Sample records for improved dose conformality

  1. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  2. Dosimetric comparison between conventional and conformal radiotherapy for carcinoma cervix: Are we treating the right volumes?

    PubMed Central

    Goswami, Jyotirup; Patra, Niladri B.; Sarkar, Biplab; Basu, Ayan; Pal, Santanu

    2013-01-01

    Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR) were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel) were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased. PMID:24455584

  3. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  4. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT).

    PubMed

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-01

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  5. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado; Stinauer, Michelle

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobemore » sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.« less

  6. Volumetric modulated arc radiotherapy for esophageal cancer.

    PubMed

    Vivekanandan, Nagarajan; Sriram, Padmanaban; Kumar, S A Syam; Bhuvaneswari, Narayanan; Saranya, Kamalakannan

    2012-01-01

    A treatment planning study was performed to evaluate the performance of volumetric arc modulation with RapidArc (RA) against 3D conformal radiation therapy (3D-CRT) and conventional intensity-modulated radiation therapy (IMRT) techniques for esophageal cancer. Computed tomgraphy scans of 10 patients were included in the study. 3D-CRT, 4-field IMRT, and single-arc and double-arc RA plans were generated with the aim to spare organs at risk (OAR) and healthy tissue while enforcing highly conformal target coverage. The planning objective was to deliver 54 Gy to the planning target volume (PTV) in 30 fractions. Plans were evaluated based on target conformity and dose-volume histograms of organs at risk (lung, spinal cord, and heart). The monitor unit (MU) and treatment delivery time were also evaluated to measure the treatment efficiency. The IMRT plan improves target conformity and spares OAR when compared with 3D-CRT. Target conformity improved with RA plans compared with IMRT. The mean lung dose was similar in all techniques. However, RA plans showed a reduction in the volume of the lung irradiated at V(₂₀Gy) and V(₃₀Gy) dose levels (range, 4.62-17.98%) compared with IMRT plans. The mean dose and D(₃₅%) of heart for the RA plans were better than the IMRT by 0.5-5.8%. Mean V(₁₀Gy) and integral dose to healthy tissue were almost similar in all techniques. But RA plans resulted in a reduced low-level dose bath (15-20 Gy) in the range of 14-16% compared with IMRT plans. The average MU needed to deliver the prescribed dose by RA technique was reduced by 20-25% compared with IMRT technique. The preliminary study on RA for esophageal cancers showed improvements in sparing OAR and healthy tissue with reduced beam-on time, whereas only double-arc RA offered improved target coverage compared with IMRT and 3D-CRT plans. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. SU-F-T-446: Improving Craniospinal Irradiation Technique Using Volumetric Modulated Arc Therapy (VMAT) Planning and Its Dosimetric Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Tejani, M; Jiang, X

    2016-06-15

    Purpose: The purpose of this study is to investigate a volumetric modulated arc therapy (VMAT) treatment planning technique for supine craniospinal irradiation (CSI). Evaluate the suitability of VMAT for CSI with dosimetric measurements and compare it to 3D conformal planning using specific plan metrics such as dose conformity, homogeneity, and dose of organs at risk (OAR). Methods: Ten CSI patients treated with conventional 3D technique were re-planned with VMAT. The PTV was contoured to include the whole contents of the brain and spinal canal with a uniform margin of 5 mm. VMAT plans were generated with two partial arcs coveringmore » the brain, two partial arcs for the superior portion of the spinal cord and two partial arcs covering the remaining inferior portion of the spinal cord. Conformity index (CI), heterogeneity indexes (HI) and max and mean doses of OAR were compared to 3D plans. VMAT plans were delivered onto an anthropomorphic phantom loaded with Gafchromic films and OSLDs placed at specific positions to evaluate the plan dose at the junctions and as well as the plan dose distributions. Results: This VMAT technique was validated with a clinical study of 10 patients. The average CI was 1.03±0.02 for VMAT plans and 1.96±0.32 for conformal plans. And the average HI was 1.15±0.01 for VMAT plans and 1.51±0.21 for conformal plans. The mean and max doses to the all OARs for VMAT plans were significantly lower than conformal plans. The measured dose in phantom for VAMT plans was comparable to the calculated dose in Eclipse and the doses at junctions were verified. Conclusion: VMAT CSI was able to achieve better dose conformity and heterogeneity as well as significantly reducing the dose to Heart, esophagus and larynx. VMAT CSI appears to be a dosimterically advantageous, faster delivery, has better reproducibility CSI treatment.« less

  8. Toward improved target conformity for two spot scanning proton therapy delivery systems using dynamic collimation

    PubMed Central

    Moignier, Alexandra; Gelover, Edgar; Smith, Blake R.; Wang, Dongxu; Flynn, Ryan T.; Kirk, Maura L.; Lin, Liyong; Solberg, Timothy D.; Lin, Alexander; Hyer, Daniel E.

    2016-01-01

    Purpose: To quantify improvement in target conformity in brain and head and neck tumor treatments resulting from the use of a dynamic collimation system (DCS) with two spot scanning proton therapy delivery systems (universal nozzle, UN, and dedicated nozzle, DN) with median spot sizes of 5.2 and 3.2 mm over a range of energies from 100 to 230 MeV. Methods: Uncollimated and collimated plans were calculated with both UN and DN beam models implemented within our in-house treatment planning system for five brain and ten head and neck datasets in patients previously treated with spot scanning proton therapy. The prescription dose and beam angles from the clinical plans were used for both the UN and DN plans. The average reduction of the mean dose to the 10-mm ring surrounding the target between the uncollimated and collimated plans was calculated for the UN and the DN. Target conformity was analyzed using the mean dose to 1-mm thickness rings surrounding the target at increasing distances ranging from 1 to 10 mm. Results: The average reductions of the 10-mm ring mean dose for the UN and DN plans were 13.7% (95% CI: 11.6%–15.7%; p < 0.0001) and 11.5% (95% CI: 9.5%–13.5%; p < 0.0001) across all brain cases and 7.1% (95% CI: 4.4%–9.8%; p < 0.001) and 6.3% (95% CI: 3.7%–9.0%; p < 0.001), respectively, across all head and neck cases. The collimated UN plans were either more conformal (all brain cases and 60% of the head and neck cases) than or equivalent (40% of the head and neck cases) to the uncollimated DN plans. The collimated DN plans offered the highest conformity. Conclusions: The DCS added either to the UN or DN improved the target conformity. The DCS may be of particular interest for sites with UN systems looking for a more economical solution than upgrading the nozzle to improve the target conformity of their spot scanning proton therapy system. PMID:26936726

  9. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  10. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less

  11. Generalized Tumor Dose for Treatment Planning Decision Support

    NASA Astrophysics Data System (ADS)

    Zuniga, Areli A.

    Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment planning process as well as the revision of safety margins to improve local tumor control maximizing normal tissue sparing in SCC of the HN and NSCLC are discussed.

  12. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less

  13. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.

    PubMed

    Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A

    2012-08-01

    To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Clinical application of 3D-printed-step-bolus in post-total-mastectomy electron conformal therapy.

    PubMed

    Park, Kwangwoo; Park, Sungjin; Jeon, Mi-Jin; Choi, Jinhyun; Kim, Jun Won; Cho, Yoon Jin; Jang, Won-Seok; Keum, Yo Sup; Lee, Ik Jae

    2017-04-11

    The 3D-printed boluses were used during the radiation therapy of the chest wall in six patients with breast cancer after modified radical mastectomy (MRM). We measured the in-vivo skin doses while both conventional and 3D-printed boluses were placed on the chest wall and compared the mean doses delivered to the ipsilateral lung and the heart. The homogeneity and conformity of the dose distribution in the chest wall for both types of boluses were also evaluated. The uniformity index on the chest skin was improved when the 3D-printed boluses were used, with the overall average skin dose being closer to the prescribed one in the former case (-0.47% versus -4.43%). On comparing the dose-volume histogram (DVH), it was found that the 3D-printed boluses resulted in a reduction in the mean dose to the ipsilateral lung by up to 20%. The precision of dose delivery was improved by 3% with the 3D-printed boluses; in contrast, the conventional step bolus resulted in a precision level of 5%. In conclusion, the use of the 3D-printed boluses resulted in better dose homogeneity and conformity to the chest wall as well as the sparing of the normal organs, especially the lung. This suggested that their routine use on the chest wall as a therapeutic approach during post-mastectomy radiation therapy offers numerous advantages over conventional step boluses.

  15. Clinical application of 3D-printed-step-bolus in post-total-mastectomy electron conformal therapy

    PubMed Central

    Park, Kwangwoo; Park, Sungjin; Jeon, Mi-Jin; Choi, Jinhyun; Kim, Jun Won; Cho, Yoon Jin; Jang, Won-Seok; Keum, Yo Sup; Lee, Ik Jae

    2017-01-01

    The 3D-printed boluses were used during the radiation therapy of the chest wall in six patients with breast cancer after modified radical mastectomy (MRM). We measured the in-vivo skin doses while both conventional and 3D-printed boluses were placed on the chest wall and compared the mean doses delivered to the ipsilateral lung and the heart. The homogeneity and conformity of the dose distribution in the chest wall for both types of boluses were also evaluated. The uniformity index on the chest skin was improved when the 3D-printed boluses were used, with the overall average skin dose being closer to the prescribed one in the former case (-0.47% versus -4.43%). On comparing the dose-volume histogram (DVH), it was found that the 3D-printed boluses resulted in a reduction in the mean dose to the ipsilateral lung by up to 20%. The precision of dose delivery was improved by 3% with the 3D-printed boluses; in contrast, the conventional step bolus resulted in a precision level of 5%. In conclusion, the use of the 3D-printed boluses resulted in better dose homogeneity and conformity to the chest wall as well as the sparing of the normal organs, especially the lung. This suggested that their routine use on the chest wall as a therapeutic approach during post-mastectomy radiation therapy offers numerous advantages over conventional step boluses. PMID:27784001

  16. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z; Wang, I; Yao, R

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans andmore » then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance and leaf speed.« less

  17. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.

  18. Comparing the quality of passively-scattered proton and photon tomotherapy plans for brain and head and neck disease sites.

    PubMed

    Kainz, Kristofer; Firat, Selim; Wilson, J Frank; Schultz, Christopher; Siker, Malika; Wang, Andrew; Olson, Dan; Li, X Allen

    2015-03-21

    We compare the quality of photon IMRT (helical tomotherapy) with classic proton plans for brain, head and neck tumors, in terms of target dose uniformity and conformity along with organ-at-risk (OAR) sparing. Plans were created for twelve target volumes among eight cases. All patients were originally planned and treated using helical tomotherapy. Proton plans were generated using a passively-scattered beam model with a maximum range of 32 g cm(-2) (225 MeV), range modulation in 0.5 g cm(-2) increments and range compensators with 4.8 mm milling tool diameters. All proton plans were limited to two to four beams. Plan quality was compared using uniformity index (UI), conformation number (CN) and a EUD-based plan quality index (fEUD). For 11 of the 12 targets, UI was improved for the proton plan; on average, UI was 1.05 for protons versus 1.08 for tomotherapy. For 7 of the 12 targets, the tomotherapy plan exhibited more favorable CN. For proximal OARs, the improved dose conformity to the target volume from tomotherapy led to a lower maximum dose. For distal OARs, the maximum dose was much lower for proton plans. For 6 of the 8 cases, near-total avoidance for distal OARs provided by protons leads to improved fEUD. However, if distal OARs are excluded in the fEUD calculation, the proton plans exhibit better fEUD in only 3 of the 8 cases. The distal OAR sparing and target dose uniformity are generally better with passive-scatter proton planning than with photon tomotherapy; proton therapy may be preferred if the clinician deems those attributes critical. However, tomotherapy may serve equally as well as protons for cases where superior target dose conformity from tomotherapy leads to plan quality nearly identical to or better than protons and for cases where distal OAR sparing is not concerning.

  19. TH-AB-BRB-04: Quality Assurance for Advanced Digital Linac Implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V.

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  20. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  1. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  2. SU-F-T-87: Comparison of Advanced Radiotherapy Techniques for Post- Mastectomy Breast Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heins, D; Zhang, R; Hogstrom, K

    2016-06-15

    Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans weremore » evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.« less

  3. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma.

    PubMed

    Mok, Henry; Crane, Christopher H; Palmer, Matthew B; Briere, Tina M; Beddar, Sam; Delclos, Marc E; Krishnan, Sunil; Das, Prajnan

    2011-06-08

    A strong dose-volume relationship exists between the amount of small bowel receiving low- to intermediate-doses of radiation and the rates of acute, severe gastrointestinal toxicity, principally diarrhea. There is considerable interest in the application of highly conformal treatment approaches, such as intensity-modulated radiation therapy (IMRT), to reduce dose to adjacent organs-at-risk in the treatment of carcinoma of the rectum. Therefore, we performed a comprehensive dosimetric evaluation of IMRT compared to 3-dimensional conformal radiation therapy (3DCRT) in standard, preoperative treatment for rectal cancer. Using RTOG consensus anorectal contouring guidelines, treatment volumes were generated for ten patients treated preoperatively at our institution for rectal carcinoma, with IMRT plans compared to plans derived from classic anatomic landmarks, as well as 3DCRT plans treating the RTOG consensus volume. The patients were all T3, were node-negative (N = 1) or node-positive (N = 9), and were planned to a total dose of 45-Gy. Pairwise comparisons were made between IMRT and 3DCRT plans with respect to dose-volume histogram parameters. IMRT plans had superior PTV coverage, dose homogeneity, and conformality in treatment of the gross disease and at-risk nodal volume, in comparison to 3DCRT. Additionally, in comparison to the 3DCRT plans, IMRT achieved a concomitant reduction in doses to the bowel (small bowel mean dose: 18.6-Gy IMRT versus 25.2-Gy 3DCRT; p = 0.005), bladder (V40Gy: 56.8% IMRT versus 75.4% 3DCRT; p = 0.005), pelvic bones (V40Gy: 47.0% IMRT versus 56.9% 3DCRT; p = 0.005), and femoral heads (V40Gy: 3.4% IMRT versus 9.1% 3DCRT; p = 0.005), with an improvement in absolute volumes of small bowel receiving dose levels known to induce clinically-relevant acute toxicity (small bowel V15Gy: 138-cc IMRT versus 157-cc 3DCRT; p = 0.005). We found that the IMRT treatment volumes were typically larger than that covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  4. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  5. Experimental validation of the van Herk margin formula for lung radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecclestone, Gillian; Heath, Emily; Bissonnette, Jean-Pierre

    2013-11-15

    Purpose: To validate the van Herk margin formula for lung radiation therapy using realistic dose calculation algorithms and respiratory motion modeling. The robustness of the margin formula against variations in lesion size, peak-to-peak motion amplitude, tissue density, treatment technique, and plan conformity was assessed, along with the margin formula assumption of a homogeneous dose distribution with perfect plan conformity.Methods: 3DCRT and IMRT lung treatment plans were generated within the ORBIT treatment planning platform (RaySearch Laboratories, Sweden) on 4DCT datasets of virtual phantoms. Random and systematic respiratory motion induced errors were simulated using deformable registration and dose accumulation tools available withinmore » ORBIT for simulated cases of varying lesion sizes, peak-to-peak motion amplitudes, tissue densities, and plan conformities. A detailed comparison between the margin formula dose profile model, the planned dose profiles, and penumbra widths was also conducted to test the assumptions of the margin formula. Finally, a correction to account for imperfect plan conformity was tested as well as a novel application of the margin formula that accounts for the patient-specific motion trajectory.Results: The van Herk margin formula ensured full clinical target volume coverage for all 3DCRT and IMRT plans of all conformities with the exception of small lesions in soft tissue. No dosimetric trends with respect to plan technique or lesion size were observed for the systematic and random error simulations. However, accumulated plans showed that plan conformity decreased with increasing tumor motion amplitude. When comparing dose profiles assumed in the margin formula model to the treatment plans, discrepancies in the low dose regions were observed for the random and systematic error simulations. However, the margin formula respected, in all experiments, the 95% dose coverage required for planning target volume (PTV) margin derivation, as defined by the ICRU; thus, suitable PTV margins were estimated. The penumbra widths calculated in lung tissue for each plan were found to be very similar to the 6.4 mm value assumed by the margin formula model. The plan conformity correction yielded inconsistent results which were largely affected by image and dose grid resolution while the trajectory modified PTV plans yielded a dosimetric benefit over the standard internal target volumes approach with up to a 5% decrease in the V20 value.Conclusions: The margin formula showed to be robust against variations in tumor size and motion, treatment technique, plan conformity, as well as low tissue density. This was validated by maintaining coverage of all of the derived PTVs by 95% dose level, as required by the formal definition of the PTV. However, the assumption of perfect plan conformity in the margin formula derivation yields conservative margin estimation. Future modifications to the margin formula will require a correction for plan conformity. Plan conformity can also be improved by using the proposed trajectory modified PTV planning approach. This proves especially beneficial for tumors with a large anterior–posterior component of respiratory motion.« less

  6. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    PubMed

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose <93 Gy (58 patients) and high-dose biologically effective dose >93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p <0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p = 0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  7. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  8. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less

  10. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy

    PubMed Central

    Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven

    2017-01-01

    The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896

  11. TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hristov, D.

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  12. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z; Jiang, S; Yang, Z

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs groupmore » real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing the large target margin and avoiding dose dead zones for prostate cancer treatment. 1) National Natural Science Foundation of People's Republic of China (No. 51175373); 2) New Century Educational Talents Plan of Chinese Education Ministry (NCET-10-0625); 3) Scientific and Technological Major Project, Tianjin (No. 12ZCDZSY10600)« less

  13. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.

    PubMed

    Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee

    2017-04-01

    Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent chemotherapy and demonstrated advantages for reduction in low-dose lung volumes, esophageal dose, and mean heart dose.

  14. SU-C-BRE-01: 3D Conformal Micro Irradiation Results of Four Treatment Sites for Preclinical Small Animal and Clinical Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, S; Yaddanapudi, S; Rangaraj, D

    Purpose: Small animal irradiation can provide preclinical insights necessary for clinical advancement. In order to provide clinically relevant data, these small animal irradiations must be designed such that the treatment methods and results are comparable to clinical protocols, regardless of variations in treatment size and modality. Methods: Small animal treatments for four treatment sites (brain, liver, lung and spine) were investigated, accounting for change in treatment energy and target size. Up to five orthovoltage (300kVp) beams were used in the preclinical treatments, using circular, square, and conformal tungsten apertures, based on the treatment site. Treatments were delivered using the imagemore » guided micro irradiator (microIGRT). The plans were delivered to a mouse sized phantom and dose measurements in axial and coronal planes were performed using radiochromic film. The results of the clinical and preclinical protocols were characterized in terms of conformality number, CTV coverage, dose nonuniformity ratio, and organ at risk sparing. Results: Preclinical small animal treatment conformality was within 1–16% of clinical results for all treatment sites. The volume of the CTV receiving 100% of the prescription dose was typically within 10% of clinical values. The dose non-uniformity was consistently higher for preclinical treatments compared to clinical treatments, indicating hot spots in the target. The ratios of the mean dose in the target to the mean dose in an organ at risk were comparable if not better for preclinical versus clinical treatments. Finally, QUANTEC dose constraints were applied and the recommended morbidity limits were satisfied in each small animal treatment site. Conclusion: We have shown that for four treatment sites, preclinical 3D conformal small animal treatments can be clinically comparable if clinical protocols are followed. Using clinical protocols as the standard, preclinical irradiation methods can be altered and iteratively improved to achieve a clinically relevant irradiation model.« less

  15. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being achieved, and an improvement in some measures of quality of life is suggested by our findings. Additional reduction of xerostomia may be achieved by further sparing of the salivary glands and the non-involved oral cavity. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to areas judged to be at highest risk may improve tumor control.

  16. Definition of the supraclavicular and infraclavicular nodes: implications for three-dimensional CT-based conformal radiation therapy.

