be controlled in the cold spots. The mathematical modelling for RF heating processes has been extensively studied in a wide variety of agricultural products recently. This paper presents a comprehensive review of recent progresses in computer simulation for RF heating uniformity improvement and the offered solutions to reduce the heating non-uniformity. It provides a brief introduction on the basic principle of RF heating technology, analyzes the applications of numerical simulation, and discusses the factors influencing the RF heating uniformity and the possible methods to improve heating uniformity. Mathematical modelling improves the understanding of RF heating of food and is essential to optimize the RF treatment protocol for pasteurization and disinfestation applications. Recommendations for future research have been proposed to further improve the accuracy of numerical models, by covering both heat and mass transfers in the model, validating these models with sample movement and mixing, and identifying the important model parameters by sensitivity analysis.

  1. Optimization of Transient Heat Exchanger Performance for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Wirz, Richard

    2014-11-01

    Heat exchangers are used in a multitude of applications within systems for energy generation, energy conversion, or energy storage. Many of these systems (e.g. solar power plants) function under transient conditions, but the design of the heat exchangers is typically optimized assuming steady state conditions. There is a potential for significant energy savings if the transient behavior of the heat exchanger is taken into account in designing the heat exchanger by optimizing its operating conditions in relation to the transient behavior of the overall system. The physics of the transient behavior of a heat exchanger needs to be understood to provide design parameters for transient heat exchangers to deliver energy savings. A numerical model was used to determine the optimized mass flow rates thermal properties for a thermal energy storage system. The transient behavior is strongly linked to the dimensionless parameters relating fluid properties, the mass flow rates, and the temperature of the fluids at the inlet of each stream. Smart metals, or advanced heat exchanger surface geometries and methods of construction will be used to meet the three goals mentioned before: 1) energy and cost reduction, 2) size reduction, and 3) optimal performance for all modes of operation.

  2. Various methods to improve heat transfer in exchangers

    NASA Astrophysics Data System (ADS)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  3. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  4. Assembly of opto-electronic module with improved heat sink

    DOEpatents

    Chan, Benson; Fortier, Paul Francis; Freitag, Ladd William; Galli, Gary T.; Guindon, Francois; Johnson, Glen Walden; Letourneau, Martial; Sherman, John H.; Tetreault, Real

    2004-11-23

    A heat sink for a transceiver optoelectronic module including dual direct heat paths and a structure which encloses a number of chips having a central web which electrically isolates transmitter and receiver chips from each other. A retainer for an optical coupler having a port into which epoxy is poured. An overmolded base for an optoelectronic module having epoxy flow controller members built thereon. Assembly methods for an optoelectronic module including gap setting and variation of a TAB bonding process.

  5. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  6. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  7. [Improving Structures for Healthy and Self-Determined Ageing in an Urban District].

    PubMed

    Heusinger, J; Kammerer, K; Wolter, B; Schuster, M

    2015-09-01

    Between 2007 and 2010 the Institut für Gerontologische Forschung e.V. investigated the "Primary Prevention Effects of the Märkisches Viertel Network" in the Berlin district "Märkisches Viertel". The study integrates, amongst others, various participatory methods to investigate the health promotion effects of the volunteer Märkisches Viertel Network, an organisation that brings together different local actors working to assist and encourage older people to live independent lives. Sustained active collaboration by a heterogeneous mixture of actors in a spatially defined quarter, engagement by the local housing association, and increasing acknowledgement of and participation by older residents were identified as success factors for a change in local structures.

  8. District cooling gets hot

    SciTech Connect

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  9. Real-Time Learning, Real-World Teaching: University Teams with School District to Improve Curriculum and Instruction

    ERIC Educational Resources Information Center

    Koch, Steven; Borg, Terry

    2011-01-01

    An Illinois district brings a local university into the district to craft advanced learning embedded in the needs of specific schools. Community High School District 155 in Crystal Lake, Ill., and Northern Illinois University (NIU) College of Education engaged in a partnership that has provided significant benefits, posed limited challenges, and…

  10. Improving district level health planning and priority setting in Tanzania through implementing accountability for reasonableness framework: Perceptions of stakeholders

    PubMed Central

    2010-01-01

    Background In 2006, researchers and decision-makers launched a five-year project - Response to Accountable Priority Setting for Trust in Health Systems (REACT) - to improve planning and priority-setting through implementing the Accountability for Reasonableness framework in Mbarali District, Tanzania. The objective of this paper is to explore the acceptability of Accountability for Reasonableness from the perspectives of the Council Health Management Team, local government officials, health workforce and members of user boards and committees. Methods Individual interviews were carried out with different categories of actors and stakeholders in the district. The interview guide consisted of a series of questions, asking respondents to describe their perceptions regarding each condition of the Accountability for Reasonableness framework in terms of priority setting. Interviews were analysed using thematic framework analysis. Documentary data were used to support, verify and highlight the key issues that emerged. Results Almost all stakeholders viewed Accountability for Reasonableness as an important and feasible approach for improving priority-setting and health service delivery in their context. However, a few aspects of Accountability for Reasonableness were seen as too difficult to implement given the socio-political conditions and traditions in Tanzania. Respondents mentioned: budget ceilings and guidelines, low level of public awareness, unreliable and untimely funding, as well as the limited capacity of the district to generate local resources as the major contextual factors that hampered the full implementation of the framework in their context. Conclusion This study was one of the first assessments of the applicability of Accountability for Reasonableness in health care priority-setting in Tanzania. The analysis, overall, suggests that the Accountability for Reasonableness framework could be an important tool for improving priority-setting processes in the

  11. Improvements in Certain District of Columbia Public Schools' Administrative Operations. Report to the Superintendent of the District of Columbia Public Schools.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    The District of Columbia Public Schools system has taken action to ensure that supply items will be obtained at the most competitive prices. Because lack of storage facilities prevented bulk purchase of emergency items at competitive rates, the Division of Buildings and Grounds has remodeled a building as a warehouse to store large quantities of…

  12. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner.

  13. Pre-weld heat treatment improves welds in Rene 41

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Cooling of Rene 41 prior to welding reduces the incidence of cracking during post-weld heat treatment. The microstructure formed during the slow cooling rate favors elevated temperature ductility. Some vestiges of this microstructure are apparently retained during welding and thus enhance strain-age crack resistance in air.

  14. Vapor-modulated heat pipe for improved temperature control

    NASA Technical Reports Server (NTRS)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  15. Improving heat transfer with pool boiling by covering of heating surface with metallic spheres

    SciTech Connect

    Matijevic, M.; Djuric, M.; Zavargo, Z.; Novakovic, M. )

    1992-01-01

    In this paper, boiling heat transfer (BHT) is investigated experimentally. Smooth copper walls were covered with single sphere layer and corresponding temperature difference and heat flux were measured. The results were compared with published data for several types of heating surfaces. Comparative analysis shows that surfaces covered with spheres have characteristics as good as the other systems, if not better. There are many ways to enhance boiling heat transfer. One of them is to cover the heating surface with a layer of solid particles, which either remain on the surface during the process or circulate through the boiling liquid, generating a porous two-component, three-phase system. Particles are made of various materials (glass, alumosilicate, corundum, sand, mullite some metals, etc.), which are shaped as spheres mostly, but sometimes are irregular bodies. Many different parameters were proposed to characterize the porous layer. The influence of particles can be expressed by introducing the effective thermal-physical properties of a complex medium. Also, if the working regime can be described as any kind of fluidization, then all quantities developed to be applied to this matter can be used in the case of heat fluidization.

  16. Development of an improved toughness hyperpure silica reflective heat shield

    NASA Technical Reports Server (NTRS)

    Rusert, E. L.; Hackett, T. L.; Drennan, D. N.

    1979-01-01

    High purity three dimensionally woven silica-silica materials were evaluated for use as a tough reflective heat shield for planetary entry probes. A special weave design was selected to minimize light piping effects through the heat shield thickness. Various weave spacings were evaluated for densification efficiency with an 0.7 micron particle size high purity silica. Spectral hemispherical reflectance was measured from 0.2 to 2.5 microns at room temperature. Reflectance increases due to densification and purity of material were measured. Reflectance of 3D hyperpure silica was higher than 3D astroquartz silica for all wavelengths. Mechanical properties were measured in beam flexure and beam shear tests. Results indicated strengths lower than reported for slip cast fused silica. Low strengths were attributed to low densities achieved through vacuum impregnation.

  17. Glycol coolants improve heat transfer and corrosion control

    SciTech Connect

    Holfield, R.

    1995-03-01

    Various liquids from plain water to exotic fluids have been used as coolants in large stationary diesel engines that drive compressors on natural gas pipeline distribution systems. Although water is an efficient heat transfer medium, its drawbacks of freezing at {minus}32 F and boiling at 212 F seriously limit its usefulness. Special glycol-based heat transfer fluids are available and refined specifically for long-term needs of gas compressor engines. Appropriate corrosion inhibitors have been formulated for metallurgy and operating conditions encountered with these engines. Propylene glycol was developed as an alternative for use in environmentally sensitive areas. Glycol-based fluids must be specifically inhibited for industrial applications because uninhibited or improperly inhibited coolants can seriously damage reciprocating engines.

  18. Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska: Implications for the genesis of the Red Dog Pb-Zn-Ag-Ba ore district

    USGS Publications Warehouse

    Garven, G.; Raffensperger, J.P.; Dumoulin, J.A.; Bradley, D.A.; Young, L.E.; Kelley, K.D.; Leach, D.L.

    2003-01-01

    The Red Dog deposit is a giant 175 Mton (16% Zn, 5% Pb), shale-hosted Pb-Zn-Ag-Ba ore district situated in the Carboniferous Kuna Basin, Western Brooks Range, Alaska. These SEDEX-type ores are thought to have formed in calcareous turbidites and black mudstone at elevated sub-seafloor temperatures (120-150??C) within a hydrogeologic framework of submarine convection that was structurally organized by large normal faults. The theory for modeling brine migration and heat transport in the Kuna Basin is discussed with application to evaluating flow patterns and heat transport in faulted rift basins and the effects of buoyancy-driven free convection on reactive flow and ore genesis. Finite element simulations show that hydrothermal fluid was discharged into the Red Dog subbasin during a period of basin-wide crustal heat flow of 150-160 mW/m2. Basinal brines circulated to depths as great as 1-3 km along multiple normal faults flowed laterally through thick clastic aquifers acquiring metals and heat, and then rapidly ascended a single discharge fault zone at rates ??? 5 m/year to mix with seafloor sulfur and precipitate massive sulfide ores. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. Health education and peer leaders' role in improving low vaccination coverage in Akre district, Kurdistan Region, Iraq.

    PubMed

    Abdul Rahman, M A; Al-Dabbagh, S A; Al-Habeeb, Q S

    2013-02-01

    The role of religious leaders in improving vaccination coverage has not been well researched. This intervention study investigated the role of a health education campaign and peer spiritual leaders in improving vaccination coverage rates in Akre district in Kurdistan region, Iraq. An information campaign was conducted in 30 villages with low vaccination coverage. The participation of peer spiritual leaders was sought in 15 villages of the Sorchi tribe known to have persistent low coverage rates. The vaccination coverage rates of DPT1, DPT2, DPT3 and measles vaccines during the post-intervention period (January to June 2007) were significantly improved (95.5%, 90.0%, 84.4% and 80.3% respectively) compared with the pre-intervention period (January to June 2006) (55.9%, 42.7%, 21.5% and 27.6% respectively). The dropout rates of those vaccines were also significantly decreased. Vaccination in villages where spiritual leaders were involved improved significantly more than other villages.

  20. Performance improvement of a solar heating system utilizing off-peak electric auxiliary

    SciTech Connect

    Eltimsahy, A.H.

    1980-06-01

    The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

  1. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO2, with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJheat per tCO2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  2. Preliminary investigation on a primary energy saving heat supply system for the residential district "Maria Lindenhof" in Dorsten, West Germany

    NASA Astrophysics Data System (ADS)

    Bechtel, A.; Berlinghoff, K.; Grossmann, H.; Kaschube, H.; Reinmuth, F.

    1980-12-01

    Ways and means to operate a heating station by gas motor-driven heat pumps, using river water as heat source are investigated. The economic viability of the scheme is considered. A comparison with conventional technologies clearly shows the feasibility and effectiveness of this application, and at the same time supplies guidelines for design and dimensioning. Because of possible energy saving, the present investigation supports the realization of the project.

  3. A Coherent Approach to High School Improvement: A District and School Self-Assessment Tool

    ERIC Educational Resources Information Center

    Fryer, Lindsay; Johnson, Amy

    2012-01-01

    High school improvement initiatives often focus on specific intervention strategies, programs, or priority topics (e.g., dropout intervention, dual enrollment, freshman academies). However, research shows that systemic and sustainable improvement can be achieved only when initiatives are implemented with consideration for the broader education…

  4. Improving Coverage and Compliance in Mass Drug Administration for the Elimination of LF in Two ‘Endgame’ Districts in Indonesia Using Micronarrative Surveys

    PubMed Central

    Krentel, Alison; Damayanti, Rita; Titaley, Christiana Rialine; Suharno, Nugroho; Bradley, Mark; Lynam, Timothy

    2016-01-01

    Background As the Global Programme to Eliminate Lymphatic Filariasis (LF) approaches its 2020 goal, an increasing number of districts will enter the endgame phase where drug coverage rates from mass drug administration (MDA) are used to assess whether MDA can be stopped. As reported, the gap between reported and actual drug coverage in some contexts has overestimated the true rates, thus causing premature administration of transmission assessment surveys (TAS) that detect ongoing LF transmission. In these cases, districts must continue with additional rounds of MDA. Two districts in Indonesia (Agam District, Depok City) fit this criteria—one had not met the pre-TAS criteria and the other, had not passed the TAS criteria. In both cases, the district health teams needed insight into their drug delivery programs in order to improve drug coverage in the subsequent MDA rounds. Methodology/Principal Findings To inform the subsequent MDA round, a micronarrative survey tool was developed to capture community members’ experience with MDA and the social realm where drug delivery and compliance occur. A baseline survey was implemented after the 2013 MDA in endemic communities in both districts using the EPI sampling criteria (n = 806). Compliance in the last MDA was associated with perceived importance of the LF drugs for health (p<0.001); perceived safety of the LF drugs (p<0.001) and knowing someone in the household has complied (p<0.001). Results indicated that specialized messages were needed to reach women and younger men. Both districts used these recommendations to implement changes to their MDA without additional financial support. An endline survey was performed after the 2014 MDA using the same sampling criteria (n = 811). Reported compliance in the last MDA improved in both districts from 57% to 77% (p<0.05). Those who reported having ever taken the LF drug rose from 79% to 90% (p<0.001) in both sites. Conclusions/Significance Micronarrative surveys were shown

  5. Design and construction of a hyperthermia system with improved interaction of magnetic induction-heating.

    PubMed

    Huang, Chi-Fang; Lin, Xi-Zhang; Lo, Wei-Hung

    2010-01-01

    For the applications of localized hyperthermia, an improved magnetic induction-heating system is described. The associated components of this system, for example, coils for generating magnetic field, magnetic circuit for flux path, and ferrite needles for generating heat by magnetic induction, all have been explained. An animal experiment of induction-heating hyperthermia for rat's liver is also carried out, and the consequent pathology of Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay are also conducted for evaluation.

  6. Current performance and potential improvements in solar thermal industrial heat

    NASA Astrophysics Data System (ADS)

    Hale, M. J.; Williams, T.; Barker, G.

    1992-12-01

    A representative current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more than 50 percent improvement in the annual energy delivered by a 2677 sq m system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  7. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  8. Polymeric Coatings Containing Antioxidants to Improve UV- and Heat Resistance of Chrome-Free Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For automotive upholstery leather, UV and heat resistance are very important qualities, particularly for non-chrome-tanned (chrome-free) leather. One of our research endeavors has focused on an environmentally friendly finishing process that will improve the UV and heat resistance of automobile uph...

  9. Flash-Fire Propensity and Heat-Release Rate Studies of Improved Fire Resistant Materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.

    1978-01-01

    Twenty-six improved fire resistant materials were tested for flash-fire propensity and heat release rate properties. The tests were conducted to obtain a descriptive index based on the production of ignitable gases during the thermal degradation process and on the response of the materials under a specific heat load.

  10. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  11. IMPROVING THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL DRUM TYPEPACKAGES BY USING HEAT PIPES

    SciTech Connect

    Gupta, N

    2007-03-06

    This paper presents a feasibility study to improve thermal loading of existing radioactive material packages by using heat pipes. The concept could be used to channel heat in certain directions and dissipate to the environment. The concept is applied to a drum type package because the drum type packages are stored and transported in an upright position. This orientation is suitable for heat pipe operation that could facilitate the heat pipe implementation in the existing well proven package designs or in new designs where thermal loading is high. In this position, heat pipes utilize gravity very effectively to enhance heat flow in the upward direction Heat pipes have extremely high effective thermal conductivity that is several magnitudes higher than the most heat conducting metals. In addition, heat pipes are highly unidirectional so that the effective conductivity for heat transfer in the reverse direction is greatly reduced. The concept is applied to the 9977 package that is currently going through the DOE certification review. The paper presents computer simulations using typical off-the-shelf heat pipe available configurations and performance data for the 9977 package. A path forward is outlined for implementing the concepts for further study and prototype testing.

  12. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  13. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  14. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. U.S. EPA DEMONSTRATION PROJECT AT SOUTH TRUCKEE MEADOWS GENERAL IMPROVEMENT DISTRICT (STMIG), NV. INTERIM EVALUATION REPORT

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the first 32 weeks of operation of an arsenic and antimony removal technology currently being demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. ...

  15. Using a Response to Intervention Framework to Improve Student Learning: A Pocket Guide for State and District Leaders. Implementing ESEA Flexibility Plans

    ERIC Educational Resources Information Center

    McInerney, Maurice; Elledge, Amy

    2013-01-01

    The 2002 reauthorization of the Elementary and Secondary Education Act (ESEA) contained provisions that expanded state and district accountability for improving all schools and increasing the learning and achievement of all students, including those who struggle to master basic skills in reading and mathematics. In 2011, the U.S. Department of…

  16. 2001: A Vision for the Future, 1988-89. A Plan for Improving Instruction and Reducing Dropout and Grade Retention in Charleston County School District.

    ERIC Educational Resources Information Center

    Charleston County School District, SC. Div. of Curriculum and Instruction.

    "A Vision for the Future" is a comprehensive long-range plan to study, develop, implement, and evaluate an ambitious dropout reduction program in the Charleston (South Carolina) School District. The program entails: (1) improved data reporting on student performance, grade retention, and attrition to identify dropout indicators and risk…

  17. What States and Districts Can Do--Together--to Improve School Leadership. Knowledge in Brief: Findings You Can Use from New Wallace Research

    ERIC Educational Resources Information Center

    Wallace Foundation, 2010

    2010-01-01

    Buttressed by strong evidence that quality leadership is a virtual necessity for turning around troubled schools, states and districts around the country have been paying more attention in recent years to the need for better school leadership. Many have adopted a range of new policies and practices aimed at dramatically improving the preparation…

  18. Need Two-Thirds To Pass? (No Worries). The Planning and Execution of the Elk Grove Unified School District's Successful 1987 School Improvement Bond Election.

    ERIC Educational Resources Information Center

    Chang, Vern; Albiani, Gil

    After years of struggling with increasing student enrollments, the Elk Grove Unified School District (Sacramento County, California) conducted two $70 million bond elections to supplement State funding for new schools, improve existing schools, and provide transportation and student support facilities. The 1986 election failed with 64.8 percent…

  19. Improved simulations of heat transfer in liquid metal flows.

    SciTech Connect

    Tzanos, C.

    2011-04-01

    In liquid-metal flows, the predictions of the Nusselt number (heat transfer) by Reynolds-averaged Navier-Stokes models of turbulence that use the assumption of a constant turbulent Prandtl number can be significantly off. Heat transfer analyses were performed with a number of turbulence models for flows in a triangular rod bundle and in a pipe, and model predictions were compared with experimental data. Emphasis was placed on the low Reynolds (low-Re) number k-{var_epsilon} model that resolves the boundary layer and does not use 'logarithmic wall functions.' The high Reynolds (high-Re) number k-{var_epsilon} model underpredicts the Nusselt number up to 30%, while the low-Re number model overpredicts it up to 34%. For high Peclet number values, the low-Re number model provides better predictions than the high-Re number model. For Peclet numbers higher than 1500, the predictions of the Reynolds stress model (RSM) are in very good agreement with experimental measurements, but for lower Peclet number values its predictions are significantly off. A relationship was developed that expresses the turbulent Prandtl number as a function of the ratio of the turbulent viscosity to the molecular viscosity. With this modified turbulent Prandtl number, for the flow in the rod bundle the predictions of the low-Re number model are well within the spread of the experimental measurements. For pipe flow, the model predictions are not as sensitive to the correction of the turbulent Prandtl number as they are in the case of the flow in a bundle. The modified low-Re number model underpredicts the limited experimental data by 4%.

  20. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    SciTech Connect

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

  1. Nuts & Bolts of a District Improvement Effort in Maryland Centers on the Staff Development Teacher

    ERIC Educational Resources Information Center

    Hemphill, Sharon; Duffield, Judy

    2007-01-01

    The staff development teacher facilitates the evolution of a school-based professional learning community focused on improving teaching and learning by being a catalyst for teacher change and reflection. These teacher leaders needed the knowledge and skills to transform individual school staffs into professional learning communities focused on…

  2. Leading with Focus: Elevating the Essentials for School and District Improvement

    ERIC Educational Resources Information Center

    Schmoker, Mike

    2016-01-01

    In his 2011 ASCD best-seller "Focus: Elevating the Essentials to Radically Improve Student Learning," author Mike Schmoker described a fresh approach to K-12 teaching built on three core elements: a focused and coherent curriculum; clear, structured lessons; and purposeful reading and writing, or authentic literacy. Now, in "Leading…

  3. Scaling Turnaround: A District-Improvement Approach. Education Outlook No. 3

    ERIC Educational Resources Information Center

    Zavadsky, Heather

    2013-01-01

    For years, US education reform has focused on simple, isolated reform elements such as promoting reading programs or redesigning individual schools. These efforts have only provided sporadic improvements in student achievement. School-level and single-focus reforms ultimately fail because they do not acknowledge the larger school system's role in…

  4. Improving Ethnic Balance and Intergroup Relations; An Advisory Report to the Board of Education, Corona Unified School Districts.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Intergroup Relations.

    This report contains the findings of a field study of the ethnic and racial composition and intergroup relations in the schools in the Corona Unified School District, California. These findings are information on (1) the district's approaches to desegregation and its policy on intergroup relations, (2) students' achievement differences, (3)…

  5. Improved boundary layer heat transfer calculations near a stagnation point

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung Hwan

    1990-01-01

    A thermal design of a solar receiver has been developed for the solutions of problems involving phase-change thermal energy storage and natural convection loss. Two dimensional axisymmetrical solidification and melting of materials contained between two concentric cylinders of finite length has been studied for thermal energy storage analysis. For calculation of free convection loss inside receiver cavity, two dimensional axisymmetrical, laminar, transient free convection including radiation effects has been studied using integral/finite difference method. Finite difference equations are derived for the above analysis subject to constant or variable material properties, initial conditions, and boundary conditions. The validity of the analyses has been substantiated by comparing results of the present general method with available analytic solutions or numerical results reported in the literature. Both explicit and implicit schemes are tested in phase change analysis with different number of nodes ranging from 4 to 18. The above numerical methods have been applied to the existing solar receiver analyzing computer code as additional subroutines. The results were computed for one of the proposed Brayton cycle solar receiver models running under the actual environmental conditions. Effect of thermal energy storage on the thermal behavior of the receiver has been estimated. Due to the thermal energy storage, about 65% reduction on working gas outlet temperature fluctuation has been obtained; however, maximum temperature of thermal energy storage containment has been increased about 18%. Also, effect of natural convection inside a receiver cavity on the receiver heat transfer has been analyzed. The finding indicated that thermal stratification occurs during the sun time resulting in higher receiver temperatures at the outlet section of the gas tube, and lower temperatures at the inlet section of the gas tube when compared with the results with no natural convection. Due

  6. Improving consent form documentation and introduction of procedure-specific labels in a district general hospital

    PubMed Central

    Bajada, Stefan; Dwamena, Samuel; Abdul, Zabihullah; Williams, Rhodri; Ennis, Owain

    2017-01-01

    Informed consent is an important aspect in patient care. Failings in this area may result in patient dissatisfaction or litigation. The aim of this project was to assess our practice in consenting and institute changes to maintain best practice. A consecutive series of 140 patients undergoing elective and trauma procedures were randomly identified over a nine-month period. The consent forms were reviewed and the following information collected: patient/ consenter details, procedure, legibility, if copy was offered/ given to patient and adequacy of procedure-specific complications listed (scored 0-3). The issues identified included: 25% of consents were not fully legible particularly in the complications section. 62% were noted to have inadequate complications listed (score 0 [>5 risks missing]) when compared to an accepted standard. None of the consent form copies were offered or given to the patients. Focused teaching to juniors as well as procedure-specific complication stickers were implemented to improve the documentation of complications. Following several improvement cycles all consents (100%) were fully legible and had the adequate procedure-specific labels with all complications listed. There was an increase to 38% of consent forms offered to patients. We have asked surgeons in the department to comment on which consent method they prefer and all consenters felt that the procedure-specific labels where easier to read and understand. Departmental education as well as introduction of simple procedure-specific complication stickers has resulted in significant improvements in practice. PMID:28243444

  7. Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market

    SciTech Connect

    Powell, Kody M.; Kim, Jong Suk; Cole, Wesley J.; Kapoor, Kriti; Mojica, Jose L.; Hedengren, John D.; Edgar, Thomas F.

    2016-10-01

    District energy systems can produce low-cost utilities for large energy networks, but can also be a resource for the electric grid by their ability to ramp production or to store thermal energy by responding to real-time market signals. In this work, dynamic optimization exploits the flexibility of thermal energy storage by determining optimal times to store and extract excess energy. This concept is applied to a polygeneration distributed energy system with combined heat and power, district heating, district cooling, and chilled water thermal energy storage. The system is a university campus responsible for meeting the energy needs of tens of thousands of people. The objective for the dynamic optimization problem is to minimize cost over a 24-h period while meeting multiple loads in real time. The paper presents a novel algorithm to solve this dynamic optimization problem with energy storage by decomposing the problem into multiple static mixed-integer nonlinear programming (MINLP) problems. Another innovative feature of this work is the study of a large, complex energy network which includes the interrelations of a wide variety of energy technologies. Results indicate that a cost savings of 16.5% is realized when the system can participate in the wholesale electricity market.

  8. Stirling engine or heat pump having an improved seal

    DOEpatents

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  9. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China

    PubMed Central

    Li, Jing; Xu, Xin; Ding, Guoyong; Zhao, Yun; Zhao, Ruixia; Xue, Fuzhong; Li, Jing; Gao, Jinghong; Yang, Jun; Jiang, Baofa; Liu, Qiyong

    2016-01-01

    Knowledge, attitude, and practice (KAP) are three key components for reducing the adverse health impacts of heat waves. However, research in eastern China regarding this is scarce. The present study aimed to evaluate the heat wave-related KAP of a population in Licheng in northeast China. This cross-sectional study included 2241 participants. Data regarding demographic characteristics, KAP, and heat illnesses were collected using a structured questionnaire. Univariate analysis and unconditional logistic regression models were used to analyze the data. Most residents had high KAP scores, with a mean score of 12.23 (standard deviation = 2.23) on a 17-point scale. Urban women and participants aged 35–44 years had relatively high total scores, and those with high education levels had the highest total score. There was an increased risk of heat-related illness among those with knowledge scores of 3–5 on an 8-point scale with mean score of 5.40 (standard deviation = 1.45). Having a positive attitude toward sunstroke prevention and engaging in more preventive practices to avoid heat exposure had a protective interaction effect on reducing the prevalence of heat-related illnesses. Although the KAP scores were relatively high, knowledge and practice were lacking to some extent. Therefore, governments should further develop risk-awareness strategies that increase awareness and knowledge regarding the adverse health impact of heat and help in planning response strategies to improve the ability of individuals to cope with heat waves. PMID:27367715

  10. Improved estimates of ocean heat content from 1960 to 2015

    PubMed Central

    Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang

    2017-01-01

    Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study. PMID:28345033

  11. Improved estimates of ocean heat content from 1960 to 2015.

    PubMed

    Cheng, Lijing; Trenberth, Kevin E; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang

    2017-03-01

    Earth's energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.

  12. Hypokalaemia: Improving the investigation, management and therapeutic monitoring of hypokalaemic medical inpatients at a district general hospital.

    PubMed

    Jordan, Mark; Caesar, Jenny

    2015-01-01

    Hypokalaemia is prevalent in 20% of hospitalised patients. Furthermore, inadequate management of hypokalemia was identified in 24% of these patients. Associated with significant patient morbidity and mortality, the identification, investigation, and treatment of hypokalaemia was identified as an area for improvement in the management of medical inpatients. The project aims to measure the assessment, management, and therapeutic monitoring of medical inpatients with hypokalaemia in a district general hospital. All medical inpatients over a one week period who met the criteria for hypokalaemia (serum potassium <3.5 mmol/L on standard biochemical sample) were included in the audit. Patient's notes were located and evaluated to identify if they had mild, moderate, or severe hypokalaemia. Further data on ECG requests, repeat U&Es, serum magnesium analysis, treatment prescribed, and medication review dates was collated. A re-audit was completed after the introduction of a set of interventions which included a hypokalaemia treatment algorithm. Pre-intervention analysis of all medical inpatients, who met our inclusion criteria for hypokalaemia, identified 32 patients. 25 of these patients met the criteria for mild hypokalaemia (3.1-3.4 mmol/L) and 7 met the criteria for moderate hypokalaemia (2.5-3.0 mmol/L). Only 7/32 (22 %) patients were receiving adequate treatment based on trust guidelines. Post intervention results showed marked improvement in the management of patients with hypokalaemia. A total of 30 patients were identified in this post-intervention group. There were 16/30 patients who qualified as mild hypokalaemia (3.1-3.4 mmol/L) and 14/30 with moderate hypokalaemia (2.5-3.0 mmol/L). 19/30 (63%) patients in the post-intervention group were correctly prescribed appropriate medication doses consistent with the treatment algorithm. Following the initial success of the project, analysis at 3 months showed a positive trend for sustained improvement when compared to

  13. Improving neonatal care in district and community health facilities in South Africa.

    PubMed

    Woods, David Lawrance

    2015-08-01

    A high standard of newborn care, especially at a primary level, is needed to address the neonatal mortality rate in South Africa. The current approach to continuing training of health-care workers uses traditional methods of centralised teaching by formal tutors away from the place of work. This is no longer affordable, achievable or desirable, particularly in rural areas. An innovative system of self-directed learning by groups of nurses caring for mothers and their newborn infants uses specially prepared course books without the need for trainers. Using self-study supported by peer discussion groups, nurses can take responsibility for their own professional growth. This builds competence, confidence and a sense of pride. Since 1993, the Perinatal Education Programme has provided continuing learning opportunities for thousands of nurses in Southern Africa. A number of prospective trials have demonstrated that study groups can significantly improve knowledge and understanding, attitudes, clinical skills and quality of care provided to mothers and infants. A recent review of 10,000 successful participants across a wide range of provinces, ages and home languages documented the success of the project. Using a question-and-answer format to promote problem-solving, case studies, simple skills workshops and multiple choice tests, each module addresses common conditions with appropriate care practices such as thorough drying at birth, delayed cord-clamping, skin-to-skin care, breast feeding, basic resuscitation, correct use of oxygen therapy, hand-washing, blood glucose monitoring and promotion of parental bonding. The training material is now also available free of charge on an on-line website as well as being presented as e-books which can be downloaded onto personal computers, tablet readers and smart phones. This is supplemented by regular SMS text messages providing nurses with relevant 'knowledge bites'. All nurses caring for newborn infants now have easy

  14. Improving the diagnostic quality and adequacy of shoulder radiographs in a District General Hospital

    PubMed Central

    Richards, Bethany; Riley, James; Saithna, Adnan

    2016-01-01

    A high rate of suboptimal shoulder radiographs was identified during a service evaluation exercise in our orthopaedic outpatient clinics. Inadequate radiographs require a return to the radiology department for further imaging, a resultant increased workload, delays in the clinic, increased radiation for patients, and inconvenience and decreased patient satisfaction. Furthermore, if a sub-optimal radiograph is accepted there is concern that diagnoses may be missed. The aim of this project was to decrease the rate of suboptimal radiographs by delivering a teaching package directed towards quality improvement. Evaluation criteria were set for standard orthopaedic shoulder radiographs (Anterior-posterior, axillary, and Velpeau views). Baseline data collection was performed over three, two-week periods and included all patients attending the shoulder clinic. The percentage of x-rays which were deemed adequate was only 19.4% for anterior-posterior views and 57.9% for axillary views. A comprehensive educational package was delivered to radiographers. This included a formal PowerPoint based teaching session, hands on training with practice using a skeleton, posters with step-by step instructions on how to obtain an adequate image, and PDF aide memoires suitable for viewing on a smartphone. Two subsequent two-week periods of data collection were performed to evaluate the benefit of this intervention. Delivery of focussed training and provision of easily accessible aide memoires to facilitate improved quality of radiographs resulted in a significant (p<0.05) reduction in the rate of inadequate images. There was also a significant decreases in the rate of return to the radiology department for repeat imaging. PMID:27559473

  15. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2016-12-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  16. Heat stress management program improving worker health and operational effectiveness: a case study.

    PubMed

    Huss, Rosalyn G; Skelton, Scott B; Alvis, Kimberly L; Shane, Leigh A

    2013-03-01

    Heat stress monitoring is a vital component of an effective health and safety program when employees work in exceptionally warm environments. Workers at hazardous waste sites often wear personal protective equipment (PPE), which increases the body heat stress load. No specific Occupational Safety and Health Administration (OSHA) regulations address heat stress; however, OSHA does provide several guidance documents to assist employers in addressing this serious workplace health hazard. This article describes a heat stress and surveillance plan implemented at a hazardous waste site as part of the overall health and safety program. The PPE requirement for work at this site, coupled with extreme environmental temperatures, made heat stress a significant concern. Occupational health nurses and industrial hygienists developed a monitoring program for heat stress designed to prevent the occurrence of significant heat-related illness in site workers. The program included worker education on the signs of heat-related illness and continuous physiologic monitoring to detect early signs of heat-related health problems. Biological monitoring data were collected before workers entered the exclusion zone and on exiting the zone following decontamination. Sixty-six site workers were monitored throughout site remediation. More than 1,700 biological monitoring data points were recorded. Outcomes included improved worker health and safety, and increased operational effectiveness.

  17. Adopting and sustaining a Virtual Fracture Clinic model in the District Hospital setting – a quality improvement approach

    PubMed Central

    Logishetty, Kartik; Subramanyam, Soosainathan

    2017-01-01

    Virtual Fracture Clinics (VFCs) are an alternative to the conventional fracture clinics, to manage certain musculoskeletal injuries. This has recently been reported as a safe, cost-effective and efficient care model. As demonstrated at vanguard sites in the United Kingdom, VFCs can enhance patient care by standardising treatment and reducing outpatient appointments. This project demonstrates how a Quality Improvement approach was applied to introduce VFCs in the District General Hospital setting. We demonstrate how undertaking Process Mapping, Driver Diagrams, and Stakeholder Analysis can assist implementation. We discuss Whole Systems Measures applicable to VFCs, to consider how robust and specific data collection can progress this care model. Three Plan-Do-Study-Act cycles led to a change in practice over a 21-month period. Our target for uptake of new patients seen in VFCs within 6 months of starting was set at 50%. It increased from 0% to 56.1% soon after introduction, and plateaued at an average of 56.4% in the six-months before the end of the study period. Careful planning, frequent monitoring, and gathering feedback from a multidisciplinary team of varying seniority, were the important factors in transitioning to, and sustaining, a successful VFC model. PMID:28243440

  18. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  19. Role of courtyard counselling meeting in improving household food safety knowledge and practices in Munshiganj district of Bangladesh.

    PubMed

    Riaz, Baizid Khoorshid; Alim, Md Abdul; Islam, Anm Shamsul; Amin, Km Bayzid; Sarker, Mohammad Abul Bashar; Hasan, Khaled; Ashad-Uz-Zaman, Md Noor; Selim, Shahjada; Quaiyum, Salman; Haque, Emdadul; Monir Hossain, Shah; Ryder, John; Khanam, Rokeya

    2016-12-01

    Unsafe food is linked to the deaths of an estimated two million people annually. Food containing harmful agents is responsible for more than 200 diseases ranging from diarrhoea to cancers. A one-sample pilot intervention study was conducted to evaluate the role of courtyard counselling meetings as the means of intervention for improving food safety knowledge and practices among household food handlers in a district of Bangladesh. The study was conducted in three phases: a baseline survey, the intervention and an end-line survey between April and November 2015 where 194 food handlers took part. Data were collected through observations and face-to-face interviews. The mean age of the respondents was 38.8 (±12.4) years, all of whom were females. Hand washing before eating, and washing utensils with soap were significantly improved at the end-line in comparison to the baseline (57% vs. 40% and 83% vs. 69%, respectively). Hand washing with soap was increased by 4%. The mean score of food handling practices was significantly increased after the intervention (20.5 vs. 22.1; P<0.001). However, hand washing after use of toilet was unchanged after the intervention (75% vs.76%). Knowledge about safe food and the necessity of thorough cooking were significantly increased after the intervention (88% from 64% and 34% from 21%, respectively). Mean scores of knowledge and practice on food safety were significantly increased by 1.9 and 1.6, respectively after the one month intervention. Thus this food safety education in rural communities should be scaled up and, indeed, strengthened using the courtyard counselling meetings in Bangladesh.

  20. Role of courtyard counselling meeting in improving household food safety knowledge and practices in Munshiganj district of Bangladesh

    PubMed Central

    Riaz, Baizid Khoorshid; Alim, Md Abdul; Islam, ANM Shamsul; Amin, KM Bayzid; Sarker, Mohammad Abul Bashar; Hasan, Khaled; Ashad-Uz-Zaman, Md Noor; Selim, Shahjada; Quaiyum, Salman; Haque, Emdadul; Monir Hossain, Shah; Ryder, John; Khanam, Rokeya

    2016-01-01

    ABSTRACT Unsafe food is linked to the deaths of an estimated two million people annually. Food containing harmful agents is responsible for more than 200 diseases ranging from diarrhoea to cancers. A one-sample pilot intervention study was conducted to evaluate the role of courtyard counselling meetings as the means of intervention for improving food safety knowledge and practices among household food handlers in a district of Bangladesh. The study was conducted in three phases: a baseline survey, the intervention and an end-line survey between April and November 2015 where 194 food handlers took part. Data were collected through observations and face-to-face interviews. The mean age of the respondents was 38.8 (±12.4) years, all of whom were females. Hand washing before eating, and washing utensils with soap were significantly improved at the end-line in comparison to the baseline (57% vs. 40% and 83% vs. 69%, respectively). Hand washing with soap was increased by 4%. The mean score of food handling practices was significantly increased after the intervention (20.5 vs. 22.1; P<0.001). However, hand washing after use of toilet was unchanged after the intervention (75% vs.76%). Knowledge about safe food and the necessity of thorough cooking were significantly increased after the intervention (88% from 64% and 34% from 21%, respectively). Mean scores of knowledge and practice on food safety were significantly increased by 1.9 and 1.6, respectively after the one month intervention. Thus this food safety education in rural communities should be scaled up and, indeed, strengthened using the courtyard counselling meetings in Bangladesh. PMID:28008194

  1. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  2. Heated apple juice supplemented with onion has greatly improved nutritional quality and browning index.

    PubMed

    Lee, Bonggi; Seo, Jeong Dae; Rhee, Jin-Kyu; Kim, Choon Young

    2016-06-15

    Although fruit juices are very popular, enzymatic browning occurs easily. Browning of fruit juice deteriorates nutrition value and product quality due to oxidation of polyphenol compounds. Therefore, development of natural food additives that reduce browning will be beneficial for improving quality of fruit juices. Onion has been reported to be a potent natural anti-browning agent. Here, we compared unheated and heated apple juices pre-supplemented with onion with respect to browning and nutritional quality. The unheated apple juice supplemented with onion showed reduced browning as well as increased total soluble solid, total phenol concentration, radical scavenging activities, and ferric reducing and copper chelating activities without any change in flavonoid concentration. On the other hand, heated juice supplemented with onion not only showed improved values for these parameters but also markedly increased flavonoid concentration. Thus, we conclude that application of heating and onion addition together may greatly improve quality of apple juice.

  3. Heat shock protein 72 (Hsp72) improves long term recovery after focal cerebral ischemia in mice.

    PubMed

    Xu, Lijun; Xiong, Xiaoxing; Ouyang, Yibing; Barreto, George; Giffard, Rona

    2011-01-25

    Many brain protective strategies have been tested over short survival intervals, but few have been examined for long term benefit. The inducible member of the Heat shock protein 70 (Hsp70) family, Heat shock protein 72 (Hsp72), has been widely found to reduce ischemic injury. Here we assessed outcome in Hsp72 transgenic overexpressing mice and wild type littermates for one month following transient focal ischemia. Hsp72 reduced infarct area lost and improved behavioral outcome on rotarod and foot fault at one month. Thus protection by Hsp72 overexpression is long lasting, and includes improved recovery of motor function over one month.

  4. Preliminary study on improvement of cementitious grout thermal conductivity for geothermal heat pump applications

    SciTech Connect

    Allan, M.L.

    1996-06-01

    Preliminary studies were preformed to determine whether thermal conductivity of cementitious grouts used to backfill heat exchanger loops for geothermal heat pumps could be improved, thus improving efficiency. Grouts containing selected additives were compares with conventional bentonite and cement grouts. Significant enhancement of grout alumina grit, steel fibers, and silicon carbide increased the thermal conductivity when compared to unfilled, high solids bentonite grouts and conventional cement grouts. Furthermore, the developed grouts retained high thermal conductivity in the dry state, where as conventional bentonite and cement grouts tend to act as insulators if moisture is lost. The cementitious grouts studied can be mixed and placed using conventional grouting equipment.

  5. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.

    PubMed

    Tan, Wei; Meng, Qing wei; Brestic, Marian; Olsovska, Katarina; Yang, Xinghong

    2011-11-15

    Effects of exogenous calcium chloride (CaCl(2)) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43°C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (P(n)), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (F(v)/F(m)). On the other hand, CaCl(2) application improved P(n), AQY, and CE as well as F(v)/F(m) under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl(2); glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl(2). There was an obvious accumulation of H(2)O(2) and O(2)(-) under high temperature, but CaCl(2) application decreased the contents of H(2)O(2) and O(2)(-) under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl(2) pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl(2) application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species.

  6. Impact assessment of biomass-based district heating systems in densely populated communities. Part I: Dynamic intake fraction methodology

    NASA Astrophysics Data System (ADS)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2015-08-01

    This study contributes to the literature by proposing a novel, state-of-the-art approach to estimate incremental air quality and health impacts of proposed or installed district energy systems (DES), such as the growing biomass-based DES, on the immediately surrounding community where population density varies significantly during day as well as the micrometeorological conditions. Spatial and temporal dynamics of pollutant concentrations at sensitive receptors obtained from modeled actual source emissions, inclusion of site-specific terrain, land use and microclimatic characteristics, population density and breathing rates are examined based on their impacts on the exposure potential expressed by the intake fraction (iF). Overall, results revealed that when those parameters are changing, the increase of iF calculated based on average ambient concentrations at each receptor for the UBC campus for the day and night hours for September 2012, ranges from 6.2% to 43.0%: introducing actual spatial receptor distribution led to 43% increase of iF, combined spatial and population dynamics led to 11.3% increase of iF, while introducing temporal dynamics and varying breathing rates resulted in 6.2% and 21.4% increase in iF respectively, compared to the base case box model where receptors and population were treated as static and uniformly distributed across the modeling domain. It is thus essential to take into consideration temporal and spatial variations of atmospheric conditions and dispersion, population density and varying aspiration rates in accurately assessing the health impacts of DES located at densely populated urban communities.

  7. Improving the installation of renewable heating technology in UK social housing properties through user centred design.

    PubMed

    Moore, Natalie; Haines, Victoria; Lilley, Debra

    2015-11-01

    Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords' and tenants' experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords' and tenants' experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service.

  8. Improving the installation of renewable heating technology in UK social housing properties through user centred design

    PubMed Central

    Moore, Natalie; Lilley, Debra

    2015-01-01

    Social housing organisations are increasingly installing renewable energy technologies, particularly for the provision of heating and hot water. To meet carbon reduction targets, uptake and installation must allow occupants to use the technology effectively. This paper describes research which investigated the service of installing heat pumps into UK social housing properties, from both landlords’ and tenants’ experiences. Adopting a user centred design approach, the research was in three phases: an exploration study to investigate landlords’ and tenants’ experiences of heat pump installation and use; refinement and development of the requirements for improved service delivery, primarily technology introduction and control; and the development and initial evaluation of an information leaflet as a key touchpoint in the service delivery. Recommendations for improved service delivery, to enable heat pumps to be accepted and used more effectively, are presented, as well as reflection on the process of applying user centred design in this context. In a relatively immature area of industry, installations to date have been heavily focused on technical aspects. This paper provides an insight into the human aspects of the service delivery of heat pumps in social housing, providing designers and social housing landlords with insight about how to improve the service. PMID:26539060

  9. Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Kruis, Nathanael J. F.

    Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer

  10. Overview of direct use R&D at the Geo-Heat Center

    SciTech Connect

    Lienau, P.J.

    1997-12-31

    Geo-Heat Center research, during the past year, on geothermal district heating and greenhouse projects is intended to improve the design and cost effectiveness of these systems. The largest geothermal district heating system in the U.S., proposed at Reno, is describe and is one of 271 collocated sites in western states could benefit from the research. The geothermal district heating research investigated a variety of factors that could reduce development cost for residential areas. Many greenhouse operators prefer the {open_quotes}bare tube{close_quotes} type heating system. As facilities using these types of heating systems expand they could benefit from peaking with fossil fuels. It is possible to design a geothermal heating system for only 60% of the peak heat loss of a greenhouse and still meet over 90% of the annual heat energy needs of the structure. The design and cost effectiveness of this novel approach is summarized.

  11. Housing and health: does installing heating in their homes improve the health of children with asthma?

    PubMed

    Somerville, M; Mackenzie, I; Owen, P; Miles, D

    2000-11-01

    The objective of this study was to evaluate the use of NHS money to improve health by improving housing conditions. A pilot study assessing health outcomes before and after improving housing conditions was conducted, studying 72 children with previously diagnosed asthma living in 59 damp houses in Cornwall. The intervention was the installation of central heating. This improved the energy efficiency of the housing. The children's health was a symptom-based outcome measure for asthma and time lost from school. Improvements comprised installation of gas central heating in 28/59 (47%) houses, electric storage heaters in 22/59 (37%), solid fuel central heating in 7/59 (12%) and oil-fired central heating in 2/59 (4%) houses. Energy efficiency improved by a mean of 2.1 on the National Home Energy Rating scale (95% CI 1.68-2.47, P<0.001) in the 37/59 (62%) houses for which two readings were available. Initially, 69/72 (92%) children's bedrooms were unheated and 44/72 (61%) were damp; following improvements, the proportions were 10/72 (14%) and 15/72 (21%) respectively. All respiratory symptoms were significantly reduced after intervention; the greatest reduction was seen in nocturnal cough from a median score of 3 (most nights) to 1 (on one or several nights) (P<0.001) in the previous month. School-age children lost significantly less time from school for asthma in the previous 3 months (9.3 days per 100 school days before intervention and 2.1 days afterwards, P<0.01) but not for other reasons (1.4 days per 100 school days before and 3.2 after, P>0.05). In conclusion, this study provides the first evaluation of health outcomes following housing improvements. Lack of a comparison group means that effects of age, season and biased reporting cannot be eliminated. More work is needed to substantiate these results.

  12. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  13. Modern trends in improvement of steel heating technology in continuous furnaces

    NASA Astrophysics Data System (ADS)

    Timoshpolskiy, V. I.; Temlyantsev, M. V.; Trusova, I. A.

    2016-09-01

    The principles and approaches in the development and improvement of steel heating technology in the furnaces of rolling manufacture of various structural design, based on the systematic study of thermal physical and technological processes, including mathematical modeling, industrial experiments, development of rational temperature-thermal modes.