    PubMed

    Madu, C N; Quint, D J; Normolle, D P; Marsh, R B; Wang, E Y; Pierce, L J

    2001-11-01

    To delineate with computed tomography (CT) the anatomic regions containing the supraclavicular (SCV) and infraclavicular (IFV) nodal groups, to define the course of the brachial plexus, to estimate the actual radiation dose received by these regions in a series of patients treated in the traditional manner, and to compare these doses to those received with an optimized dosimetric technique. Twenty patients underwent contrast material-enhanced CT for the purpose of radiation therapy planning. CT scans were used to study the location of the SCV and IFV nodal regions by using outlining of readily identifiable anatomic structures that define the nodal groups. The brachial plexus was also outlined by using similar methods. Radiation therapy doses to the SCV and IFV were then estimated by using traditional dose calculations and optimized planning. A repeated measures analysis of covariance was used to compare the SCV and IFV depths and to compare the doses achieved with the traditional and optimized methods. Coverage by the 90% isodose surface was significantly decreased with traditional planning versus conformal planning as the depth to the SCV nodes increased (P < .001). Significantly decreased coverage by using the 90% isodose surface was demonstrated for traditional planning versus conformal planning with increasing IFV depth (P = .015). A linear correlation was found between brachial plexus depth and SCV depth up to 7 cm. Conformal optimized planning provided improved dosimetric coverage compared with standard techniques.

  17. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study.

    PubMed

    Liu, Yue-E; Lin, Qiang; Meng, Fan-Jie; Chen, Xue-Ji; Ren, Xiao-Cang; Cao, Bin; Wang, Na; Zong, Jie; Peng, Yu; Ku, Ya-Jun; Chen, Yan

    2013-08-11

    Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.

  18. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study

    PubMed Central

    2013-01-01

    Background Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Methods Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. Results A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. Conclusion High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy. PMID:23937855

  19. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Eldib, A; Li, J

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less

  20. Energy modulated electron therapy using a few leaf electron collimator in combination with IMRT and 3D-CRT: Monte Carlo-based planning and dosimetric evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George

    2005-09-15

    Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less

  1. Radiosurgery with flattening-filter-free techniques in the treatment of brain metastases : Plan comparison and early clinical evaluation.

    PubMed

    Rieber, J; Tonndorf-Martini, E; Schramm, O; Rhein, B; Stefanowicz, S; Kappes, J; Hoffmann, H; Lindel, K; Debus, J; Rieken, S

    2016-11-01

    Radiosurgical treatment of brain metastases is well established in daily clinical routine. Utilization of flattening-filter-free beams (FFF) may allow for more rapid delivery of treatment doses and improve clinical comfort. Hence, we compared plan quality and efficiency of radiosurgery in FFF mode to FF techniques. Between November 2014 and June 2015, 21 consecutive patients with 25 brain metastases were treated with stereotactic radiosurgery (SRS) in FFF mode. Brain metastases received dose-fractionation schedules of 1 × 20 Gy or 1 × 18 Gy, delivered to the conformally enclosing 80 % isodose. Three patients with critically localized or large (>3 cm) brain metastases were treated with 6 × 5 Gy. Plan quality and efficiency were evaluated by analyzing conformity, dose gradients, dose to healthy brain tissue, treatment delivery time, and number of monitor units. FFF plans were compared to those using the FF method, and early clinical outcome and toxicity were assessed. FFF mode resulted in significant reductions in beam-on time (p < 0.001) and mean brain dose (p = 0.001) relative to FF-mode comparison plans. Furthermore, significant improvements in dose gradients and sharper dose falloffs were found for SRS in FFF mode (-1.1 %, -29.6 %; p ≤ 0.003), but conformity was slightly superior in SRS in FF mode (-1.3 %; p = 0.001). With a median follow-up time of 5.1 months, 6‑month overall survival was 63.3 %. Local control was observed in 24 of 25 brain metastases (96 %). SRS in FFF mode is time efficient and provides similar plan quality with the opportunity of slightly reduced dose exposure to healthy brain tissue when compared to SRS in FF mode. Clinical outcomes appear promising and show only modest treatment-related toxicity.

  2. Improving target coverage and organ-at-risk sparing in intensity-modulated radiotherapy for cervical oesophageal cancer using a simple optimisation method.

    PubMed

    Lu, Jia-Yang; Cheung, Michael Lok-Man; Huang, Bao-Tian; Wu, Li-Li; Xie, Wen-Jia; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer. For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans. The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1-3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found. The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.

  3. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  4. Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate.

    PubMed

    Linskey, M E

    2000-12-01

    By definition, the term "radiosurgery" refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed "stereotactic radiotherapy." There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image-targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS "halo effect." It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.

  5. Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate.

    PubMed

    Linskey, Mark E

    2013-12-01

    By definition, the term "radiosurgery" refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed "stereotactic radiotherapy." There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image--targeted localization and five to 30 isocenters. A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS "halo effect." It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.

  6. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery.

    PubMed

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael

    2006-05-21

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  7. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael

    2006-05-01

    Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.

  8. Conformity of commercial oral single solid unit dose packages in hospital pharmacy practice.

    PubMed

    Thibault, Maxime; Prot-Labarthe, Sonia; Bussières, Jean-François; Lebel, Denis

    2008-06-01

    There are limited published data on the labelling of single unit dose packages in hospitals. The study was conducted in three large hospitals (two adult and one paediatric) in the metropolitan Montreal area, Quebec, Canada. The objective is to evaluate the labelling of commercial oral single solid unit dose packages available in Canadian urban hospital pharmacy practice. The study endpoint was the labelling conformity of each unit dose package for each criterion and overall for each manufacturer. Complete labelling of unit dose packages should include the following information: (1) brand name, (2) international non-proprietary name or generic name, (3) dosage, (4) pharmaceutical form, (5) manufacturer's name, (6) expiry date, (7) batch number and (8) drug identification number. We also evaluated the ease with which a single unit dose package is detached from a multiple unit dose package for quick, easy and safe use by pharmacy staff. Conformity levels were compared between brand-name and generic packages. A total of 124 different unit dose packages were evaluated. The level of conformity of each criterion varied between 19 and 50%. Only 43% of unit dose packages provided an easy-to-detach system for single doses. Among the 14 manufacturers with three or more unit dose packages evaluated, eight (57%) had a conformity level less than 50%. This study describes the conformity of commercial oral single solid unit dose packages in hospital pharmacy practice in Quebec. A large proportion of unit dose packages do not conform to a set of nine criteria set out in the guidelines of the American Society of Health-System Pharmacists and the Canadian Society of Hospital Pharmacists.

  9. Three-dimensional conformal versus non-graphic radiation treatment planning for apocrine gland adenocarcinoma of the anal sac in 18 dogs (2002-2007).

    PubMed

    Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C

    2012-12-01

    Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.

  10. MR Imaging Based Treatment Planning for Radiotherapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Radiotherapy, MR-based treatment planning, dosimetry, Monte Carlo dose verification, Prostate Cancer, MRI -based DRRs 16. SECURITY CLASSIFICATION...AcQPlan system Version 5 was used for the study , which is capable of performing dose calculation on both CT and MRI . A four field 3D conformal planning...prostate motion studies for 3DCRT and IMRT of prostate cancer; (2) to investigate and improve the accuracy of MRI -based treatment planning dose calculation

  11. Implementation of three dimensional conformal radiation therapy: prospects, opportunities, and challenges.

    PubMed

    Vijayakumar, S; Chen, G T

    1995-12-01

    To briefly review scientific rationale of 3D conformal radiation therapy (3DCRT) and discuss the prospects, opportunities, and challenges in the implementation of 3DCRT. Some of these ideas were discussed during a workshop on "Implementation of Three-Dimensional Conformal Radiation Therapy" in April 1994 at Bethesda, MD, and others have been discussed elsewhere in the literature. Local-regional control of cancer is an important component in the overall treatment strategy in any patient with cancer. It has been shown that failure to achieve local-regional control can lead to (a) an increase in chances of distant metastases, and (b) a decrease in the survival. In many disease sites, the doses delivered currently are inadequate to achieve satisfactory local tumor control rates; this is because in many sites, only limited doses of radiotherapy can be delivered due to the proximity of cancer to radiosensitive normal tissues. By conforming the radiotherapy beams to the tumor, doses to the tumors can be enhanced and doses to the normal tissues can be reduced. With the advances in 3DCRT, such conformation is possible now and is the rationale for using 3DCRT. However, a number of questions do remain that are not limited to the following: (a) What are the implications in terms of target volume definitions when implementing 3DCRT? (b) Are there some sites where research efforts can be focused to document the efficacy and cost effectiveness of 3DCRT? (c) How do we implement day-to-day 3DCRT treatment efficiently? (d) How do we transfer the technology from the university centers to the community without compromising quality? (e) What are all the quality assurance/quality improvement questions that need to be addressed and how do we ascertain quality assurance of 3DCRT? (f) Have we looked at cost-benefit ratios and quality of life (QOL) issues closely? There is a need for defining multiple target volumes: gross tumor volume, clinical target volume(s), and planning target volume(s). Such definitions should make implementation of 3DCRT more complex, yet will make high-dose delivery a possibility. There are many sites in which single and multiinstitutional studies are ongoing that include prostate, lung, head and neck, and brain. In other areas, cooperative group trials are required because of the inability of single institutions to accrue enough patients to answer clinically relevant questions with statistical validity. Although implementation of 3DCRT will require multiple steps, these multiple steps can be brought into clinical practice gradually and one does not have to wait until all steps required for implementation of 3DCRT are available. In this respect, "3DCRT" should be used in a very broad sense, from beam's eye view blocking, use of multibeam dose distribution, use of dose-volume histograms in choosing alternative plans, noncoplanar beam arrangements, intensity modulation, inverse planning, to totally automated implementation of 3DCRT. To transfer the 3DCRT capabilities to the community from the University Centers, there is a necessity to develop quality assurance programs. RTOG and the Three-Dimensional Oncology Group are spearheading these efforts. Three-dimensional conformal radiation therapy has potential not only to improve local control and decrease toxicity, but also to improve the cost benefit ratio in the use of radiotherapy as well as in improving quality of life in patients with cancer. Achieving many potential benefits of 3DCRT (improvement in local control, decreasing toxicity, organs-function preservation, improvement in cost effectiveness) will require further physics-related and clinical research in carefully conceived and successfully completed future clinical trials.

  12. Dosimetric comparison of helical tomotherapy, RapidArc, and a novel IMRT & Arc technique for esophageal carcinoma.

    PubMed

    Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav

    2011-12-01

    To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low doses to the lungs at the cost of increased heart dose. Plan quality could still be improved through the use of additional arcs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Generalizable Class Solutions for Treatment Planning of Spinal Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weksberg, David C.; Palmer, Matthew B.; Vu, Khoi N.

    2012-11-01

    Purpose: Spinal stereotactic body radiation therapy (SBRT) continues to emerge as an effective therapeutic approach to spinal metastases; however, treatment planning and delivery remain resource intensive at many centers, which may hamper efficient implementation in clinical practice. We sought to develop a generalizable class solution approach for spinal SBRT treatment planning that would allow confidence that a given plan provides optimal target coverage, reduce integral dose, and maximize planning efficiency. Methods and Materials: We examined 91 patients treated with spinal SBRT at our institution. Treatment plans were categorized by lesion location, clinical target volume (CTV) configuration, and dose fractionation scheme,more » and then analyzed to determine the technically achievable dose gradient. A radial cord expansion was subtracted from the CTV to yield a planning CTV (pCTV) construct for plan evaluation. We reviewed the treatment plans with respect to target coverage, dose gradient, integral dose, conformality, and maximum cord dose to select the best plans and develop a set of class solutions. Results: The class solution technique generated plans that maintained target coverage and improved conformality (1.2-fold increase in the 95% van't Riet Conformation Number describing the conformality of a reference dose to the target) while reducing normal tissue integral dose (1.3-fold decrease in the volume receiving 4 Gy (V{sub 4Gy}) and machine output (19% monitor unit (MU) reduction). In trials of planning efficiency, the class solution technique reduced treatment planning time by 30% to 60% and MUs required by {approx}20%: an effect independent of prior planning experience. Conclusions: We have developed a set of class solutions for spinal SBRT that incorporate a pCTV metric for plan evaluation while yielding dosimetrically superior treatment plans with increased planning efficiency. Our technique thus allows for efficient, reproducible, and high-quality spinal SBRT treatment planning.« less

  14. Matching of electron beams for conformal therapy of target volumes at moderate depths.

    PubMed

    Zackrisson, B; Karlsson, M

    1996-06-01

    The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.

  15. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  16. Conformal and intensity modulated irradiation of head and neck cancer: the potential for improved target irradiation, salivary gland function, and quality of life.

    PubMed

    Eisbruch, A; Dawson, L A; Kim, H M; Bradford, C R; Terrell, J E; Chepeha, D B; Teknos, T N; Anzai, Y; Marsh, L H; Martel, M K; Ten Haken, R K; Wolf, G T; Ship, J A

    1999-01-01

    To develop techniques which facilitate sparing of the major salivary glands while adequately treating the targets in patients requiring comprehensive bilateral neck irradiation (RT). Conformal and static, multisegmental intensity modulated (IMRT) techniques have been developed. The salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms. Subjective xerostomia questionnaires have been developed and validated. The pattern of local-regional recurrences has been examined using CT scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans and regenerating the dose distributions at the recurrence sites. Target coverage and dose homogeneity in IMRT treatment plans were found to be significantly better than standard RT plans. Significant parotid gland sparing was achieved. The relationships among dose, irradiated volume and saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean dose of 26 Gy was found to be the threshold for stimulated saliva. Subjective xerostomia was significantly reduced in patients irradiated with parotid sparing techniques, compared to patients with similar tumors treated with standard RT. The large majority of recurrences occurred inside high-risk targets. Tangible gains in salivary gland sparing and target coverage are being achieved and an improvement in some measures of quality of life is suggested by our findings. A mean parotid gland dose of < or = 26 Gy should be a planning objective if significant parotid function preservation is desired. The pattern of recurrence suggests that careful escalation of the dose to targets judged to be at highest risk may improve tumor control.

  17. Critical Structure Sparing in Stereotactic Ablative Radiotherapy for Central Lung Lesions: Helical Tomotherapy vs. Volumetric Modulated Arc Therapy

    PubMed Central

    Chi, Alexander; Ma, Pan; Fu, Guishan; Hobbs, Gerry; Welsh, James S.; Nguyen, Nam P.; Jang, Si Young; Dai, Jinrong; Jin, Jing; Komaki, Ritsuko

    2013-01-01

    Background Helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) are both advanced techniques of delivering intensity-modulated radiotherapy (IMRT). Here, we conduct a study to compare HT and partial-arc VMAT in their ability to spare organs at risk (OARs) when stereotactic ablative radiotherapy (SABR) is delivered to treat centrally located early stage non-small-cell lung cancer or lung metastases. Methods 12 patients with centrally located lung lesions were randomly chosen. HT, 2 & 8 arc (Smart Arc, Pinnacle v9.0) plans were generated to deliver 70 Gy in 10 fractions to the planning target volume (PTV). Target and OAR dose parameters were compared. Each technique’s ability to meet dose constraints was further investigated. Results HT and VMAT plans generated essentially equivalent PTV coverage and dose conformality indices, while a trend for improved dose homogeneity by increasing from 2 to 8 arcs was observed with VMAT. Increasing the number of arcs with VMAT also led to some improvement in OAR sparing. After normalizing to OAR dose constraints, HT was found to be superior to 2 or 8-arc VMAT for optimal OAR sparing (meeting all the dose constraints) (p = 0.0004). All dose constraints were met in HT plans. Increasing from 2 to 8 arcs could not help achieve optimal OAR sparing for 4 patients. 2/4 of them had 3 immediately adjacent structures. Conclusion HT appears to be superior to VMAT in OAR sparing mainly in cases which require conformal dose avoidance of multiple immediately adjacent OARs. For such cases, increasing the number of arcs in VMAT cannot significantly improve OAR sparing. PMID:23577071

  18. Trajectory modulated prone breast irradiation: a LINAC-based technique combining intensity modulated delivery and motion of the couch.

    PubMed

    Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre

    2013-12-01

    External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. SU-E-T-320: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans Using Jaws-Only Collimation On a LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, N; Kim, A; Schaum, J

    2015-06-15

    Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans using jaws-only collimation on linac that meets appropriate TG-142 tolerances. Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging from 8 mm to 40 mm. Plans balanced treatment time with dose gradient and conformity using 13 static fields and 3 couch angles: 9 non-opposed and coplanar fields and 4 non-coplanar fields. The symmetrical jaws field size was target diameter plus 2 mm. The prescription (Rx) was 7 Gy per fraction to the 80% isodose line. Two plans were created for each target:more » one kept the collimator at 0° (C0), one adjusted the collimator angle 40° for each field to create a 360° sweep over the 9 coplanar fields (CR).Conformity of the Rx to the target was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: the difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The use of collimator rotation improved conformity by 3.2% on average, the mean PITV was 1.7±0.1 for C0 plans and 1.6±0.1 for CR. Mean heterogeneity was 1.25±0.0 for both C0 and CR. The mean CGIg was 75.9±16.4 for C0 plans and 74.4±17.0 for CR; with a mean dose falloff degradation of 2.5% by CR. Conclusion: Clinically acceptable SRT plans for spherical targets were created using jaws-only collimation with static fields. The addition of sweeping collimator rotation improves conformity at the expense of gradient. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.« less

  20. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Liu, Feng; White, Julia

    2015-04-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volumemore » parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered.« less

  1. SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, J; Xu, Z; Baker, J

    Purpose: To compare three-dimensional conformal radiotherapy (3D CRT) and volumetric-modulated arc therapy (VMAT) in lung stereotactic body radiation therapy (SBRT) Methods: A retrospective study of clinically treated lung SBRT cases treated between 2010 and 2015 at our hospital was performed. All treatment modalities were included in this evaluation (VMAT, 3D CRT, static IMRT, and dynamic conformal arc therapy). However, the majority of treatment modalities were either VMAT or 3D CRT. Treatment times of patients and dosimetric plan quality metrics were compared. Treatment times were calculated based on the time the therapist opened and closed the patient’s treatment plan. This treatmentmore » time closely approximates the utilization time of the treatment room. The dosimetric plan quality metrics evaluated include ICRU conformity index, the volume of 105% prescribed dose outside PTV, the ratio of volume of 50% prescribed dose to the volume of PTV, the percentage of maximum dose at 2 cm away from PTV to the prescribed dose, and the V20 (percentage of lung volume receiving 20 Gy or more). Results: Treatment time comparisons show that on average VMAT has shorter treatment times than 3D CRT. Dose conformity, defined by the ICRU conformity index, and high dose spillage, defined by the volume of 105% dose outside the PTV, is reduced when using VMAT compared to 3D CRT. V20 and intermediate dose spillage/fall-off metrics of VMAT and 3D are not significantly different. Conclusion: Clinically treated lung SBRT cases indicate VMAT is superior to 3D with regard to shorter treatment times, plan dose conformity, and plan high dose spillage.« less

  2. SU-E-T-187: Collimation Methods in Spot Scanning Proton Therapy: A Treatment Plan Comparison Between a Fixed Aperture and a Dynamic Collimation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, B; Gelover, E; Wang, D

    2015-06-15

    Purpose: Low-energy treatments during spot scanning proton therapy (SSPT) suffer from poor conformity due to increased spot size. Collimation devices can reduce the lateral penumbra of a proton therapy dose distribution and improve the overall plan quality. The purpose of this work was to study the advantages of individual energy-layer collimation, which is unique to a recently proposed Dynamic Collimation System (DCS), in comparison to a standard, fixed aperture that allows only a single shape for all energy layers. Methods: Three brain patients previously planned and treated with SSPT were re-planned using an in-house treatment planning system capable of modelingmore » collimated and un-collimated proton beamlets. The un-collimated plans, which served as a baseline for comparison, reproduced the target coverage of the clinically delivered plans. The collimator opening for the aperture based plans included a 0.6 cm expansion of the largest cross section of the target in the Beam’s Eye View, while the DCS based plans were created by optimizing the collimator position for beam spots near the periphery of the target in each energy layer. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring, averaged 9.13% and 3.48% for the DCS and aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 16.42% and 8.16% for the DCS and aperture plans, respectively. Conclusion: Collimation reduces the dose to normal tissue adjacent to the target and increases dose conformity to the target region for low-energy SSPT. The ability of the DCS to provide collimation to each energy layer yields better conformity in comparison to fixed aperture plans. This work was partially funded by IBA (Ion Beam Applications S.A.)« less

  3. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases.