  14. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    PubMed

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  15. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    PubMed

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  16. An improved model for provision of rural community-based health rehabilitation services in Vhembe District, Limpopo Province of South Africa

    PubMed Central

    Netshandama, Vhonani O.; Francis, Joseph

    2016-01-01

    Background In 1991, Riakona Community Rehabilitation Programme initiated community-based rehabilitation (CBR) in the Vhembe District of Limpopo Province. Subsequently, the South African government adopted the programme. Aim The aim of the study was to suggest an improvement in the model of providing CBR services. Setting The study was conducted in six rehabilitation centres located in hospitals in the Vhembe District in Limpopo Province of South Africa. Method A mixed-mode research design with qualitative and quantitative elements was used to conduct the study. Content analysis, the chi-square test for Goodness of Fit and the Kruskal–Wallis and Mann–Whitney non-parametric tests were conducted. Results The key determinants of client satisfaction with the services that the community rehabilitation workers rendered included provision of assistive devices and the adoption of a holistic approach to their work. Overall, satisfaction per domain for each one of the five domains of satisfaction scored less than 90%. More than 80% of clients were satisfied with empathy (83%) and assurance (80%) domains. Tangibles, reliability and responsiveness domains had scores of 78%, 72% and 67%, respectively. These results, together with the reasoning map of conceptual framework description, were used as the building blocks of the CBR model. Conclusion The improved CBR model is useful for putting the programme into practice. This is particularly so for the CBR managers in the districts of the Limpopo Province. PMID:27380835

  17. District-level hospital trauma care audit filters: Delphi technique for defining context-appropriate indicators for quality improvement initiative evaluation in developing countries

    PubMed Central

    Stewart, Barclay T; Gyedu, Adam; Quansah, Robert; Addo, Wilfred Larbi; Afoko, Akis; Agbenorku, Pius; Amponsah-Manu, Forster; Ankomah, James; Appiah-Denkyira, Ebenezer; Baffoe, Peter; Debrah, Sam; Donkor, Peter; Dorvlo, Theodor; Japiong, Kennedy; Kushner, Adam L; Morna, Martin; Ofosu, Anthony; Oppong-Nketia, Victor; Tabiri, Stephen; Mock, Charles

    2015-01-01

    Introduction Prospective clinical audit of trauma care improves outcomes for the injured in high-income countries (HICs). However, equivalent, context-appropriate audit filters for use in low- and middle-income country (LMIC) district-level hospitals have not been well established. We aimed to develop context-appropriate trauma care audit filters for district-level hospitals in Ghana, was well as other LMICs more broadly. Methods Consensus on trauma care audit filters was built between twenty panelists using a Delphi technique with four anonymous, iterative surveys designed to elicit: i) trauma care processes to be measured; ii) important features of audit filters for the district-level hospital setting; and iii) potentially useful filters. Filters were ranked on a scale from 0 – 10 (10 being very useful). Consensus was measured with average percent majority opinion (APMO) cut-off rate. Target consensus was defined a priori as: a median rank of ≥9 for each filter and an APMO cut-off rate of ≥0.8. Results Panelists agreed on trauma care processes to target (e.g. triage, phases of trauma assessment, early referral if needed) and specific features of filters for district-level hospital use (e.g. simplicity, unassuming of resource capacity). APMO cut-off rate increased successively: Round 1 - 0.58; Round 2 - 0.66; Round 3 - 0.76; and Round 4 - 0.82. After Round 4, target consensus on 22 trauma care and referral-specific filters was reached. Example filters include: triage - vital signs are recorded within 15 minutes of arrival (must include breathing assessment, heart rate, blood pressure, oxygen saturation if available); circulation - a large bore IV was placed within 15 minutes of patient arrival; referral - if referral is activated, the referring clinician and receiving facility communicate by phone or radio prior to transfer. Conclusion This study proposes trauma care audit filters appropriate for LMIC district-level hospitals. Given the successes of similar

  18. Using Research to Improve College Readiness: A Research Partnership Between the Los Angeles Unified School District and the Los Angeles Education Research Institute

    PubMed Central

    Phillips, Meredith; Yamashiro, Kyo; Farrukh, Adina; Lim, Cynthia; Hayes, Katherine; Wagner, Nicole; White, Jeffrey; Chen, Hansheng

    2015-01-01

    The Los Angeles Unified School District (LAUSD) serves a large majority of socioeconomically disadvantaged students who are struggling academically and are underprepared for high school graduation and college. This article describes the partnership between LAUSD and the Los Angeles Education Research Institute, and how this collaboration endeavors to produce accessible and high-quality research to inform pressing problems of practice. The article also presents findings from an ongoing partnership research project analyzing a district policy focused on improving college readiness by aligning high school graduation and college-eligibility requirements. In a cohort that went through high school before the policy became mandatory for all students, less than 1/5 of all students (and 30% of graduates) met the college eligibility criteria. Our findings indicate that academic and behavioral indicators from 8th and 9th grade can help identify for possible intervention students who are not on track to meet these new graduation requirements. PMID:26709340

  19. Do Small Schools Improve Performance in Large, Urban Districts? Causal Evidence from New York City. Working Paper #01-12

    ERIC Educational Resources Information Center

    Schwartz, Amy Ellen; Stiefel, Leanna; Wiswall, Matthew

    2012-01-01

    We evaluate the effectiveness of small high school reform in the country's largest school district, New York City. Using a rich administrative dataset for multiple cohorts of students and distance between student residence and school to instrument for endogenous school selection, we find substantial heterogeneity in school effects: newly created…

  20. Investigating the Role of Instructional Rounds in the Development of Social Networks and District-Wide Improvement

    ERIC Educational Resources Information Center

    Hatch, Thomas; Hill, Kathryn; Roegman, Rachel

    2016-01-01

    In this article, we explore how organizational routines involving instructional rounds--collective, structured observations and reflections on classroom practice--might contribute to the development of social networks among administrators and support a common, district-wide focus on instruction. Building on work on communities of practice, we…

  1. Palmdale School District & Pivot Learning Partners--A Relentless Focus on Improving Student Learning (2006 to 2011). Case Study

    ERIC Educational Resources Information Center

    Kingsley, Judith W.

    2011-01-01

    When Palmdale School District and Pivot Learning Partners entered into their first contract in 2006, neither organization foresaw the magnitude and complexity the relationship would take over time. Pivot Learning Partners (formerly known as Springboard Schools) is a non-profit service provider that first entered the Palmdale School District…

  2. District Disruption & Revival: School Systems Reshape to Compete-and Improve. Quality Counts, 2014. Volume 33, Number 16

    ERIC Educational Resources Information Center

    Edwards, Virginia B., Ed.

    2014-01-01

    For all the national and even international debate about the state of American education, public schooling in the U.S. is still a local matter--and the school district remains its hub. As administrators know, there's nothing abstract about the process of getting millions of students into their seats, assuring they receive the instruction they're…

  3. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    PubMed

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H2O2 in the range of 0-0.144 H2O2 to protein ratios (HTPR) by the addition of the required quantity of H2O2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H2O2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H2O2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H2O2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA.

  4. Improvement in the mechanical properties of PTFE bonded NdFeB magnets by heat treatment

    NASA Astrophysics Data System (ADS)

    Tattam, C.; Williams, A. J.; Hay, J. N.; Harris, I. R.; Tedstone, S. F.; Ashraf, M. M.

    1996-05-01

    Rotary forging has been used to produce high density bonded magnets using NdFeB based melt spun ribbons (MQP-D). The binder used was polytetrafluoroethylene (PTFE). A post-forging heat treatment at temperatures above the crystalline melting point of PTFE (˜ 340°C) has been seen to improve substantially the mechanical integrity of the compacts. Heat treatments that were undertaken in air resulted in oxidation of the magnets, but the extent of oxidation was reduced with increasing PTFE content, characterised by a greater retention of magnetic properties. This behaviour suggests that to some extent. PTFE is effective as a barrier to oxidation. By heat treating in a vacuum, an improvement of over 100% in the mechanical strength of the compacts could be obtained with little loss in the magnetic properties. The fracture surfaces of both as-forged and heat treated compacts have been examined using scanning electron microscopy and it appears that bonding between the melt spun ribbon (MQI) and PTFE occurs during heat treatment.

  5. Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.

    1996-01-01

    An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.

  6. Improving Heat Pump Water Heater Effeciency by Avoiding Electric Resistance Heater Use

    SciTech Connect

    Boudreaux, Philip R.; Munk, Jeffrey D.; Jackson, Roderick K.; Gehl, Anthony C.; Parkison, April E.; Nutaro, James J.

    2014-09-01

    Heat pump water heaters (HPWHs) are a promising technology that can decrease the domestic hot water energy consumption over an electric resistance storage water heater by up to 50%. Heat pump water heaters are really two water heaters in one; they can heat water by using a heat pump or by using electric resistance elements. During large water draw events the HPWHs will use the resistance elements that decrease the overall efficiency of the units. ORNL proposed and tested an advanced control algorithm that anticipates the large water draw events and appropriately sets-up the temperature of the tank water using only the heat pump. With sufficient energy stored in the tank at the elevated temperature, the large water draw is provided for and electric resistance use is avoided. Simulations using a validated heat pump water heater model, and measured water draw data from 25 homes, show average yearly energy savings of 9% for the advanced control algorithm. If the advanced control algorithm perfectly predicts the large water draw events then the savings increase to 19%. This discrepancy could be due to a lack of predictability of water draw patterns in some homes, or the water draw forecasting algorithm could be improved.

  7. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat.

    PubMed

    James, Carl A; Richardson, Alan J; Watt, Peter W; Willmott, Ashley G B; Gibson, Oliver R; Maxwell, Neil S

    2017-03-01

    This study investigated the effect of 5 days of controlled short-term heat acclimation (STHA) on the determinants of endurance performance and 5-km performance in runners, relative to the impairment afforded by moderate heat stress. A control group (CON), matched for total work and power output (2.7 W·kg(-1)), differentiated thermal and exercise contributions of STHA on exercise performance. Seventeen participants (10 STHA, 7 CON) completed graded exercise tests (GXTs) in cool (13 °C, 50% relative humidity (RH), pre-training) and hot conditions (32 °C, 60% RH, pre- and post-training), as well as 5-km time trials (TTs) in the heat, pre- and post-training. STHA reduced resting (p = 0.01) and exercising (p = 0.04) core temperature alongside a smaller change in thermal sensation (p = 0.04). Both groups improved the lactate threshold (LT, p = 0.021), lactate turnpoint (LTP, p = 0.005) and velocity at maximal oxygen consumption (vV̇O2max; p = 0.031) similarly. Statistical differences between training methods were observed in TT performance (STHA, -6.2(5.5)%; CON, -0.6(1.7)%, p = 0.029) and total running time during the GXT (STHA, +20.8(12.7)%; CON, +9.8(1.2)%, p = 0.006). There were large mean differences in change in maximal oxygen consumption between STHA +4.0(2.2) mL·kg(-1)·min(-1) (7.3(4.0)%) and CON +1.9(3.7) mL·kg(-1)·min(-1) (3.8(7.2)%). Running economy (RE) deteriorated following both training programmes (p = 0.008). Similarly, RE was impaired in the cool GXT, relative to the hot GXT (p = 0.004). STHA improved endurance running performance in comparison with work-matched normothermic training, despite equality of adaptation for typical determinants of performance (LT, LTP, vV̇O2max). Accordingly, these data highlight the ergogenic effect of STHA, potentially via greater improvements in maximal oxygen consumption and specific thermoregulatory and associated thermal perception adaptations absent in normothermic training.

  8. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect

    BOWERS, C D; ELBEL, S; PETERSEN, M; HRNJAK, P S

    2011-09-15

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC (180ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  9. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    SciTech Connect

    Bowers, Chad; Petersen, Michael; Elbel, Stefan; Hrnjak, Pega

    2012-07-15

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  10. Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Septiadi, Wayan Nata

    2016-08-01

    The very high heat flux dissipated by a Central Processing Unit (CPU) can no longer be handled by a conventional, single-phased cooling system. Thermal management of a CPU is now moving towards two-phase systems to maintain CPUs below their maximum temperature. A heat pipe is one of the emerging cooling systems to address this issue because of its superior efficiency and energy input independence. The goal of this research is to improve the performance of a heat pipe by integrating a biomaterial as the wick structure. In this work, the heat pipe was made from copper pipe and the biomaterial wick structure was made from tabulate coral with a mean pore diameter of 52.95 μm. For comparison purposes, the wick structure was fabricated from sintered Cu-powder with a mean pore diameter of 58.57 µm. The working fluid for this experiment was water. The experiment was conducted using a processor as the heat source and a plate simulator to measure the heat flux. The utilization of coral as the wick structure can improve the performance of a heat pipe and can decrease the temperature of a simulator plate by as much as 38.6 % at the maximum heat load compared to a conventional copper heat sink. This method also decreased the temperature of the simulator plate by as much as 44.25 °C compared to a heat pipe composed of a sintered Cu-powder wick.

  11. Georgia Pacific: Crossett Mill Identifies Heat Recovery Projects and Operational Improvements

    SciTech Connect

    2003-10-01

    An assessment team conducted a mill-wide energy survey at Georgia-Pacific's Crossett, Arkansas mill to update a previous pinch analysis. Three heat recovery projects were identified that could reduce annual costs by $4.8 million and reduce natural gas use by 1,845,000 x 106 Btu. The overall payback period for the heat recovery projects would be less than 1 year. Furthermore, by implementing operational improvements, the mill could save $4.8 million more annually and 1,500,000 x 106 Btu in natural gas.

  12. Investigation of an Evaluation Method on the Improvement of Thrust and Specific Impulse by Nozzle Heating

    NASA Astrophysics Data System (ADS)

    Naganuma, Tetsushi; Iwaki, Yuuki; Sato, Shunya; Totani, Tsuyoshi; Wakita, Masashi; Nagata, Harunori

    A numerical analysis program is created to research effect of heat transfer for propellant flow in Laval nozzle and estimate improvements of thrust and specific impulse. Several types of gases are assumed as propellant. The energy ratio is defined as ratio of energy supplied to propellant by convective heat transfer to enthalpy of propellant at the inlet of nozzle. The energy ratio increases with elongating length of divergent nozzle, and finally becomes maximum value that depends on Prandtl number, propellant temperature and wall temperature at the inlet of nozzle. The conversion efficiency is defined as ratio of energy conversion to kinetic energy with nozzle to energy supplied to propellant. The conversion efficiency increases with elongating of divergent nozzle, and depends on profile of supplied heat.

  13. HEAT: High accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview.

    SciTech Connect

    Harding, M. E.; Vazquez, J.; Ruscic, B.; Wilson, A. K.; Gauss, J.; Stanton, J. F.; Chemical Sciences and Engineering Division; Univ. t Mainz; The Univ. of Texas; Univ. of North Texas

    2008-01-01

    Effects of increased basis-set size as well as a correlated treatment of the diagonal Born-Oppenheimer approximation are studied within the context of the high-accuracy extrapolated ab initio thermochemistry (HEAT) theoretical model chemistry. It is found that the addition of these ostensible improvements does little to increase the overall accuracy of HEAT for the determination of molecular atomization energies. Fortuitous cancellation of high-level effects is shown to give the overall HEAT strategy an accuracy that is, in fact, higher than most of its individual components. In addition, the issue of core-valence electron correlation separation is explored; it is found that approximate additive treatments of the two effects have limitations that are significant in the realm of <1 kJ mol{sup -1} theoretical thermochemistry.

  14. Microseismic monitoring for evidence of geothermal heat in the capital district of New York. Final report, Phases I-III

    SciTech Connect

    Not Available

    1983-06-01

    The seismic monitoring work of the geothermal project was initiated for the purpose of determining more exactly the relationship between seismicity and the postulated geothermal and related activity in the Albany-Saratoga Springs area in upstate New York. The seismic monitoring aspect of this work consisted of setting up and operating a network of seven seismograph stations within and around the study area capable of detecting and locating small earthquakes. To supplement the evidence from present day seismic activity, a list of all known historical and early instrumental earthquakes was compiled and improved from original sources for a larger region centered on the study area. Additional field work was done to determine seismic velocities of P and S phases by special recording of quarry blasts. The velocity results were used both as an aid to improve earthquake locations based on computer programs and to make inferences about the existence of temperature anomalies, and hence geothermal potential, at depths beneath the study area. Finally, the level in the continuous background earth vibration, microseisms, was measured throughout the study area to test a possibility that a relationship may exist at the surface between the level in microseisms and the geothermal or related activity. The observed seismic activity within the study area, although considerably higher (two to three times) than inferred from the historical and early instrumental data, is still not only low for a potential geothermal area but appears to be related to coherent regional tectonic stresses and not to the proposed more localized geothermal activity reflected in the mineralized, CO/sub 2/ rich spring discharge.

  15. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  16. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  17. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen.

    PubMed

    Sun, Zhihong; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2013-12-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.

  18. Using containment analysis to improve component cooling water heat exchanger limits

    SciTech Connect

    Da Silva, H.C.; Tajbakhsh, A.

    1995-12-31

    The Comanche Peak Steam Electric Station design requires that exit temperatures from the Component Cooling Water Heat Exchanger remain below 330.37 K during the Emergency Core Cooling System recirculation stage, following a hypothetical Loss of Coolant Accident (LOCA). Due to measurements indicating a higher than expected combination of: (a) high fouling factor in the Component Cooling Water Heat Exchanger with (b) high ultimate heat sink temperatures, that might lead to temperatures in excess of the 330.37 K limit, if a LOCA were to occur, TUElectric adjusted key flow rates in the Component Cooling Water network. This solution could only be implemented with improvements to the containment analysis methodology of record. The new method builds upon the CONTEMPT-LT/028 code by: (a) coupling the long term post-LOCA thermohydraulics with a more detailed analytical model for the complex Component Cooling Water Heat Exchanger network and (b) changing the way mass and energy releases are calculated after core reflood and steam generator energy is dumped to the containment. In addition, a simple code to calculate normal cooldowns was developed to confirm RHR design bases were met with the improved limits.

  19. Note: Design and development of improved indirectly heated cathode based strip electron gun

    SciTech Connect

    Maiti, Namita; Patil, D. S.; Dasgupta, K.; Bade, Abhijeet; Tembhare, G. U.

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  20. Note: design and development of improved indirectly heated cathode based strip electron gun.

    PubMed

    Maiti, Namita; Bade, Abhijeet; Tembhare, G U; Patil, D S; Dasgupta, K

    2015-02-01

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  1. Hydraulic characteristics and nutrient transport and transformation beneath a rapid infiltration basin, Reedy Creek Improvement District, Orange County, Florida

    USGS Publications Warehouse

    Sumner, D.M.; Bradner, L.A.

    1996-01-01

    The Reedy Creek Improvement District disposes of about 7.5 million gallons per day (1992) of reclaimed water through 85 1-acre rapid infiltration basins within a 1,000-acre area of sandy soils in Orange County, Florida. The U.S. Geological Survey conducted field experiments in 1992 at an individual basin to examine and better understand the hydraulic characteristics and nutrient transport and transformation of reclaimed water beneath a rapid infiltration basin. At the time, concentrations of total nitrogen and total phosphorus in reclaimed water were about 3 and 0.25 milligrams per liter, respectively. A two-dimensional, radial, unsaturated/saturated numerical flow model was applied to describe the flow system beneath a rapid infiltration basin under current and hypothetical basin loading scenarios and to estimate the hydraulic properties of the soil and sediment beneath a basin. The thicknesses of the unsaturated and saturated parts of the surficial aquifer system at the basin investigated were about 37 and 52 feet, respectively. The model successfully replicated the field-monitored infiltration rate (about 5.5 feet per day during the daily flooding periods of about 17 hours) and ground-water mounding response during basin operation. Horizontal and vertical hydraulic conductivity of the saturated part of the surficial aquifer system were estimated to be 150 and 45 feet per day, respectively. The field-saturated vertical hydraulic conductivity of the shallow soil, estimated to be about 5.1 feet per day, was considered to have been less than the full- saturation value because of the effects of air entrapment. Specific yield of the surficial aquifer was estimated to be 0.41. The upper 20 feet of the basin subsurface profile probably served as a system control on infiltration because of the relatively low field-saturated, vertical hydraulic conductivity of the sediments within this layer. The flow model indicates that, in the vicinity of the basin, flow in the deeper

  2. Uniform Thermal Nanoimprinting at Low Pressure by Improved Heat Transfer Using Hydrofluoroethers

    NASA Astrophysics Data System (ADS)

    Mekaru, Harutaka; Hiroshima, Hiroshi

    2013-06-01

    We propose a low-pressure process of thermal nanoimprinting by improved heat transfer. In poly(ethylene terephthalate) (PET; Tg=75 °C), poly(methyl methacrylate) (PMMA; Tg=105 °C), and polycarbonate (PC; Tg=150 °C), in which fine pattern transfer can be performed at 12.9 MPa, if the imprinting pressure is reduced to one-third, poor transfer occurs at the edges of the patterned area, and the uniformity of the entire patterned area degrades. However, it turned out that moldability can be improved significantly by introducing hydrofluoroether (HFE) between the mold and the surface of thermoplastic sheets. A dispensing method using a pipette was chosen to introduce HFE, and three types of HFE liquid, namely, Novec 7100 (bp=61 °C), Novec 7200 (bp=76 °C), and Novec 7300 (bp=98 °C), were tested. It was confirmed that the uniformity was greatly improved by combinations of PET and Novec 7100, PMMA and Novec 7200, and PC and Novec 7300. The heat of the mold spread efficiently onto the surface of thermoplastics via the HFE liquid, and it seems to result in the same effect as a preliminary heating process before the mold comes into contact with the thermoplastic sheet.

  3. Heat acclimation improves cutaneous vascular function and sweating in trained cyclists

    PubMed Central

    Lorenzo, Santiago

    2010-01-01

    The aim of this study was to explore heat acclimation effects on cutaneous vascular responses and sweating to local ACh infusions and local heating. We also sought to examine whether heat acclimation altered maximal skin blood flow. ACh (1, 10, and 100 mM) was infused in 20 highly trained cyclists via microdialysis before and after a 10-day heat acclimation program [two 45-min exercise bouts at 50% maximal O2 uptake (V̇o2max) in 40°C (n = 12)] or control conditions [two 45-min exercise bouts at 50% V̇o2max in 13°C (n = 8)]. Skin blood flow was monitored via laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC) was calculated as LDF ÷ mean arterial pressure. Sweat rate was measured by resistance hygrometry. Maximal brachial artery blood flow (forearm blood flow) was obtained by heating the contralateral forearm in a water spray device and measured by Doppler ultrasound. Heat acclimation increased %CVCmax responses to 1, 10, and 100 mM ACh (43.5 ± 3.4 vs. 52.6 ± 2.6% CVCmax, 67.7 ± 3.4 vs. 78.0 ± 3.0% CVCmax, and 81.0 ± 3.8 vs. 88.5 ± 1.1% CVCmax, respectively, all P < 0.05). Maximal forearm blood flow remained unchanged after heat acclimation (290.9 ± 12.7 vs. 269.9 ± 23.6 ml/min). The experimental group showed significant increases in sweating responses to 10 and 100 mM ACh (0.21 ± 0.03 vs. 0.31 ± 0.03 mg·cm−2·min−1 and 0.45 ± 0.05 vs. 0.67 ± 0.06 mg·cm−2·min−1, respectively, all P < 0.05), but not to 1 mM ACh (0.13 ± 0.02 vs. 0.18 ± 0.02 mg·cm−2·min−1, P = 0.147). No differences in any of the variables were found in the control group. Heat acclimation in highly trained subjects induced local adaptations within the skin microcirculation and sweat gland apparatus. Furthermore, maximal skin blood flow was not altered by heat acclimation, demonstrating that the observed changes were attributable to improvement in cutaneous vascular function and not to structural changes that limit maximal vasodilator capacity

  4. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat

    SciTech Connect

    Jun Cheng; Junhu Zhou; Yanchang Li; Jianzhong Liu; Kefa Cen

    2008-07-15

    To improve the coal water slurry (CWS) property made from Chinese Shenhua coal with high inherent moisture and oxygen contents, microwave irradiation and thermal heat were employed to modify the coal physicochemical property. Microwave irradiation reduces the inherent moisture and reforms the oxygenic function groups, while it decreases the total specific surface area. Thermal heat markedly decreases the inherent moisture, volatile, and oxygen contents, while it dramatically increases the total specific surface area. Therefore, microwave irradiation gives a higher CWS concentration and a better rheological behavior than thermal heat, while it remarkably reduces the operation time and energy consumption. The maximum CWS concentration given by microwave irradiation at 420 W for 60 s is 62.14%, which is not only higher than that of 60.41% given by thermal heat at 450{sup o}C for 0.5 h but also higher than the initial 58.23%. Meanwhile, the minimum shear stress given by microwave irradiation is 36.4 Pa at the shear rate of 100 s{sup -1}, which is not only lower than that of 42.4 Pa given by thermal heat but also lower than the initial 79.8 Pa. The minimum unit energy consumption of 0.115 kWh/(kg of coal) and electricity cost of 4.6 U.S. $/(ton of coal) for CWS concentration promotion by 1% are obtained at 420 W for 20 s in the microwave oven. The unit energy consumptions for CWS concentration promotion and inherent moisture removal by thermal heat are, respectively, 214 and 22.5 times higher than those by microwave irradiation, while the energy use efficiencies are on the converse. 27 refs., 11 figs., 2 tabs.

  5. Improving financial access to health care in the Kisantu district in the Democratic Republic of Congo: acting upon complexity.

    PubMed

    Stasse, Stéphanie; Vita, Dany; Kimfuta, Jacques; da Silveira, Valèria Campos; Bossyns, Paul; Criel, Bart

    2015-01-01

    Background Comzmercialization of health care has contributed to widen inequities between the rich and the poor, especially in settings with suboptimal regulatory frameworks of the health sector. Poorly regulated fee-for-service payment systems generate inequity and initiate a vicious circle in which access to quality health care gradually deteriorates. Although the abolition of user fees is high on the international health policy agenda, the sudden removal of user fees may have disrupting effects on the health system and may not be affordable or sustainable in resource-constrained countries, such as the Democratic Republic of Congo. Methods and Results Between 2008 and 2011, the Belgian development aid agency (BTC) launched a set of reforms in the Kisantu district, in the province of Bas Congo, through an action-research process deemed appropriate for the implementation of change within open complex systems such as the Kisantu local health system. Moreover, the entire process contributed to strengthen the stewardship capacity of the Kisantu district management team. The reforms mainly comprised the rationalization of resources and the regulation of health services financing. Flat fees per episode of disease were introduced as an alternative to fee-for-service payments by patients. A financial subsidy from BTC allowed to reduce the height of the flat fees. The provision of the subsidy was made conditional upon a range of measures to rationalize the use of resources. Conclusions The results in terms of enhancing people access to quality health care were immediate and substantial. The Kisantu experience demonstrates that a systems approach is essential in addressing complex problems. It provides useful lessons for other districts in the country.

  6. Oral glutamine enhances heat shock protein expression and improves survival following hyperthermia.

    PubMed

    Singleton, Kristen D; Wischmeyer, Paul E

    2006-03-01

    No pharmacologic agent has shown benefit in treating heatstroke. Previous data indicate that enhanced heat shock protein 70 (HSP-70) expression can improve survival postexperimental heatstroke. Glutamine (GLN) can enhance HSP-70 expression in other injury models. This study assessed if orally administered GLN could enhance tissue HSP expression and could improve survival following whole body hyperthermia. Intestinal permeability and plasma endotoxin were assayed to determine if enhanced HSP expression correlated with improved organ function. GLN (0.65 g/kg) or an iso-nitrogenous control (Travasol; T) was given to rats via gavage twice daily for 5 days pre-heatstroke. Hyperthermia was performed in anesthetized rats by heating animals to 42 degrees C (rectal temperature) for 30 min. HSP-70 analyzed via Western blot. Gut permeability was measured 6 and 24 h post-hyperthermia. Plasma endotoxin was measured 24 h post-hyperthermia. Survival was analyzed for 5 days post-hyperthermia. GLN administration enhanced gut and lung HSP-70 post-hyperthermia. GLN administration led to significantly enhanced gut heat shock factor 1 (HSF-1) activation before heatstroke and at 1 h postheat stress. GLN decreased gut permeability at 6 and 24 h post-hyperthermia versus T. Plasma endotoxin also decreased in GLN-treated rats 24 h post-hyperthermia. Oral GLN therapy significantly improved survival (P < 0.05). Our results indicate that oral GLN can enhance tissue HSP-70 and HSF-1 activation post-hyperthermia. These results also indicate that enhanced HSP-70 may have functional significance as GLN-treated animals had decreased gut permeability, plasma endotoxin, and improve survival following lethal hyperthermia. Enhanced expression of HSP-70 may be an important mechanism leading to enhanced survival via GLN. These data indicate that oral GLN may useful in prevention of mortality from heatstroke in at risk populations.

  7. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery.

    PubMed Central

    Plumier, J C; Ross, B M; Currie, R W; Angelidis, C E; Kazlaris, H; Kollias, G; Pagoulatos, G N

    1995-01-01

    Heat shock treatment induces expression of several heat shock proteins and subsequent post-ischemic myocardial protection. Correlations exist between the degree of stress used to induce the heat shock proteins, the amount of the inducible heat shock protein 70 (HSP70) and the level of myocardial protection. The inducible HSP70 has also been shown to be protective in transfected myogenic cells. Here we examined the role of human inducible HSP70 in transgenic mouse hearts. Overexpression of the human HSP70 does not appear to affect normal protein synthesis or the stress response in transgenic mice compared with nontransgenic mice. After 30 min of ischemia, upon reperfusion, transgenic hearts versus nontransgenic hearts showed significantly improved recovery of contractile force (0.35 +/- 0.08 versus 0.16 +/- 0.05 g, respectively, P < 0.05), rate of contraction, and rate of relaxation. Creatine kinase, an indicator of cellular injury, was released at a high level (67.7 +/- 23.0 U/ml) upon reperfusion from nontransgenic hearts, but not transgenic hearts (1.6 +/- 0.8 U/ml). We conclude that high level constitutive expression of the human inducible HSP70 plays a direct role in the protection of the myocardium from ischemia and reperfusion injury. Images PMID:7706492

  8. Improving the efficiency of high-power diode lasers using diamond heat sinks

    SciTech Connect

    Parashchuk, Valentin V; Baranov, V V; Telesh, E V; Mien, Vu Doan; Luc, Vu Van; Truong, Pham Van; Belyaeva, A K

    2010-06-23

    Using multifunctional ion beam and magnetron sputtering systems, we have developed chemical and vacuum techniques for producing metallic coatings firmly adherent to various surfaces, with application to copper and diamond heat sinks for diode lasers. Conditions have been optimised for mounting diode lasers and bars using the proposed metallisation processes, and significant improvements in the output parameters of the devices have been achieved. The power output of cw laser diodes on diamond heat sinks increases by up to a factor of 2, the linear (working) portion of their power-current characteristic becomes markedly broader, and their slope efficiency increases by a factor of 1.5 - 2 relative to that of lasers on copper heat spreaders. The use of diamond heat sinks extends the drive current range of pulsed diode bars by a factor of 2 - 3 and enables them to operate at more than one order of magnitude longer pump pulse durations (up to milliseconds) when the pulse repetition rate is at least 10 Hz. (lasers)

  9. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles.

    PubMed

    Timofeeva, Elena V; Moravek, Michael R; Singh, Dileep

    2011-12-01

    The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.

  10. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  11. Improvement of proton exchange membrane fuel cell overall efficiency by integrating heat-to-electricity conversion

    NASA Astrophysics Data System (ADS)

    Xie, Chungang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    Proton exchange membrane fuel cells (PEMFCs) have shown to be well suited for distributed power generation due to their excellent performance. However, a PEMFC produces a considerable amount of heat in the process of electrochemical reaction. It is desirable to use thermal energy for electricity generation in addition to heating applications. Based on the operating characteristics of a PEMFC, an advanced thermal energy conversion system using "ocean thermal energy conversion" (OTEC) technology is applied to exploit the thermal energy of the PEMFC for electricity generation. Through this combination of technology, this unique PEMFC power plant not only achieves the combined heat and power efficiency, but also adequately utilizes heat to generate more valuable electricity. Exergy analysis illustrates the improvement of overall efficiency and energy flow distribution in the power plant. Analytical results show that the overall efficiency of the PEMFC is increased by 0.4-2.3% due to the thermal energy conversion (TEC) system. It is also evident that the PEMFC should operate within the optimal load range by balancing the design parameters of the PEMFC and of the TEC system.

  12. Viscous heating effect on deactivation of helminth eggs in ventilated improved pit sludge.

    PubMed

    Belcher, D; Foutch, G L; Smay, J; Archer, C; Buckley, C A

    2015-01-01

    Viscous heating by extrusion of faecal material obtained from ventilated improved pit (VIP) latrines can be used to deactivate soil-transmitted helminth (STH) eggs by increasing the temperature of faecal sludge uniformly. Viscous heating can deactivate STH eggs present in sludge to make the material safer to transport, dispose of, or use in agricultural applications or as an energy source. The mechanical energy required to generate the shear rate can originate from any source. No other heat source or additive is required. Here we determined a baseline for the deactivation of STH eggs using viscous heating. To characterize equipment performance, three parameters were investigated: (1) minimum temperature required for deactivation; (2) local maximum temperatures for various flow rates and moisture contents (MCs); and (3) thermal efficiency. Excess water is undesirable since low viscosities require extended residence time and increased energy input. The minimum temperature to achieve greater than 90% helminth egg deactivation is 70 °C. For the laboratory-scale equipment tested, the maximum allowable mass flow rate for VIP sludge with 77% MC was found to be 3.6 g/s.

  13. Improving heating uniformity of pathological tissue specimens inside a domestic microwave oven.

    PubMed

    Hassan, Osama A; Kandil, Ahmed H; El Bialy, Ahmed M; Hassaballa, Iman A

    2013-01-01

    A 3D coupled electromagnetic thermal model was developed using COMSOL 4.0 to predict the electromagnetic field distribution and temperature profile in pathological tissue samples immersed in a reagent inside the oven cavity. The effect of the volume of reagent on the mean heating rate and heating uniformity within the tissue sample was investigated. Also, the effect of using a water load, as a method of temperature control, is emphasized. A well insulated K type thermocouple connected to a PC is used for model validation. Good agreement is found between experimental and simulated temperature profiles. Results show that as the volume of reagent increases, the mean heating rate decreases and temperature homogeneity increases. Also, it is possible to minimize overshooting temperature values inside the tissue sample and enhance tissue uniformity by about 27% using 100 ml of water load and 42.26% using 150 ml. Domestic microwave oven is a low cost economical tool that can speed up tissue processing steps. Achieving uniform heating inside the microwave oven is the key factor for improving workflow inside pathological labs and maintaining tissue quality and integrity.

  14. Public participation GIS for improving wood burning emissions from residential heating and urban environmental management.

    PubMed

    López-Aparicio, Susana; Vogt, Matthias; Schneider, Philipp; Kahila-Tani, Maarit; Broberg, Anna

    2017-04-15

    A crowdsourcing study supported by a public participation GIS tool was designed and carried out in two Norwegian regions. The aim was to improve the knowledge about emissions from wood burning for residential heating in urban areas based on the collection of citizens' localized insights. We focus on three main issues: 1) type of dwelling and residential heating source; 2) wood consumption and type of wood appliances; and 3) citizens' perception of the urban environment. Our study shows the importance of wood burning for residential heating, and of the resulted particle emissions, in Norwegian urban areas. Citizens' localized insights on environmental perception highlight the areas in the city that require particular attention as part of clean air strategies. Information about environmental perception is combined with existing environmental data showing certain correlation. The results support the urban environmental management based on co-benefit approaches, achieving several outcomes from a single policy measure. Measures to reduce urban air pollution will have a positive impact on the citizens' environmental perception, and therefore on their quality of life, in addition to reducing the negative consequences of air pollution on human health. The characterization of residential heating by fuelwood is still a challenging activity. Our study shows the potential of a crowdsourcing method as means for bottom-up approaches designed to increase our knowledge on human activities at urban scale that result on emissions.

  15. Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport

    SciTech Connect

    Vishwakarma, Vivek; Waghela, Chirag; Wei, Zi; Prasher, Ravi; Nagpure, Shrikant C.; Li, Jianlin; Liu, Fuqiang; Daniel, Claus; Jain, Ankur

    2016-09-25

    We report that while Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Li-ion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. Finally, by identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contribute towards improved thermal performance of Li-ion cells.

  16. Improved Ionospheric Electrodynamic Models and Application to Calculating Joule Heating Rates

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.

    2004-01-01

    Improved techniques have been developed for empirical modeling of the high-latitude electric potentials and magnetic field aligned currents (FAC) as a function of the solar wind parameters. The FAC model is constructed using scalar magnetic Euler potentials, and functions as a twin to the electric potential model. The improved models have more accurate field values as well as more accurate boundary locations. Non-linear saturation effects in the solar wind-magnetosphere coupling are also better reproduced. The models are constructed using a hybrid technique, which has spherical harmonic functions only within a small area at the pole. At lower latitudes the potentials are constructed from multiple Fourier series functions of longitude, at discrete latitudinal steps. It is shown that the two models can be used together in order to calculate the total Poynting flux and Joule heating in the ionosphere. An additional model of the ionospheric conductivity is not required in order to obtain the ionospheric currents and Joule heating, as the conductivity variations as a function of the solar inclination are implicitly contained within the FAC model's data. The models outputs are shown for various input conditions, as well as compared with satellite measurements. The calculations of the total Joule heating are compared with results obtained by the inversion of ground-based magnetometer measurements. Like their predecessors, these empirical models should continue to be a useful research and forecast tools.

  17. On the use of topology optimization for improving heat transfer in molding process

    NASA Astrophysics Data System (ADS)

    Agazzi, A.; LeGoff, R.; Truc-Vu, C.

    2016-10-01

    In the plastic industry, one of the key factor is to control heat transfer. One way to achieve that goal is to design an effective cooling system. But in some area of the mold, where it is not possible to design cooling system, the use of a highly conductive material, such as copper pin, is often used. Most of the time, the location, the size and the quantity of the copper pin are made by empirical considerations, without using optimization procedures. In this article, it is proposed to use topology optimization, in order to improve transient conductive heat transfer in an injection/blowing mold. Two methodologies are applied and compared. Finally, the optimal distribution of cooper pin in the mold is given.

  18. Electron temperature measurements and heat transport improvement in the RFX-mod experiment.

    NASA Astrophysics Data System (ADS)

    Alfier, Alberto; Bonomo, Federica; Franz, Paolo; Marrelli, Lionello; Pasqualotto, Roberto; Piovesan, Paolo; Spizzo, Gianluca; Annibaldi, Silvia Valeria

    2007-11-01

    Electron temperature profiles at about 1keV have been measured in the RFX-mod experiment during the recent high plasma current campaign (Ip>1.2MA, ne˜4.10^19): peaked Te profiles, obtained through the Thomson scattering diagnostic, are characterized by a steep gradient in the core during the quasi-single helicity (QSH) state. The formation of well defined magnetic flux surfaces during QSH states determines a reduction of thermal heat conductivity, whose estimate is essential to quantify this transport improvement. We apply the M1TeV code [1] to various experimental scenarios in order to estimate heat diffusivity, then also calculating electron confinement time: in this study, we consider the effect of the increase of plasma current and also of eventual external current drive. [1] F.Porcelli et al., Phys. Rev. Lett. 82, 1458 (1999).

  19. Acclimation Training Improves Endurance Cycling Performance in the Heat without Inducing Endotoxemia

    PubMed Central

    Guy, Joshua H.; Pyne, David B.; Deakin, Glen B.; Miller, Catherine M.; Edwards, Andrew M.

    2016-01-01

    Purpose: While the intention of endurance athletes undertaking short term heat training protocols is to rapidly gain meaningful physical adaption prior to competition in the heat, it is currently unclear whether or not this process also presents an overt, acute challenge to the immune system. The aim of this study was therefore to examine the effects of heat training on both endurance performance and biomarkers associated with inflammatory and immune system responses. Methods: Moderately-actively males (n = 24) were allocated randomly to either HOT (n = 8, 35°C, and 70% RH; NEUTRAL (n = 8, 20°C, and 45% RH); or a non-exercising control group, (CON, n = 8). Over the 18 day study HOT and NEUTRAL performed seven training sessions (40 min cycling at 55 of VO2 max) and all participants completed three heat stress tests (HST) at 35°C and 70% RH. The HST protocol comprised three × sub-maximal intervals followed by a 5 km time trial on a cycle ergometer. Serum samples were collected before and after each HST and analyzed for interleukin-6, immunoglobulin M and lipopolysaccharide. Results: Both HOT and NEUTRAL groups experienced substantial improvement to 5 km time trial performance (HOT −33 ± 20 s, p = 0.02, NEUTRAL −39 ± 18 s, p = 0.01) but only HOT were faster (−45 ± 25 s, and −12 s ± 7 s, p = 0.01) in HST3 compared to baseline and HST2. Interleukin-6 was elevated after exercise for all groups however there were no significant changes for immunoglobulin M or lipopolysaccharide. Conclusions: Short-term heat training enhances 5 km cycling time trial performance in moderately-fit subjects by ~6%, similar in magnitude to exercise training in neutral conditions.Three top-up training sessions yielded a further 3% improvement in performance for the HOT group. Furthermore, the heat training did not pose a substantial challenge to the immune system. PMID:27524970

  20. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid

    NASA Astrophysics Data System (ADS)

    Ghanbarpour, M.; Khodabandeh, R.; Vafai, K.

    2017-03-01

    In this study, effect of Al2O3 nanofluid on thermal performance of cylindrical heat pipe is investigated. An analytical model is employed to study the thermal performance of the heat pipe utilizing nanofluid and the predicted results are compared with the experimental results. A substantial change in the heat pipe thermal resistance, effective thermal conductivity and entropy generation of the heat pipe is observed when using Al2O3 nanofluid as a working fluid. It is found that entropy generation in the heat pipe system decreases when using a nanofluid due to the lower thermal resistance of the heat pipe which results in an improved thermal performance. It is shown that the proposed model is in reasonably good agreement with the experimental results and can be used as a fast technique to explore various features of thermal characteristics of the nanofluid based heat pipe.

  1. Single-dose oral quercetin improves redox status but does not affect heat shock response in mice.

    PubMed

    Chen, Yifan; Islam, Aminul; Abraham, Preetha; Deuster, Patricia

    2014-07-01

    Inflammation and oxidative stress are considered as likely contributors to heat injury. However, their roles in regulating the heat shock response in vivo remain unclear. We tested the hypothesis that acute quercetin treatment would improve redox status and reduce heat shock responses in mice. Mice underwent two heat tests before and after single oral administration of either quercetin (15 mg/kg) or vehicle. We measured physiologic and biochemical responses in mice during and 18 to 22 hours after heat tests, respectively. There were no significant differences in core temperature, heart rate, or blood pressure between quercetin and vehicle groups during heat exposure. Mice with relatively severe hyperthermia during the pretreatment heat test showed a significant trend toward a lower peak core temperature during the heat test after quercetin treatment. Compared with mice not exposed to heat, quercetin-treated mice had significantly lower interleukin 6 (P < .01) and higher superoxide dismutase levels (P < .01), whereas vehicle-treated mice had significantly lower total glutathione and higher 8-isoprostane levels in the circulation after heat exposure. Heat exposure significantly elevated heat shock proteins (HSPs) 72 and 90 and heat shock factor 1 levels in mouse liver, heart, and skeletal muscles, but no significant differences in tissue HSPs and heat shock factor 1 were found between quercetin- and vehicle-treated mice. These results suggest that a single moderate dose of quercetin is sufficient to alter redox status but not heat stress response in mice. Acute adaptations of peripheral tissues to heat stress may not be mediated by systemic inflammatory and redox state in vivo.

  2. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating.

    PubMed

    Mathys, Werner; Stanke, Juliane; Harmuth, Margarita; Junge-Mathys, Elisabeth

    2008-03-01

    A total of 452 samples from hot water systems of randomly selected single family residences in the suburbs of two German cities were analysed for the occurrence of Legionella. Technical data were documented using a standardized questionnaire to evaluate possible factors promoting the growth of the bacterium in these small plumbing systems. All houses were supplied with treated groundwater from public water works. Drinking water quality was within the limits specified in the German regulations for drinking water and the water was not chlorinated. The results showed that plumbing systems in private houses that provided hot water from instantaneous water heaters were free of Legionella compared with a prevalence of 12% in houses with storage tanks and recirculating hot water where maximum counts of Legionella reached 100,000 CFU/100ml. The presence of L. pneumophila accounted for 93.9% of all Legionella positive specimens of which 71.8% belonged to serogroup 1. The volume of the storage tank, interrupting circulation for several hours daily and intermittently raising hot water temperatures to >60 degrees C had no influence on Legionella counts. Plumbing systems with copper pipes were more frequently contaminated than those made of synthetic materials or galvanized steel. An inhibitory effect due to copper was not present. Newly constructed systems (<2 years) were not colonized. The type of hot water preparation had a marked influence. More than 50% of all houses using district heating systems were colonized by Legionella. Their significantly lower hot water temperature is thought to be the key factor leading to intensified growth of Legionella. Although hot water systems using solar energy to supplement conventional hot water supplies operate at temperatures 3 degrees C lower than conventional systems, this technique does not seem to promote proliferation of the bacterium. Our data show convincingly that the temperature of the hot water is probably the most important

  3. [Possibilities of improving the diagnosis and treatment of obstructive pulmonary diseases in the Northern Administrative District of Moscow].

    PubMed

    Shmeleva, N M; Galkin, I V; Sidorova, V P; Belevskiĭ, A S; Shmelev, E I

    2008-01-01

    The quality of the diagnosis and treatment of lung diseases was assessed in the polyclinics of the Northern Administrative District of Moscow by 2 methods: (1) selective examination of 960 case histories of bronchial asthma and chronic obstructive pulmonary diseases and (2) questionnaire survey and spirometry of 2132 patients aged 35 to 75 years who have visited a polyclinic for no respiratory diseases. Random check of the case histories revealed a large number of diagnostic and medical errors suggesting the undertraining of therapists in pulmonology. The performed cycles of educational programs could considerably reduce the number of the errors found on recheck. Questionnaire survey and spirometry could increase the number of diagnosed cases of chronic lung diseases by 10 times.

  4. Internal Auditing for School Districts.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles

    This book provides guidelines for conducting internal audits of school districts. The first five chapters provide an overview of internal auditing and describe techniques that can be used to improve or implement internal audits in school districts. They offer information on the definition and benefits of internal auditing, the role of internal…

  5. Improving the Material Response for Slow Heat of Energetic Materials (U)

    SciTech Connect

    Nichols, A L

    2010-12-15

    The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to over-pressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.

  6. Improvements in Heat Transfer for Anti-Icing of Gas-Heated Airfoils with Internal Fins and Partitions

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.

    1950-01-01

    The effect of modifying the gas passage of hollow metal airfoils by the additIon of internal fins and partitions was experimentally investigated and comparisons were made among a basic unfinned airfoil section and two airfoil designs having metal fins attached at the leading edge of the internal gas passage. An analysis considering the effects of heat conduction in the airfoil metal was made to determine the internal modification effectiveness that may be obtained in gas-heated components, such as turbojet-inlet guide vanes, support struts, hollow propeller blades, arid. thin wings. Over a wide range of heated-gas flow and tunnel-air velocity, the increase In surface-heating rates with internal finning was marked (up to 3.5 times), with the greatest increase occurring at the leading edge where anti-icing heat requirements are most critical. Variations in the amount and the location of internal finning and. partitioning provided. control over the local rates of surface heat transfer and permitted efficient anti-icing utilization of the gas-stream heat content.

  7. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect.

    PubMed

    Castle, Paul; Mackenzie, Richard W; Maxwell, Neil; Webborn, Anthony D J; Watt, Peter W

    2011-08-01

    The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.

  8. Comparing the effectiveness of heat rate improvements in different coal-fired power plants utilizing carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Walsh, Martin Jeremy

    New Congressional legislation may soon require coal-fired power generators to pay for their CO2 emissions and capture a minimum level of their CO2 output. Aminebased CO2 capture systems offer plants the most technically proven and commercially feasible option for CO2 capture at this time. However, these systems require a large amount of heat and power to operate. As a result, amine-based CO2 capture systems significantly reduce the net power of any units in which they are installed. The Energy Research Center has compiled a list of heat rate improvements that plant operators may implement before installing a CO2 capture system. The goal of these improvements is to upgrade the performance of existing units and partially offset the negative effects of adding a CO2 capture system. Analyses were performed in Aspen Plus to determine the effectiveness of these heat rate improvements in preserving the net power and net unit heat rate (NUHR) of four different power generator units. For the units firing high-moisture sub-bituminous coal, the heat rate improvements reduced NUHR by an average of 13.69% across a CO 2 capture level range of 50% to 90%. For the units firing bituminous coal across the same CO2 capture range, the heat rate improvements reduced NUHR by an average of 12.30%. Regardless of the units' coal or steam turbine cycle type, the heat rate improvements preserved 9.7% to 11.0% of each unit's net power across the same CO2 capture range. In general, the heat rate improvements were found to be most effective in improving the performance of units firing high-moisture sub-bituminous. The effect of the CO2 capture system on these units and the reasons for the improvements' greater effectiveness in them are described in this thesis.

  9. Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.

    PubMed

    Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-01-01

    Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study.

  10. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  11. Improvement in temperature stability of standard resistors using heat pipe technology

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.; Wang, L.; Li, J.

    2013-09-01

    The temperature stability of standard resistors plays an important role in assuring the accuracy of resistance measurements that use resistance ratio bridges to calibrate standard platinum resistance thermometers (SPRTs) on the International Temperature Scale of 1990 (ITS-90). Therefore, during resistance measurements, the resistors are always kept in temperature controlled oil or air baths and enclosures to maintain a constant temperature. In order to achieve better temperature stability and reduce the effects of temperature fluctuations on the resistance of a standard resistor, an annular water heat pipe thermostat immersed in a mineral oil bath was developed to accommodate and stabilize a standard resistor. Also, the thermostat's performance was characterized. The results showed that the temperature stability of standard resistors was within 1 mK after using the heat pipe thermostat compared with that of 30 mK for the oil bath. Therefore, the temperature stability of standard resistors was improved by more than one order of magnitude, which was attributable to the good thermal self-regulating abilities of the water heat pipe.

  12. Analysis of heat transfer in the furnace of the P-67 boiler P-67 furnace and improvement of its design

    NASA Astrophysics Data System (ADS)

    Shishkanov, O. G.; Kovalev, Yu. V.; Sryvkov, S. V.

    1993-03-01

    The results of experimental study of heat transfer in the furnace of the P-67 boiler (under the Russian trademark) burning Kansk-Achinsk coal are presented. Means of improving the design of the furnace device are proposed.

  13. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1

    PubMed Central

    Bodin, T; García-Trabanino, R; Weiss, I; Jarquín, E; Glaser, J; Jakobsson, K; Lucas, R A I; Wesseling, C; Hogstedt, C; Wegman, D H

    2016-01-01

    Background Chronic heat stress and dehydration from strenuous work in hot environments is considered an essential component of the epidemic of chronic kidney disease in Central America. Objective (1) To assess feasibility of providing an intervention modelled on OSHA's Water.Rest.Shade programme (WRS) during sugarcane cutting and (2) to prevent heat stress and dehydration without decreasing productivity. Methods Midway through the 6-month harvest, the intervention introduced WRS practices. A 60-person cutting group was provided water supplied in individual backpacks, mobile shaded rest areas and scheduled rest periods. Ergonomically improved machetes and efficiency strategies were also implemented. Health data (anthropometric, blood, urine, questionnaires) were collected preharvest, preintervention, mid-intervention and at the end of harvest. A subsample participated in focus group discussions. Daily wet bulb globe temperatures (WBGT) were recorded. The employer provided individual production records. Results Over the harvest WBGT was >26°C from 9:00 onwards reaching average maximum of 29.3±1.7°C, around 13:00. Postintervention self-reported water consumption increased 25%. Symptoms associated with heat stress and with dehydration decreased. Individual daily production increased from 5.1 to a high of 7.3 tons/person/day postintervention. This increase was greater than in other cutting groups at the company. Focus groups reported a positive perception of components of the WRS, and the new machete and cutting programmes. Conclusions A WRS intervention is feasible in sugarcane fields, and appears to markedly reduce the impact of the heat stress conditions for the workforce. With proper attention to work practices, production can be maintained with less impact on worker health. PMID:27073211

  14. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress.

    PubMed

    Dai, S F; Wang, L K; Wen, A Y; Wang, L X; Jin, G M

    2009-05-01

    1. The present study was conducted to investigate the effects of dietary glutamine (Gln) supplementation on growth performance, carcase characteristics and meat quality in broilers exposed to high ambient temperature. 2. A total of 240 35-d-old male Arbor Acres broilers were randomly assigned to 4 treatment groups (three replicates of 20 birds per cage). The broilers were kept in a temperature-controlled room at either 23 degrees C (no-stress groups, NS) or 28 degrees C (heat stress groups, HS). The broilers were fed either on a basal diet (control, NS) or on the basal diet supplemented with 0, 0.5 or 1.0% Gln (HS). 3. Compared with the NS, the HS (0% Gln) group gained less weight and consumed less feed, had lower final body weight, gain-to-feed ratio, and abdominal fat yield. Breast meat in HS (0% Gln) had lower pH, water-holding capacity (WHC), a* value, ether extract (EE) content and crude protein (CP) content, and had higher shear force (SF) and L* value. 4. Linear increase were found in groups supplemented with Gln (0, 0.5% and 1.0%) for final body weight, weight gain, feed consumption, gain-to-feed ratio and abdominal fat yield. Supplementation with Gln improved breast meat pH, WHC, SF, L* value, a* value, EE content and CP content in broilers exposed to heat stress. No significant difference was observed in all the indices determined between the HS (1% Gln) and the NS. 5. Heat stress caused obvious breast meat discoloration in L*, a* and b* values. However, dietary supplementation with Gln gave a better colour stability. 6. The results indicated that dietary supplementation with Gln may alleviate heat stress-caused deterioration in growth performance, carcase characteristics, meat quality and meat colour stability of broilers.