    PubMed

    Thomas, Evan M; Popple, Richard A; Wu, Xingen; Clark, Grant M; Markert, James M; Guthrie, Barton L; Yuan, Yu; Dobelbower, Michael C; Spencer, Sharon A; Fiveash, John B

    2014-10-01

    Volumetric modulated arc therapy (VMAT) has been shown to be feasible for radiosurgical treatment of multiple cranial lesions with a single isocenter. To investigate whether equivalent radiosurgical plan quality and reduced delivery time could be achieved in VMAT for patients with multiple intracranial targets previously treated with Gamma Knife (GK) radiosurgery. We identified 28 GK treatments of multiple metastases. These were replanned for multiarc and single-arc, single-isocenter VMAT (RapidArc) in Eclipse. The prescription for all targets was standardized to 18 Gy. Each plan was normalized for 100% prescription dose to 99% to 100% of target volume. Plan quality was analyzed by target conformity (Radiation Therapy Oncology Group and Paddick conformity indices [CIs]), dose falloff (area under the dose-volume histogram curve), as well as the V4.5, V9, V12, and V18 isodose volumes. Other end points included beam-on and treatment time. Compared with GK, multiarc VMAT improved median plan conformity (CIVMAT = 1.14, CIGK = 1.65; P < .001) with no significant difference in median dose falloff (P = .269), 12 Gy isodose volume (P = .500), or low isodose spill (P = .49). Multiarc VMAT plans were associated with markedly reduced treatment time. A predictive model of the 12 Gy isodose volume as a function of tumor number and volume was also developed. For multiple target stereotactic radiosurgery, 4-arc VMAT produced clinically equivalent conformity, dose falloff, 12 Gy isodose volume, and low isodose spill, and reduced treatment time compared with GK. Because of its similar plan quality and increased delivery efficiency, single-isocenter VMAT radiosurgery may constitute an attractive alternative to multi-isocenter radiosurgery for some patients.

  4. Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Tucker, Susan L.; Martel, Mary K.

    2012-11-15

    Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results:more » Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.« less

  5. Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer.

    PubMed

    Gomez, Daniel R; Tucker, Susan L; Martel, Mary K; Mohan, Radhe; Balter, Peter A; Lopez Guerra, Jose Luis; Liu, Hongmei; Komaki, Ritsuko; Cox, James D; Liao, Zhongxing

    2012-11-15

    We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade≥3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer.

    PubMed

    Chen, Guang-Pei; Liu, Feng; White, Julia; Vicini, Frank A; Freedman, Gary M; Arthur, Douglas W; Li, X Allen

    2015-01-01

    This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volume parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  7. Dosimetric evaluation of integrated IMRT treatment of the chest wall and supraclavicular region for breast cancer after modified radical mastectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian

    2014-07-01

    To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed fieldmore » of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.« less

  8. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  9. A new Gamma Knife registered radiosurgery paradigm: Tomosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, X.; Maciunas, R. J.; Dean, D.

    This study proposes and simulates an inverse treatment planning and a continuous dose delivery approach for the Leksell Gamma Knife registered (LGK, Elekta, Stockholm, Sweden) which we refer to as 'Tomosurgery'. Tomosurgery uses an isocenter that moves within the irradiation field to continuously deliver the prescribed radiation dose in a raster-scanning format, slice by slice, within an intracranial lesion. Our Tomosurgery automated (inverse) treatment planning algorithm utilizes a two-stage optimization strategy. The first stage reduces the current three-dimensional (3D) treatment planning problem to a series of more easily solved 2D treatment planning subproblems. In the second stage, those 2D treatmentmore » plans are assembled to obtain a final 3D treatment plan for the entire lesion. We created Tomosurgery treatment plans for 11 patients who had already received manually-generated LGK treatment plans to treat brain tumors. For the seven cases without critical structures (CS), the Tomosurgery treatment plans showed borderline to significant improvement in within-tumor dose standard deviation (STD) (p<0.058, or p<0.011 excluding case 2) and conformality (p<0.042), respectively. In three of the four cases that presented CS, the Tomosurgery treatment plans showed no statistically significant improvements in dose conformality (p<0.184), and borderline significance in improving within-tumor dose homogeneity (p<0.054); CS damage measured by V{sub 20} or V{sub 30} (i.e., irradiated CS volume that receives {>=}20% or {>=}30% of the maximum dose) showed no significant improvement in the Tomosurgery treatment plans (p<0.345 and p<0.423, respectively). However, the overall CS dose volume histograms were improved in the Tomosurgery treatment plans. In addition, the LGK Tomosurgery inverse treatment planning required less time than standard of care, forward (manual) LGK treatment planning (i.e., 5-35 min vs 1-3 h) for all 11 cases. We expect that LGK Tomosurgery will speed treatment planning and improve treatment quality, especially for large and/or geometrically complex lesions. However, using only 4 mm collimators could greatly increase treatment plan delivery time for a large brain lesion. This issue is subject to further investigation.« less

  10. Volumetric-modulated arc therapy (RapidArc) vs. conventional fixed-field intensity-modulated radiotherapy for {sup 18}F-FDG-PET-guided dose escalation in oropharyngeal cancer: A planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teoh, May, E-mail: m.teoh@nhs.net; Beveridge, Sabeena; Wood, Katie

    2013-04-01

    Fluorine-18-fluorodeoxyglucose-positron emission tomography ({sup 18}F-FDG-PET)–guided focal dose escalation in oropharyngeal cancer may potentially improve local control. We evaluated the feasibility of this approach using volumetric-modulated arc therapy (RapidArc) and compared these plans with fixed-field intensity-modulated radiotherapy (IMRT) focal dose escalation plans. Materials and methods: An initial study of 20 patients compared RapidArc with fixed-field IMRT using standard dose prescriptions. From this cohort, 10 were included in a dose escalation planning study. Dose escalation was applied to {sup 18}F-FDG-PET–positive regions in the primary tumor at dose levels of 5% (DL1), 10% (DL2), and 15% (DL3) above standard radical dose (65 Gymore » in 30 fractions). Fixed-field IMRT and double-arc RapidArc plans were generated for each dataset. Dose-volume histograms were used for plan evaluation and comparison. The Paddick conformity index (CI{sub Paddick}) and monitor units (MU) for each plan were recorded and compared. Both IMRT and RapidArc produced clinically acceptable plans and achieved planning objectives for target volumes. Dose conformity was significantly better in the RapidArc plans, with lower CI{sub Paddick} scores in both primary (PTV1) and elective (PTV2) planning target volumes (largest difference in PTV1 at DL3; 0.81 ± 0.03 [RapidArc] vs. 0.77 ± 0.07 [IMRT], p = 0.04). Maximum dose constraints for spinal cord and brainstem were not exceeded in both RapidArc and IMRT plans, but mean doses were higher with RapidArc (by 2.7 ± 1 Gy for spinal cord and 1.9 ± 1 Gy for brainstem). Contralateral parotid mean dose was lower with RapidArc, which was statistically significant at DL1 (29.0 vs. 29.9 Gy, p = 0.01) and DL2 (29.3 vs. 30.3 Gy, p = 0.03). MU were reduced by 39.8–49.2% with RapidArc (largest difference at DL3, 641 ± 94 vs. 1261 ± 118, p < 0.01). {sup 18}F-FDG-PET–guided focal dose escalation in oropharyngeal cancer is feasible with RapidArc. Compared with conventional fixed-field IMRT, RapidArc can achieve better dose conformity, improve contralateral parotid sparing, and uses fewer MU.« less

  11. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  12. Dosimetric study and in-vivo dose verification for conformal avoidance treatment of anal adenocarcinoma using helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Chunhui; Chen Yijen; Liu An

    2007-04-01

    This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurementsmore » were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.« less

  13. Water-filled balloon in the postoperative resection cavity improves dose distribution to target volumes in radiotherapy of maxillary sinus carcinoma.

    PubMed

    Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei

    2011-11-01

    Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.

  14. Revision of orthovoltage chest wall treatment using Monte Carlo simulations.

    PubMed

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K

    2017-01-01

    Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.

  15. Comparative studies on the conformational change and aggregation behavior of irradiated carrageenans and agar by dynamic light scattering.

    PubMed

    Abad, Lucille; Okabe, Satoshi; Shibayama, Mitsuhiro; Kudo, Hisaaki; Saiki, Seiichi; Aranilla, Charito; Relleve, Lorna; de la Rosa, Alumanda

    2008-01-01

    The conformational associative properties of kappa-, iota-, and lambda-carrageenan and agar with irradiation dose were studied by dynamic light scattering. The random scission of the carrageenans and agar by gamma irradiation resulted in the formation of polydispersed lower molecular weight fragments. At high doses, the system moves towards uniformity. Conformational change from coil to helix was observed in all carrageenans and agar at doses up to 100 kGy. The conformational change in lambda-carrageenan may be due to the irregular and hybrid structure of this polysaccharide. Only agar and lambda-carrageenan still undergo conformational transition at a high dose of 200 kGy. Gelation is observed for kappa-, iota-carrageenan up to a dose of 50 kGy while gelation is still observed at 100 kGy for agar. Increase in the hydrodynamic radius with decreasing temperatures for the non-irradiated carrageenans follows this order: lambda-carrageenan>kappa-carrageenan>iota-carrageenan. Slight increases in hydrodynamic radius were observed with irradiation.

  16. Applicator-guided volumetric-modulated arc therapy for low-risk endometrial cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cilla, Savino, E-mail: savinocilla@gmail.com; Macchia, Gabriella; Sabatino, Domenico

    2013-04-01

    The aim of this study was to report the feasibility of volumetric-modulated arc therapy (VMAT) in the postoperative irradiation of the vaginal vault. Moreover, the VMAT technique was compared with 3D conformal radiotherapy (3D-CRT) and fixed-field intensity-modulated radiotherapy (IMRT), in terms of target coverage and organs at risk sparing. The number of monitor units and the delivery time were analyzed to score the treatment efficiency. All plans were verified in a dedicated solid water phantom using a 2D array of ionization chambers. Twelve patients with endometrial carcinoma who underwent radical hystero-adenexectomy and fixed-field IMRT treatments were retrospectively included in thismore » analysis; for each patient, plans were compared in terms of dose-volume histograms, homogeneity index, and conformity indexes. All techniques met the prescription goal for planning target volume coverage, with VMAT showing the highest level of conformity at all dose levels. VMAT resulted in significant reduction of rectal and bladder volumes irradiated at all dose levels compared with 3D-CRT. No significant differences were found with respect to IMRT. Moreover, a significant improvement of the dose conformity was reached by VMAT technique not only at the 95% dose level (0.74 vs. 0.67 and 0.62) but also at 50% and 75% levels of dose prescription. In addition, VMAT plans showed a significant reduction of monitor units by nearly 28% with respect to IMRT, and reduced treatment time from 11 to <3 minutes for a single 6-Gy fraction. In conclusion, VMAT plans can be planned and carried out with high quality and efficiency for the irradiation of vaginal vault alone, providing similar or better sparing of organs at risk to fixed-field IMRT and resulting in the most efficient treatment option. VMAT is currently our standard approach for radiotherapy of low-risk endometrial cancer.« less

  17. Proof of Principle of Ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy

    PubMed Central

    Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.

    2010-01-01

    Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393

  18. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery.

    PubMed

    Dhabaan, Anees; Elder, Eric; Schreibmann, Eduard; Crocker, Ian; Curran, Walter J; Oyesiku, Nelson M; Shu, Hui-Kuo; Fox, Tim

    2010-06-21

    The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC2.5) and compare to standard 5 mm leaf width MLC (MLC5) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator. Simulated cases of spherical targets were created to study solely the effect of target volume size on the performance of the two MLC systems independent of target shape complexity. In addition, 43 patients previously treated for intracranial lesions in our institution were retrospectively planned using DCA technique with MLC2.5 and MLC5 systems. The gross tumor volume ranged from 0.07 to 40.57 cm3 with an average volume of 5.9 cm3. All treatment parameters were kept the same for both MLC-based plans. The plan evaluation was performed using figures of merits (FOM) for a rapid and objective assessment on the quality of the two treatment plans for MLC2.5 and MLC5. The prescription isodose surface was selected as the greatest isodose surface covering >or= 95% of the target volume and delivering 95% of the prescription dose to 99% of target volume. A Conformity Index (CI) and conformity distance index (CDI) were used to quantifying the dose conformity to a target volume. To assess normal tissue sparing, a normal tissue difference (NTD) was defined as the difference between the volume of normal tissue receiving a certain dose utilizing MLC5 and the volume receiving the same dose using MLC2.5. The CI and normal tissue sparing for the simulated spherical targets were better with the MLC2.5 as compared to MLC5. For the clinical patients, the CI and CDI results indicated that the MLC2.5 provides better treatment conformity than MLC5 even at large target volumes. The CI's range was 1.15 to 2.44 with a median of 1.59 for MLC2.5 compared to 1.60-2.85 with a median of 1.71 for MLC5. Improved normal tissue sparing was also observed for MLC2.5 over MLC5, with the NTD always positive, indicating improvement, and ranging from 0.1 to 8.3 for normal tissue receiving 50% (NTV50), 70% (NTV70) and 90% (NTV90) of the prescription dose. The MLC2.5 has a dosimetric advantage over the MLC5 in Linac-based radiosurgery using DCA method for intracranial lesions, both in treatment conformity and normal tissue sparing when target shape complexity increases.

  19. Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, IN; Walter, Alexander S.

    2015-01-01

    Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage,more » while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.« less

  20. A new Gamma Knife radiosurgery paradigm: Tomosurgery

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoliang

    The Leksell (Elekta, Stockholm, Sweden) Gamma Knife(TM) (LGK) is the worldwide standard-of-care for the radiosurgical treatment of a wide variety of intracranial lesions. The current LGK utilizes a step-and-shoot dose delivery mechanism where the centroid of each conformal radiation dose (i.e., the shot isocenter) requires repositioning the patient outside of the irradiation field. Perhaps the greatest challenge the LGK treatment team faces is planning the treatment of large and/or complexly shaped lesions that may be in close proximity to critical neural or vascular structures. The standard manual treatment planning approach is a time consuming procedure where additional time spent does not guarantee the identification of an increasingly optimal treatment plan. I propose a new radiosurgery paradigm which I refer to as "Tomosurgery". The Tomosurgery paradigm begins with the division of the target volume into a series of adjacent treatment slices, each with a carefully determined optimal thickness. The use of a continuously moving disk-shaped radiation shot that moves through the lesion in a raster-scanning pattern is expected to improve overall radiation dose conformality and homogeneity. The Tomosurgery treatment planning algorithm recruits a two-stage optimization strategy, which first plans each treatment slice as a simplified 2D problem and secondly optimally assembles the 2D treatment plans into the final 3D treatment plan. Tested on 11 clinical LGK cases, the automated inversely-generated Tomosurgery treatment plans performed as well or better than the neurosurgeon's manually created treatment plans across all criteria: (a) dose volume histograms, (b) dose homogeneity, (c) dose conformality, and (d) critical structure damage, where applicable. LGK Tomosurgery inverse treatment planning required much less time than standard of care, manual (i.e., forward) LGK treatment planning procedures. These results suggest that Tomosurgery might provide an improvement over the current LGK radiosurgery treatment planning software. As regards treatment delivery, a Tomosurgery Investigational Platform (TIP) is proposed to perform the physical validation of radiation dose delivery. The TIP should facilitate translation of the Tomosurgery paradigm to several other radiosurgery and/or radiotherapy devices without the need for expensive modification of commercial devices until the feasibility of delivering Tomosurgical treatment plans has been well established.

  1. Predictors of High-Grade Esophagitis after Definitive 3D Conformal Therapy, Intensity Modulated Radiation Therapy, or Proton Beam Therapy for Non-Small Cell Lung Cancer

    PubMed Central

    Gomez, Daniel R.; Tucker, Susan L.; Martel, Mary K.; Mohan, Radhe; Balter, Peter A.; Guerra, Jose Luis Lopez; Liu, Hongmei; Komaki, Ritsuko; Cox, James D.; Liao, Zhongxing

    2014-01-01

    Introduction We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional (3D) conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade ≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results Overall, 652 patients were included: 405 treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade ≥3 RE were 8%, 28%, and 6%, with a median time to onset of 42 days (range 11–93 days). A fit of the fractional-DVH LKB model demonstrated that the volume parameter n was significantly different (p=0.046) than 1, indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (p=0.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (p=0.105). Conclusions The fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. PMID:22920974

  2. Implementing QML for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Sexton, F. W.; Fleetwood, D. M.; Terry, M. D.; Shaneyfelt, M. R.

    1990-12-01

    The US government has proposed a qualified manufacturers list (QML) methodology to qualify integrated circuits for high reliability and radiation hardness. An approach to implementing QML for single-event upset (SEU) immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates is demonstrated. It is seen that the process capability indices, Cp and Cpk, for the manufacture of 400-k-ohm feedback resistors required to provide SEU tolerance do not conform to 6 sigma quality standards. For total-dose, interface trap charge, Delta Vit, shifts measured on transistors are correlated with circuit response in the space environment. Statistical process control (SPC) is illustrated for Delta Vit, and violations of SPC rules are interpreted in terms of continuous improvement. Design validation for SEU and quality conformance inspections for total-dose are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, 3-D device-plus-circuit codes, and improved design simulators.

  3. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less

  4. A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Danny Y., E-mail: dsong2@jhmi.edu; Herfarth, Klaus K.; Uhl, Matthias

    2013-09-01

    Purpose: To characterize the effect of a prostate-rectum spacer on dose to rectum during external beam radiation therapy for prostate cancer and to assess for factors correlated with rectal dose reduction. Methods and Materials: Fifty-two patients at 4 institutions were enrolled into a prospective pilot clinical trial. Patients underwent baseline scans and then were injected with perirectal spacing hydrogel and rescanned. Intensity modulated radiation therapy plans were created on both scans for comparison. The objectives were to establish rates of creation of ≥7.5 mm of prostate-rectal separation, and decrease in rectal V70 of ≥25%. Multiple regression analysis was performed tomore » evaluate the associations between preinjection and postinjection changes in rectal V70 and changes in plan conformity, rectal volume, bladder volume, bladder V70, planning target volume (PTV), and postinjection midgland separation, gel volume, gel thickness, length of PTV/gel contact, and gel left-to-right symmetry. Results: Hydrogel resulted in ≥7.5-mm prostate-rectal separation in 95.8% of patients; 95.7% had decreased rectal V70 of ≥25%, with a mean reduction of 8.0 Gy. There were no significant differences in preinjection and postinjection prostate, PTV, rectal, and bladder volumes. Plan conformities were significantly different before versus after injection (P=.02); plans with worse conformity indexes after injection compared with before injection (n=13) still had improvements in rectal V70. In multiple regression analysis, greater postinjection reduction in V70 was associated with decreased relative postinjection plan conformity (P=.01). Reductions in V70 did not significantly vary by institution, despite significant interinstitutional variations in plan conformity. There were no significant relationships between reduction in V70 and the other characteristics analyzed. Conclusions: Injection of hydrogel into the prostate-rectal interface resulted in dose reductions to rectum for >90% of patients treated. Rectal sparing was statistically significant across a range of 10 to 75 Gy and was demonstrated within the presence of significant interinstitutional variability in plan conformity, target definitions, and injection results.« less

  5. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Linda X., E-mail: lhong0812@gmail.com; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY; Shankar, Viswanathan

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio ofmore » 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.« less

  7. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, B; Bazalova, M; Qu, B

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization wasmore » performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Cebe, M; Mabhouti, H

    Purpose: Stereotactic body radiosurgery (SBRT) for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to investigate a Hybrid VMAT/IMRT technique which combines volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) for spine SBRT in terms of its dosimetric quality and treatment efficiency using Radiation Therapy Oncology Group (RTOG) 0631 guidelines. Methods: 7 fields IMRT, 2 full arcs VMAT and Hybrid VMAT/IMRT were created for ten previously treated patients. The Hybrid VMAT/IMRT technique consisted of 1 full VMAT arc and 5 IMRT fields. Hybrid VMAT/IMRT plans were compared with IMRTmore » and VMAT plans in terms of the dose distribution, spinal cord sparing, homogeneity, conformity and gradient indexies, monitor unit (MU) and beam on time (BOT). RTOG 0631 recommendations were applied for treatment planning. All plans were normalized and prescribed to deliver 18.0 Gy in a single fraction to 90% of the target volume. Results: The Hybrid VMAT/IMRT technique significantly improved target dose homogeneity and conformity compared with IMRT and VMAT techniques. Providing sharp dose gradient Hybrid VMAT/IMRT plans spare the spinal cord and healthy tissue more effectively. Although, both MU and BOT slightly increased in Hybrid VMAT/IMRT plans there is no statistically meaningful difference between VMAT and Hybrid VMAT/IMRT plans. Conclusion: In IMRT, a smaller volume of healthy tissue can be irradiated in the low dose region, VMAT plans provide better target volume coverage, favorable dose gradient, conformity and better OAR sparing and also they require a much smaller number of MUs and thus a shorter treatment time than IMRT plans. Hybrid plan offers a sinergy through combination of these two techniques with slightly increased number of MU and thus more treatment time.« less