  15. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  16. Method of making heat transfer tube with improved outside surface for nucleate boiling

    SciTech Connect

    Cunningham, J.L.; Campbell, B.J.

    1988-03-08

    This patent describes a process for making a heat transfer tube with an improved outside surface for nucleate boiling comprising the steps of finning the tube to produce helical fins thereon, forming transverse grooves around the periphery of each fin, and progressively compressing the tips of the grooved fins to cause them to become flattened and of a width in an axial direction which is slightly less than their pitch, thereby defining a narrow opening between fins which is communication with a rather large cavity defined by the sides of adjacent fins in the region under the flattened fin tips. The improvement is described wherein the tips are variably compressed so that the width of the narrow openings adjacent fins is varied so as to produce a range of opening widths which is both larger and smaller than the optimum minimum pore size for nucleate boiling of a particular fluid under a particular set of operating conditions.

  17. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data.

    PubMed

    Ganachaud, A; Wunsch, C

    2000-11-23

    Through its ability to transport large amounts of heat, fresh water and nutrients, the ocean is an essential regulator of climate. The pathways and mechanisms of this transport and its stability are critical issues in understanding the present state of climate and the possibilities of future changes. Recently, global high-quality hydrographic data have been gathered in the World Ocean Circulation Experiment (WOCE), to obtain an accurate picture of the present circulation. Here we combine the new data from high-resolution trans-oceanic sections and current meters with climatological wind fields, biogeochemical balances and improved a priori error estimates in an inverse model, to improve estimates of the global circulation and heat fluxes. Our solution resolves globally vertical mixing across surfaces of equal density, with coefficients in the range (3-12) x 10(-4) m2 s(-1). Net deep-water production rates amount to (15 +/- 12) x 10(6) m3 s(-1) in the North Atlantic Ocean and (21 +/- 6) x 10(6) m3 s(-1) in the Southern Ocean. Our estimates provide a new reference state for future climate studies with rigorous estimates of the uncertainties.

  18. Heat rate improvement at Sunflower Electric`s Holcomb Station - a programmatic approach

    SciTech Connect

    Linville, C.; Nelson, K.E.; DesJardins, R.R.

    1996-05-01

    This paper describes the heat rate improvement program implemented at Sunflower Electric Power Corporations Holcomb Generating Station located in Holcomb, Kansas. The Holcomb Station is a large coal-fired generating plant that supplies electricity to Southwestern. Kansas and surrounding states. In 1993, Sunflower Electric (SEPC) established a continuing heat rate improvement program at the Holcomb Station which consisted of a periodic performance test program in combination with continuous on-line monitoring. This paper provides an overview of the test program and initial results and describes a unique approach to monitoring boiler feed pump performance especially suitable for on-line monitoring. implementation of a 15-user LAN-based on-line performance monitoring system is also described. In addition to technical issues, the paper addresses some of the {open_quotes}human factors{close_quotes} encountered while promoting acceptance and use of the on-line monitoring system by all levels of plant personnel. The importance of proper program planning and long term management support is stressed.

  19. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  20. Public Disclosure to Improve Physical Education in an Urban School District: Results from a 2-year Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Thompson, Hannah R.; Vittinghoff, Eric; Linchey, Jennifer K.; Madsen, Kristine A.

    2015-01-01

    Background: Many elementary schools have policies requiring a minimum amount of physical education (PE). However, few schools comply with local/state PE policy and little is known about how to improve adherence. We evaluated changes in PE among fifth-grade classes, following participatory action research efforts to improve PE quantity and policy…

  1. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    the use of this tool to perform detailed residential HVAC system simulations. The simulations have been verified by comparison to measured results in several houses over a wide range of weather conditions and HVAC system performance. After the verification was completed, more than 350 cooling and 450 heating simulations were performed. These simulations covered a range of HVAC system performance parameters and California climate conditions (that range from hot dry deserts to cold mountain regions). The results of the simulations were used to show the large increases in HVAC system performance that can be attained by improving the HVAC duct distribution systems and by better sizing of residential HVAC equipment. The simulations demonstrated that improved systems can deliver improved heating or cooling to the conditioned space, maintain equal or better comfort while reducing peak demand and the installed equipment capacity (and therefore capital costs).

  2. Dynamic study for performance improvements of a thermo-mechanically bistable heat engine

    NASA Astrophysics Data System (ADS)

    Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Pitone, G.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2015-12-01

    This paper focuses on a thermal study of a thermal energy harvester based on the coupling of a bimetallic strip heat engine with a piezoelectric membrane for wasted heat scavenging. Such a harvester is dedicated to power autonomous systems such as wireless sensor nodes. For a better understanding of the working principle of the system, it is compulsory to have a good understanding of the thermal specificities and phenomenon taking place inside the harvester. Attention is consequently focused on the thermal modeling of the harvester in static mode using the equivalence between the electrical and thermal quantities. This first modeling step allowed the improvement of the thermal properties inside the system by increasing the thermal gradient across it. However, the bimetal being the active part of the system has not been taken into account in this model and shadow zones persisted regarding the bimetal operation windows as a function of its snapping temperatures and hysteresis. To overcome this, a dynamic model is proposed in this paper taking into account the bimetal as a switched capacitance alternatively in contact with the hot source and the cold surface. This last model completed the static one by predicting the bimetal's operation windows in function of its intrinsic properties and the operation range evolution in function of the snapping temperature first and then in function of the bimetal thermal hysteresis. Moreover, experimental measurements enable to validate the proposed model and to point out the most powerful bimetals for scavenging higher amounts of power.

  3. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    PubMed

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  4. Inhibition of heat shock protein 90 improves pulmonary arteriole remodeling in pulmonary arterial hypertension

    PubMed Central

    Zhao, Zhi-Min; Liu, Su-Xuan; Zhang, Guan-Xin; Yang, Fan; Wang, Yang; Wu, Feng; Zhao, Xian-Xian; Xu, Zhi-Yun

    2016-01-01

    While the molecular chaperone heat shock protein 90 (HSP90) is involved in a multitude of physiological and pathological processes, its role relating to pulmonary arterial hypertension (PAH) remains unclear. In the present study, we investigated the effect in which HSP90 improves pulmonary arteriole remodeling, and explored the therapeutic utility of targeting HSP90 as therapeutic drug for PAH. By Elisa and immunohistochemistry, HSP90 was found to be increased in both plasma and membrane walls of pulmonary arterioles from PAH patients. Moreover, plasma HSP90 levels positively correlated with mean pulmonary arterial pressure and C-reactive protein. In a monocrotaline-induced rat model of PH, we found that 17-AAG, a HSP90-inhibitor, alleviated the progress of PH, demonstrated by lower pulmonary arterial pressure and absence of right ventricular hypertrophy. Immunohistochemical staining demonstrated that 17-AAG improved pulmonary arteriole remodeling on the basis of reduced wall thickness and wall area. The inflammatory response attributed to PH could be attenuated by 17-AAG through reduction of NF-κB signaling. Moreover, 17-AAG was found to suppress PDGF-stimulated proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) through induction of cell cycle arrest in the G1 phase. In conclusion, HSP90 inhibitor 17-AAG could improve pulmonary arteriole remodeling via inhibiting the excessive proliferation of PASMCs, and inhibition of HSP90 may represent a therapeutic avenue for the treatment of PAH. PMID:27472464

  5. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  6. A school based cluster randomised health education intervention trial for improving knowledge and attitudes related to Taenia solium cysticercosis and taeniasis in Mbulu district, northern Tanzania.

    PubMed

    Mwidunda, Sylvester A; Carabin, Hélène; Matuja, William B M; Winkler, Andrea S; Ngowi, Helena A

    2015-01-01

    Taenia solium causes significant economic and public health impacts in endemic countries. This study determined effectiveness of a health education intervention at improving school children's knowledge and attitudes related to T. solium cysticercosis and taeniasis in Tanzania. A cluster randomised controlled health education intervention trial was conducted in 60 schools (30 primary, 30 secondary) in Mbulu district. Baseline data were collected using a structured questionnaire in the 60 schools and group discussions in three other schools. The 60 schools stratified by baseline knowledge were randomised to receive the intervention or serve as control. The health education consisted of an address by a trained teacher, a video show and a leaflet given to each pupil. Two post-intervention re-assessments (immediately and 6 months post-intervention) were conducted in all schools and the third (12 months post-intervention) was conducted in 28 secondary schools. Data were analysed using Bayesian hierarchical log-binomial models for individual knowledge and attitude questions and Bayesian hierarchical linear regression models for scores. The overall score (percentage of correct answers) improved by about 10% in all schools after 6 months, but was slightly lower among secondary schools. Monitoring alone was associated with improvement in scores by about 6%. The intervention was linked to improvements in knowledge regarding taeniasis, porcine cysticercosis, human cysticercosis, epilepsy, the attitude of condemning infected meat but it reduced the attitude of contacting a veterinarian if a pig was found to be infected with cysticercosis. Monitoring alone was linked to an improvement in how best to raise pigs. This study demonstrates the potential value of school children as targets for health messages to control T. solium cysticercosis and taeniasis in endemic areas. Studies are needed to assess effectiveness of message transmission from children to parents and the general

  7. Testing the improved method for calculating the radiation heat generation at the periphery of the BOR-60 reactor core

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The application of the improved method for calculating the radiation heat generation in the elements of an experimental device located at the periphery of the BOR-60 reactor core results in a significant reduction in the discrepancies between the calculated and the experimental data. This allows us to conclude that the improved method has an advantage over the one used earlier.

  8. Improved measurement of low residual stresses by speckle correlation interferometry and local heat treating

    SciTech Connect

    Pechersky, M.J.

    2000-02-23

    The results presented in this paper clearly demonstrate that the dynamic range of this measurement technique can be improved substantially over the earlier experiments. It is just as clear that a more systematic study must be performed to quantify these improvements and to generate usable calibrations. These results are also encouraging in the sense that this technique may now be appropriate for other materials with high thermal diffusivities. Previous attempts to measure residual stresses by laser annealing and electronic speckle pattern interferometry have been successful for moderate to high stress levels. The method uses an infrared laser for relieving stress in a small spot. A dab on temperature indicating paint is applied to the spot and a specklegram of the spot and the surrounding area is captured. The paint is then heated with a laser until it melts. The heat is transferred from the paint into the metal resulting in a small amount of localized stress relief as the yield stress of the material drops below the stress levels surrounding the spot. Once the spot and area around it have cooled a second speckle-gram is captured and the images are processed to determine the in-plane strain. The amount of stress relief depends on the melting temperature of the paint since yield stress is a function of temperature. The measurement of local stress relief by heating is subject to limitations that result from thermal expansion competing with the reduction in yield stress of the spot at the elevated temperature. That is, as the spot is heated it tends to temporarily reduce the stress in the region surrounding the spot as it expands into this surrounding region. This limits the amount of stress relief that can occur. This can be overcome to some extent by using higher temperature paints, which in turn lowers the yield stress in the heated spot. At some point, however, the thermal expansion overtakes the surrounding stress field and can even drive it into compression

  9. Heat-stress abatement during the dry period: does cooling improve transition into lactation?

    PubMed

    do Amaral, B C; Connor, E E; Tao, S; Hayen, J; Bubolz, J; Dahl, G E

    2009-12-01

    /d) compared with CL cows. Relative to CL cows, hepatic mRNA expression of SOCS-2 and IGFBP-5 was downregulated in HT cows. Expression of ACADVL was upregulated in CL cows at d +2 but downregulated at d +20 relative to HT cows. Concentrations of C16:0 and cis C18:1 were greater in the milk and liver of CL cows compared with HT cows, which reflects greater lipid mobilization. These results suggest that heat-stress abatement in the dry period improves subsequent lactation, possibly via suppression of plasma prolactin surge around calving, SOCS-2 expression, and regulation of hepatic lipid metabolism.

  10. District of Columbia Public Education: Agencies Have Enhanced Internal Controls over Federal Payments for School Improvement, but More Consistent Monitoring Needed. Report to Congressional Requesters. GAO-11-16

    ERIC Educational Resources Information Center

    Ashby, Cornelia M.

    2010-01-01

    Between fiscal years 2004 and 2009, Congress appropriated nearly $190 million in federal payments for school improvement to the District of Columbia (D.C.). This includes $85 million to the state education office--currently the Office of the State Superintendent of Education (OSSE)--to expand public charter schools and $105 million to D.C. Public…

  11. Arsenic and Antimony Removal from Drinking Water by Adsorptive Media - U.S. EPA Demonstration Project at South Truckee Meadows General Improvement District (STMGID), NV, Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the operation of an arsenic and antimony removal technology demonstrated at the South Truckee Meadows General Improvement District (STMGID) in Washoe County, NV. The objectives of the project wer...

  12. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat.

    PubMed

    Mauger, Alexis R; Taylor, Lee; Harding, Christopher; Wright, Benjamin; Foster, Josh; Castle, Paul C

    2014-01-01

    Acetaminophen (paracetamol) is a commonly used over-the-counter analgesic and antipyretic and has previously been shown to improve exercise performance through a reduction in perceived pain. This study sought to establish whether its antipyretic action may also improve exercise capacity in the heat by moderating the increase in core temperature. On separate days, 11 recreationally active participants completed two experimental time-to-exhaustion trials on a cycle ergometer in hot conditions (30°C, 50% relative humidity) after ingesting a placebo control or an oral dose of acetaminophen in a randomized, double-blind design. Following acetaminophen ingestion, participants cycled for a significantly longer period of time (acetaminophen, 23 ± 15 min versus placebo, 19 ± 13 min; P = 0.005; 95% confidence interval = 90-379 s), and this was accompanied by significantly lower core (-0.15°C), skin (-0.47°C) and body temperatures (0.19°C; P < 0.05). In the acetaminophen condition, participants also reported significantly lower ratings of thermal sensation (-0.39; P = 0.015), but no significant change in heart rate was observed (P > 0.05). This is the first study to demonstrate that an acute dose of acetaminophen can improve cycling capacity in hot conditions, and that this may be due to the observed reduction in core, skin and body temperature and the subjective perception of thermal comfort. These findings suggest that acetaminophen may reduce the thermoregulatory strain elicited from exercise, thus improving time to exhaustion.

  13. Districts, Teacher Leaders, and Distributed Leadership: Changing Instructional Practice

    ERIC Educational Resources Information Center

    Firestone, William A.; Martinez, M. Cecilia

    2007-01-01

    Using case studies of four schools in three districts, this article explores how leadership is distributed in districts and asks about the role of teacher leaders. It proposes that teacher leaders and districts can share three leadership tasks: procuring and distributing materials, monitoring improvement, and developing people. The district and…

  14. Divided We Fail in LA: Improving Completion and Closing Racial Gaps in the Los Angeles Community College District

    ERIC Educational Resources Information Center

    Moore, Colleen; Shulock, Nancy

    2010-01-01

    A recent report titled "Divided We Fail: Improving Completion and Closing Racial Gaps in California's Community Colleges" shows that student outcomes in the state's community colleges are inadequate to meet the projected demand for college-educated workers in the labor market. The report also documents the serious problem posed by the…

  15. How Improving Schools Allocate Resources: A Case Study of Successful Schools in One Southern California Urban School District

    ERIC Educational Resources Information Center

    Morgan, Helen Emery

    2010-01-01

    The current fiscal climate in California and the country has had a tremendous impact on every facet of society. Education has experienced budget reductions that have impacted every aspect of serving students and their families. Research provides educators with evidence-based strategies that have shown to improve student achievement. This study…

  16. Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

    PubMed Central

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D.; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called “anhydrobiosis”. Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments. PMID:25675104

  17. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    PubMed

    Tanaka, Sae; Tanaka, Junko; Miwa, Yoshihiro; Horikawa, Daiki D; Katayama, Toshiaki; Arakawa, Kazuharu; Toyoda, Atsushi; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble) and SAHS (Secretory Abundant Heat Soluble) proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble), as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  18. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    PubMed

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  19. Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications.

    PubMed

    Wertz, J T; Mauldin, T C; Boday, D J

    2014-11-12

    A method to recover fracture toughness after failure and increase thermal properties of polylactic acid (PLA) for use within durable goods applications is presented. Microcapsules were incorporated into PLA to form a composite material in which the microcapsules served the dual purpose of (1) releasing self-healing additives to fracture regions and (2) serving as nucleating agents to improve the PLA composite's thermal tolerance. Self-healing was achieved though embedment of dicyclopentadiene-filled microcapsules and Grubbs' first generation ruthenium metathesis catalyst, the former being autonomically released into damage volumes and undergoing polymerization in the presence of the catalyst. This approach led to up to 84% recovery of the polymer composite's initial fracture toughness. Additionally, PLA's degree of crystallinity and heat deflection temperature were improved by ∼ 11% and ∼ 21 °C, respectively, relative to nonfilled virgin PLA, owing to microcapsule-induced nucleation. The self-healing system developed here overcomes many property limitations of PLA that can potentially lead to its incorporation into various durable goods.

  20. Perspectives on improvement of reproduction in cattle during heat stress in a future Japan.

    PubMed

    Kadokawa, Hiroya; Sakatani, Miki; Hansen, Peter J

    2012-06-01

    Heat stress (HS) causes hyperthermia, and at its most severe form, can lead to death. More commonly, HS reduces feed intake, milk yield, growth rate and reproductive function in many mammals and birds, including the important cattle breeds in Japan. Rectal temperatures greater than 39.0°C and respiration rates greater than 60/min indicate cows are undergoing HS sufficient to affect milk yield and fertility. HS compromises oocyte quality and embryonic development, reduces expression of estrus and changes secretion of several reproductive hormones. One of the most effective ways to reduce the magnitude of HS is embryo transfer, which bypasses the inhibitory effects of HS on the oocyte and early embryo. It may also be possible to select for genetic resistance to HS. Cooling can also improve reproductive performance in cows and heifers, and probably, the most effective cooling systems currently in use are those that couple evaporative cooling with tunnel ventilation or cross ventilation. Its effect on improving reproductive performance in Japan remains to be evaluated.

  1. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect

    Baxter, Van D; Bouza, Antonio; Giguère, Daniel; Hosatte, Sophie

    2011-01-01

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  2. Improving the quality of discharge summaries: implementing updated Academy of Medical Royal Colleges standards at a district general hospital.

    PubMed

    May-Miller, Hannah; Hayter, Joanne; Loewenthal, Lola; Hall, Louis; Hilbert, Rebecca; Quinn, Michael; Pearson, Nicola; Patel, Alisha; Law, Rebekah

    2015-01-01

    Quality of documentation is harder to quantify and incentivise, but it has a significant impact on patient care. Good discharge summaries facilitate continuity between secondary and primary care. The junior doctors' forum led this project to improve the quality of electronic discharge summaries (eDS). Baseline measurement revealed significant room for improvement. We measured the quality of 10 summaries per month (across all inpatient specialties), against 23 indicators from the revised Academy of Medical Royal Colleges (AoMRC) standards (2013) that were prioritised by GPs as a "minimum dataset". Junior doctors felt that the Trust's dual eDS systems were responsible for great variation in quality. This was confirmed by the results of a comparison audit of the systems in April 2014: one system greatly outperformed the other (57% mean compliance with iSoft clinical management (iCM) based system vs. 77% with InfoPath-based system). We recommended that the Trust move to a single eDS system, decommissioning the iCM-based system, and this proposal was approved by several Trust committees. We worked with information services, junior doctors, general practitioners and hospital physicians to develop and implement a generic template to further improve compliance with AoMRC standards. In August 2014, the iCM-based system was withdrawn, the new template went live, and training was delivered, coinciding with the changeover of junior doctors to minimise disruption. Median compliance increased from 66.7% to 77.8%. Quality of discharge summaries had improved across the specialties. There was a reduction in the number of complaints and positive qualitative feedback from general practitioners and junior doctors. Completion of discharge summaries within 24 hours was not affected by this change. There is still more to be done to improve quality; average compliance with the full AoMRC standards (39 indicators) is 59.5%. With the approval of the Trust executive committee further plan

  3. Improving the quality of discharge summaries: implementing updated Academy of Medical Royal Colleges standards at a district general hospital

    PubMed Central

    May-Miller, Hannah; Hayter, Joanne; Loewenthal, Lola; Hall, Louis; Hilbert, Rebecca; Quinn, Michael; Pearson, Nicola; Patel, Alisha; Law, Rebekah

    2015-01-01

    Quality of documentation is harder to quantify and incentivise, but it has a significant impact on patient care. Good discharge summaries facilitate continuity between secondary and primary care. The junior doctors’ forum led this project to improve the quality of electronic discharge summaries (eDS). Baseline measurement revealed significant room for improvement. We measured the quality of 10 summaries per month (across all inpatient specialties), against 23 indicators from the revised Academy of Medical Royal Colleges (AoMRC) standards (2013) that were prioritised by GPs as a “minimum dataset”. Junior doctors felt that the Trust's dual eDS systems were responsible for great variation in quality. This was confirmed by the results of a comparison audit of the systems in April 2014: one system greatly outperformed the other (57% mean compliance with iSoft clinical management (iCM) based system vs. 77% with InfoPath-based system). We recommended that the Trust move to a single eDS system, decommissioning the iCM-based system, and this proposal was approved by several Trust committees. We worked with information services, junior doctors, general practitioners and hospital physicians to develop and implement a generic template to further improve compliance with AoMRC standards. In August 2014, the iCM-based system was withdrawn, the new template went live, and training was delivered, coinciding with the changeover of junior doctors to minimise disruption. Median compliance increased from 66.7% to 77.8%. Quality of discharge summaries had improved across the specialties. There was a reduction in the number of complaints and positive qualitative feedback from general practitioners and junior doctors. Completion of discharge summaries within 24 hours was not affected by this change. There is still more to be done to improve quality; average compliance with the full AoMRC standards (39 indicators) is 59.5%. With the approval of the Trust executive committee further

  4. An Evaluation of the Effectiveness of the Remediation Plus Program on Improving Reading Achievement of Students in the Marinette (WI) School District

    ERIC Educational Resources Information Center

    Corcoran, Roisin P.; Ross, Steven M.

    2015-01-01

    The study was implemented in the Title I Marinette School District using a randomized experimental design and parallel quasi experimental design spanning three grades 1-3 in 3 district elementary schools. The Remediation Plus Intervention is a multi-sensory, systematic synthetic phonics curriculum for all ages of students who struggle with…

  5. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat.

    PubMed

    Stevens, Christopher John; Dascombe, Ben; Boyko, Andriy; Sculley, Dean; Callister, Robin

    2013-01-01

    This study investigated the effect of ice slurry ingestion during a triathlon on intragastric temperature and 10 km running performance in the heat. Nine well-trained male triathletes performed two randomised trials of a simulated Olympic distance triathlon in hot conditions (32-34°C). Exercise intensity during the swim (1500 m) and cycle (1 hr) legs was standardised, and the 10 km run leg was a self-paced time trial. During the cycle leg, either 10 g · kgBM(-1) of ice slurry (< 1°C) or room temperature fluid (32-34°C) was ingested. In the run leg of the ice slurry trial, performance time (43.4 ± 3.7 vs. 44.6 ± 4.0 min; P = 0.03), intragastric temperature (at 1.5 km; 35.5 ± 1.2 vs. 37.5 ± 0.4°C; P = 0.002) and perceived thermal stress (at 5 km; 73 ± 9 vs. 80 ± 7 mm; P = 0.04) were significantly lower. Oxygen consumption was significantly higher in the ice trial between 9.5-10 km (52.4 ± 3.4 vs. 47.8 ± 5.4 mL · kg(-1) · min(-1); P = 0.04). The results suggest ice slurry ingestion was an effective ergogenic aid for triathlon running performance in the heat. The attenuation of intragastric temperature and perceived thermal stress were likely contributors to the self-selection of a higher running intensity and improved performance time.

  6. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

    PubMed

    Pollastri, Susanna; Tsonev, Tsonko; Loreto, Francesco

    2014-04-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate.

  7. Reforming Districts: How Districts Support School Reform. A Research Report. Document R-03-6

    ERIC Educational Resources Information Center

    McLaughlin, Milbrey; Talbert, Joan

    2003-01-01

    School districts have participated in multiple rounds of education reform activity in the past few decades, yet few have made headway on system-wide school improvement. This paper addresses the questions of whether districts matter for school reform progress and what successful "reforming" districts do to achieve system change and to…

  8. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  9. Solution to problems of bacterial impurity of heating systems

    NASA Astrophysics Data System (ADS)

    Sharapov, V. I.; Zamaleev, M. M.

    2015-09-01

    The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.

  10. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    SciTech Connect

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

  11. Dynamics of the electron thermal diffusivity at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Kouprienko, D. V.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Kantor, M. Yu.; Lashkul, S. I.; Esipov, L. A.

    2010-05-01

    The dynamics of electron heat transport at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak was studied experimentally. Evolution of the profiles of the electron temperature and density was thoroughly investigated under conditions of fast variation in the plasma parameters. The energy balance in the electron channel is calculated with the help of the ASTRA code by using the measured plasma parameters. Correlation is revealed between the dynamics of electron heat transport and the behavior of small-scale drift turbulence measured using the enhanced scattering correlation diagnostics. The suppression of heat transfer and turbulence agrees well with the increase in the shear of poloidal plasma rotation calculated from experimental data in the neoclassical approximation.