  9. Dosimetric advantages of generalised equivalent uniform dose-based optimisation on dose–volume objectives in intensity-modulated radiotherapy planning for bilateral breast cancer

    PubMed Central

    Lee, T-F; Ting, H-M; Chao, P-J; Wang, H-Y; Shieh, C-S; Horng, M-F; Wu, J-M; Yeh, S-A; Cho, M-Y; Huang, E-Y; Huang, Y-J; Chen, H-C; Fang, F-M

    2012-01-01

    Objective We compared and evaluated the differences between two models for treating bilateral breast cancer (BBC): (i) dose–volume-based intensity-modulated radiation treatment (DV plan), and (ii) dose–volume-based intensity-modulated radiotherapy with generalised equivalent uniform dose-based optimisation (DV-gEUD plan). Methods The quality and performance of the DV plan and DV-gEUD plan using the Pinnacle3® system (Philips, Fitchburg, WI) were evaluated and compared in 10 patients with stage T2–T4 BBC. The plans were delivered on a Varian 21EX linear accelerator (Varian Medical Systems, Milpitas, CA) equipped with a Millennium 120 leaf multileaf collimator (Varian Medical Systems). The parameters analysed included the conformity index, homogeneity index, tumour control probability of the planning target volume (PTV), the volumes V20 Gy and V30 Gy of the organs at risk (OAR, including the heart and lungs), mean dose and the normal tissue complication probability. Results Both plans met the requirements for the coverage of PTV with similar conformity and homogeneity indices. However, the DV-gEUD plan had the advantage of dose sparing for OAR: the mean doses of the heart and lungs, lung V20 Gy, and heart V30 Gy in the DV-gEUD plan were lower than those in the DV plan (p<0.05). Conclusions A better result can be obtained by starting with a DV-generated plan and then improving it by adding gEUD-based improvements to reduce the number of iterations and to improve the optimum dose distribution. Advances to knowledge The DV-gEUD plan provided superior dosimetric results for treating BBC in terms of PTV coverage and OAR sparing than the DV plan, without sacrificing the homogeneity of dose distribution in the PTV. PMID:23091290

  10. SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheth, N; Tabibian, A; Rose, J

    2016-06-15

    Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans of varying techniques on linac that meets appropriate TG-142 tolerances using 1 cm leaf width multileaf collimator (MLC). Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging 8 mm to 40 mm. SRT plans used 100° non-coplanar arcs and 5 couch angles with 35° spacing. The field size was target plus 1 mm margin. Four plans were created for each target: symmetrical jaws blocking for 5 arcs with 0° collimator (J1C), symmetrical jaws blocking with 5 clockwise arcs with 0° collimator andmore » 5 counter-clockwise arcs with 45° collimator (J2C), MLC blocking for 5 dynamic conformal arcs with 0° collimator (M1C), and MLC blocking for 5 clockwise dynamic conformal arcs with 0° collimators and 5 counter-clockwise dynamic conformal arcs with 45° collimator (M2C).Conformity was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The mean PITV was 1.52±0.07, 1.49±0.08, 1.39±0.05, and 1.37±0.04 for J1C, J2C, M1C, and M2C plans respectively. The mean CGIg was 75.35±15.79, 74.19±16.66, 77.14±15.12, and 76.28±15.78 for J1C, J2C, M1C, and M2C plans respectively. The mean MDPD was 1.25±0.00 for all techniques. Conclusion: Clinically acceptable SRT plans for spherical targets were created on a linac with 1 cm MLC. Adding two collimator angles and MLC to arcs each improved conformity. The MLC improved the dose falloff while two collimator angles degraded it. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.« less

  11. Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery: Comparison of dosimetric treatment plan quality.

    PubMed

    Treuer, Harald; Hoevels, Moritz; Luyken, Klaus; Visser-Vandewalle, Veerle; Wirths, Jochen; Kocher, Martin; Ruge, Maximilian

    2015-06-01

    Stereotactic radiosurgery with an adapted linear accelerator (linac-SRS) is an established therapy option for brain metastases, benign brain tumors, and arteriovenous malformations. We intended to investigate whether the dosimetric quality of treatment plans achieved with a CyberKnife (CK) is at least equivalent to that for linac-SRS with circular or micromultileaf collimators (microMLC). A random sample of 16 patients with 23 target volumes, previously treated with linac-SRS, was replanned with CK. Planning constraints were identical dose prescription and clinical applicability. In all cases uniform optimization scripts and inverse planning objectives were used. Plans were compared with respect to coverage, minimal dose within target volume, conformity index, and volume of brain tissue irradiated with ≥ 10 Gy. Generating the CK plan was unproblematic with simple optimization scripts in all cases. With the CK plans, coverage, minimal target volume dosage, and conformity index were significantly better, while no significant improvement could be shown regarding the 10 Gy volume. Multiobjective comparison for the irradiated target volumes was superior in the CK plan in 20 out of 23 cases and equivalent in 3 out of 23 cases. Multiobjective comparison for the treated patients was superior in the CK plan in all 16 cases. The results clearly demonstrate the superiority of the irradiation plan for CK compared to classical linac-SRS with circular collimators and microMLC. In particular, the average minimal target volume dose per patient, increased by 1.9 Gy, and at the same time a 14% better conformation index seems to be an improvement with clinical relevance.

  12. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer.

    PubMed

    Wu, V W C; Sham, J S T; Kwong, D L W

    2004-07-01

    The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.

  13. SU-E-T-410: Evaluation of Treatment Modalities for Stereotactic Lung Radiation Therapy: A Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohatt, D; Malhotra, H

    Purpose: To evaluate and verify the accuracy of alternative treatment modalities for stereotactic lung therapy with end-to-end testing. We compared three dimensional conformal therapy (3DCRT), dynamic conformal arc therapy (DCAT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment using 6 MV, 6 MV flattening filter free (FFF) and 10 MV FFF photons. Methods: A QUASAR respiratory motion phantom was utilized with custom ion chamber and gafchromatic EBT2 film inserts. The phantom contained a low density lung medium with a cylindrical polystyrene tumor (35 cc). Pseudo representative structures for various organs at risk (OAR) were created. Allmore » treatment plans were created using Eclipse ver. 11 using the same image and structure sets, and delivered via Varian TrueBeam STx linear accelerator equipped with high definition MLC. Evaluation of plan quality followed ROTG 0813 criterion for conformity index (CI100%), high dose spillage, D2cm, and R50%. Results: All treatment plans met the OAR dose constraints per protocol and could be delivered without any beam hold offs or other interlocks and hence were deemed clinically safe. For equivalent beam energies, target conformity was improved for all modalities when switching to FFF mode. Treatment efficiency increased for VMAT FFF by a factor of 3–4 over IMRT, and up to factor of 7 when compared to 3DCRT. Pass rates were > 97% for all treatment using gamma criteria of 3%, 3mm. Absolute dose at iso-center was verified with ion chamber, and found to be within 2% of the treatment planning system. Conclusion: The higher dose rate associated with FFF not only reduces delivery times, but in most cases enhances plan quality. The one modality with succeeding best results for all RTOG criterions was VMAT 6 MV FFF. This end-to-end testing provides necessary confidence in the entire dose delivery chain for lung SBRT patients.« less

  14. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  15. Conformational Effects of UV Light on DNA Origami.

    PubMed

    Chen, Haorong; Li, Ruixin; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2017-02-01

    The responses of DNA origami conformation to UV radiation of different wavelengths and doses are investigated. Short- and medium-wavelength UV light can cause photo-lesions in DNA origami. At moderate doses, the lesions do not cause any visible defects in the origami, nor do they significantly affect the hybridization capability. Instead, they help relieve the internal stress in the origami structure and restore it to the designed conformation. At high doses, staple dissociation increases which causes structural disintegration. Long-wavelength UV does not show any effect on origami conformation by itself. We show that this UV range can be used in conjunction with photoactive molecules for photo-reconfiguration, while avoiding any damage to the DNA structures.

  16. SU-F-T-629: Effect of Multi-Leaf Collimator (MLC) Width On Plan Quality of Single-Isocenter VMAT Intracranial Stereotactic Radiosurgery for Multiple Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, J; Thomas, E; Wu, X

    2016-06-15

    Purpose: Single-isocenter VMAT has been shown able to create high quality plans for complex intracranial multiple metastasis SRS cases. Linacs capable of the technique are typically outfitted with an MLC that consists of a combination of 5 mm and 10 mm leaves (standard) or 2.5 mm and 5 mm leaves (high-definition). In this study, we test the hypothesis that thinner collimator leaves are associated with improved plan quality. Methods: Ten multiple metastasis cases were identified and planned for VMAT SRS using a 10 MV flattening filter free beam. Plans were created for a standard (std) and a high-definition (HD) MLC.more » Published values for leaf transmission factor and dosimetric leaf gap were utilized. All other parameters were invariant. Conformity (plan and individual target), moderate isodose spill (V50%), and low isodose spill (mean brain dose) were selected for analysis. Results: Compared to standard MLC, HD-MLC improved overall plan conformity (median: Paddick CI-HD = 0.83, Paddick CI-std = 0.79; p = 0.004 and median: RTOG CI-HD =1.18, RTOG CI-std =1.24; p = 0.01 ), improved individual lesion conformity (median: Paddick CI-HD,i =0.77, Paddick CI-std,i =0.72; p < 0.001 and median: RTOG CI-HD,i = 1.28, RTOG CI-std,i =1.35; p < 0.001), improved moderate isodose spill (median: V50%-HD = 37.0 cc, V50%-std = 45.7 cc; p = 0.002), and improved low dose spill (median: dmean-HD = 2.90 Gy, dmean-std = 3.19 Gy; p = 0.002). Conclusion: For the single-isocenter VMAT SRS of multiple metastasis plans examined, use of HD-MLC modestly improved conformity, moderate isodose, and low isodose spill compared to standard MLC. However, in all cases we were able to generate clinically acceptable plans with the standard MLC. More work is need to further quantify the difference in cases with higher numbers of small targets and to better understand any potential clinical significance. This research was supported in part by Varian Medical Systems.« less

  17. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hallaq, Hania A., E-mail: halhallaq@radonc.uchicago.edu; Chmura, Steven J.; Salama, Joseph K.

    Purpose: The NRG-BR001 trial is the first National Cancer Institute–sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. Methods and Materials: The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) againstmore » OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Results: Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm{sup 3} was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Conclusions: Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several benchmarks met the dose-volume histogram metrics but produced unacceptable plans owing to low conformity. Dissemination of a frequently-asked-questions document improved the approval rate at the first attempt. Benchmark credentialing was found to be a valuable tool for educating institutions about the protocol requirements.« less

  18. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases.

    PubMed

    Al-Hallaq, Hania A; Chmura, Steven J; Salama, Joseph K; Lowenstein, Jessica R; McNulty, Susan; Galvin, James M; Followill, David S; Robinson, Clifford G; Pisansky, Thomas M; Winter, Kathryn A; White, Julia R; Xiao, Ying; Matuszak, Martha M

    2017-01-01

    The NRG-BR001 trial is the first National Cancer Institute-sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) against OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm 3 was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several benchmarks met the dose-volume histogram metrics but produced unacceptable plans owing to low conformity. Dissemination of a frequently-asked-questions document improved the approval rate at the first attempt. Benchmark credentialing was found to be a valuable tool for educating institutions about the protocol requirements. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. SU-F-BRD-05: Dosimetric Comparison of Protocol-Based SBRT Lung Treatment Modalities: Statistically Significant VMAT Advantages Over Fixed- Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, R; Harrell, A; Geesey, C

    2014-06-15

    Purpose: The purpose of this study is to inter-compare and find statistically significant differences between flattened field fixed-beam (FB) IMRT with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT) for stereotactic body radiation therapy SBRT. Methods: SBRT plans using FB IMRT and FFF VMAT were generated for fifteen SBRT lung patients using 6 MV beams. For each patient, both IMRT and VMAT plans were created for comparison. Plans were generated utilizing RTOG 0915 (peripheral, 10 patients) and RTOG 0813 (medial, 5 patients) lung protocols. Target dose, critical structure dose, and treatment time were compared and tested for statistical significance. Parametersmore » of interest included prescription isodose surface coverage, target dose heterogeneity, high dose spillage (location and volume), low dose spillage (location and volume), lung dose spillage, and critical structure maximum- and volumetric-dose limits. Results: For all criteria, we found equivalent or higher conformality with VMAT plans as well as reduced critical structure doses. Several differences passed a Student's t-test of significance: VMAT reduced the high dose spillage, evaluated with conformality index (CI), by an average of 9.4%±15.1% (p=0.030) compared to IMRT. VMAT plans reduced the lung volume receiving 20 Gy by 16.2%±15.0% (p=0.016) compared with IMRT. For the RTOG 0915 peripheral lesions, the volumes of lung receiving 12.4 Gy and 11.6 Gy were reduced by 27.0%±13.8% and 27.5%±12.6% (for both, p<0.001) in VMAT plans. Of the 26 protocol pass/fail criteria, VMAT plans were able to achieve an average of 0.2±0.7 (p=0.026) more constraints than the IMRT plans. Conclusions: FFF VMAT has dosimetric advantages over fixed beam IMRT for lung SBRT. Significant advantages included increased dose conformity, and reduced organs-at-risk doses. The overall improvements in terms of protocol pass/fail criteria were more modest and will require more patient data to establish difference trends of more statistical significance.« less

  20. Evaluating which plan quality metrics are appropriate for use in lung SBRT.

    PubMed

    Yaparpalvi, Ravindra; Garg, Madhur K; Shen, Jin; Bodner, William R; Mynampati, Dinesh K; Gafar, Aleiya; Kuo, Hsiang-Chi; Basavatia, Amar K; Ohri, Nitin; Hong, Linda X; Kalnicki, Shalom; Tome, Wolfgang A

    2018-02-01

    Several dose metrics in the categories-homogeneity, coverage, conformity and gradient have been proposed in literature for evaluating treatment plan quality. In this study, we applied these metrics to characterize and identify the plan quality metrics that would merit plan quality assessment in lung stereotactic body radiation therapy (SBRT) dose distributions. Treatment plans of 90 lung SBRT patients, comprising 91 targets, treated in our institution were retrospectively reviewed. Dose calculations were performed using anisotropic analytical algorithm (AAA) with heterogeneity correction. A literature review on published plan quality metrics in the categories-coverage, homogeneity, conformity and gradient was performed. For each patient, using dose-volume histogram data, plan quality metric values were quantified and analysed. For the study, the radiation therapy oncology group (RTOG) defined plan quality metrics were: coverage (0.90 ± 0.08); homogeneity (1.27 ± 0.07); conformity (1.03 ± 0.07) and gradient (4.40 ± 0.80). Geometric conformity strongly correlated with conformity index (p < 0.0001). Gradient measures strongly correlated with target volume (p < 0.0001). The RTOG lung SBRT protocol advocated conformity guidelines for prescribed dose in all categories were met in ≥94% of cases. The proportion of total lung volume receiving doses of 20 Gy and 5 Gy (V 20 and V 5 ) were mean 4.8% (±3.2) and 16.4% (±9.2), respectively. Based on our study analyses, we recommend the following metrics as appropriate surrogates for establishing SBRT lung plan quality guidelines-coverage % (ICRU 62), conformity (CN or CI Paddick ) and gradient (R 50% ). Furthermore, we strongly recommend that RTOG lung SBRT protocols adopt either CN or CI Padddick in place of prescription isodose to target volume ratio for conformity index evaluation. Advances in knowledge: Our study metrics are valuable tools for establishing lung SBRT plan quality guidelines.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy inmore » 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.« less

  2. WE-G-16A-01: Evolution of Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothenberg, L; Mohan, R; Van Dyk, J

    Welcome and Introduction - Lawrence N. Rothenberg This symposium is one a continuing series of presentations at AAPM Annual Meetings on the historical aspects of medical physics, radiology, and radiation oncology that have been organized by the AAPM History Committee. Information on previous presentations including “Early Developments in Teletherapy” (Indianapolis 2013), “Historical Aspects of Cross-Sectional Imaging” (Charlotte 2012), “Historical Aspects of Brachytherapy” (Vancouver 2011), “50 Years of Women in Medical Physics” (Houston 2008), and “Roentgen's Early Investigations” (Minneapolis 2007) can be found in the Education Section of the AAPM Website. The Austin 2014 History Symposium will be on “Evolution ofmore » Radiation Treatment Planning.” Overview - Radhe Mohan Treatment planning is one of the most critical components in the chain of radiation therapy of cancers. Treatment plans of today contain a wide variety of sophisticated information conveying the potential clinical effectiveness of the designed treatment to practitioners. Examples of such information include dose distributions superimposed on three- or even four-dimensional anatomic images; dose volume histograms, dose, dose-volume and dose-response indices for anatomic structures of interest; etc. These data are used for evaluating treatment plans and for making treatment decisions. The current state-of-the-art has evolved from the 1940s era when the dose to the tumor and normal tissues was estimated approximately by manual means. However, the symposium will cover the history of the field from the late-1950's, when computers were first introduced for treatment planning, to the present state involving the use of high performance computing and advanced multi-dimensional anatomic, functional and biological imaging, focusing only on external beam treatment planning. The symposium will start with a general overview of the treatment planning process including imaging, structure delineation, assignment of dose requirements, consideration of uncertainties, selection of beam configurations and shaping of beams, and calculations, optimization and evaluation of dose distributions. This will be followed by three presentations covering the evolution of treatment planning, which parallels the evolution of computers, availability of advanced volumetric imaging and the development of novel technologies such as dynamic multi-leaf collimators and online image guidance. This evolution will be divided over three distinct periods - prior to 1970's, the 2D era; from 1980 to the mid-1990's, the 3D era; and from the mid 1990's to today, the IMRT era. When the World was Flat: The Two-Dimensional Radiation Therapy Era” - Jacob Van Dyk In the 2D era, anatomy was defined with the aid of solder wires, special contouring devices and projection x-rays. Dose distributions were calculated manually from single field, flat surface isodoses on transparencies. Precalculated atlases of generic dose distributions were produced by the International Atomic Energy Agency. Massive time-shared main frames and mini-computers were used to compute doses at individual points or dose distributions in a single plane. Beam shapes were generally rectangular, with wedges, missing tissue compensators and occasional blocks to shield critical structures. Dose calculations were measurement-based or they used primary and scatter calculations based on scatter-air ratio methodologies. Dose distributions were displayed on line printers as alpha-numeric character maps or isodose patterns made with pen plotters. More than Pretty Pictures: 3D Treatment Planning and Conformal Therapy - Benedick A. Fraass The introduction of computed tomography allowed the delineation of anatomy three-dimensionally and, supported partly by contracts from the National Cancer Institute, made possible the introduction and clinical use of 3D treatment planning, leading to development and use of 3D conformal therapy in the 1980's. 3D computer graphics and 3D anatomical structure definitions made possible Beam's Eye View (BEV) displays, making conformal beam shaping and much more sophisticated beam arrangements possible. These conformal plans significantly improved target dose coverage as well as normal tissue sparing. The use of dose volume histograms, gross/clinical/planning target volumes, MRI and PET imaging, multileaf collimators, and computer-controlled treatment delivery made sophisticated planning approaches practical. The significant improvements in dose distributions and analysis achievable with 3D conformal therapy made possible formal dose escalation and normal tissue tolerance clinical studies that set new and improved expectations for improved local control and decreasing complications in many clinical sites. From the Art to the State of the Art: Inverse Planning and IMRT - Thomas R. Bortfeld While the potential of intensity modulation was recognized in the mid- 1980's, intensity-modulated radiotherapy (IMRT) did not become a reality until the mid-1990's. Broad beams of photons could be sub-divided into narrow beamlets whose intensities could be determined using sophisticated optimization algorithms to appropriately balance tumor dose with normal tissue sparing. The development of dynamic multi-leaf collimators (on conventional linear accelerators as well as in helical delivery devices) enabled the efficient delivery of IMRT. The evolution of IMRT planning is continuing in the form of Volumetric Modulated Arc Therapy (VMAT) and through advanced optimization tools, such as multi-criteria optimization, automated IMRT planning, and robust optimization to protect dose distributions against uncertainties. IMRT also facilitates “dose painting” in which different sub-volumes of the target are prescribed different doses. Clearly, these advancements are being made possible by the increasing power and lower cost of computers and developments in other fields such as imaging and operations research. Summary - Radhe Mohan The history does not end here. The advancement of treatment planning is expected to continue, leading to further automation and improvements in conformality and robustness of dose distributions, particularly in the area of particle therapy. Radiobiological modeling will gain emphasis as part of the planning process. Learning Objectives: The scope of changes in technology and the capabilities of radiation treatment planning The impact of these changes in the quality of treatment plans and optimality of dose distributions The impact of development in other fields (imaging, computers, operations research, etc.) on the evolution of radiation treatment planning.« less

  3. Comparison of the helical tomotherapy against the multileaf collimator-based intensity-modulated radiotherapy and 3D conformal radiation modalities in lung cancer radiotherapy

    PubMed Central

    Mavroidis, P; Shi, C; Plataniotis, G A; Delichas, M G; Costa Ferreira, B; Rodriguez, S; Lind, B K; Papanikolaou, N

    2011-01-01

    Objectives The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. Methods Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P+) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. Results The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P+ of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average ΔP+ of 27.0% for a Δ effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average ΔP+ of 23.8% for a Δ effective uniform dose of 11.6 Gy. Conclusion A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose–response relations of the irradiated tumours and normal tissues. The use of P – effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans. PMID:20858664

  4. Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.

    PubMed

    Xi, Mian; Lin, Steven H

    2017-07-01

    Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.

  5. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegrün, Sabine, E-mail: sabine.levegruen@uni-due.de; Pöttgen, Christoph; Wittig, Andrea

    2013-07-15

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less

  6. Pelvic Nodal Radiotherapy in Patients With Unfavorable Intermediate and High-Risk Prostate Cancer: Evidence, Rationale, and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Lisa K.; Memorial Sloan-Kettering Cancer Center; Roach, Mack, E-mail: mroach@radonc.ucsf.ed

    2011-05-01

    Over the past 15 years, there have been three major advances in the use of external beam radiotherapy in the management of men with clinically localized prostate made. They include: (1) image guided (IG) three-dimensional conformal/intensity modulated radiotherapy; (2) radiation dose escalation; and (3) androgen deprivation therapy. To date only the last of these three advances have been shown to improve overall survival. The presence of occult pelvic nodal involvement could explain the failure of increased conformality and dose escalation to prolong survival, because the men who appear to be at the greatest risk of death from clinically localized prostatemore » cancer are those who are likely to have lymph node metastases. This review discusses the evidence for prophylactic pelvic nodal radiotherapy, including the key trials and controversies surrounding this issue.« less

  7. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  8. SU-E-T-278: Dose Conformity Index for the Target in a Multitarget Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harikrishnaperumal, Sudahar

    2015-06-15

    Purpose: The existing conformity index formulations are failing when multiple targets present outside the target of interest with same or different dose prescriptions. In the present study a novel methodology is introduced to solve this issue. Methods: The conformity index used by Nakamura et al (Int J Radiat Oncol Biol Phys 2001; 51(5):1313–1319) is taken as the base for this methodology. In this proposal, the prescription isodose volume (PIV) which normally includes the normal tissue and other target regions is restricted as PIV in annular regions of different thickness around the target of interest. The graphical line plotted between themore » thickness of annular region and the corresponding conformity index, will increase in the beginning and will reach a flat region, then it will increase again. The second increase in the conformity index depends basically on the distance between the targets, dose prescriptions, and size of the targets. The conformity index in the flat region should be the conformity index of the target of interest. This methodology was validated on dual target environment on a skull phantom in Multiplan planning system (Accuray Inc. Sunnyvale, USA) Results: When the surrounding target’s (sphere) size is changed from 1.5cm to 6cm diameter, the conformity index of the target of interest (3cm diameter) changed from 1.09 to 1.25. When the distance between the targets changed from 7.5cm to 2.5cm, the conformity index changed from 1.10 to 1.17. Similarly, when the prescribed dose changed from 25Gy to 50Gy the conformity index changed from 1.09 to 1.42. These values were above 2.0 when Nakamura et al formula was used. Conclusion: The proposed conformity index methodology eliminates the influence of surrounding targets to a greater extend. However, the limitations of this method should be studied further. Application of this method in clinical situations is the future scope.« less

  9. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Zhao, S; Chen, Y

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less

  10. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    NASA Astrophysics Data System (ADS)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.

  11. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems,more » Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.« less

  12. TU-FG-201-10: Quality Management of Accelerated Partial Breast Irradiation (APBI) Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, H; Lorio, V; Cernica, G

    2016-06-15

    Purpose: Since 2008, over 700 patients received high dose rate (HDR) APBI treatment at Virginia Hospital Center. The complexity involved in the planning process demonstrated a broad variation between patient geometry across all applicators, in relation to anatomical regions of interest. A quality management program instituting various metrics was implemented in March 2013 with the goal of ensuring an optimal plan is achieved for each patient. Methods: For each plan, an in-house complexity index, geometric conformity index, and plan quality index were defined. These indices were obtained for all patients treated. For patients treated after the implementation, the conformity indexmore » and quality index were maximized while other dosimetric limits, such as maximum skin and rib doses, were strictly kept. Subsequently, all evaluation parameters and applicator information were placed in a database for cross-evaluation with similar complexity. Results: Both the conformity and quality indices show good correlation with the complexity index. They decrease as complexity increases for all applicators. Multi lumen type balloon applicators demonstrate a minimal advantage over single lumen applicators in increasingly complex patient geometries, as compared to SAVI applicators which showed considerably greater advantage in these circumstances. After the implementation of the in-house planning protocol, there is a direct improvement of quality for SAVI plans. Conclusion: Due to their interstitial nature, SAVI devices show a better conformity in comparison to balloon-based devices regardless of the number of lumens, especially in complex cases. The quality management program focuses on optimizing indices by utilizing prior planning knowledge based on complexity levels. The database of indices assists in decision making and has subsequently aided in balancing the experience level among planners. This approach has made APBI planning more robust for patient care, with a measurable improvement in the plan quality.« less

  13. SU-C-BRB-02: Automatic Planning as a Potential Strategy for Dose Escalation for Pancreas SBRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Zheng, D; Ma, R

    Purpose: Stereotactic body radiation therapy (SBRT) has been suggested to provide high rates of local control for locally advanced pancreatic cancer. However, the close proximity of highly radiosensitive normal tissues usually causes the labor-intensive planning process, and may impede further escalation of the prescription dose. The present study evaluates the potential of an automatic planning system as a dose escalation strategy. Methods: Ten pancreatic cancer patients treated with SBRT were studied retrospectively. SBRT was delivered over 5 consecutive fractions with 6 ∼ 8Gy/fraction. Two plans were generated by Pinnacle Auto-Planning with the original prescription and escalated prescription, respectively. Escalated prescriptionmore » adds 1 Gy/fraction to the original prescription. Manually-created planning volumes were excluded in the optimization goals in order to assess the planning efficiency and quality simultaneously. Critical organs with closest proximity were used to determine the plan normalization to ensure the OAR sparing. Dosimetric parameters including D100, and conformity index (CI) were assessed. Results: Auto-plans directly generate acceptable plans for 70% of the cases without necessity of further improvement, and two more iterations at most are necessary for the rest of the cases. For the pancreas SBRT plans with the original prescription, autoplans resulted in favorable target coverage and PTV conformity (D100 = 96.3% ± 1.48%; CI = 0.88 ± 0.06). For the plans with the escalated prescriptions, no significant target under-dosage was observed, and PTV conformity remains reasonable (D100 = 93.3% ± 3.8%, and CI = 0.84 ± 0.05). Conclusion: Automatic planning, without substantial human-intervention process, results in reasonable PTV coverage and PTV conformity on the premise of adequate OAR sparing for the pancreas SBRT plans with escalated prescription. The results highlight the potential of autoplanning as a dose escalation strategy for pancreas SBRT treatment planning. Further investigations with a larger number of patients are necessary. The project is partially supported by Philips Medical Systems.« less

  14. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Han, E; Liang, X

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less

  15. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    NASA Astrophysics Data System (ADS)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG consensus guidelines.

  16. SU-E-T-229: Craniospinal Radiotherapy Planning with VMAT, Two First Years Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lliso, F; Carmona, V; Gimeno, J

    2015-06-15

    Purpose: To describe how we moved to VMAT in the craniospinal radiotherapy planning process, the actual procedure details, and the results for the patients treated. Methods: Twelve patients underwent craniospinal irradiation with the new procedure, based on the paper by Lee et al. (IJROBP 82, 2012), with some additional modifications. Patients were treated in supine position in Varian Clinac iX linacs with 6 MV RapidArc; prescription doses ranged from 23.4 to 40 Gy (13 to 20 fractions); depending on the PTV length, 2 or 3 isocenters were used, all coordinates being equal except the longitudinal one, setting a few centimeter-longmore » overlapping region; 2 arcs (RA) sharing isocentre for the cranial region, RA1 encompassing cranium and superior spinal region, and RA2 intended to improve conformity, only for cranium; for spine, 1 or 2 isocenters were employed; optimization was performed with Eclipse (V 13.0) using AAA algorithm, establishing sets of optimization parameters to give high conformity while sparing OAR. In pediatric patients, homogeneous irradiation of the vertebrae was also required.Conformity (CI) and heterogeneity (HI) indices (same as Lee et al.), and mean and maximum doses for OAR were calculated. Several pre-treatment verification methods were used: Octavius4D (PTW) for each isocentre, point dose at the junction region, Portal Dosimetry (when possible), and independent MU verification software (Diamond, PTW). Results: CI median value was 1.02 (0.99–1.07) and HI, 1.07 (1.06–1.09); a great reduction was observed for CI and OAR mean doses with respect to Lee et al. data; median maximum eye lens dose was 7.3 Gy (4.0–12.0); mean LungV20Gy was 1.9%; in children, vertebrae were homogeneously irradiated (D95%=20.8 Gy, Dmean= 23.2 Gy).All pre-treatment verifications were found within our action levels except for Portal Dosimetry. Conclusion: A RapidArc planning process for craniospinal axis irradiation has been implemented with significant advantages on conformity, homogeneity, feasibility and efficiency. and increase brain tissue sparing. Variations in volume decrease may be related to shape or location of the tumor.« less

  17. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    PubMed

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV coverage and the sparing of the lung and heart. However, the CK may be used to reduce high doses received by the NTBTV more efficiently. Robotic stereotactic radiotherapy may be used for APBI to more efficiently spare the NTBTV and improve cosmetic results of APBI.

  18. Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer.

    PubMed

    Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-05-06

    Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two-arc plans. The comparison of VMATI with fixed-field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p = 0.47), PTV mean (p = 0.12), PTV D95 and PTV V9547.5Gy (95%) (p = 0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p = 0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p = 0.04). VMATI achieved lower lung V20 (p = 0.05), whereas lung V5 (p = 0.35) and mean lung dose (p = 0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p = 5.8E-10) and MUs reduced by up to 16% (p = 0.001). Integral dose was not statistically different between the two planning techniques (p = 0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p = 0.76), PTV D95 (p = 0.95), mean PTV dose (p = 0.78), conformation number (CN) (p = 0.26), and MUs (p = 0.1). However, the treatment delivery time for VMATII increased significantly by two-fold (p = 3.0E-11) compared to VMATI. VMAT-based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single-arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI.

  19. Analysis of non-conformity in continuous quality improvement in a Hospital Radiopharmacy Unit.

    PubMed

    Martinez, T; Contreras, J F

    To perform an analysis of non-conformities (NC) registered between 2012 and 2015, as a part of the review process of the Quality Management System of our Radiopharmacy Unit. Non-conformities registered in the Radiopharmacy Unit in the period 2012-2015 are analyzed and sorted by their impact on the process (critical, major, and minor), cause/origin of the non-conformity, and nature of radiopharmaceutical (PET vs. SPECT). A decrease in the NC of 20% per year is observed, especially in PET radiopharmaceuticals. Non-conformities in SPECT make up about 62-84% of the total of the NC, mainly related to the high number of doses prepared and not administered, which is about 1.5-3% in the ratio of non-administered/administered per year. Analysis of the NC can be considered as a useful indicator in assessment of quality assurance, and in our particular case, the decrease in the registration of NC indicates effectiveness in the corrective and preventive actions implemented. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  20. SU-F-BRB-04: Comparison of Coplanar VMAT, Non-Coplanar VMAT, and 4π Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; Nguyen, D; Tran, A

    2015-06-15

    Purpose: The 4π non-coplanar radiotherapy delivery technique has demonstrated significantly better normal tissue sparing and dose conformality than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The non-coplanar basis of 4π is incorporated into VMAT treatment planning to compare its effect on plan quality. Methods: Clinical stereotactic body radiation therapy plans for 9 liver patients treated with 30–60 Gy using coplanar VMAT (cVMAT) were re-planned using non-coplanar VMAT (nVMAT) with 3 arcs and 4 π with 20 intensity-modulated non-coplanarmore » fields. All plans were optimized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV), and nVMAT and 4π plans were tailored to match the maximum and mean PTV dose from the clinical plan. The conformality index (CI), 50% dose spillage volume (R50), normal liver volume receiving >15 Gy (VL>15), and doses to organs at risk (OARs) were compared for all three treatment plans. Results: Compared to cVMAT, the nVMAT and 4π plans reduced VL>15 by an average of 30.6 cm3 and 96.3 cm3, respectively. The average CI was also reduced from 1.22 (cVMAT) to 1.17 (nVMAT) and 1.14 (4π), indicating higher conformality in the same order. Similarly, R50 was reduced from 3.87 (cVMAT) to 3.58 (nVMAT) and 2.74 (4π). With the exception of the mean right kidney dose, which increased by an average of only 0.6 Gy for nVMAT, the dose differences to OARs were not statistically significant between the two VMAT plans. 4π plans either significantly decreased or maintained OAR doses. Conclusion: While the manual selection of intuitive non-coplanar arcs does show some improvement over coplanar VMAT, the automated beam selection for 4π still results in superior plan quality. This project is supported in part by Varian Medical Systems and NIH R43 CA183390.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Amy T.Y., E-mail: changty@ha.org.hk; Hung, Albert W.M.; Cheung, Fion W.K.

    Purpose: Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. Methods and Materials: RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 weremore » then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. Results: RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). Conclusions: This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients.« less

  2. Dosimetric benefits of automation in the treatment of lower thoracic esophageal cancer: Is manual planning still an alternative option?

    PubMed

    Li, Xiadong; Wang, Lu; Wang, Jiahao; Han, Xu; Xia, Bing; Wu, Shixiu; Hu, Weigang

    2017-01-01

    This study aimed to design automated volumetric-modulated arc therapy (VMAT) plans in Pinnacle auto-planning and compare it with manual plans for patients with lower thoracic esophageal cancer (EC). Thirty patients with lower thoracic EC were randomly selected for replanning VMAT plans using auto-planning in Pinnacle treatment planning system (TPS) version 9.10. Historical plans of these patients were then compared. Dose-volume histogram (DVH) statistics, dose uniformity, and dose homogeneity were analyzed to evaluate treatment plans. Auto-planning was superior in terms of conformity index (CI) and homogeneity index (HI) for planning target volume (PTV), significantly improving 8.2% (p = 0.013) and 25% (p = 0.007) compared with manual planning, respectively, and decreasing dose of heart and liver irradiated by 20 to 40 Gy and 5 to 30 Gy, respectively (p < 0.05). Meanwhile, auto-planning further reduced the maximum dose (D max ) of spinal cord by 6.9 Gy compared with manual planning (p = 0.000). Additionally, manual planning showed the significantly lower low-dose volume (V 5 ) for the lung (p = 0.005). For auto-planning, the V 5 of the lung was significantly associated with the relative volume index (the volume ratio of PTV to the lung), and the correlation coefficient (R) and p-value were 0.994 and 0.000. Pinnacle auto-planning achieved superior target conformity and homogeneity and similar target coverage compared with historical manual planning. Most of organs at risk (OARs) sparing was significantly improved by auto-planning except for the V 5 of the lung, and the low dose distribution was highly associated with PTV volume and lung volume in auto-planning. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  3. SU-F-T-520: Dosimetric Comparison of Radiation Treatment Plans for Whole Breast Irradiation Between 3D Conformal in Prone and Supine Positions Vs. VMAT and IMRT in Supine Positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano Buele, A; Parsai, E

    Purpose: The target volume for Whole Breast Irradiation (WBI) is dictated by location of tumor mass, breast tissue distribution, and involvement of lymph nodes. Dose coverage and Organs at Risk (OARs) sparing can be difficult to achieve in patients with unfavorable thoracic geometries. For these cases, inverse-planned and 3D-conformal prone treatments can be alternatives to traditional supine 3D-conformal plans. A dosimetric comparison can determine which of these techniques achieve optimal target coverage while sparing OARs. Methods: This study included simulation datasets for 8 patients, 5 of whom were simulated in both supine and prone positions. Positioning devices included breast boardsmore » and Vaclok bags for the supine position, and prone breast boards for the prone position. WBI 3-D conformal plans were created for patients simulated in both positions. Additional VMAT and IMRT WBI plans were made for all patients in the supine position. Results: Prone and supine 3D conformal plans had comparable PTV coverage. Prone 3D conformal plans received a significant 50% decrease to V20, V10, V5 and V30% for the ipsilateral lung in contrast to the supine plans. The heart also experienced a 10% decrease in maximum dose in the prone position, and V20, V10, V5 and V2 had significantly lower values than the supine plan. Supine IMRT and VMAT breast plans obtained comparable PTV coverage. The heart experienced a 10% decrease in maximum dose with inverse modulated plans when compared to the supine 3D conformal plan, while V20, V10, V5 and V2 showed higher values with inverse modulated plans than with supine 3D conformal plans. Conclusion: Prone 3D-conformal, and supine inverse planned treatments were generally superior in sparing OARs to supine plans with comparable PTV coverage. IMRT and VMAT plans offer sparing of OARs from high dose regions with an increase of irradiated volume in the low dose regions.« less

  4. [Technique of complex mammary irradiation: Mono-isocentric 3D conformational radiotherapy and helical tomotherapy].

    PubMed

    Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S

    2017-12-01

    To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.

    PubMed

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji

    2013-03-01

    Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.

  6. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokrantz, Rasmus, E-mail: bokrantz@kth.se, E-mail: rasmus.bokrantz@raysearchlabs.com; Miettinen, Kaisa

    2015-10-15

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation ofmore » some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.« less

  7. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    PubMed

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  8. Comparison between the four-field box and field-in-field techniques for conformal radiotherapy of the esophagus using dose-volume histograms and normal tissue complication probabilities.

    PubMed

    Allaveisi, Farzaneh; Moghadam, Amir Nami

    2017-06-01

    We evaluated and compared the performance of the field-in-field (FIF) to that of the four-field box (4FB) technique regarding dosimetric and radiobiological parameters for radiotherapy of esophageal carcinoma. Twenty patients with esophageal cancer were selected. For each patient, two treatment plans were created: 4FB and FIF. The parameters compared included the conformity index (CI), homogeneity index (HI), D mean , D max , tumor control probability (TCP), V 20Gy and V 30Gy of the heart and lungs, normal tissue complication probability (NTCP), and monitor units per fraction (MU/fr). A paired t-test analysis did not show any significant differences (p > 0.05) between the two techniques in terms of the CI and TCP. However, the HI significantly improved when the FIF was applied. D max of the PTV, lung, and spinal cord were also significantly better with the FIF. Moreover, the lung V 20Gy as well as the NTCPs of the lung and spinal cord significantly reduced when the FIF was used, and the MU/fr was significantly decreased. The FIF showed evident advantages over 4FB: a more homogeneous dose distribution, lower D max values, and fewer required MUs, while it also retained PTV dose conformality. FIF should be considered as a simple technique to use clinically in cases with esophageal malignancies, especially in clinics with no IMRT.