  12. Simple interventions can greatly improve clinical documentation: a quality improvement project of record keeping on the surgical wards at a district general hospital

    PubMed Central

    Glen, Peter; Earl, Naomi; Gooding, Felix; Lucas, Emily; Sangha, Nicole; Ramcharitar, Steve

    2015-01-01

    Clinical documentation is an integral part of the healthcare professional's job. Good record keeping is essential for patient care, accurate recording of consultations and for effective communication within the multidisciplinary team. Within the surgical department at the Great Western Hospital, Swindon, the case notes were deemed to be bulky and cumbersome, inhibiting effective record keeping, potentially putting patients' at risk. The aim of this quality improvement project was therefore to improve the standard of documentation, the labelling of notes and the overall filing. A baseline audit was firstly undertaken assessing the notes within the busiest surgical ward. A number of variables were assessed, but notably, only 12% (4/33) of the case notes were found to be without loose pages. Furthermore, less than half of the pages with entries written within the last 72 hours contained adequate patient identifiers on them. When assessing these entries further, the designation of the writer was only recorded in one third (11/33) of the cases, whilst the printed name of the writer was only recorded in 65% (21/33) of the entries. This project ran over a 10 month period, using a plan, do study, act methodology. Initial focus was on simple education. Afterwards, single admission folders were introduced, to contain only information required for that admission, in an attempt to streamline the notes and ease the filing. This saw a global improvement across all data subsets, with a sustained improvement of over 80% compliance seen. An educational poster was also created and displayed in clinical areas, to remind users to label their notes with patient identifying stickers. This saw a 4-fold increase (16%-68%) in the labelling of notes. In conclusion, simple, cost effective measures in streamlining medical notes, improves the quality of documentation, facilitates the filing and ultimately improves patient care. PMID:26734440

  13. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    SciTech Connect

    Farina, D.; Figini, L.; Henderson, M.; Saibene, G.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

  14. CrossTalk proposal: Heat acclimatization does improve performance in a cool condition.

    PubMed

    Minson, Christopher T; Cotter, James D

    2016-01-15

    We believe available data support the thesis that HA can improve performance in cool conditions, and perhaps with less expense and fewer side-effects than hypoxia (Dempsey & Morgan, 2015), but its utility is unresolved and may be modest or absent in some settings and individuals. A few key issues are becoming clear, however. First, HA must be of sufficient stimulus and duration, with key evidence indicating longer is better. Second, individual variability in response to HA as an ergogenic aid needs to be considered. Third, key training aspects such as speed and intensity may need to be maintained, and ideally performed in a cooler environment to maximize gains and minimize fatigue (including the effects of matched absolute versus relative work rates on adaptations). Alternatively, passive heating should be considered (e.g. immediately after training). Fourth, there is no evidence that HA impairs cool weather performance, and thus HA is a useful strategy when the competitive environmental conditions are potentially hot or unknown. Fifth, much remains unknown about ideal timing for competition following HA and its decay. Lastly, an ergogenic effect of HA has yet to be studied in truly elite athletes.

  15. Improved reliability of residual heat removal capability in pressurized water reactors

    SciTech Connect

    Chu, Tsong-Lun; Fitzpatrick, R.; Yoon, Won Hyo

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in supporting Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 99 ''Reactor Coolant System (RCS)/Residual Heat Removal (RHR) Suction Line Interlocks on Pressurized Water Reactors (PWRs).'' Operational experience of US PWRs indicates that numerous loss of RHR events have occurred during plant shutdown. Of particular significance is the loss of RHR suction due to the inadvertent closure of the RHR suction/isolation valves or an excess lowering of the water level in the reactor vessel. In the absence of prompt mitigative action by the operator, the core may become uncovered. Various design/operational changes have been proposed. The objective of this paper is to estimate the improvement in the RHR reliability and the risk reduction potential provided by those proposed RHR design/operational changes. The benefits of those changes are expressed in terms of the reduction in the frequency of loss-of-cooling events and the frequency of core damage.

  16. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.

    PubMed

    Rosa, Mónica; Tiago, João M; Singh, Satish K; Geraldes, Vítor; Rodrigues, Miguel A

    2016-10-01

    The quality of lyophilized products is dependent of the ice structure formed during the freezing step. Herein, we evaluate the importance of the air gap at the bottom of lyophilization vials for consistent nucleation, ice structure, and cake appearance. The bottom of lyophilization vials was modified by attaching a rectified aluminum disc with an adhesive material. Freezing was studied for normal and converted vials, with different volumes of solution, varying initial solution temperature (from 5°C to 20°C) and shelf temperature (from -20°C to -40°C). The impact of the air gap on the overall heat transfer was interpreted with the assistance of a computational fluid dynamics model. Converted vials caused nucleation at the bottom and decreased the nucleation time up to one order of magnitude. The formation of ice crystals unidirectionally structured from bottom to top lead to a honeycomb-structured cake after lyophilization of a solution with 4% mannitol. The primary drying time was reduced by approximately 35%. Converted vials that were frozen radially instead of bottom-up showed similar improvements compared with normal vials but very poor cake quality. Overall, the curvature of the bottom of glass vials presents a considerable threat to consistency by delaying nucleation and causing radial ice growth. Rectifying the vials bottom with an adhesive material revealed to be a relatively simple alternative to overcome this inconsistency.

  17. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications

    PubMed Central

    Martinez-Boubeta, Carlos; Simeonidis, Konstantinos; Makridis, Antonios; Angelakeris, Makis; Iglesias, Oscar; Guardia, Pablo; Cabot, Andreu; Yedra, Lluis; Estradé, Sonia; Peiró, Francesca; Saghi, Zineb; Midgley, Paul A.; Conde-Leborán, Iván; Serantes, David; Baldomir, Daniel

    2013-01-01

    The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies. PMID:23576006

  18. Decreased impacts of the 2003 heat waves on mortality in the Czech Republic: an improved response?

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Kříž, Bohumír

    2008-11-01

    The paper examines impacts on mortality of heat waves in 2003, the hottest summer on record in the Czech Republic, and compares them with previous similar events. While most summer heat waves over the period since 1986 were associated with significantly elevated mortality, this was not the case for three out of the four heat waves in 2003. The relatively weak mortality response was particularly noteworthy for the most severe heat wave which occurred in the first 10 days of August 2003 and resulted in enormous excess mortality in some western European countries. A mortality displacement effect and short-term adaptation to heat contributed to the reduced mortality impacts of the heat waves that followed after previous relatively warm periods. However, the decreased mortality response of the 2003 heat waves compared to previous heat waves in the 1990s is also likely to have arisen from positive health-care and other socio-economic changes in the post-communist central European region over the past decade, as well as a better public awareness of heat-related risks due to enhanced media coverage and regular biometeorological forecast and warnings.

  19. Improving the effectiveness of the emergency management of renal colic in a district general hospital: a completed audit cycle

    PubMed Central

    Kastner, C; Tagg, A

    2003-01-01

    Methods: Data were collected about the use of analgesia, waiting time for intravenous urography (IVU), and admission status of patients presenting to the hospital with symptoms of renal colic over the period of three months. A literature search into the use of analgesia, imaging, and treatment was performed. Members of the involved departments were consulted and new guidelines developed and implemented. This was followed by further data collection over three months. Results: Seven of 14 patients were admitted. Five to wait for their IVU. Their average waiting time was 12.3 (SD 2.2) hours. Mainly intramuscular opioid analgesia was used. Literature recommended the use of diclofenac. Although computed tomography was favoured it was decided to continue to use IVU because of circumstances within the hospital. The literature recommended a cut off between conservative and surgical treatment at a calculus size of >4 mm. Existing policies of the relevant departments were obeyed and a training system for the junior doctors was introduced. Emergency department staff were encouraged to perform 3-film IVUs. After this, of 5 of 19 patients were admitted, only one of those to wait for an IVU. The average waiting time for an IVU was 4.1 (SD 0.96) hours. Rectal diclofenac was noted to be the drug of choice. Conclusion: Coordination of efforts, interdepartmental communication, and a practical application of available literature has resulted in a significant improvement of effectiveness without affecting medical standards, workload, or resources. Accident and emergency senior house officers felt highly satisfied at being able to complete management from presentation to diagnosis and treatment. Interdisciplinary communication has to be continued to maintain smooth operation of the guidelines. PMID:12954686

  20. Improving water use efficiency and heat tolerance by expressing rice gene OsSIZ1 in transgenic cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought and heat are the two major environmental factors that limit cotton production in Texas High Plains. To sustain cotton production in the semiarid land of Texas High Plains, it is imperative that drought- and salt-tolerant cotton be developed. In an effort to substantially improve cotton's per...

  1. Effectiveness of Onsite Nurse Mentoring in Improving Quality of Institutional Births in the Primary Health Centres of High Priority Districts of Karnataka, South India: A Cluster Randomized Trial

    PubMed Central

    Bradley, Janet; Mony, Prem; Cunningham, Troy; Washington, Maryann; Bhat, Swarnarekha; Rao, Suman; Thomas, Annamma; S, Rajaram; Kar, Arin; N, Swaroop; B M, Ramesh; H L, Mohan; Fischer, Elizabeth; Crockett, Maryanne; Blanchard, James; Moses, Stephen; Avery, Lisa

    2016-01-01

    Background In India, although the proportion of institutional births is increasing, there are concerns regarding quality of care. We assessed the effectiveness of a nurse-led onsite mentoring program in improving quality of care of institutional births in 24/7 primary health centres (PHCs that are open 24 hours a day, 7 days a week) of two high priority districts in Karnataka state, South India. Primary outcomes were improved facility readiness and provider preparedness in managing institutional births and associated complications during child birth. Methods All functional 24/7 PHCs in the two districts were included in the study. We used a parallel, cluster randomized trial design in which 54 of 108 facilities received six onsite mentoring visits, along with an initial training update and specially designed case sheets for providers; the control arm received just the initial training update and the case sheets. Pre- and post-intervention surveys were administered in April-2012 and August-2013 using facility audits, provider interviews and case sheet audits. The provider interviews were administered to all staff nurses available at the PHCs and audits were done of all the filled case sheets during the month prior to data collection. In addition, a cost analysis of the intervention was undertaken. Results Between the surveys, we achieved coverage of 100% of facilities and 91.2% of staff nurse interviews. Since the case sheets were newly designed, case-sheet audit data were available only from the end line survey for about 80.2% of all women in the intervention facilities and 57.3% in the control facilities. A higher number of facilities in the intervention arm had all appropriate drugs, equipment and supplies to deal with gestational hypertension (19 vs.3, OR (odds ratio) 9.2, 95% C.I 2.5 to33.6), postpartum haemorrhage (29 vs. 12, OR 3.7, 95% C.I 1.6 to8.3); and obstructed labour (25 vs.9, OR 3.4, 95% CI 1.6 to8.3). The providers in the intervention arm had better

  2. Improving door-to-needle times for patients presenting with ST-elevation myocardial infarction at a rural district general hospital

    PubMed Central

    Jordan, Mark; Caesar, Jenny

    2016-01-01

    Acute coronary syndrome is a common condition with a major global impact on healthcare resources and expenditure. International guidelines are clear in specifying that patients with acute ST-elevation myocardial infarction (STEMI) should receive urgent coronary reperfusion with either primary percutaneous coronary intervention (PCI) or thrombolysis. Although PCI is the gold standard in the treatment of STEMI, this is not always achievable in a rural hospital with no cardiac catheterization service. Consequently, local recommendations on STEMI management exist to promote timely administration of thrombolysis within 30 minutes of patient arrival. However, translating updated clinical policy into practice is a challenging and complex task that requires a multi-faceted approach with sustained engagement from local stakeholders. Whilst working at a district general hospital in New Zealand, we noted a high incidence of patients presenting with STEMI receiving thrombolytic therapy outside the recommended 30 minutes door-to-needle time. Although final treatment was often only delayed by 5-10 minutes, we were concerned by the seemingly inconsistent management of these patients, often leading to unnecessary delays in the initiation of rapid reperfusion therapy. We therefore championed a newly updated clinical guideline and promoted an early STEMI recognition and treatment algorithm in our hospital to raise awareness amongst staff and improve door-to-needle times. We introduced a number of simple low-cost interventions that included educational sessions for junior doctors and cardiac nursing staff, as well as posters and training on the use of a remote electronic ECG interpretation system to streamline out-of-hours management. Overall, we found there to a be a steady improvement in door-to-needle times at our hospital, with 74% of patients receiving appropriate care within 30 minutes, compared to 43% prior to our interventions. This also translated to better patient outcomes

  3. Processed complementary food does not improve growth or hemoglobin status of rural tanzanian infants from 6-12 months of age in Kilosa district, Tanzania.

    PubMed

    Mamiro, Peter S; Kolsteren, Patrick W; van Camp, John H; Roberfroid, Dominique A; Tatala, Simon; Opsomer, Anne S

    2004-05-01

    A double-blind, randomized, placebo-controlled trial was conducted from March 2001 to March 2002 involving 309 infants who received either a processed complementary food (CF) or an unprocessed placebo from 6 to 12 mo of age. The groups were comparable in baseline characteristics. The study took place in Kilosa district, Tanzania. The processed CF contained germinated, autoclaved, and dried finger millet (65.2%), kidney beans (19.1%), roasted-peanuts (8%), and mango purée (7.7%). The same blend, but not processed, served as the placebo. Processing increased iron solubility and energy density without affecting viscosity. Mean length for age, weight for age, hemoglobin, and zinc protoporphyrin at 6 and 12 mo did not differ between the 2 groups. The results show that the processed food did not differ from the unprocessed placebo in improving growth, hemoglobin, and iron status of infants when given under the study conditions. The control group consumed equal amounts of macronutrients, and the higher energy density in this study did not seem to have any benefits. In our study, there was a very intensive follow-up; at every encounter with mothers, giving the required amounts and adding extra lipids was strongly reinforced. Under those conditions, a well-balanced complementary food with additional lipids can meet the energy needs of young children. The reduction in phytates by 34% and improvement in iron solubility to 19% due to processing might not have been enough to compensate for the rather low iron content of the complementary food.

  4. Performance improvement of wire-bonded mesh screen flat heat pipe using water-based nanofluid

    NASA Astrophysics Data System (ADS)

    Wang, Ping-Yang; Chen, Yan-Jun; Liu, Zhen-Hua

    2016-12-01

    An experimental study was conducted to investigate the thermal performances of a new type of wire-bonded mesh screen flat heat pipe using water and nanofluid as working fluid to find better structure and the working fluid based on the present flat heat pipes. The influences of the kind of working fluid, mass concentration of nanofluid and operating pressure on the thermal performance of the heat pipe were investigated under the three steady operating pressures. It is found from the results that the thermal performance of wire-bonded mesh screen heat pipe are superior to that of wire-bonded flat heat pipe either using water or using nanofluid as working fluid; the thermal resistance of the former reduces distinctly and the maximum power increases obviously. Moreover, using nanofluid can significantly enhance the thermal performance of this heat pipe; enhanced ratios of the both heat transfer coefficient and maximum heat flux gradually increase with increasing the nanoparticle mass concentration in the nanofluid at the same operating pressure, peaking at the 1.0 wt%. Then, they will gradually reduce with further increase of mass concentration of nanofluid.

  5. Improved method for calculating the radiation heat generation in the BOR-60 reactor

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The results of theoretical and experimental studies aimed at determining the radiation heat generation in the BOR-60 reactor reveal the drawbacks of the computational methods used at present. An algorithm that is free from these drawbacks and allows one to determine the radiation heat generation computationally is proposed.

  6. Infrared Radiation Heating for Rough Rice Disinfestation and Drying with Improved Efficiency and Milling Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigated the drying characteristics, milling quality, and effectiveness in disinfestation of rough rice under infrared (IR) radiation heating. Infested and non-infested freshly harvested medium grain rice samples were heated/dried using catalytic IR for various durations as a sing...

  7. Cultural and Technical Evaluation of Heating Alternatives to Improve Indoor Air Quality on the Navajo Nation

    EPA Science Inventory

    In the Navajo Nation it is estimated that 62% of households use wood as their primary means of heating1. A 2010 study by the U.S. Geological Survey (USGS) and Diné College found that in Shiprock, NM, the largest town in the Navajo Nation (pop. = 8,300)2, heating is often w...

  8. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  9. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-03-23

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  10. Georgia-Pacific: Crossett Mill Identifies Heat Recovery Projects and Operational Improvements that May Save $9.6 Million Annually

    SciTech Connect

    Not Available

    2003-11-01

    An assessment team conducted a mill-wide energy survey at Georgia-Pacific's Crossett, Arkansas mill to update a previous pinch analysis. Three heat recovery projects were identified that could reduce annual costs by $4.8 million and reduce natural gas use by 1,845,000 x 106 Btu. The overall payback period for the heat recovery projects would be less than 1 year. Furthermore, by implementing operational improvements, the mill could save $4.8 million more annually and 1,500,000 x 106 Btu in natural gas.

  11. Selecting the optimum method of heat transfer intensification to improve efficiency of thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Leontyev, A. I.; Onishchenko, D. O.; Arutyunyan, G. A.

    2016-09-01

    The relevance of applying the methods of energy recovery from exhaust gases is substantiated. The principle of operation of a thermoelectric generator is described, the variant of its design is proposed, and the efficiency of various design methods of heat exchange intensification is compared. Designs are compared with a baseline configuration without heat transfer intensifiers in terms of coefficients of gas dynamic resistance ξ/ξ0 and the ratio of dimensionless criteria Nu/Nu0. The results of comparative analysis have proved the applicability of the methods of heat exchange intensification in the design of thermoelectric generators of various vehicles.

  12. Greenhouse soil heating for improved production and energy conservation. Final report

    SciTech Connect

    Roller, W.L.; Elwell, D.L.

    1981-09-01

    A three-year study of the beneficial use of simulated power plant reject heat for soil heating in greenhouses is described. The effect of 25, 30, 35, and 40/sup 0/C warm water on the temperature of and moisture distribution in three diverse, greenhouse soils was studied, and the growth response of variety HR-5 lettuce in this environment was determined. Detailed information on soil temperature and moisture distribution, heat transfer rates, and lettuce production yield under various operating conditions was obtained.

  13. Improvement of Nuclear Heating Evaluation Inside the Core of the OSIRIS Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Péron, Arthur; Malouch, Fadhel; Diop, Cheikh M.

    2016-02-01

    In this paper we present a nuclear heating from neutron and photon rays calculation scheme mainly based on the Monte-Carlo neutral particle transport code TRIPOLI-4® which takes into account the axial distributions of fuel element compositions. This calculation scheme is applied to the OSIRIS reactor in order to evaluate the effect of using realistic axially heterogeneous compositions instead of uniform ones. After a description of nuclear heating evaluation, the calculation scheme is described. Numerical simulations and related results are detailed and analysed to determine the impact of axially heterogeneous compositions on fluxes, power and nuclear heating.

  14. Residential ventilation with heat recovery: Improving indoor air quality and saving energy

    NASA Astrophysics Data System (ADS)

    Roseme, G. D.; Berk, J. V.; Boegel, M. L.; Halsey, H. I.; Hollowell, C. D.; Rosenfeld, A. H.; Turiel, I.

    1980-05-01

    Residential air quality measurements were made and the use of mechanical ventilation systems with air-to-air heat exchangers is discussed as a promising means of pollutant control. A particular advantage of this control strategy is that the heat exchanger permits recovery of a large portion of the heat that would normally be lost in a simple exhaust ventilation system, and therefore maintains the energy efficiency of the house. An economic analysis is presented showing that installation of these systems in newly constructed homes is cost effective in most regions of the country.

  15. Heat acclimatization does not improve VO2max or cycling performance in a cool climate in trained cyclists.

    PubMed

    Karlsen, A; Racinais, S; Jensen, M V; Nørgaard, S J; Bonne, T; Nybo, L

    2015-06-01

    This study investigated if well-trained cyclists improve V ˙ O 2 m a x and performance in cool conditions following heat acclimatization through natural outdoor training in hot conditions. Eighteen trained male cyclists were tested for physiological adaptations, V ˙ O 2 m a x , peak aerobic power output, exercise efficiency, and outdoor time trial (TT) performance (43.4 km in cool environment, ∼5-13 °C) before and after 2 weeks of training in a cool (CON, n = 9) or hot (∼35 °C, HA, n = 9) environment. After heat acclimatization, TT performance in the heat was improved by 16%; however, there was no change in the HA group in V ˙ O 2 m a x (4.79 ± 0.21 L/min vs 4.82 ± 0.35 L/min), peak aerobic power output (417 ± 16 W vs 422 ± 17 W), and outdoor TT performance in cool conditions (300 ± 14 W/69 ± 3 min vs 302 ± 9 W/69 ± 4 min). The present study shows that 2 weeks of heat acclimatization was associated with marked improvements in TT performance in the heat. However, for the well-trained endurance athletes, this did not transfer to an improved aerobic exercise capacity or outdoor TT performance in cool conditions.

  16. Manipulation of antioxidant status fails to improve fertility of lactating cows or survival of heat-shocked embryos.

    PubMed

    Paula-Lopes, F F; Al-Katanani, Y M; Majewski, A C; McDowell, L R; Hansen, P J

    2003-07-01

    Experiments were conducted to test whether enhancement of antioxidant status could improve fertility and milk yield in dairy cows and resistance of cultured embryos to heat shock. Three experiments in three herds were performed to evaluate the effect of multiple intramuscular injections of 500 mg of vitamin E and 50 mg of selenium at 8 to 21 d before expected calving and at 30 and 80 d postpartum on reproduction of lactating Holstein cows. Vitamin E and selenium injections did not improve reproductive function or milk yield in any of the studies. The predicted 305-d milk yield (averages of least-squares means across treatments) were: 9478, 7073, and 10,204 kg projected 305-d milk for experiments 1, 2, and 3, respectively. Percentages of cows pregnant at first service were 30, 16, and 24% in experiments 1, 2, and 3, respectively. Three studies were performed to test whether vitamin E improved development of cultured bovine embryos exposed to heat shock. Heat shock of 41 degrees C at the two-cell stage reduced development to the blastocyst stage, but culture with 100 microM vitamin E did not reduce effects of heat shock on impaired development. For example, 9 h at 41 degrees C reduced blastocyst development from 51.2 +/- 3.3% to 3.4 +/- 3.3% in the absence of vitamin E and from 54.0 +/- 3.3% to 5.2 +/- 3.3% in the presence of vitamin E. Development of morulae to the blastocyst stage was not compromised by culture at 41 degrees C for 9 h. Additionally, there was no overall effect of vitamin E on morula development. In conclusion, multiple injections of vitamin E and selenium at the administered levels did not improve postpartum fertility nor milk yield of lactating Holstein cows in three different herds, and there was no direct thermoprotective effect of vitamin E for cultured, heat-shocked embryos.

  17. Improving nutrition in Afghanistan through a community-based growth monitoring and promotion programme: a pre-post evaluation in five districts.

    PubMed

    Mayhew, Maureen; Ickx, Paul; Stanekzai, Hedayatullah; Mashal, Taufiq; Newbrander, William

    2014-01-01

    In Afghanistan, malnutrition in children less than 60 months of age remains high despite nutritional services being offered in health facilities since 2003. Afghanistan's Ministry of Public Health solicited extensive community consultation to develop pictorial community-based growth monitoring and promotion (cGMP) tools to help illiterate community health workers (CHWs) provide nutritional assessment and counselling. The planned evaluation in the five districts where cGMP was implemented demonstrated that a mean weight-for-age (WFA) Z-score of 414 participant children was 0.3 Z-scores higher than that of matched non-participants who lived outside of cGMP programme catchment areas. The mean change in WFA Z-scores at evaluation was 0.3 (95% CI 0.3, 0.4) Z-scores higher than at entry into the programme. The most influential factor on WFA Z-score changes in participants was initial WFA Z-score. Those with an initial WFA Z-score of less than -2 experienced a mean increase of 0.33 (95% CI 0.29, 0.38) WFA Z-scores per session attended, while those with a baseline WFA Z-score of greater than zero showed a decrease of 0.19 (95% CI 0.22, 0.15) WFA Z-scores per session attended. These results are encouraging since they demonstrate that the cGMP programme in Afghanistan for illiterate women has some potential to contribute to improving nutrition, specifically in underweight children of either sex who enter the programme at less than nine months of age and attend 50% or more sessions.

  18. Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method

  19. School District Mergers: What One District Learned

    ERIC Educational Resources Information Center

    Kingston, Kathleen

    2009-01-01

    Throughout the planning process for a school district merger in a northwestern Pennsylvania school district, effective communication proved to be a challenge. Formed in 1932, this school district of approximately 1400 students was part of a utopian community; one established by a transportation system's corporation that was a major industrial…

  20. Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands

    SciTech Connect

    Akbari, Hashem

    2007-07-01

    World energy use is the main contributor to atmospheric CO2. In 2002, about 7.0 giga metric tons of carbon (GtC) were emitted internationally by combustion of gas, liquid, and solid fuels (CDIAC, 2006), 2 to 5 times the amount contributed by deforestation (Brown et al., 1988). The share of atmospheric carbon emissions for the United States from fossil fuel combustion was 1.6 GtC. Increasing use of fossil fuel and deforestation together have raised atmospheric CO{sub 2} concentration some 25% over the last 150 years. According to global climate models and preliminary measurements, these changes in the composition of the atmosphere have already begun raising the Earth's average temperature. If current energy trends continue, these changes could drastically alter the Earth's temperature, with unknown but potentially catastrophic physical and political consequences. During the last three decades, increased energy awareness has led to conservation efforts and leveling of energy consumption in the industrialized countries. An important byproduct of this reduced energy use is the lowering of CO{sub 2} emissions. Of all electricity generated in the United States, about one-sixth is used to air-condition buildings. The air-conditioning use is about 400 tera-watt-hours (TWh), equivalent to about 80 million metric tons of carbon (MtC) emissions, and translating to about $40 billion (B) per year. Of this $40 B/year, about half is used in cities that have pronounced 'heat islands'. The contribution of the urban heat island to the air-conditioning demand has increased over the last 40 years and it is currently at about 10%. Metropolitan areas in the United States (e.g., Los Angeles, Phoenix, Houston, Atlanta, and New York City) have typically pronounced heat islands that warrant special attention by anyone concerned with broad-scale energy efficiency (HIG, 2006). The ambient air is primarily heated through three processes: direct absorption of solar radiation, convection of heat

  1. Optimization of Heat Exchangers with Dimpled Surfaces to Improve the Performance in Thermoelectric Generators Using a Kriging Model

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Wang, Yiping; Wang, Tao; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-11-01

    Thermoelectric generators (TEGs) have become a topic of interest for vehicle exhaust energy recovery. Electrical power generation is deeply influenced by temperature differences, temperature uniformity and topological structures of TEGs. When the dimpled surfaces are adopted in heat exchangers, the heat transfer rates can be augmented with a minimal pressure drop. However, the temperature distribution shows a large gradient along the flow direction which has adverse effects on the power generation. In the current study, the heat exchanger performance was studied in a computational fluid dynamics (CFD) model. The dimple depth, dimple print diameter, and channel height were chosen as design variables. The objective function was defined as a combination of average temperature, temperature uniformity and pressure loss. The optimal Latin hypercube method was used to determine the experiment points as a method of design of the experiment in order to analyze the sensitivity of the design variables. A Kriging surrogate model was built and verified according to the database resulting from the CFD simulation. A multi-island genetic algorithm was used to optimize the structure in the heat exchanger based on the surrogate model. The results showed that the average temperature of the heat exchanger was most sensitive to the dimple depth. The pressure loss and temperature uniformity were most sensitive to the parameter of channel rear height, h 2. With an optimal design of channel structure, the temperature uniformity can be greatly improved compared with the initial exchanger, and the additional pressure loss also increased.