  9. Sci—Sat AM: Stereo — 02: Implementation of a VMAT class solution for kidney SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, M; Lalani, N; Korol, R

    An emerging treatment option for inoperable primary renal cell carcinoma and oligometastatic adrenal lesions is stereotactic body radiation therapy (SBRT). At our center, kidney SBRT treatments were originally planned with IMRT. The goal was to plan future patients using VMAT to improve treatment delivery efficiency. The purpose of this work was twofold: 1) to develop a VMAT class solution for the treatment of kidney SBRT; and, 2) to assess VMAT plan quality when compared to IMRT plans. Five patients treated with IMRT for kidney SBRT were reviewed and replanned in Pinnacle using a single VMAT arc with a 15° collimatormore » rotation, constrained leaf motion and 4° gantry spacing. In comparison, IMRT plans utilized 7–9 6MV beams, with various collimator rotations and up to 2 non-coplanar beams for maximum organ-at-risk (OAR) sparing. Comparisons were made concerning target volume conformity, homogeneity, dose to OARs, treatment time and monitor units (MUs). There was no difference in MUs; however, VMAT reduced the treatment time from 13.0±2.6min, for IMRT, to 4.0±0.9min. The collection of target and OAR constraints and SmartArc parameters, produced a class solution that generated VMAT plans with increased target homogeneity and improved 95% conformity index calculated at < 1.2. In general, the VMAT plans displayed a reduced maximum point dose to nearby OARs with increased intermediate dose to distant OARs. Overall, the introduction of a VMAT class solution for kidney SBRT improves efficiency by reducing treatment planning and delivery time.« less

  10. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Lin, M; Chen, L

    Purpose: Recent in vitro and in vivo experimental findings provided strong evidence that pulsed low-dose-rate radiotherapy (PLDR) produced equivalent tumor control as conventional radiotherapy with significantly reduced normal tissue toxicities. This work aimed to implement a PLDR clinical protocol for the management of recurrent cancers utilizing IMRT and VMAT. Methods: Our PLDR protocol requires that the daily 2Gy dose be delivered in 0.2Gy×10 pulses with a 3min interval between the pulses. To take advantage of low-dose hyper-radiosensitivity the mean dose to the target is set at 0.2Gy and the maximum dose is limited to 0.4Gy per pulse. Practical planning strategiesmore » were developed for IMRT and VMAT: (1) set 10 ports for IMRT and 10 arcs for VMAT with each angle/arc as a pulse; (2) set the mean dose (0.2Gy) and maximum dose (0.4Gy) to the target per pulse as hard constraints (no constraints to OARs); (3) select optimal port/arc angles to avoid OARs; and (4) use reference structures in or around target/OARs to reduce maximum dose to the target/OARs. IMRT, VMAT and 3DCRT plans were generated for 60 H and N, breast, lung, pancreas and prostate patients and compared. Results: All PLDR treatment plans using IMRT and VMAT met the dosimetry requirements of the PLDR protocol (mean target dose: 0.20Gy±0.01Gy; maximum target dose < 0.4Gy). In comparison with 3DCRT, IMRT and VMAT exhibited improved target dose conformity and OAR dose sparing. A single arc can minimize the difference in the target dose due to multi-angle incidence although the delivery time is longer than 3DCRT and IMRT. Conclusion: IMRT and VMAT are better modalities for PLDR treatment of recurrent cancers with superior target dose conformity and critical structure sparing. The planning strategies/guidelines developed in this work are practical for IMRT/VMAT treatment planning to meet the dosimetry requirements of the PLDR protocol.« less

  12. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  14. Modality comparison for small animal radiotherapy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  15. Is it necessary to plan with safety margins for actively scanned proton therapy?

    NASA Astrophysics Data System (ADS)

    Albertini, F.; Hug, E. B.; Lomax, A. J.

    2011-07-01

    In radiation therapy, a plan is robust if the calculated and the delivered dose are in agreement, even in the case of different uncertainties. The current practice is to use safety margins, expanding the clinical target volume sufficiently enough to account for treatment uncertainties. This, however, might not be ideal for proton therapy and in particular when using intensity modulated proton therapy (IMPT) plans as degradation in the dose conformity could also be found in the middle of the target resulting from misalignments of highly in-field dose gradients. Single field uniform dose (SFUD) and IMPT plans have been calculated for different anatomical sites and the need for margins has been assessed by analyzing plan robustness to set-up and range uncertainties. We found that the use of safety margins is a good way to improve plan robustness for SFUD and IMPT plans with low in-field dose gradients but not necessarily for highly modulated IMPT plans for which only a marginal improvement in plan robustness could be detected through the definition of a planning target volume.

  16. SU-E-T-625: Potential for Reduced Radiation Induced Toxicity for the Treatment of Inoperable Non-Small-Cell Lung Cancer Using RapidArc Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Sood, S; Badkul, R

    2015-06-15

    Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) withmore » 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.« less

  17. SU-G-BRC-14: Multi-Lesion, Multi-Rx, Brain Radiosurgery with Novel Single Isocenter Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honig, N; Alani, S; Schlocker, A

    Purpose: There is a strong trend to treat multiple brain metastases with radiosurgery rather than whole brain irradiation. This feasibility study investigates a novel planning technique for radio-surgical treatment of multiple brain lesions with differing dose prescriptions, a single isocenter, and dynamic conformal arcs. The novel technique will be compared to the well-established single-isocenter volumetric modulated arc therapy (VMAT) technique commonly used for treating brain lesions. Methods: Six patients with metastatic brain lesions were selected for a prospective treatment planning study to evaluate Interdigitating MLC Dynamic Conformal Arc (IMDCA) technique. Arcs were planned for simultaneous irradiation to maximize beam deliverymore » efficiency. To accommodate varying PTV dose prescriptions, selected arcs were re-irradiated in reverse. Beam weights were adjusted until all prescription constraints were met. The number of lesions ranged between 2 to 4 (mode = 3). For comparison, SRS VMAT plans were generated utilizing an established single-isocenter, 3 arc planning template. All plans were compared by means of Paddick conformity index (PCI), RTOG Conformity Index (RCI), gradient index (GI), and the normal brain volume receiving 10% (V10) of the highest prescription dose. The monitor units and delivery time were tabulated for each plan. Results: IMDCA achieved conformal plans (PCI = 0.72±0.03, RCI = 1.33±0.03) with steep dose fall-off (GI = 3.79±0.03) on average for all of the plans evaluated. The VMAT plans had slightly better conformity (PCI = 0.85 ± 0.03, RCI = 1.13 ± 0.03) than IMDCA, but overall worse GI (4.29 ± 0.06). IMDCA plans had lower V10% values, required 50% fewer MUs, and had 34% shorter beam delivery time on average compared to VMAT plans. Conclusion: IMDCA plans with varying dose prescriptions for multiple lesions, had comparable dosimetric coverage as VMAT plans, but were obtained with significantly lower integral dose, fewer monitor units, and quicker delivery time.« less

  18. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Anders T., E-mail: andehans@rm.dk; Lukacova, Slavka; Lassen-Ramshad, Yasmin

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar technique, for delivering irradiation to the cranial part and compare it with 3 other techniques and previously published results. A total of 13 patients who had previously received craniospinal irradiation with standard conformal x-ray technique were reviewed. New treatment plans were generated for each patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanarmore » volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore, compared with the standard technique, the IMRT techniques reduced the total calculated radiation dose that was delivered to the normal tissue, whereas the VMAT technique increased this dose. Additionally, the coverage of the target was significantly improved by the noncoplanar IMRT technique. Compared with the standard technique, the coplanar IMRT and the VMAT technique did not improve the coverage of the target significantly. All the new planning techniques increased the number of monitor units (MU) used—the noncoplanar IMRT technique by 99%, the coplanar IMRT technique by 122%, and the VMAT technique by 26%—causing concern for leak radiation. The noncoplanar IMRT technique covered the target better and decreased doses to organs at risk compared with the other techniques. All the new techniques increased the number of MU compared with the standard technique.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girigesh, Y; Kumar, L; Raman, K

    Purpose: Aim of this study is to determine the dosimetric influence of Filtered and Flatting Filter Free Photon Beam of 10 MV energy on RA planning for Ca. Cervix. Methods: CT data sets of eleven patients reported with carcinoma cervix were used for RA planning for 10MV -FFB and 10MV-FFFB. RA plans were generated using two full arcs.All RA plans were generated to deliver a dose of 50.4Gy in 28 fractions for PTV and ALARA for OAR’s. All plans were analysed for PTV Coverage, conformity Index, homogeneity index, dose to OAR’s, integral dose to normal tissue and total monitor unitsmore » were studied. Results: DVH was used to evaluate RA plans for both 10MV-FFB and 10MV-FFFB photon beam. Planning results show a comparable PTV coverage for both energies. Results shows volume of PTV receiving prescription dose were 95.10+ 0.09% and 95.09 +0.11%, and volume of PTV receiving a dose of 107% is 0.45+0.96% and 5.25+8.9%, homogeneity index (HI) were 1.051+0.007 and 1.066+0.008, Conformity Index(CI) were 1.003+0.019 and 1.012+0.013, Mean Integral dose were 2.65+0.34 and 2.60+0.33(*10−5Gy.cm3) for 10MV-FFB and 10MV-FFFB respectively. 10MV-FB shows statistically significant (p<0.05) improvement in mean doses to bladder, rectum, bowel and mean total number of MU’s and also shows remarkable decrease in mean total no. of MU’s by 43.7% in comparison to 10MV-FFFB. There is statistically significant (p<0.05) difference found in CI and HI for 10MV-FB in comparison to 10MV -FFF beam. 10MV-FFFB shows statistically significant (p<0.05) for mean NTID and delivers 1.65 % less NTID in comparison to 10 MV- FB. Conclusion: 10MV-FB is superior to 10MV-FFFB for rapid arc planning in case of Cervix carcinomas, it offers better target coverage and OAR’s sparing, comparable mean Integral dose to normal tissues and 10 MV- FB also produced highly conformal and homogeneous dose distribution in comparison to 10MV-FFFB.« less

  20. IMRT and 3D conformal radiotherapy with or without elective nodal irradiation in locally advanced NSCLC: A direct comparison of PET-based treatment planning.

    PubMed

    Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian

    2016-02-01

    The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.

  1. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  2. Iridium-Knife: Another knife in radiation oncology.

    PubMed

    Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos

    Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Dosimetric comparison between proton beam therapy and photon radiation therapy for locally advanced non-small cell lung cancer.

    PubMed

    Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo

    2016-08-10

    To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less

  5. Predicting treatment related imaging changes (TRICs) after radiosurgery for brain metastases using treatment dose and conformality metrics.

    PubMed

    Taylor, B Frazier; Knisely, Jonathan P; Qian, Jack M; Yu, James B; Chiang, Veronica L

    2016-01-01

    Treatment-related imaging changes (TRICs) after stereotactic radiosurgery (SRS) involves the benign transient enlargement of radiographic lesions after treatment. Identifying the radiation dose volumes and conformality metrics associated with TRICs for different post-treatment periods would be helpful and improve clinical decision making. 367 metastases in 113 patients were treated using Gamma Knife SRS between 1/1/2007-12/31/2009. Each metastasis was measured at each imaging follow-up to detect TRICs (defined as ≥ 20% increase in volume). Fluctuations in small volume lesions (less than 108 mm 3 ) were ignored given widely variable conformity indices (CI) for small volumes. The Karolinska Adverse Radiation Effect (KARE) factor, Paddick's CI, Shaw's CI, tumor volume (TV), 10 Gy (V10) and 12 Gy (V12) volumes, and prescription isodose volume (PIV) were calculated. From 0-6 months, all measures correlated with the incidence of TRICs (p<.001), except KARE, which was inversely correlated. During the 6-12 month period all measures except KARE were still correlated. Beyond 12 months, no correlation was found between any of the measures and the development of TRICs. All metrics except KARE were associated with TRICs from 0-12 months only. Additional patient and treatment factors may become dominant at greater times after SRS.

  6. Intensity-modulated radiotherapy improves lymph node coverage and dose to critical structures compared with three-dimensional conformal radiation therapy in clinically localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang-Chesebro, Alice; Xia Ping; Coleman, Joy

    2006-11-01

    Purpose: The aim of this study was to quantify gains in lymph node coverage and critical structure dose reduction for whole-pelvis (WP) and extended-field (EF) radiotherapy in prostate cancer using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3DCRT) for the first treatment phase of 45 Gy in the concurrent treatment of lymph nodes and prostate. Methods and Materials: From January to August 2005, 35 patients with localized prostate cancer were treated with pelvic IMRT; 7 had nodes defined up to L5-S1 (Group 1), and 28 had nodes defined above L5-S1 (Group 2). Each patient had 2 plans retrospectively generated:more » 1 WP 3DCRT plan using bony landmarks, and 1 EF 3DCRT plan to cover the vascular defined volumes. Dose-volume histograms for the lymph nodes, rectum, bladder, small bowel, and penile bulb were compared by group. Results: For Group 1, WP 3DCRT missed 25% of pelvic nodes with the prescribed dose 45 Gy and missed 18% with the 95% prescribed dose 42.75 Gy, whereas WP IMRT achieved V{sub 45Gy} = 98% and V{sub 42.75Gy} = 100%. Compared with WP 3DCRT, IMRT reduced bladder V{sub 45Gy} by 78%, rectum V{sub 45Gy} by 48%, and small bowel V{sub 45Gy} by 232 cm{sup 3}. EF 3DCRT achieved 95% coverage of nodes for all patients at high cost to critical structures. For Group 2, IMRT decreased bladder V{sub 45Gy} by 90%, rectum V{sub 45Gy} by 54% and small bowel V{sub 45Gy} by 455 cm{sup 3} compared with EF 3DCRT. Conclusion: In this study WP 3DCRT missed a significant percentage of pelvic nodes. Although EF 3DCRT achieved 95% pelvic nodal coverage, it increased critical structure doses. IMRT improved pelvic nodal coverage while decreasing dose to bladder, rectum, small bowel, and penile bulb. For patients with extended node involvement, IMRT especially decreases small bowel dose.« less

  7. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental palladium, Pd(0), will be discussed in detail. Directional HDR has the potential to improve upon current treatments, providing better dose conformality to the target volume, while maintaining the benefits of HDR applications.

  8. Dose conformation to the spine during palliative treatments using dynamic wedges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com; Herndon, R. Craig; Kaczor, Joseph G.

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination ofmore » wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.« less

  9. CT-image-based conformal brachytherapy of breast cancer. The significance of semi-3-D and 3-D treatment planning.

    PubMed

    Polgár, C; Major, T; Somogyi, A; Takácsi-Nagy, Z; Mangel, L C; Forrai, G; Sulyok, Z; Fodor, J; Németh, G

    2000-03-01

    To compare the conventional 2-D, the simulator-guided semi-3-D and the recently developed CT-guided 3-D brachytherapy treatment planning in the interstitial radiotherapy of breast cancer. In 103 patients with T1-2, N0-1 breast cancer the tumor bed was clipped during breast conserving surgery. Fifty-two of them received boost brachytherapy after 46 to 50 Gy teletherapy and 51 patients were treated with brachytherapy alone via flexible implant tubes. Single, double and triple plane implant was used in 6, 89 and 8 cases, respectively. The dose of boost brachytherapy and sole brachytherapy prescribed to dose reference points was 3 times 4.75 Gy and 7 times 5.2 Gy, respectively. The positions of dose reference points varied according to the level (2-D, semi-3-D and 3-D) of treatment planning performed. The treatment planning was based on the 3-D reconstruction of the surgical clips, implant tubes and skin points. In all cases the implantations were planned with a semi-3-D technique aided by simulator. In 10 cases a recently developed CT-guided 3-D planning system was used. The semi-3-D and 3-D treatment plans were compared to hypothetical 2-D plans using dose-volume histograms and dose non-uniformity ratios. The values of mean central dose, mean skin dose, minimal clip dose, proportion of underdosaged clips and mean target surface dose were evaluated. The accuracy of tumor bed localization and the conformity of planning target volume and treated volume were also analyzed in each technique. With the help of conformal semi-3-D and 3-D brachytherapy planning we could define reference dose points, active source positions and dwell times individually. This technique decreased the mean skin dose with 22.2% and reduced the possibility of geographical miss. We could achieve the best conformity between the planning target volume and the treated volume with the CT-image based 3-D treatment planning, at the cost of worse dose homogeneity. The mean treated volume was reduced by 25.1% with semi-3-D planning, however, it was increased by 16.2% with 3-D planning, compared to the 2-D planning. The application of clips into the tumor bed and the conformal (semi-3-D and 3-D) planning help to avoid geographical miss. CT is suitable for 3-D brachytherapy planning. Better local control with less side effects might be achieved with these new techniques. Conformal 3-D brachytherapy calls for new treatment planning concepts, taking the irregular 3-D shape of the target volume into account. The routine clinical application of image-based 3-D brachytherapy is a real aim in the very close future.

  10. Treatment planning and dosimetric comparison study on two different volumetric modulated arc therapy delivery techniques

    PubMed Central

    Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan

    2012-01-01

    Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques. Conclusion The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. PMID:24416535

  11. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less

  12. Comparison of the progressive resolution optimizer and photon optimizer in VMAT optimization for stereotactic treatments.

    PubMed

    Liu, Han; Sintay, Benjamin; Pearman, Keith; Shang, Qingyang; Hayes, Lane; Maurer, Jacqueline; Vanderstraeten, Caroline; Wiant, David

    2018-05-20

    The photon optimization (PO) algorithm was recently released by Varian Medical Systems to improve volumetric modulated arc therapy (VMAT) optimization within Eclipse (Version 13.5). The purpose of this study is to compare the PO algorithm with its predecessor, progressive resolution optimizer (PRO) for lung SBRT and brain SRS treatments. A total of 30 patients were selected retrospectively. Previously, all the plans were generated with the PRO algorithm within Eclipse Version 13.6. In the new version of PO algorithm (Version 15), dynamic conformal arcs (DCA) were first conformed to the target, then VMAT inverse planning was performed to achieve the desired dose distributions. PTV coverages were forced to be identical for the same patient for a fair comparison. SBRT plan quality was assessed based on selected dose-volume parameters, including the conformity index, V 20 for lung, V 30 Gy for chest wall, and D 0.035 cc for other critical organs. SRS plan quality was evaluated based on the conformity index and normal tissue volumes encompassed by the 12 and 6 Gy isodose lines (V 12 and V 6 ). The modulation complexity score (MCS) was used to compare plan complexity of two algorithms. No statistically significant differences between the PRO and PO algorithms were found for any of the dosimetric parameters studied, which indicates both algorithms produce comparable plan quality. Significant improvements in the gamma passing rate (increased from 97.0% to 99.2% for SBRT and 96.1% to 98.4% for SRS), MCS (average increase of 0.15 for SBRT and 0.10 for SRS), and delivery efficiency (MU reduction of 29.8% for SBRT and 28.3% for SRS) were found for the PO algorithm. MCS showed a strong correlation with the gamma passing rate, and an inverse correlation with total MUs used. The PO algorithm offers comparable plan quality to the PRO, while minimizing MLC complexity, thereby improving the delivery efficiency and accuracy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Sci-Thur PM – Brachytherapy 06: 3D Printed Surface Applicators for High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Scott; Yewondwossen, Mammo; Robar, James

    Purpose: The purpose of this work is to develop a new applicator for administering high dose rate (HDR) brachytherapy using 3D printing technology. Primary advantages of using a 3D printed applicator will be to offer a more streamlined approach for therapists and patients while achieving better conformity, reproducibility, and patient specific applicators. Methods: A phantom study was conducted to measure the effectiveness of a 3D printed surface applicator by analyzing tumours on three locations of the body: the foot, nose, and scalp. The applicator was designed using Eclipse and further modified using Blender to create the catheter tunnels before beingmore » printed on a Lulzbot Taz 5 3D printer. A radiation plan was made using Oncentra Brachytherapy for a control treatment option using Freiburg Flaps and one with the novel method of a 3D printed applicator. A comparative analysis was made using D90, D100, V100, V150, and V200 Results: The 3D printed applicator showed comparable dose coverage with significant improvements on highly irregular surfaces when analyzed against a plan made using Freiburg Flaps. Although both plans exhibited complete tumour coverage, the 3D applicator showed improvements in D90 and V150 and the 3D applicator had a dose homogeneity index (DHI) of 0.99 compared to a DHI of 0.97 for the control. Therapist prep time also dropped significantly due to the lack of need for a thermoplastic mesh. Conclusions: 3D printed applicators for treatment of superficial sites proved to offer more patient convenience, less prep time, better conformity and tighter margins.« less

  14. SU-F-T-600: Influence of Acuros XB and AAA Dose Calculation Algorithms On Plan Quality Metrics and Normal Lung Doses in Lung SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaparpalvi, R; Mynampati, D; Kuo, H

    Purpose: To study the influence of superposition-beam model (AAA) and determinant-photon transport-solver (Acuros XB) dose calculation algorithms on the treatment plan quality metrics and on normal lung dose in Lung SBRT. Methods: Treatment plans of 10 Lung SBRT patients were randomly selected. Patients were prescribed to a total dose of 50-54Gy in 3–5 fractions (10?5 or 18?3). Doses were optimized accomplished with 6-MV using 2-arcs (VMAT). Doses were calculated using AAA algorithm with heterogeneity correction. For each plan, plan quality metrics in the categories- coverage, homogeneity, conformity and gradient were quantified. Repeat dosimetry for these AAA treatment plans was performedmore » using AXB algorithm with heterogeneity correction for same beam and MU parameters. Plan quality metrics were again evaluated and compared with AAA plan metrics. For normal lung dose, V{sub 20} and V{sub 5} to (Total lung- GTV) were evaluated. Results: The results are summarized in Supplemental Table 1. PTV volume was mean 11.4 (±3.3) cm{sup 3}. Comparing RTOG 0813 protocol criteria for conformality, AXB plans yielded on average, similar PITV ratio (individual PITV ratio differences varied from −9 to +15%), reduced target coverage (−1.6%) and increased R50% (+2.6%). Comparing normal lung doses, the lung V{sub 20} (+3.1%) and V{sub 5} (+1.5%) were slightly higher for AXB plans compared to AAA plans. High-dose spillage ((V105%PD - PTV)/ PTV) was slightly lower for AXB plans but the % low dose spillage (D2cm) was similar between the two calculation algorithms. Conclusion: AAA algorithm overestimates lung target dose. Routinely adapting to AXB for dose calculations in Lung SBRT planning may improve dose calculation accuracy, as AXB based calculations have been shown to be closer to Monte Carlo based dose predictions in accuracy and with relatively faster computational time. For clinical practice, revisiting dose-fractionation in Lung SBRT to correct for dose overestimates attributable to algorithm may very well be warranted.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xiaodong, E-mail: lxdctopone@sina.com; Ni, Lingqin; Hu, Wei

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 tomore » 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.« less

  16. Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, Alexandra, E-mail: alexandra-moignier@uiowa.edu; Gelover, Edgar; Wang, Dongxu

    Purpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT). Methods and Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board–approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets. The clinically delivered plans were reproduced with uncollimated plans in terms of target coverage and organ at risk (OAR) sparingmore » to ensure a clinically relevant starting point, and collimated plans were generated to improve the OAR sparing while maintaining target coverage. Physical and biological comparison metrics, such as dose distribution conformity, mean and maximum doses, normal tissue complication probability, and risk of secondary brain cancer, were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 13.7% (95% confidence interval [CI] 11.6%-15.7%; P<.0001) and 25.1% (95% CI 16.8%-33.4%; P<.001), respectively. This yielded an average reduction of 24.8% (95% CI 0.8%-48.8%; P<.05) for the brain necrosis normal tissue complication probability using the Flickinger model, and 25.1% (95% CI 16.8%-33.4%; P<.001) for the risk of secondary brain cancer. A general improvement of the OAR sparing was also observed. Conclusion: The lateral penumbra reduction afforded by the DCS increases the normal tissue sparing capabilities of PBS PT for brain cancer treatment while preserving target coverage.« less

  17. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  18. Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri-60Co unit, MR-guided LINAC, and conventional LINAC-based plans.

    PubMed

    Ramey, Stephen James; Padgett, Kyle R; Lamichhane, Narottam; Neboori, Hanmath J; Kwon, Deukwoo; Mellon, Eric A; Brown, Karen; Duffy, Melissa; Victoria, James; Dogan, Nesrin; Portelance, Lorraine

    2018-03-01

    This study aims to perform a dosimetric comparison of 2 magnetic resonance (MR)-guided radiation therapy systems capable of performing online adaptive radiation therapy versus a conventional radiation therapy system for pancreas stereotactic body radiation therapy. Ten cases of patients with pancreatic adenocarcinoma previously treated in our institution were used for this analysis. MR-guided tri-cobalt 60 therapy (MR-cobalt) and MR-LINAC plans were generated and compared with conventional LINAC (volumetric modulated arc therapy) plans. The prescription dose was 40 Gy in 5 fractions covering 95% of the planning tumor volume for the 30 plans. The same organs at risk (OARs) dose constraints were used in all plans. Dose-volume-based indices were used to compare PTV coverage and OAR sparing. The conformity index of 40 Gy in 5 fractions covering 95% of the planning tumor volume demonstrated higher conformity in both LINAC-based plans compared with MR-cobalt plans. Although there was no difference in mean conformity index between LINAC and MR-LINAC plans (1.08 in both), there was a large difference between LINAC and MR-cobalt plans (1.08 vs 1.52). Overall, 79%, 72%, and 78% of critical structure dosimetric constraints were met with LINAC, MR-cobalt, and MR-LINAC plans, respectively. The MR-cobalt plans delivered more doses to all OARs compared with the LINAC plans. In contrast, the doses to the OARs of the MR-LINAC plans were similar to LINAC plans except in 2 cases: liver mean dose (MR-LINAC, 2 .8 Gy vs LINAC, 2.1 Gy) and volume of duodenum receiving at least 15 Gy (MR-LINAC, 13.2 mL vs LINAC, 15.4 mL). Both differences are likely not clinically significant. This study demonstrates that dosimetrically similar plans were achieved with conventional LINAC and MR-LINAC, whereas doses to OARs were statistically higher for MR-cobalt compared with conventional LINAC plans because of low-dose spillage. Given the improved tumor-tracking capabilities of MR-LINAC, further studies should evaluate potential benefits of adaptive radiation therapy-capable MR-guided LINAC treatment. Copyright © 2018. Published by Elsevier Inc.

  19. A comprehensive dosimetric evaluation of using RapidArc volumetric‐modulated arc therapy for the treatment of early‐stage nasopharyngeal carcinoma

    PubMed Central

    Wong, Wicger; Leung, Lucullus H.T.; Yu, Peter K.N.; So, Ronald W.K.; Cheng, Ashley C.K.

    2012-01-01

    The purpose of this study was to investigate the potential benefits of using triple‐arc volumetric‐intensity modulated arc radiotherapy (RapidArc (RA)) for the treatment of early‐stage nasopharyngeal carcinoma (NPC). A comprehensive evaluation was performed including plan quality, integral doses, and peripheral doses. Twenty cases of stage I or II NPC were selected for this study. Nine‐field sliding window IMRT, double‐arc, and triple‐arc RA treatment plans were compared with respect to target coverage, dose conformity, critical organ sparing, and integral doses. Measurement of peripheral doses was performed using thermoluminescent dosimeters in an anthropomorphic phantom. While similar conformity and target coverage were achieved by the three types of plans, triple‐arc RA produced better sparing of parotid glands and spinal cord than double‐arc RA or IMRT. Double‐arc RA plans produced slightly inferior parotid sparing and dose homogeneity than the other two delivery methods. The monitor units (MU) required for triple‐arc were about 50% less than those of IMRT plans, while there was no significant difference in the required MUs between triple‐arc and double‐arc RA plans. The peripheral dose in triple‐arc RA was found to be 50% less compared to IMRT near abdominal and pelvic region. Triple‐arc RA improves both the plan quality and treatment efficiency compared with IMRT for the treatment of early stage NPC. It has become the preferred choice of treatment delivery method for early stage NPC at our center. PACS numbers: 87.53.Bn, 87.55.D, 87.55.de, 87.55.dk, 87.56.ng PMID:23149781

  20. Feasibility of intensity-modulated radiotherapy for esophageal cancer in definite chemoradiotherapy.

    PubMed

    Hsieh, He-Yuan; Yeh, Hui-Ling; Hsu, Chung-Ping; Lin, Jin-Ching; Chuang, Cheng-Yen; Lin, Jai-Fu; Chang, Chen-Fa

    2016-07-01

    Esophageal cancer is a highly lethal malignancy, and its treatment has undergone a major evolution over the past 15 years. The objective of this study was to report our experience on the efficacy of definite chemoradiotherapy with the intensity-modulated radiotherapy (IMRT) technique in treating locally advanced esophageal cancer. From September 2004 to November 2011, 39 patients with biopsy-proven esophageal cancer, clinical stage T1-4N0-3M0 according to the American Joint Committee on Cancer 7(th) edition were enrolled. In these enrolled cases, either the tumor was unresectable or the patients refused surgery. All patients received a total radiation dose of 40-56 Gy in 20-28 fractions using IMRT planning. Five to seven radiation beam angles were designed according to the specific shape of the clinical target volume (CTV) and were delivered by a linear accelerator with photons of 6-10 MV energy. The gross tumor volume, CTV, planning target volume, and the organs at risk were outlined, and the homogeneity index (HI) and the conformity index (CI) were calculated. The treatment-related toxicities were also reviewed. The mean follow-up time was 22.4 months (range, 2.0-91.0 months). The 2- and 3-year overall survival rates were 30% and 28%, respectively. The most common Grade 3/4 toxicity was hematologic toxicity (43.6%). The IMRT plans showed high-dose homogeneity to the target, with a calculated HI of 0.9. The calculated CI of 0.8 also showed high conformity treatment dose to target within an acceptable dose range. For the total lungs, the average mean dose was 1313.7 cGy. The V5 and V20 of the total lungs were 67.8% and 23.4%, respectively. For the heart, the average mean dose was 2319.2 cGy. The V30 and V35 of the heart were 30.2% and 21.5%, respectively. Concurrent chemoradiotherapy using the IMRT technique for treating locally advanced unresectable esophageal cancer is feasible, with better conformity of target volume as well as improved sparing of organs at risk. Copyright © 2016. Published by Elsevier Taiwan LLC.

  1. Volumetric‐modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer

    PubMed Central

    Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles

    2013-01-01

    Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two‐arc plans. The comparison of VMATI with fixed‐field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p=0.47), PTV mean (p=0.12), PTV D95 and PTV V9547.5Gy (95%) (p=0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p=0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p=0.04). VMATI achieved lower lung V20 (p=0.05), whereas lung V5 (p=0.35) and mean lung dose (p=0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p=5.8E−10) and MUs reduced by up to 16% (p=0.001). Integral dose was not statistically different between the two planning techniques (p=0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p=0.76), PTV D95 (p=0.95), mean PTV dose (p=0.78), conformation number (CN) (p=0.26), and MUs (p=0.1). However, the treatment delivery time for VMATII increased significantly by two‐fold (p=3.0E−11) compared to VMATI. VMAT‐based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single‐arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI. PACS number: 87.53.Kn, 87.55.‐x PMID:23652258

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirix, Piet, E-mail: piet.dirix@uzleuven.b; Vanstraelen, Bianca; Jorissen, Mark

    Purpose: To evaluate clinical outcome and toxicity of postoperative intensity-modulated radiotherapy (IMRT) for malignancies of the nasal cavity and paranasal sinuses. Methods and Materials: Between 2003 and 2008, 40 patients with cancer of the paranasal sinuses (n = 34) or nasal cavity (n = 6) received postoperative IMRT to a dose of 60 Gy (n = 21) or 66 Gy (n = 19). Treatment outcome and toxicity were retrospectively compared with that of a previous patient group (n = 41) who were also postoperatively treated to the same doses but with three-dimensional conformal radiotherapy without intensity modulation, from 1992 tomore » 2002. Results: Median follow-up was 30 months (range, 4-74 months). Two-year local control, overall survival, and disease-free survival were 76%, 89%, and 72%, respectively. Compared to the three-dimensional conformal radiotherapy treatment, IMRT resulted in significantly improved disease-free survival (60% vs. 72%; p = 0.02). No grade 3 or 4 toxicity was reported in the IMRT group, either acute or chronic. The use of IMRT significantly reduced the incidence of acute as well as late side effects, especially regarding skin toxicity, mucositis, xerostomia, and dry-eye syndrome. Conclusions: Postoperative IMRT for sinonasal cancer significantly improves disease-free survival and reduces acute as well as late toxicity. Consequently, IMRT should be considered the standard treatment modality for malignancies of the nasal cavity and paranasal sinuses.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  4. Comparison of Planning Quality and Efficiency Between Conventional and Knowledge-based Algorithms in Nasopharyngeal Cancer Patients Using Intensity Modulated Radiation Therapy.

    PubMed

    Chang, Amy T Y; Hung, Albert W M; Cheung, Fion W K; Lee, Michael C H; Chan, Oscar S H; Philips, Helen; Cheng, Yung-Tang; Ng, Wai-Tong

    2016-07-01

    Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 were then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Brian C.; Noa, Kate; Wileyto, E. Paul

    Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to comparemore » plans for bowel and rectal volumes exposed to 35% (V{sub 35%}), 65% (V{sub 65%}), and 95% (V{sub 95%}) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V{sub 35%} {sub rectum}, V{sub 65%} {sub rectum}, and V{sub 95%} {sub rectum}; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V{sub 95%} {sub bowel}, V{sub 65%} {sub bowel}, or V{sub 35%} {sub bowel}). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V{sub 65%} {sub bowel} and V{sub 95%} {sub bowel} for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.« less

  6. SU-E-T-331: Dosimetric Impact of Multileaf Collimator Leaf Width On Stereotactic Radiosurgery (SRS) RapidArc Treatment Plans for Single and Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ahmad, S

    Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less

  7. Stereotactic Body Radiotherapy in the Management of Oligometastatic Disease.

    PubMed

    Ahmed, Kamran A; Torres-Roca, Javier F

    2016-01-01

    The treatment of oligometastatic disease has become common as imaging techniques have advanced and the management of systemic disease has improved. Use of highly targeted, hypofractionated regimens of stereotactic body radiotherapy (SBRT) is now a primary management option for patients with oligometastatic disease. The properties of SBRT are summarized and the results of retrospective and prospective studies of SBRT use in the management of oligometastases are reviewed. Future directions of SBRT, including optimizing dose and fractionation schedules, are also discussed. SBRT can deliver highly conformal, dosed radiation treatments for ablative tumors in a few treatment sessions. Phase 1/2 trials and retrospective institutional results support use of SBRT as a treatment option for oligometastatic disease metastasized to the lung, liver, and spine, and SBRT offers adequate toxicity profiles with good rates of local control. Future directions will involve optimizing dose and fractionation schedules for select histologies to improve rates of local control while limiting toxicity to normal structures. SBRT offers an excellent management option for patients with oligometastases. However, additional research is still needed to optimize dose and fractionation schedules.

  8. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold.

    PubMed

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-12-23

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a "sandwich" technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the "sandwich" technique to "classic" - interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue "hot spots" and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36-81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1-47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality.

  9. Radiation techniques for esophageal cancer.

    PubMed

    Zhang, Minsi; Wu, Abraham J

    2017-10-01

    Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.

  10. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less

  11. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less

  12. Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wernicke, A. Gabriella; Valicenti, Richard; DiEva, Kelly

    2004-12-01

    Purpose/objective: In this study, we evaluated in a serial manner whether radiation dose to the bulb of the penis is predictive of erectile dysfunction, ejaculatory difficulty (EJ), and overall satisfaction with sex life (quality of life) by using serial validated self-administered questionnaires. Methods and materials: Twenty-nine potent men with AJCC Stage II prostate cancer treated with three-dimensional conformal radiation therapy alone to a median dose 72.0 Gy (range: 66.6-79.2 Gy) were evaluated by determining the doses received by the penile bulb. The penile bulb was delineated volumetrically, and the dose-volume histogram was obtained on each patient. Results: The median follow-upmore » time was 35 months (range, 16-43 months). We found that for D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75} (doses to a percent volume of PB: 30%, 45%, 60%, and 75%), higher than the corresponding median dose (defined as high-dose group) correlated with an increased risk of impotence (erectile dysfunction firmness score = 0) (odds ratio [OR] = 7.5, p = 0.02; OR = 7.5, p = 0.02; OR = 8.6, p = 0.008; and OR = 6.9, p = 0.015, respectively). Similarly, for EJD D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75}, doses higher than the corresponding median ones correlated with worsening ejaculatory function score (EJ = 0 or 1) (OR = 8, p = 0.013; OR = 8, p 0.013; OR = 9.2, p = 0.015; and OR = 8, p = 0.026, respectively). For quality of life, low ({<=}median dose) dose groups of patients improve over time, whereas high-dose groups of patients worsen. Conclusions: This study supports the existence of a penile bulb dose-volume relationship underlying the development of radiation-induced erectile dysfunction. Our data may guide the use of inverse treatment planning to maximize the probability of maintaining sexual potency after radiation therapy.« less

  13. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less

  14. Optimal Normal Tissue Sparing in Craniospinal Axis Irradiation Using IMRT With Daily Intrafractionally Modulated Junction(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusters, Johannes M.A.M.; Louwe, Rob J.W.; Kollenburg, Peter G.M. van

    2011-12-01

    Purpose: To develop a treatment technique for craniospinal irradiation using intensity-modulated radiotherapy (IMRT) with improved dose homogeneity at the field junction(s), increased target volume conformity, and minimized dose to the organs at risk (OARs). Methods and Materials: Five patients with high-risk medulloblastoma underwent CT simulation in supine position. For each patient, an IMRT plan with daily intrafractionally modulated junction(s) was generated, as well as a treatment plan based on conventional three-dimensional planning (3DCRT). A dose of 39.6 Gy in 22 daily fractions of 1.8 Gy was prescribed. Dose-volume parameters for target volumes and OARs were compared for the two techniques.more » Results: The maximum dose with IMRT was <107% in all patients. V{sub <95} and V{sub >107} were <1 cm{sup 3} for IMRT compared with 3-9 cm{sup 3} for the craniospinal and 26-43 cm{sup 3} for the spinal-spinal junction with 3DCRT. These observations corresponded with a lower homogeneity index and a higher conformity index for the spinal planning target volume with IMRT. IMRT provided considerable sparing of acute and late reacting tissues. V{sub 75} for the esophagus, gastroesophageal junction, and intestine was 81%, 81%, and 22% with 3DCRT versus 5%, 0%, and 1% with IMRT, respectively. V{sub 75} for the heart and thyroid was 42% and 32% vs. 0% with IMRT. Conclusion: IMRT with daily intrafractionally modulated junction results in a superior target coverage and junction homogeneity compared with 3DCRT. A significant dose reduction can be obtained for acute as well as late-reacting tissues.« less

  15. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  16. The treatment of extensive scalp lesions combining electrons with intensity-modulated photons.

    PubMed

    Chan, Maria F; Song, Yulin; Burman, Chandra; Chui, Chen S; Schupak, Karen

    2006-01-01

    This study was to investigate the feasibility and potential benefits of combining electrons with intensity modulated photons (IMRT+e) for patients with extensive scalp lesions. A case of a patient with an extensive scalp lesion, in which the target volume covered the entire front half of the scalp, is presented. This approach incorporated the electron dose into the inverse treatment planning optimization. The resulting doses to the planning target volume (PTV) and relevant critical structures were compared. Thermoluminescent dosimeters (TLD), diodes, and GAFCHROMIC EBT films were used to verify the accuracy of the techniques. The IMRT+e plan produced a superior dose distribution to the patient as compared to the IMRT plan in terms of reduction of the dose to the brain with the same dose conformity and homogeneity in the target volumes. This study showed that IMRT+e is a viable treatment modality for extensive scalp lesions patients. It provides a feasible alternative to existing treatment techniques, resulting in improved homogeneity of dose to the PTV compared to conventional electron techniques and a decrease in dose to the brain compared to photon IMRT alone.

  17. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy.

    PubMed

    Wu, Vincent W C; Kwong, Dora L W; Sham, Jonathan S T

    2004-05-01

    Dose conformity to the planning target volume is an important criterion in radiotherapy treatment planning, for which the conformity index is a useful assessment tool. The purpose of this study is to compare the differences in CI for the treatment planning of four cancers including the nasopharynx, oesophagus, lung and prostate. Seventy patients with cancers of nasopharynx (30), oesophagus (15), lung (15) and prostate (10) were recruited. Each of these patients was planned with three sets of treatment plans using the FOCUS treatment planning system: the forward and inverse 3DCRT plans and the IMRT plan. The CI was generated for each treatment plan. The mean CI from each cancer patient group was calculated and compared with the other three cancer groups. The mean value of CI was also compared among the three planning methods. The oesophageal and lung cancers demonstrated relatively higher overall mean CI values (0.64 and 0.62, respectively), whereas that of the nasopharynx and prostate were lower (0.54 and 0.50, respectively). With regards to the planning method groups, the IMRT plans produced the highest overall mean CI (0.62), while those for the forward and inverse 3DCRT were similar (0.57 and 0.55, respectively). For the four selected cancers, oesophageal and lung cancers were easier to conform than the nasopharyngeal and prostate cancers. The IMRT plans were more effective in achieving better dose conformity than that of the 3DCRT.