  2. An improved technique for computing the top heat loss factor of a flat-plate collector with a single glazing

    SciTech Connect

    Mullick, S.C.; Samdarshi, S.K.

    1988-11-01

    A different approach to evaluate the top heat loss factor of a flat plate solar collector with a single glass cover is proposed. The equation for the heat loss factor in the analytical form is employed instead of the semi-empirical form hitherto employed for solar collectors. The glass cover temperature is, however, estimated by an empirical relation. (This relation replaces the empirical relation for the factor f of the earlier work). Values of the top heat loss factor calculated by this simple technique are within 3 percent (maximum error) of those obtained by iterative solution of the heat balance equations. There is an improvement in accuracy by a factor greater than five over the current semi-empirical equations. The range of variables covered is 50/sup 0/C to 150/sup 0/C in absorber plate temperature, 0.1 to 0.95 in absorber coating emittance, and 5 W/m/sup 2/C to 45 W/m/sup 2/C in wind heat-transfer coefficient. The effect of variation in air properties with temperature has been taken into account.

  3. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  4. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  5. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass.

    PubMed

    Wang, Xiaofei; Taylor, Steven; Wang, Yifen

    2016-10-01

    Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes.

  6. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  7. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans.

    PubMed

    Kumsta, Caroline; Chang, Jessica T; Schmalz, Jessica; Hansen, Malene

    2017-02-15

    Stress-response pathways have evolved to maintain cellular homeostasis and to ensure the survival of organisms under changing environmental conditions. Whereas severe stress is detrimental, mild stress can be beneficial for health and survival, known as hormesis. Although the universally conserved heat-shock response regulated by transcription factor HSF-1 has been implicated as an effector mechanism, the role and possible interplay with other cellular processes, such as autophagy, remains poorly understood. Here we show that autophagy is induced in multiple tissues of Caenorhabditis elegans following hormetic heat stress or HSF-1 overexpression. Autophagy-related genes are required for the thermoresistance and longevity of animals exposed to hormetic heat shock or HSF-1 overexpression. Hormetic heat shock also reduces the progressive accumulation of PolyQ aggregates in an autophagy-dependent manner. These findings demonstrate that autophagy contributes to stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1-regulated functions in the heat-shock response, proteostasis and ageing.

  8. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans

    PubMed Central

    Kumsta, Caroline; Chang, Jessica T.; Schmalz, Jessica; Hansen, Malene

    2017-01-01

    Stress-response pathways have evolved to maintain cellular homeostasis and to ensure the survival of organisms under changing environmental conditions. Whereas severe stress is detrimental, mild stress can be beneficial for health and survival, known as hormesis. Although the universally conserved heat-shock response regulated by transcription factor HSF-1 has been implicated as an effector mechanism, the role and possible interplay with other cellular processes, such as autophagy, remains poorly understood. Here we show that autophagy is induced in multiple tissues of Caenorhabditis elegans following hormetic heat stress or HSF-1 overexpression. Autophagy-related genes are required for the thermoresistance and longevity of animals exposed to hormetic heat shock or HSF-1 overexpression. Hormetic heat shock also reduces the progressive accumulation of PolyQ aggregates in an autophagy-dependent manner. These findings demonstrate that autophagy contributes to stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1-regulated functions in the heat-shock response, proteostasis and ageing. PMID:28198373

  9. An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator

    SciTech Connect

    Reddy, K.S.; Sendhil Kumar, N.

    2009-10-15

    A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60 {<=} {beta} {<=} 90 ) of the receiver. The present 3-D numerical model is compared with other well known cavity receiver models. The 3-D model can be used for accurate estimation of heat losses from solar dish collector, when compared with other well known models. (author)

  10. Optimization of reaction conditions for improving nutritional properties in heat moisture treated maize starch.

    PubMed

    Ye, Xiaoting; Lu, Fei; Yao, Tianming; Gan, Renyou; Sui, Zhongquan

    2016-12-01

    Impact of heat-moisture treatment (HMT) on nutritional properties of normal maize starch (NMS) under various reaction conditions was investigated. NMS was adjusted to moisture levels of 20%, 25%, 30% and 35% and heated at 80, 100, 120 and 140°C for 4, 8, 12 and 16h. Response surface methodology (RSM) based on Box-Behnken design (BBD) was employed to obtain the optimal combination of moisture level (X1: 20-30%), length of heating (X2: 4-12h), and temperature (X3: 100-140°C). The optimum reaction condition decreased rapidly digestible starch (RDS) from 87.10% to 82.21%, when NMS was subjected to HMT at 23.6% moisture content and heated at 114.8°C for 9.04h. The ANOVA measurement and confirmation experiments were performed to verify the predictive value and the RSM model, indicating that temperature was the main factor to determine the digestion rate of HMT NMS. The results suggested that RDS was not correlated to heating length but positively correlated to temperature and moisture content. Reaction condition had no correlations with slowly digestible starch (SDS) and resistant starch (RS). This study could provide more information for producing low-glycemic index products.

  11. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-01-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  12. Efficiency improvement of heat exchangers by the rational choice of the range of frequencies of electromagnetic water treatment

    NASA Astrophysics Data System (ADS)

    Runov, D. M.; Laptev, A. G.

    2015-05-01

    The electromagnetic water treatment is considered as one of the reagentless methods to reduce the scaling and to improve the cooling efficiency of high-temperature gas flows. It is achieved by the rational choice of the frequency range under laboratory conditions. The choice is made by the lowest particle size distribution of the precipitated particles. The time analysis of the content of hardness salts in the treated water is carried out at the input to and output of the heat exchanger.

  13. Improved heat sinking for laser-diode arrays using microchannels in CVD diamond

    SciTech Connect

    Goodson, K.E.; Kurabayashi, K.; Pease, R.F.W.

    1995-12-31

    This work proposes a novel cooling system for high-power laser-diode arrays, for which the maximum optical output power density per unit surface area is limited by the temperature rise due to self heating. The proposed system uses a microchannel heat sink made of chemical-vapor-deposited (CVD) diamond, whose high thermal conductivity increases the efficiency of the channel wall-fins and reduces the array-to-coolant thermal resistance. The thermal resistance is further reduced in the proposed system by minimizing the separation between active regions and the diamond using epitaxial lift-off (ELO) and grafting technology. This work predicts the array-to-coolant thermal resistance using a simple model for the combined conduction and convection problem. The resistance is calculated to be 75% less than that for a conventional configuration using a silicon microchannel heat sink. The present analysis strongly motivates a future experimental study.

  14. Method and apparatus for improving heat transfer in a fluidized bed

    DOEpatents

    Lessor, Delbert L.; Robertus, Robert J.

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  15. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E.; Otis, Daniel; McCarthy, Matthew J.; Rodríguez, Ernesto

    2017-02-01

    Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate

  16. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico.

    PubMed

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E; Otis, Daniel; McCarthy, Matthew J; Rodríguez, Ernesto

    2017-02-17

    Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate

  17. Technical assessment and environmental improvement of Almaty No. 1 heat and power station

    SciTech Connect

    Chang, P.S.; Myers, P.T.

    1996-12-31

    Almaty No. 1 Heat and Power Station (BPS) supplies steam for industrial customers and heat and electricity to the residents of Almaty, the capital city of Kazakhstan. Feasibility studies performed by local technical institutes concluded that the aging boilers were soon reaching their end of life. Prior to approval of a loan to Kazakhstan for replacement of two of the boilers, the Asian Development Bank contracted the Tennessee Valley Authority to perform a technical and financial assessment of the power station to determine if continued operation was justified and to recommend a program of boiler equipment rehabilitation and/or replacement to reduce the high level of air pollution in the city. The assessment determined the city had a shortage of 480 Gcal/hr heating supply and a 125 MW deficit in electrical supply. Continued operation of Almaty No. 1 Heat and Power Station (UPS) was justified due to the strategic location of the heat and steam supply, high efficiency of the combined heating and power supply, and the low cost of the investment. The existing plant equipment had exceeded its original design life but the rehabilitation of the existing boilers is not a cost-effective option because of the very stringent emission requirements, low-cost and low-quality coal burning, and the derating requirements. Based on stringent air emission criteria, the most technically and economically viable solution is to replace the existing boiler Nos. 7 and 8 with a single circulating fluidized bed (CFB) boiler with limestone feed and a baghouse or electrostatic precipitator. The CFB boiler would allow Almatyenergo to burn the low-cost, low-quality coal and meet all the emission requirements.

  18. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  19. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  20. #GoOpen District Launch Packet

    ERIC Educational Resources Information Center

    Office of Educational Technology, US Department of Education, 2016

    2016-01-01

    Across the country, districts are choosing to #GoOpen and transitioning to the use of openly licensed educational resources to improve student learning in their schools. Openly licensed educational resources enable districts to reallocate significant funds currently spent on inflexible, static learning materials to resources and activities that…

  1. Calif. Districts Link to Push Shared Goals

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Frustrated by their own state's pace and direction of school improvement, eight California districts have banded together to move ahead on rolling out the Common Core State Standards and designing new teacher evaluations based in part on student performance. Known as CORE--the California Office to Reform Education--the member districts also…

  2. Heat Energy and Temperature Concepts of Adolescents, Adults, and Experts: Implications for Curricular Improvements

    ERIC Educational Resources Information Center

    Lewis, Eileen L.; Linn, Marcia C.

    2003-01-01

    We conducted two studies of beliefs about laboratory and everyday thermal phenomena. The first study identified concepts of heat energy and temperature held by adolescents, adults, and scientists. We found a classic separation of "school" and "everyday" knowledge in each population. We conducted clinical interviews with 37 middle school students,…

  3. Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous microwave processing to produce shelf-stable acidified vegetables with moderate to high salt contents poses challenges in pasteurization due to reduced microwave penetration depths and non-uniform heating. Cups of sweetpotato, red bell pepper, and broccoli acidified to pH 3.8 with citric...

  4. Improvement in shelf life of rough and brown rice using infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the effect of IR heating and tempering treatments on storage stability of rough and brown rice. Samples of freshly harvested medium grain rice variety M206 with initial moisture content of 25.03±0.21% (d.b.) were used. They were dried using infrared (IR...

  5. An improved model of heat transfer through penguin feathers and down.

    PubMed

    Du, Ning; Fan, Jintu; Wu, Huijun; Chen, Shuo; Liu, Yang

    2007-10-21

    Penguins, mostly live in the extremely cold Antarctic, are known to have feathers and down, which are light weight, compact and extremely efficient in preventing heat loss. Nevertheless, the mechanisms of heat transfer through the penguin feathers and down, and how the unique characteristics of penguin feathers and down make them such good thermal insulators are not fully understood. In this paper, an integrated model of heat transfer through the penguin feathers and down is developed and computed using finite volume method, with the geometrical structure of the barbules being considered. Monte-Carlo method is adopted to determine the radiative absorption and emission constant in the integrated model. The effective thermal conductance of penguin feathers and down computed from our model compared well with the experimentally measured value reported in the literature. Three models (penguin model, random fibre model (fibre radius=3microm) and random fibre model (fibre radius=10microm)) are further simulated and compared. Results showed that the relative small radius of the barbules of penguin feather and their geometrical structure are responsible for the reduction of heat loss in cold environment.

  6. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application.

  7. Heat Energy and Temperature Concepts of Adolescents, Adults, and Experts: Implications for Curricular Improvements.

    ERIC Educational Resources Information Center

    Lewis, Eileen L.; Linn, Marcia C.

    1994-01-01

    Adolescents (n=151-158), adults (n=18), and scientists (n=5) were involved in two studies conducted to identify concepts of heat energy and temperature held by each of the participants and investigate the impact of a middle school science curriculum designed to help students understand everyday thermal events. Results indicate that each group had…

  8. Using Research to Improve College Readiness: A Research Partnership between the Los Angeles Unified School District and the Los Angeles Education Research Institute

    ERIC Educational Resources Information Center

    Phillips, Meredith; Yamashiro, Kyo; Farrukh, Adina; Lim, Cynthia; Hayes, Katherine; Wagner, Nicole; White, Jeffrey; Chen, Hansheng

    2015-01-01

    The Los Angeles Unified School District (LAUSD) serves a large majority of socioeconomically disadvantaged students who are struggling academically and are underprepared for high school graduation and college. This article describes the partnership between LAUSD and the Los Angeles Education Research Institute, and how this collaboration endeavors…

  9. Improving Service to Students with Low-Incidence Sensory Disabilities in Ohio: A Mixed-Methods Study to Examine National Context and District Experience

    ERIC Educational Resources Information Center

    Howley, Craig B.; Howley, Aimee

    2016-01-01

    This multi-method study examined (a) preparation and licensure practices of the 50 states with respect to students with low-incidence sensory disabilities (LISD) and (b) the experience of Ohio school districts (including "community schools") in providing services to students with LISD. The 50-state phase of the study used document review…

  10. Building District Capacity for System-Wide Instructional Improvement in Cincinnati Public Schools. Working Paper. GE Foundation "Developing Futures"™ in Education Evaluation Series

    ERIC Educational Resources Information Center

    Sam, Cecile; Riggan, Matt

    2013-01-01

    This report summarizes findings from one component of the Consortium for Policy Research in Education's (CPRE) evaluation of the General Electric Foundation's (GEF) "Developing Futures"™ in Education program in Cincinnati Public Schools (CPS). The purpose was to closely analyze district capacity to support system-wide instructional…

  11. Building District Capacity for System-Wide Instructional Improvement in Stamford Public Schools. Working Paper. GE Foundation "Developing Futures"™ in Education Evaluation Series

    ERIC Educational Resources Information Center

    Fink, Ryan; Riggan, Matt

    2013-01-01

    This report summarizes findings from one component of the Consortium for Policy Research in Education's (CPRE) evaluation of the General Electric Foundation's (GEF) "Developing Futures"™ in Education program in Stamford Public Schools (SPS). The purpose was to closely analyze district capacity to support system-wide instructional…

  12. Heat-rate improvements obtained by retubing condensers with new, enhanced tube types

    SciTech Connect

    Rabas, T.J.; Taborek, J.

    1995-01-01

    Significant fuel savings can be achieved at power plants by retubing the condensers with enhanced tubes. Because of the higher overall heat-transfer coefficient, the exhaust steam is condensed at a lower pressure and the plant efficiency is therefore increased or plant heat rate is reduced. Only the spirally indented type of enhanced tube is currently being used in the U.S. and most other countries; however, different types of enhanced tubes have been proposed for power-plant condensers, each with their own set of attributes. This paper determines what attributes and their magnitudes of enhanced tubes lead to the most energy savings as measured by reduction of the plant heat rate. The particular attributes considered are the inside and outside enhancement levels, the inside efficiency index (inside enhancement level divided by pressure-drop increase), and the enhanced-tube fouling-rate multiplier. Two particular condensers were selected because all necessary information were known from previous heat-rate studies such as the condenser geometry, the circulating-water pump and system information, and the low-pressure turbine characteristics. These are {open_quotes}real-world{close_quotes} condensers and therefore the finding will be representative for many other condenser-retubing applications. However, the authors strongly recommend that an economic evaluation be performed at each site to determine the energy savings and payback time. This generic investigation showed that the outside enhancement level is the most important attribute, and a value of about 1.5 can lead to heat-rate savings of about 20 to 40 Btu/kW-hr. Increasing the inside enhancement is less effective because of the increased pressure drop that leads to a reduction of the coolant flow rate and velocity.

  13. State of the District [Los Angeles Community College District].

    ERIC Educational Resources Information Center

    Koltai, Leslie

    Accomplishments made by the Los Angeles Community College District during its fifth year of independent operation are noted, and 10 projects to receive attention during the coming year are listed. The accomplishments are: (1) increasing and diversifying enrollment, (2) stabilizing and improving the college environment, (3) developing fiscal…

  14. Virgin Coconut Oil Prevents Blood Pressure Elevation and Improves Endothelial Functions in Rats Fed with Repeatedly Heated Palm Oil

    PubMed Central

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil. PMID:23861707

  15. Virgin coconut oil prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

    PubMed

    Nurul-Iman, Badlishah Sham; Kamisah, Yusof; Jaarin, Kamsiah; Qodriyah, Hj Mohd Saad

    2013-01-01

    This study was performed to explore the effects of virgin coconut oil (VCO) in male rats that were fed with repeatedly heated palm oil on blood pressure, plasma nitric oxide level, and vascular reactivity. Thirty-two male Sprague-Dawley rats were divided into four groups: (i) control (basal diet), (ii) VCO (1.42 mL/kg, oral), (iii) five-times-heated palm oil (15%) (5HPO), and (iv) five-times-heated palm oil (15%) and VCO (1.42 mL/kg, oral) (5HPO + VCO). Blood pressure was significantly increased in the group that was given the 5HPO diet compared to the control group. Blood pressure in the 5HPO + VCO group was significantly lower than the 5HPO group. Plasma nitric oxide (NO) level in the 5HPO group was significantly lower compared to the control group, whereas in the 5HPO + VCO group, the plasma NO level was significantly higher compared to the 5HPO group. Aortic rings from the 5HPO group exhibited attenuated relaxation in response to acetylcholine and sodium nitroprusside as well as increased vasoconstriction to phenylephrine compared to the control group. Aortic rings from the 5HPO + VCO group showed only attenuated vasoconstriction to phenylephrine compared to the 5HPO group. In conclusion, VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil.

  16. A research program for improving heat transfer prediction for the laminar to turbulent transition region of turbine vanes/blades

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.

    1993-01-01

    A program sponsored by NASA for the investigation of the heat transfer in the transition region of turbine vanes and blades with the objective of improving the capability for predicting heat transfer is described. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance, and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objective of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into the areas of experiments, direct numerical simulations (DNS), and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.

  17. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress.

    PubMed

    Liu, J; Ye, G; Zhou, Y; Liu, Y; Zhao, L; Liu, Y; Chen, X; Huang, D; Liao, S F; Huang, K

    2014-06-01

    This study was conducted to evaluate the effects of supplemental common yeast culture (CY) and glycerol-enriched yeast culture (GY) on performance, plasma metabolites, antioxidant status, and heat shock protein 70 (HSP70) mRNA expression in lactating Holstein cows under heat stress. During summer months, 30 healthy multiparous lactating cows (parity 3.25 ± 0.48; 60 ± 13 d in milk [DIM]; 648 ± 57 kg BW; an average milk yield of 33.8 ± 1.6 kg/d) were blocked by parity, previous milk yield, and DIM and randomly allocated to 3 dietary treatments: no supplemental yeast culture (Control), 1 L/d of CY (33.1 g yeast) per cow, and 2 L/d of GY (153.2 g glycerol and 31.6 g yeast) per cow. During the 60-d experiment, values of air temperature and relative humidity inside the barn were recorded hourly every 3 d to calculate temperature-humidity index (THI). Weekly rectal temperatures (RT) and respiration rates and daily DMI and milk yield were recorded for all cows. Milk and blood samples were taken twice monthly, and BW and BCS were obtained on d 0 and 60. In this experiment, THI values indicated cows experienced a moderate heat stress. Cows supplemented with CY and GY had greater yields of milk, energy-corrected milk and milk fat, and milk fat percent but lower HSP70 mRNA expression in peripheral blood lymphocytes than Control cows (P < 0.05). Supplementing CY and GY tended (P < 0.15) to decrease RT at 1400 h, increase milk protein yield and erythrocyte glutathione, and reduce plasma urea nitrogen compared with Control. Lower plasma NEFA concentration and HSP70 mRNA expression in peripheral blood lymphocytes (P < 0.05) and tendencies towards greater plasma glucose concentration (P = 0.11) but less BW loss (P = 0.14) were observed in GY relative to CY cows. In conclusion, either CY or GY supplementation partially mitigated the negative effects of heat stress on performance and HSP70 mRNA expression of lactating cows, and GY supplementation provided additional improvements

  18. Management of heat stress to improve fertility in dairy cows in Israel.

    PubMed

    Flamenbaum, Israel; Galon, Nadav

    2010-01-01

    follicles produced during heat stress and the use of timed AI and embryo transfer. Part of these treatments improved summer CR when combined with intensive cooling. Cooling Intensification combined with hormonal therapy, management and nutritional practices are expected to minimize the gap between summer and winter CR obtained in Israel in the future.

  19. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  20. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    PubMed Central

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of −0.4 °C, and for males: the limit temperature of −6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet. PMID:26759077

  1. Use of a novel smart heating sleeping bag to improve wearers’ local thermal comfort in the feet

    NASA Astrophysics Data System (ADS)

    Song, W. F.; Zhang, C. J.; Lai, D. D.; Wang, F. M.; Kuklane, K.

    2016-01-01

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers’ local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of ‑0.4 °C, and for males: the limit temperature of ‑6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  2. Use of a novel smart heating sleeping bag to improve wearers' local thermal comfort in the feet.

    PubMed

    Song, W F; Zhang, C J; Lai, D D; Wang, F M; Kuklane, K

    2016-01-13

    Previous studies have revealed that wearers had low skin temperatures and cold and pain sensations in the feet, when using sleeping bags under defined comfort and limit temperatures. To improve wearers' local thermal comfort in the feet, a novel heating sleeping bag (i.e., MARHT) was developed by embedding two heating pads into the traditional sleeping bag (i.e., MARCON) in this region. Seven female and seven male volunteers underwent two tests on different days. Each test lasted for three hours and was performed in a climate chamber with a setting temperature deduced from EN 13537 (2012) (for females: comfort temperature of -0.4 °C, and for males: the limit temperature of -6.4 °C). MARHT was found to be effective in maintaining the toe and feet temperatures within the thermoneutral range for both sex groups compared to the linearly decreased temperatures in MARCON during the 3-hour exposure. In addition, wearing MARHT elevated the toe blood flow significantly for most females and all males. Thermal and comfort sensations showed a large improvement in feet and a small to moderate improvement in the whole body for both sex groups in MARHT. It was concluded that MARHT is effective in improving local thermal comfort in the feet.

  3. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    NASA Astrophysics Data System (ADS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-02-01

    The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9-4.0 g/cm3. The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R1 and R2 - peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment.

  4. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.

    PubMed

    Kimbell, J S; Frank, D O; Laud, Purushottam; Garcia, G J M; Rhee, J S

    2013-10-18

    Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning.

  5. Competition with Charters Motivates Districts

    ERIC Educational Resources Information Center

    Holley, Marc J.; Lueken, Martin F.; Egalite, Anna J.

    2013-01-01

    Proponents of market-based education reform often argue that introducing charter schools and other school choice policies creates a competitive dynamic that will prompt low-performing districts to improve their practice. Rather than simply providing an alternative to neighborhood public schools for a handful of students, the theory says, school…

  6. Conceptions of Evidence Use in School Districts: Mapping the Terrain

    ERIC Educational Resources Information Center

    Coburn, Cynthia E.; Talbert, Joan E.

    2006-01-01

    Current policies place unprecedented demands on districts to use evidence to guide their educational improvement efforts. How districts respond is likely to be influenced by how individuals in the district conceptualize what it means to use evidence in their ongoing work. This study draws on sensemaking and institutional theory to investigate how…

  7. Site-Based Budgeting: A New Age of District Finance

    ERIC Educational Resources Information Center

    Perry, Mary

    2013-01-01

    The effects of linking school districts' funding directly to the students they serve and providing local school districts and communities with more control over how that money is spent could ripple through the entire K-12 system, from the state Capitol to the classroom. For district leaders anxious to improve their schools and better support…

  8. CA District Uses RTI to Boost Achievement for All

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    The 2004-05 school year didn't start off well for the Sanger Unified School District. The district, located east of Fresno, had entered its first year of "program improvement"--a gentler way of saying that Sanger was among the 98 lowest-performing districts in the state based on success criteria in the No Child Left Behind law. The…

  9. The oxidation behavior of SiC sintered with Al-B-C and improved oxidation resistance via heat treatments

    SciTech Connect

    Sixta, Mark

    1997-12-01

    The oxidation behavior of high strength and high toughness SiC, sintered with Al, B, and C (ABC-SiC), was examined. Kinetic data were acquired and the parabolic rate constant for oxidation was determined and compared with literature data on various SiC materials. The role of secondary phases on the oxide morphology was explored. ABC-SiC was compared to commercially available SiC, Hexoloy, and SiC sintered with 10% yttrium aluminum garnet (YAG). Two-step sintering (pre-coarsening) was employed with holds for 48 hours at 600-1,600°C, prior to the typical hot-pressing conditions of 1,900°C for 1 hour, to change the chemistry and reduce the number of bubbles in the silica scale. The effects on the oxide thickness and integrity was examined as a function of the precoarsening heat treatment temperature. Additionally, the hot-pressed ABC-SiC was subjected to heat treatments (anneals) at 1,800°C for 1 hour in nitrogen, Ar, and vacuum environments, and the effects on subsequent oxidation were evaluated. The Ar and vacuum heat treatments dramatically improved the oxidation resistance of ABC-SiC. Finally, reoxidation experiments were performed to try to alter the surface chemistry of the SiC to improve the oxidation resistance. The four-point bend strengths and two-parameter Weibull plots of the most successful heat treatments were compared with the standard ABC-SiC to ensure that significant degradation did not result from altering the processing of the material.

  10. U.S. Army Corps of EngineersAlaska District Needs to Improve Competitive Procedures for Cooperative Agreements for Alaska Integrated Natural Resources Management Plans

    DTIC Science & Technology

    2015-09-16

    management plans on DoD installations in Alaska. We conducted this audit in accordance with generally accepted government auditing standards. DoD...between the U.S. Army Corps of Engineers (USACE)–Alaska District and CSU. Rather than focus on the allegations, we performed an audit on the award...Federal Regulations (CFR),” Subchapter C. 3 Title 2 CFR, Part 200 “Uniform Administrative Requirements, Cost Principles, and Audit Requirements for

  11. Circles of Leadership: Oregon District Redefines Coaching Roles to Find a Balance between School and District Goals

    ERIC Educational Resources Information Center

    Petti, Amy D.

    2010-01-01

    In this article, the author describes how an Oregon district redefines coaching roles to find a balance between school and district goals. As director of improvement for North Clackamas School District in Milwaukie, Oregon, near Portland, the author's role of coaching the coach was new, and the coaches welcomed the immediate feedback. Through the…

  12. Lessons Learned in Systemic District Reform: A Cross-District Analysis from the Comprehensive Aligned Instructional System (CAIS) Benchmarking Study

    ERIC Educational Resources Information Center

    Waters, Louise Bay; Vargo, Merrill

    2008-01-01

    Urban district reform has been hampered by the challenge of understanding and supporting the tremendous complexity of district change. Improving this understanding through actionable, practice-based research is the purpose of this study. The authors began the study with the hypothesis that achieving districts both align their instructional systems…

  13. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail.

    PubMed

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K

    2016-12-12

    To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  14. Development of a Flat-plate Cryogenic Oscillating Heat Pipe for Improving HTS Magnet Cooling

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Mito, T.; Yanagi, N.; Tamura, H.

    A new method of including cryogenic oscillating heat pipes (OHPs) in the HTS coil windings as a thermal transport device has been studied. In this work, two type of OHPs are tested in low temperature. Employed working fluids are H2, Ne, N2. We have attained high performance thermal property using a bent-pipe cryogenic OHP as a prototype. Obtained effective conductivities have reached to 46000 W/m K. Then a flat-plate cryogenic OHP has been developed, that is suitable for imbedding in magnet windings. Preliminary experiments have been conducted and the result has been promising.

  15. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  16. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum.

    PubMed

    Fiocco, D; Capozzi, V; Goffin, P; Hols, P; Spano, Giuseppe

    2007-12-01

    The effect of overproducing each of the three small heat shock proteins (Hsp; Hsp 18.5, Hsp 18.55, and Hsp 19.3) was investigated in Lactobacillus plantarum strain WCFS1. Overproduction of the three genes, hsp 18.5, hsp 18.55, and hsp 19.3, translationally fused to the start codon of the ldhL gene yielded a protein of approximately 19 kDa, as estimated from Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis in agreement with the predicted molecular weight of small Hsps. Small Hsp overproduction alleviated the reduction in growth rate triggered by exposing exponentially growing cells to heat shock (37 or 40 degrees C) and cold shock (12 degrees C). Moreover, overproduction of Hsp 18.55 and Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol (12% v/v) treatment suggesting a potential role of L. plantarum small Hsps in solvent tolerance.

  17. Microseismic monitoring for evidence of geothermal heat in the capital district of New York. Volume 5. Phases I-III. Final report

    SciTech Connect

    Not Available

    1983-06-01

    The seismic monitoring aspect of this work consisted of setting up and operating a network of seven seismograph stations within and around the study area capable of detecting and locating small earthquakes. To supplement the evidence from present day seismic activity, a list of all known historical and early instrumental earthquakes was compiled and improved from original sources for a larger region centered on the study area. Additional field work was done to determine seismic velocities of P and S phases by special recording of quarry blasts. The velocity results were used both as an aid to improve earthquake locations based on computer programs and to make inferences about the existence of temperature anomalies, and hence geothermal potential, at depths beneath the study area. Finally, the level in the continuous background earth vibration, microseisms, was measured throughout the study area to test a possibility that a relationship may exist at the surface between the level in microseisms and the geothermal or related activity. The observed seismic activity within the study area, although considerably higher (two to three times) than inferred from the historical and early instrumental data, is still not only low for a potential geothermal area but appears to be related to coherent regional tectonic stresses and not to the proposed more localized geothermal activity reflected in the mineralized, CO/sub 2/ rich spring discharge.

  18. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid

    PubMed Central

    2011-01-01

    The present study aims to investigate the effect of suspended nanoparticles in base fluids, namely nanofluids, on the thermal resistance of a disk-shaped miniature heat pipe [DMHP]. In this study, two types of nanoparticles, gold and carbon, in aqueous solution are used respectively. An experimental system was set up to measure the thermal resistance of the DMHP with both nanofluids and deionized [DI] water as the working medium. The measured results show that the thermal resistance of DMHP varies with the charge volume and the type of working medium. At the same charge volume, a significant reduction in thermal resistance of DMHP can be found if nanofluid is used instead of DI water. PMID:22082052

  19. Optimization of Fin Distribution to Improve the Temperature Uniformity of a Heat Exchanger in a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Wu, Cheng; Tang, Zebo; Yang, Xue; Deng, Yadong; Su, Chuqi

    2015-06-01

    Thermoelectric generators (TEGs) are currently a topic of interest for energy recovery in vehicles. By applying TEGs to the outside surface of the exhaust tailpipe, a small amount of electrical power can be generated because of the temperature difference between the hot exhaust gases and the automobile coolant. The amount of power is anticipated to be a few hundred watts based on the expected temperature difference and the properties of the thermoelectric materials used in TEGs. It is well know that, for thermoelectric exhaust energy recovery, the temperature uniformity of the heat exchangers has a strong influence on the electric power generation. In the current research, the temperature uniformity of a heat exchanger was improved by optimizing the fin distribution to maximize the electric power generated for a given vehicle TEG. A computational fluid dynamics (CFD) model of the heat exchanger was constructed to assess the influence of different fin distributions on the temperature uniformity and the pressure drop in the exhaust system. For the fin distributions, four factors were considered: the length of, spacing between, angle of, and thickness of the fins. Based on these four factors, a design of experiments study using the orthogonal experimental method was conducted to analyze the sensitivity to the design variables and build a database to set up a surrogate model using the Kriging response surface method. A multi-island genetic algorithm was used to optimize the fin distribution based on this surrogate model. To validate the accuracy of the CFD model, a generic heat exchanger module was manufactured and a related testbed constructed, then the temperature distribution on the surface of the exchanger was measured to compare with the results obtained by CFD.

  20. Passive body heating improves sleep patterns in female patients with fibromyalgia

    PubMed Central

    Silva, Andressa; de Queiroz, Sandra Souza; Andersen, Monica Levy; Mônico-Neto, Marcos; da Silveira Campos, Raquel Munhoz; Roizenblatt, Suely; Tufik, Sergio; de Mello, Marco Túlio

    2013-01-01

    OBJECTIVE: To assess the effect of passive body heating on the sleep patterns of patients with fibromyalgia. METHODS: Six menopausal women diagnosed with fibromyalgia according to the criteria determined by the American College of Rheumatology were included. All women underwent passive immersion in a warm bath at a temperature of 36±1°C for 15 sessions of 30 minutes each over a period of three weeks. Their sleep patterns were assessed by polysomnography at the following time-points: pre-intervention (baseline), the first day of the intervention (acute), the last day of the intervention (chronic), and three weeks after the end of the intervention (follow-up). Core body temperature was evaluated by a thermistor pill during the baseline, acute, chronic, and follow-up periods. The impact of this treatment on fibromyalgia was assessed via a specific questionnaire termed the Fibromyalgia Impact Questionnaire. RESULTS: Sleep latency, rapid eye movement sleep latency and slow wave sleep were significantly reduced in the chronic and acute conditions compared with baseline. Sleep efficiency was significantly increased during the chronic condition, and the awakening index was reduced at the chronic and follow-up time points relative to the baseline values. No significant differences were observed in total sleep time, time in sleep stages 1 or 2 or rapid eye movement sleep percentage. The core body temperature and Fibromyalgia Impact Questionnaire responses did not significantly change over the course of the study. CONCLUSION: Passive body heating had a positive effect on the sleep patterns of women with fibromyalgia. PMID:23525306

  1. California's Districts of Choice

    ERIC Educational Resources Information Center

    Kronholz, June

    2014-01-01

    This article describes the results of a California state law established in 2010 that created "Districts of Choice." The District of Choice law was meant to encourage districts to compete for students by offering innovative programs and this-school-fits-my-child options that parents wanted. This designation meant that children from any…

  2. Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Adams, J. S.; Brekosky, R. P.; Chervenak, J. A.; Chiao, M. P.; Kelley, R. L.; Kelly, D. P.; Porter, F. S.

    2011-01-01

    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays.

  3. Financing Energy Upgrades for K-12 School Districts: A Guide to Tapping into Funding for Energy Efficiency and Renewable Energy Improvements

    SciTech Connect

    Goggio Borgeson, Merrian; Zimring, Mark

    2013-04-01

    This guide focuses on clean energy financing options for school administrators, facility managers, and other K-12 school decision makers who are considering investments in high performance school projects. This guide explicitly focuses on comprehensive energy upgrades, those that involve multiple measures and are targeted toward achieving significant energy savings. Successful implementation of clean energy upgrades in schools is a matter of understanding the opportunity, making the commitment, and creatively tapping into available financing. This guide attempts to provide the foundation needed for successful projects in U.S. schools. It walks through the financing options available to K-12 schools and provides case studies of six school districts from around the country.

  4. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela; Sisani, Luciano; Damiano, Roberto

    2015-10-01

    Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  5. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    SciTech Connect

    Proslier, T.; Zasadzinski, J.; Moore, J.; Pellin, M.; Elam, J.; Cooley, L.; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  6. Solid oxide fuel cell application in district cooling

    NASA Astrophysics Data System (ADS)

    Al-Qattan, Ayman; ElSherbini, Abdelrahman; Al-Ajmi, Kholoud

    2014-07-01

    This paper presents analysis of the performance of a combined cooling and power (CCP) system for district cooling. The cogeneration system is designed to provide cooling for a low-rise residential district of 27,300 RT (96 MWc). A solid oxide fuel cell (SOFC) generates electric power to operate chillers, and the exhaust fuel and heat from the SOFC run gas turbines and absorption chillers. Thermal energy storage is utilized to reduce system capacity. Part-load operation strategies target maximizing energy efficiency. The operation of the system is compared through an hourly simulation to that of packaged air-conditioning units typically used to cool homes. The CCP system with the district cooling arrangement improves the cooling-to-fuel efficiency by 346%. The peak power requirement is reduced by 57% (24 MW) and the total fuel energy is reduced by 54% (750 TJ y-1). The system cuts annual carbon dioxide emissions to less than half and reduces other harmful emissions. A cost analysis of the system components and operation resulted in a 53% reduction in the cost per ton-hour of cooling over traditional systems.

  7. Tribology of improved transformation-toughened ceramics-heat engine test

    SciTech Connect

    Lilley, E.; Rossi, G.A.; Pelletier, P.J. . Advanced Ceramics Div.)

    1992-04-01

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  8. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion.

    PubMed

    Stevens, C J; Thoseby, B; Sculley, D V; Callister, R; Taylor, L; Dascombe, B J

    2016-10-01

    The purpose of this study was to compare the effects of a cooling strategy designed to predominately lower thermal state with a strategy designed to lower thermal sensation on endurance running performance and physiology in the heat. Eleven moderately trained male runners completed familiarization and three randomized, crossover 5-km running time trials on a non-motorized treadmill in hot conditions (33 °C). The trials included ice slurry ingestion before exercise (ICE), menthol mouth rinse during exercise (MEN), and no intervention (CON). Running performance was significantly improved with MEN (25.3 ± 3.5 min; P = 0.01), but not ICE (26.3 ± 3.2 min; P = 0.45) when compared with CON (26.0 ± 3.4 min). Rectal temperature was significantly decreased with ICE (by 0.3 ± 0.2 °C; P < 0.01), which persisted for 2 km of the run and MEN significantly decreased perceived thermal sensation (between 4 and 5 km) and ventilation (between 1 and 2 km) during the time trial. End-exercise blood prolactin concentration was elevated with MEN compared with CON (by 25.1 ± 24.4 ng/mL; P = 0.02). The data demonstrate that a change in the perception of thermal sensation during exercise from menthol mouth rinse was associated with improved endurance running performance in the heat. Ice slurry ingestion reduced core temperature but did not decrease thermal sensation during exercise or improve running performance.

  9. Can we use remotely sensed land surface temperatures to evaluate and improve model simulations of the urban heat island?

    NASA Astrophysics Data System (ADS)

    Hu, L.; Monaghan, A. J.; Brunsell, N. A.; Barlage, M. J.; Feddema, J. J.; Wilhelmi, O.

    2013-12-01

    Extreme heat events are the leading cause of weather-related human mortality in the United States and in many countries world-wide, and the development of highly accurate urban climate models to predict heat waves and extreme heat events is critical. However, the heterogeneous urban surface with myriad energy and moisture fluxes increases model complexity and uncertainty. Remotely sensed land surface temperature (LST) offers advantages such as comparable spatial scale, global coverage, steady periodicity, and long-term observations, which can be applied to assess model simulations. This research proposes a sampling technique to select and compare MODIS LST and model-simulated radiative temperature for eight configurations of the High Resolution Land Data Assimilation System (HRLDAS) during 2003-2012 summers (JJA) for Houston, TX. The objective is to decrease comparison biases between MODIS and HRLDAS caused by clouds, view angles, and the LST retrieval algorithm, and to understand which urban surface properties are critical for accurate UHI simulations. The results show that the accurate description of urban fraction can effectively decrease more than 25% of RMSE for HRLDAS LST for both daytime and nighttime comparisons. Assuming irrigated vegetation in the urban area largely improved the RMSE by about 2K during the daytime, while there was no significant difference for the nighttime periods. In the most realistic scenario HRLDAS performed quite well at night, both temporally and spatially. HRLDAS daytime LST simulations are warmer than MODIS observations by approximately 5K but with relatively strong correlations. In summary, remotely sensed LST can be a good observational source for the assessment of UHI simulations, but requires careful pre-processing beforehand to avoid unrepresentative comparisons. The proposed sampling method is practical and effective for validation of long-term urban-scale model simulations.

  10. Construction-employment opportunities of four oil-replacing space-heating alternatives for core areas of thirteen major northeastern and midwestern cities

    SciTech Connect

    Santini, D.J.; Wernette, D.R.

    1980-07-01

    Construction employment opportunities are compared for four oil-replacing technologies providing equivalent space-heating services to the core areas of 13 major northeastern and midwestern cities. The four technologies are: cogeneration district heating, coal gasification, coal liquefaction and electrification (coal-fired power plant). It is observed that the district-heating option places a higher percentage of its capital stock within the center city. It also requires lower occupational skills for its construction than the other three alternatives. In view of the lower average educational level of minorities and their concentration in urban areas, substantially more minority employment should occur if district heating is implemented. This alternative also will provide employment opportunities for unemployed nonminority construction laborers and contribute indirectly to the improvement of inner-city neighborhoods where many unemployed construction laborers live.

  11. Improved estimation of sensible heat flux by a LAS using a Bowen ratio at urban residential area

    NASA Astrophysics Data System (ADS)

    Park, M. S.; Chae, J. H.

    2014-12-01

    A large aperture scintillometer (LAS) data sampled for the period from 1 February to 31 July 2014 at urban residential area in Seoul are modified using the variable Bowen ratio and a net radiation data to determine the space-averaged sensible heat flux (SHF). A LAS system is installed over the rooftop of two buildings with a distance between receiver and transmitter of 535 m, an effective height of 18.4 m, a wind speed sensor at 25.0 m high. The path-averaged building height, roughness length, and displacement length between the receiver and transmitter are 9.2 m, 0.4 m, and 7.1 m, respectively. The Bowen ratio computed at every 30 minute interval by the wind speed and air temperature at 10 and 18 m above the rooftop is found to be well correlated with meteorological variables such as net radiation and mixing ratio. Therefore, it is parameterized as a function of mixing ratio and net radiation. The resulting parameterization is applied to estimate the SHF by LAS. The Monin-Obukhov similarity universal function should be changed according to the atmospheric stability using the sign of net radiation sampled at the same time. It is found that the resulting sensible heat fluxes are available under all atmospheric stability and are much improved compared with those by eddy covariance method.

  12. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    SciTech Connect

    Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela; Sisani, Luciano; Damiano, Roberto

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  13. Improving community based AEFI (Adverse Events Following Immunization) reporting rate through telephone “beep” in a Cameroon health district: a randomized field trial

    PubMed Central

    Tsafack, Marcellin; Ateudjieu, Jérôme

    2015-01-01

    Introduction AEFIs underreporting is one of different barriers to achieving objectives of pharmaco vigilance of vaccine worldwide. Studies describe it as being related to limited awareness of health personnel and of vaccinees or of their parents. The objective was to assess the effect of telephone “beep” on community based reporting rates of AEFIs during routine immunization sessions in a Cameroon Health District. Methods It was a randomized control trial implemented during routine EPI in Biyem-Assi health district (Cameroon). Parents of vaccinated children were randomly assigned: i) to receive the telephone contact of the investigation team and was advised to ‘'beep’‘(short phone call not picked up) the investigators team in the case any medical incidence occurs within the 30 days following the immunization (intervention group) or; ii) to return to the health facility in case any medical incidence occurs within the same period (control group). The main outcome was AEFI incidence rate. Results 236 parents were assigned to the intervention group and 235 to the control group. Of 1192 doses of EPI vaccines administered, 20 AEFIs (392 AEFIs/100000 doses/week) were reported within 30 days after vaccine administration. These included 19 (829 AEFIs/100000 doses/week) AEFIs in the intervention group and 1 (43 AEFIs/100000 doses/week) AEFI in the control group. The AEFIs reporting rate in the intervention group was significantly higher than that in the control group [RR = 18.9; CI95 (2.5; 140.0) (P=0.0004)]. Conclusion The use of telephone “beep” significantly increases at affordable cost community based AEFI reporting rate in routine EPI. PMID:26985269

  14. Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields

    NASA Technical Reports Server (NTRS)

    Neuner, G. J.; Delano, C. B.

    1976-01-01

    An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.

  15. Combined carbohydrate-protein supplementation improves competitive endurance exercise performance in the heat.

    PubMed

    Cathcart, Andrew J; Murgatroyd, Scott R; McNab, Alison; Whyte, Laura J; Easton, Chris

    2011-09-01

    Laboratory-based studies have demonstrated that adding protein (PRO) to a carbohydrate (CHO) supplement can improve thermoregulatory capacity, exercise performance and recovery. However, no study has investigated these effects in a competitive sporting context. This study assessed the effects of combined CHO-PRO supplementation on physiological responses and exercise performance during 8 days of strenuous competition in a hot environment. Twenty-eight cyclists participating in the TransAlp mountain bike race were randomly assigned to fitness-matched placebo (PLA 76 g L(-1) CHO) or CHO-PRO (18 g L(-1) PRO, 72 g L(-1) CHO) groups. Participants were given enough supplements to allow ad libitum consumption. Physiological and anthropometric variables were recorded pre- and post-exercise. Body mass decreased significantly from race stage 1 to 8 in the PLA group (-0.75 ± 0.22 kg, P = 0.01) but did not change in the CHO-PRO group (0.42 ± 0.42 kg, P = 0.35). Creatine kinase concentration and muscle soreness were substantially elevated during the race, but were not different between groups (P = 0.82, P = 0.44, respectively). Urine osmolality was significantly higher in the CHO-PRO versus the PLA group (P = 0.04) and the rise in tympanic temperature from pre- to post-exercise was significantly less in CHO-PRO versus PLA (P = 0.01). The CHO-PRO group also completed the 8 stages significantly quicker than the PLA group (2,277 ± 127 vs. 2,592 ± 68 min, respectively, P = 0.02). CHO-PRO supplementation therefore appears to prevent body mass loss, enhance thermoregulatory capacity and improve competitive exercise performance despite no effect on muscle damage.

  16. Improvement of neutral beam injection heating efficiency with magnetic field well structures in a tokamak with a low magnetic field

    NASA Astrophysics Data System (ADS)

    Kim, S. K.; Na, D. H.; Lee, J. W.; Yoo, M. G.; Kim, H.-S.; Hwang, Y. S.; Hahm, T. S.; Na, Yong-Su

    2016-10-01

    Magnetic well structures are introduced as an effective means to reduce the prompt loss of fast ions, the so-called first orbit loss from neutral beam injection (NBI), which is beneficial to tokamaks with a low magnetic field strength such as small spherical torus devices. It is found by single-particle analysis that this additional field structure can modify the gradient of the magnetic field to reduce the shift of the guiding center trajectory of the fast ion. This result is verified by a numerical calculation of following the fast ion’s trajectory. We apply this concept to the Versatile Experiment Spherical Torus [1], where NBI is under design for the purpose of achieving high-performance plasma, to evaluate the effect of the magnetic well structure on NBI efficiency. A 1D NBI analysis code and the NUBEAM code are employed for detailed NBI calculations. The simulation results show that the orbit loss can be reduced by 70%-80%, thereby improving the beam efficiency twofold compared with the reference case without the well structure. The well-shaped magnetic field structure in the low-field side can significantly decrease orbit loss by broadening the non-orbit loss region and widening the range of the velocity direction, thus improving the heating efficiency. It is found that this magnetic well can also improve orbit loss during the slowing down process.

  17. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity; DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide

    SciTech Connect

    Not Available

    2008-07-01

    This case study describes how the Kaiser Aluminum plant in Sherman, Texas, achieved annual savings of $360,000 and 45,000 MMBtu, and improved furnace energy intensity by 11.1% after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its process heating system.

  18. Heat as a tracer for improving a transient 3D groundwater model at a bank filtration site with changing riverbed

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha; Strasser, Daniel; Lensing, Hermann

    2016-04-01

    Bank filtration, by its effective improvement of water quality is widely used in many countries for water supply, and its major characteristics, the interaction between groundwater and surface water has been a hot topic for decades. As a key parameter, the travel time of the infiltrating river water to the wells is considered to be highly correlated with its water quality and has always been used as a main reference for estimating the filtering performance. As a periodic environmental tracer, heat has been used for estimating travel times by comparing the attenuation and the phase shift for temperature patterns in both the river and groundwater observation points. In most cases, the methods applied are analytical time series analysis, or 2D and 3D groundwater models with homogeneous attributes, in which many details of geological discontinuity and heterogeneity might be missed and further decrease the reliability of model result. However in our study, the transient heat transport model was set up based on a calibrated transient groundwater model with complex and discontinuous geological structures referenced by available geological information. At the study area, a water work is placed hundreds of meters from a river. By the pumping induced hydraulic gradient, river water flows into pumping wells through the river bank and shallow aquifers. The unconsolidated impermeable glacial deposits of different glacial periods showed discontinuities in forms of geological windows and lenses. Referenced by 145 drillings and 7 geological cross-sections, a geological model was set up and further translated into a groundwater model in FEFLOW. The model was first calibrated by FEPEST in steady state referenced by 104 observation wells and then it was adapted into a transient model. Influenced by an excavation at the channel bottom, a substantial water head rise happened. And in the model this could be simulated well by introducing an increasing hydraulic conductivity at the

  19. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    SciTech Connect

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  20. Improving the Energy Performance of Multi-Unit Residential Buildings Using Air-Source Heat Pumps and Enclosed Balconies

    NASA Astrophysics Data System (ADS)

    Touchie, Marianne

    Existing multi-unit residential buildings (MURBs) are important assets for urban regions such as Toronto, Canada. These buildings provide high-density housing and allow for the efficient provision of public services and utilities. However, MURB energy-use imposes a significant environmental burden. A preliminary part of the study presented here found that the median energy intensity of MURBs in Toronto is 300ekWh/m2 and that this energy-use accounts for 17% of residential greenhouse gas (GHG) emissions in the City. To reduce this environmental burden, this work explores a novel energy retrofit strategy involving a suite-based air-source heat pump (ASHP) operating in an enclosed balcony space which serves as a thermal buffer zone (TBZ) to improve the cold-weather ASHP performance in a heating-dominated climate. More broadly, a methodology for assessing the impact of an energy retrofit measure is developed. First, energy-use and interior condition data were collected from a 1960s MURB over the course of one year. The subject building was found to have a higher-than-average energy intensity of 374ekWh/m2 and other operational issues including overheating of suites. These data were then used to calibrate an energy model so that the proposed retrofit strategy could be modeled. Next, the proposed retrofit strategy was tested in a mock apartment unit constructed in a climate-controlled chamber. The testing showed that the coefficient of performance of the ASHP could be improved by operating it in a TBZ with access to heat from solar gains. This finding was used to modify the subject building energy model which showed that applying the proposed retrofit could reduce the annual energy intensity and GHG emissions of the building by 39% and 45%, respectively. An estimate of the impact of applying this retrofit strategy to Toronto MURBs with energy intensities greater than the median results in a median sector energy intensity of 236ekWh/m 2.