  18. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr; Bräuer-Krisch, Elke; Nemoz, Christian

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Usingmore » four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.« less

  19. SU-E-J-160: 4D Dynamic Arc of Non-Modulated Variable-Dose-Rate Fields for Lung SBRT: A Feasibility Study.

    PubMed

    Yi, B; Yang, X; Niu, Y; Yu, C

    2012-06-01

    Conformal SBRT plans for Lung cancer with static gantry angles are ideal candidates for applying motion tracking because of: (1) better dosimetric conformity with reduced target margin and (2) easier and more faithful target tracking without intensity modulation. This work is to demonstrate that by delivering the target tracking during gantry rotation, we can significantly improve delivery efficiency without negatively affecting plan quality. A lung SBRT plan with static beams was created using CT images of the reference breathing phase. It is converted to an arc plan with variable dose rate followed by the conversion to a 4D plan with the segment aperture morphing (SAM) method (Gui 2010) with considerations of both target location and shape changes as depicted by the 4D CT. Gantry angle ranges were determined from the clinical monitor units, with the 22.2 MU/degree, which is chosen to maximize the dose rate. All segments of the dynamic 4D plan were merged into a single arc with variable dose rate. Each segment occupying 1/10 of the breathing period delivers 6.6 MUs at a dose rate of 1000 MU/min. Delivery time was measured and compared to the planned. The dose distributions of the single phase 3D plan and the arc 4D plan showed little difference. The delivered time for the 4D arc plan agreed with the calculated time, and is almost the same as delivering the 3D plan without target tracking. A 12 Gy treatment takes less than 2.5 min. The feasibility of a novel 4D delivery method where a 3D SBRT plan is converted into 4D arc delivery has been demonstrated. In addition to realizing the conventional target tracking benefits, our method further improves delivery efficiency, which is important for maintaining the geometric relationship between the target motion and the breathing surrogate during treatment. This study is supported by NIH_Grant_1R01CA133539-01 A2. © 2012 American Association of Physicists in Medicine.

  20. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  1. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less

  2. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order tomore » allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk.« less

  3. Limited Margin Radiation Therapy for Children and Young Adults With Ewing Sarcoma Achieves High Rates of Local Tumor Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talleur, Aimee C.; Navid, Fariba; Spunt, Sheri L.

    Purpose: To determine the rate of local failure using focal conformal, limited margin radiation therapy (RT) and dose escalation for tumors ≥8 cm (greatest dimension at diagnosis) in children and young adults with Ewing sarcoma (EWS). Methods and Materials: Eligible patients with EWS were treated on a phase 2 institutional trial of focal conformal, limited margin RT using conformal or intensity modulated techniques. The treatment volume incorporated a 1-cm constrained margin around the gross tumor. Unresected tumors, <8 cm at diagnosis, received a standard dose of 55.8 Gy and tumors ≥8 cm, an escalated dose to 64.8 Gy. Patients with microscopic residual disease after resectionmore » received adjuvant RT to 50.4 Gy. Adjuvant brachytherapy was permitted in selected patients. Results: Forty-five patients were enrolled: 26 with localized and 19 with metastatic disease. Median (range) age, tumor size, and follow-up were 13.0 years (2.9-24.7 years), 9.0 cm (2.4-17.0 cm), and 54.5 months (1.9-122.2 months), respectively. All patients received systemic chemotherapy. The median (range) RT dose for all patients was 56.1 Gy (45-65.5 Gy). Seventeen patients received adjuvant, 16 standard-dose, and 12 escalated-dose RT. Failures included 1 local, 10 distant, and 1 local/distant. The estimated 10-year cumulative incidence of local failure was 4.4% ± 3.1%, with no statistical difference seen between RT treatment groups and no local failures in the escalated-dose RT treatment group. Conclusions: Treatment with focal conformal, limited margin RT, including dose escalation for larger tumors, provides favorable local tumor control in EWS.« less

  4. Clinical implementation of a knowledge based planning tool for prostate VMAT.

    PubMed

    Powis, Richard; Bird, Andrew; Brennan, Matthew; Hinks, Susan; Newman, Hannah; Reed, Katie; Sage, John; Webster, Gareth

    2017-05-08

    A knowledge based planning tool has been developed and implemented for prostate VMAT radiotherapy plans providing a target average rectum dose value based on previously achievable values for similar rectum/PTV overlap. The purpose of this planning tool is to highlight sub-optimal clinical plans and to improve plan quality and consistency. A historical cohort of 97 VMAT prostate plans was interrogated using a RayStation script and used to develop a local model for predicting optimum average rectum dose based on individual anatomy. A preliminary validation study was performed whereby historical plans identified as "optimal" and "sub-optimal" by the local model were replanned in a blinded study by four experienced planners and compared to the original clinical plan to assess whether any improvement in rectum dose was observed. The predictive model was then incorporated into a RayStation script and used as part of the clinical planning process. Planners were asked to use the script during planning to provide a patient specific prediction for optimum average rectum dose and to optimise the plan accordingly. Plans identified as "sub-optimal" in the validation study observed a statistically significant improvement in average rectum dose compared to the clinical plan when replanned whereas plans that were identified as "optimal" observed no improvement when replanned. This provided confidence that the local model can identify plans that were suboptimal in terms of rectal sparing. Clinical implementation of the knowledge based planning tool reduced the population-averaged mean rectum dose by 5.6Gy. There was a small but statistically significant increase in total MU and femoral head dose and a reduction in conformity index. These did not affect the clinical acceptability of the plans and no significant changes to other plan quality metrics were observed. The knowledge-based planning tool has enabled substantial reductions in population-averaged mean rectum dose for prostate VMAT patients. This suggests plans are improved when planners receive quantitative feedback on plan quality against historical data.

  5. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Jackie; Suttie, Clare; Bromley, Regina

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with themore » 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.« less

  6. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Fan, J; Eldib, A

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less

  7. Dosimetric Comparison of Helical Tomotherapy and Dynamic Conformal Arc Therapy in Stereotactic Radiosurgery for Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tsair-Fwu, E-mail: tflee@cc.kuas.edu.t; Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Chao, Pei-Ju

    2011-04-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality indexmore » (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT, although not all indices revealed a better outcome for HT. Whether this dosimetric advantage translates into a clinical benefit deserves further investigation.« less

  8. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  9. Is high–dose rate RapidArc-based radiosurgery dosimetrically advantageous for the treatment of intracranial tumors?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bo; Yang, Yong, E-mail: yangy2@upmc.edu; Li, Xiang

    In linac-based stereotactic radiosurgery (SRS) and radiotherapy (SRT), circular cone(s) or conformal arc(s) are conventionally used to treat intracranial lesions. However, when the target is in close proximity to critical structures, it is frequently quite challenging to generate a quality plan using these techniques. In this study, we investigated the dosimetric characteristics of using high–dose rate RapidArc (RA) technique for radiosurgical treatment of intracranial lesions. A total of 10 intracranial SRS/SRT cases previously planned using dynamic conformal arc (DCA) or cone-based techniques have been included in this study. For each case, 3 treatment plans were generated: (1) a DCA planmore » with multiple noncoplanar arcs, (2) a high–dose rate RA plan with arcs oriented the same as DCA (multiple-arc RA), and 3) a high–dose rate RA plan with a single coplanar arc (single-arc RA). All treatment plans were generated under the same prescription and similar critical structure dose limits. Plan quality for different plans was evaluated by comparing various dosimetric parameters such as target coverage, conformity index (CI), homogeneity index (HI), critical structures, and normal brain tissue doses as well as beam delivery time. With similar critical structure sparing, high–dose rate RA plans can achieve much better target coverage, dose conformity, and dose homogeneity than the DCA plans can. Plan quality indices CI and HI, for the DCA, multiple-arc RA, and single-arc RA techniques, were measured as 1.67 ± 0.39, 1.32 ± 0.28, and 1.38 ± 0.30 and 1.24 ± 0.11, 1.10 ± 0.04, and 1.12 ± 0.07, respectively. Normal brain tissue dose (V{sub 12} {sub Gy}) was found to be similar for DCA and multiple-arc RA plans but much larger for the single-arc RA plans. Beam delivery was similar for DCA and multiple-arc RA plans but shorter with single-arc RA plans. Multiple-arc RA SRS/SRT can provide better treatment plans than conventional DCA plans, especially for complex cases.« less

  10. Proton beam radiotherapy versus fractionated stereotactic radiotherapy for uveal melanomas: A comparative study.

    PubMed

    Weber, Damien C; Bogner, Joachim; Verwey, Jorn; Georg, Dietmar; Dieckmann, Karin; Escudé, Lluis; Caro, Monica; Pötter, Richard; Goitein, Gudrun; Lomax, Antony J; Miralbell, Raymond

    2005-10-01

    A comparative treatment planning study was undertaken between proton and photon therapy in uveal melanoma to assess the potential benefits and limitations of these treatment modalities. A fixed proton horizontal beam (OPTIS) and intensity-modulated spot-scanning proton therapy (IMPT), with multiple noncoplanar beam arrangements, was compared with linear accelerator-based stereotactic radiotherapy (SRT), using a static and a dynamic micromultileaf collimator and intensity-modulated RT (IMRS). A planning CT scan was performed on a brain metastasis patient, with a 3-mm acquisition slice spacing and the patient looking at a luminous spot with the eyes in three different positions (neutral and 25 degrees right and left). Four different gross tumor volumes were defined for each treatment technique. These target scenarios represented different locations (involving vs. not involving the macula and temporal vs. nasal) and volumes (10 x 6 mm vs. 16 x 10 mm) to challenge the proton and photon treatment techniques. The planning target volume was defined as the gross tumor volume plus 2 mm laterally and 3 mm craniocaudally for both modalities. A dose homogeneity of 95-99% of the planning target volume was used as the "goal" for all techniques. The dose constraint (maximum) for the organs at risk (OARs) for both the proton and the SRT photon plans was 27.5, 22.5, 20, and 9 CGE-Gy for the optic apparatus, retina, lacrimal gland, and lens, respectively. The dose to the planning target volume was 50 CGE-Gy in 10 CGE-Gy daily fractions. The plans for proton and photon therapy were computed using the Paul Scherrer Institute and BrainSCAN, version 5.2 (BrainLAB, Heimstetten, Germany) treatment planning systems, respectively. Tumor and OARs dose-volume histograms were calculated. The results were analyzed using the dose-volume histogram parameters, conformity index (CI(95%)), and inhomogeneity coefficient. Target coverage of all simulated uveal melanomas was equally conformal with the photon and proton modalities. The median CI(95%) value was 1.74, 1.86, and 1.83 for the static, dynamic, and IMSRT plans, respectively. With proton planning, the median CI(95%) was 1.88 for OPTIS and substantially improved with IMPT in some tumor cases (median CI(95%), 1.29). The tumor dose homogeneity in the proton plans was, however, always better than with SRT photon planning (median inhomogeneity coefficient 0.1 and 0.15 vs. 0.46, 0.41, and 0.23 for the OPTIS and IMPT vs. the static, dynamic, and IMSRT plans, respectively). Compared with the photon plans, the use of protons did not lead to a substantial reduction in the homolateral OAR total integral dose in the low- to high-dose level, except for the lacrimal gland. The median maximal dose and dose at the 10% volume with the static, dynamic, and IMSRT plans was 33-30.8, 31.8-28, and 35.8-49 Gy, respectively, for the lacrimal gland, a critical organ. For protons, only the OPTIS plans were better, with a median maximal dose and dose at the 10% volume using OPTIS and IMPT of 19.2 and 8.8 and 25.6 and 23.6 CGE, respectively. The contralateral OARs were completely spared with the proton plans, but the median dose delivered to these structures was 1.2 Gy (range, 0-6.3 Gy) with the SRT photon plans. These results suggest that the use of SRT photon techniques, compared with protons, can result in similar levels of dose conformation. IMPT did not increase the degree of conformality for this small tumor. Tumor dose inhomogeneity was, however, always increased with photon planning. Except for the lacrimal gland, the use of protons, with or without intensity modulation, did not increase homolateral OAR dose sparing. The dose to all the contralateral OARs was, however, completely eliminated with proton planning.

  11. Fractionated Conformal Radiotherapy in the Management of Cavernous Sinus Meningiomas: Long-Term Functional Outcome and Tumor Control at a Single Institution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metellus, Philippe; Batra, Sachin; Karkar, Siddharth

    2010-11-01

    Purpose: To evaluate long-term outcome of cavernous sinus meningioma (CSM) treated with fractionated conformal radiotherapy (FCR). Patients and Methods: Fifty-three patients with CSMs (16 men [30.2%], 37 women [69.8%], aged 53 {+-} 13.0 years [mean {+-} SD]) were treated by FCR. In 28 patients (52.8%) FCR was performed as first-line treatment and in 25 patients (47.2%) as adjuvant treatment. All patients received FCR with a dose of 52.9 {+-} 1.8 Gy in 29.4 {+-} 1.0 fractions over 6 weeks. Dose per fraction was 1.9 {+-} 0.1 Gy. Radiotherapy was delivered stereotactically in 47 cases (88.7%) and conformally in 6 (11.3%)more » Results: The median follow-up was 6.9 years (range, 3-19 years). According to Sekhar's classification, 19 patients (35.8%) were Grade 1-2, 30 patients (56.6%) were Grade 3-4, and 4 patients (7.6%) were Grade 5. Pretreatment tumor volume was determined in 46 patients, and tumor volume was 12.6 {+-} 8.2 cm{sup 3}. In these patients, the distance between tumor and optic apparatus was 1.62 {+-} 1.2 mm. Actuarial 5- and 10-year progression-free survival rates were 98.1% and 95.8%, respectively. Clinical improvement was observed in 31 patients (58.5%), and 20 patients (37.7%) remained unchanged. Radiologic response was observed in 18 patients (30.2%), and 35 patients (66.0%) showed stable lesions. Two patients (3.8%) showed tumor progression during follow-up. Transient morbidity was observed in 3 patients (5.7%) and permanent morbidity in 1 (1.9%). Conclusion: Fractionated conformal radiotherapy affords satisfactory long-term tumor control and low treatment morbidity.« less

  12. Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.

    PubMed

    McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A

    2016-08-01

    The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.

  13. [Effectiveness of a quality control program in mammography for the Brazilian National Health System].

    PubMed

    Corrêa, Rosangela da Silveira; Freitas-Junior, Ruffo; Peixoto, João Emílio; Rodrigues, Danielle Cristina Netto; Lemos, Maria Eugênia Fonseca; Dias, Cíntia Melazo; Ferreira, Rubemar de Souza; Rahal, Rosemar Macedo Souza

    2012-10-01

    To assess the effectiveness of a quality control program in mammography services of the Brazilian National Health System (SUS). A prospective study using temporal analysis of a health surveillance action was conducted. A total of 35 service providers that had mammography equipment in operation and regularly performed exams between 2007 and 2009 in the state of Goiás, Central-Western Brazil, participated in this study. Services were assessed during three site visits by performance testing of mammography equipment, film processors, and other materials, and image quality and entrance surface dose in a phantom were also assessed. Each service was scored according to the percentage of tests that conformed to standards. The mean percentage for compliance among the participating service providers were 64.1% (± 13.3%) in the first visit, 68.4% (± 15.9%) in the second, and 77.1% (± 13.3%) in the third (p < 0.001). The main improvements resulted from adjustments to the breast compression force, the automatic exposure control system, and the alignment of the compression paddle. The doses measured were within the conformity range in 80% of the services assessed. The implementation of this program in the mammography services was effective at improving the operational parameters of the mammography machines, although 40% of the services did not reach the acceptable level of 70%. This result indicates the need to continue this health surveillance action.

  14. Helical tomotherapy with dynamic running-start-stop delivery compared to conventional tomotherapy delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Yi, E-mail: yi.rong@osumc.edu; Chen, Yu; Lu, Weiguo

    Purpose: Despite superior target dose uniformity, helical tomotherapy{sup ®} (HT) may involve a trade-off between longitudinal dose conformity and beam-on time (BOT), due to the limitation of only three available jaw sizes with the conventional HT (1.0, 2.5, and 5.0 cm). The recently introduced dynamic running-start-stop (RSS) delivery allows smaller jaw opening at the superior and inferior ends of the target when a sharp penumbra is needed. This study compared the dosimetric performance of RSS delivery with the fixed jaw HT delivery. Methods: Twenty patient cases were selected and deidentified prior to treatment planning, including 16 common clinical cases (brain,more » head and neck (HN), lung, and prostate) and four special cases of whole brain with hippocampus avoidance (WBHA) that require a high degree of dose modulation. HT plans were generated for common clinical cases using the fixed 2.5 cm jaw width (HT2.5) and WBHA cases using 1.0 cm (HT1.0). The jaw widths for RSS were preset with a larger size (RSS5.0 vs HT2.5 and RSS2.5 vs HT1.0). Both delivery techniques were planned based on identical contours, prescriptions, and planning objectives. Dose indices for targets and critical organs were compared using dose-volume histograms, BOT, and monitor units. Results: The average BOT was reduced from 4.8 min with HT2.5 to 2.5 min with RSS5.0. Target dose homogeneity with RSS5.0 was shown comparable to HT2.5 for common clinical sites. Superior normal tissue sparing was observed in RSS5.0 for optic nerves and optic chiasm in brain and HN cases. RSS5.0 demonstrated improved dose sparing for cord and esophagus in lung cases, as well as penile bulb in prostate cases. The mean body dose was comparable for both techniques. For the WBHA cases, the target homogeneity was significantly degraded in RSS2.5 without distinct dose sparing for hippocampus, compared to HT1.0. Conclusions: Compared to the fixed jaw HT delivery, RSS combined with a larger jaw width provides faster treatment delivery and improved cranial-caudal target dose conformity. The target coverage achieved by RSS with a large jaw width is comparable to the fixed jaw HT delivery for common cancer sites, but may deteriorate for cases where complex geometry is present in the middle part of the target.« less

  15. Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der

    2009-06-01

    Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less

  16. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution.

    PubMed

    Chen, Yi-Jen; Liu, An; Han, Chunhui; Tsai, Peter T; Schultheiss, Timothy E; Pezner, Richard D; Vora, Nilesh; Lim, Dean; Shibata, Stephen; Kernstine, Kemp H; Wong, Jeffrey Y C

    2007-01-01

    We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.

  17. Comparison of optimization algorithms in intensity-modulated radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Kendrick, Rachel

    Intensity-modulated radiation therapy is used to better conform the radiation dose to the target, which includes avoiding healthy tissue. Planning programs employ optimization methods to search for the best fluence of each photon beam, and therefore to create the best treatment plan. The Computational Environment for Radiotherapy Research (CERR), a program written in MATLAB, was used to examine some commonly-used algorithms for one 5-beam plan. Algorithms include the genetic algorithm, quadratic programming, pattern search, constrained nonlinear optimization, simulated annealing, the optimization method used in Varian EclipseTM, and some hybrids of these. Quadratic programing, simulated annealing, and a quadratic/simulated annealing hybrid were also separately compared using different prescription doses. The results of each dose-volume histogram as well as the visual dose color wash were used to compare the plans. CERR's built-in quadratic programming provided the best overall plan, but avoidance of the organ-at-risk was rivaled by other programs. Hybrids of quadratic programming with some of these algorithms seems to suggest the possibility of better planning programs, as shown by the improved quadratic/simulated annealing plan when compared to the simulated annealing algorithm alone. Further experimentation will be done to improve cost functions and computational time.

  18. Basics of particle therapy I: physics

    PubMed Central

    Park, Seo Hyun

    2011-01-01

    With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest. PMID:22984664

  19. Long-term results of high-dose conformal radiotherapy for patients with medically inoperable T1-3N0 non-small-cell lung cancer: is low incidence of regional failure due to incidental nodal irradiation?

    PubMed

    Chen, Ming; Hayman, James A; Ten Haken, Randall K; Tatro, Daniel; Fernando, Shaneli; Kong, Feng-Ming

    2006-01-01

    To report the results of high-dose conformal irradiation and examine incidental nodal irradiation and nodal failure in patients with inoperable early-stage non-small-cell lung cancer (NSCLC). This analysis included patients with inoperable CT-staged T1-3N0M0 NSCLC treated on our prospective dose-escalation trial. Patients were treated with radiation alone (total dose, 63-102.9 Gy in 2.1-Gy daily fractions) with a three-dimensional conformal technique without intentional nodal irradiation. Bilateral highest mediastinal and upper/lower paratracheal, prevascular and retrotracheal, sub- and para-aortic, subcarinal, paraesophageal, and ipsilateral hilar regions were delineated individually. Nodal failure and doses of incidental irradiation were studied. The potential median follow-up was 104 months. For patients who completed protocol treatment, median survival was 31 months. The actuarial overall survival rate was 86%, 61%, 43%, and 21% and the cause-specific survival rate was 89%, 70%, 53%, and 35% at 1, 2, 3, and 5 years, respectively. Weight loss (p = 0.008) and radiation dose in Gy (p = 0.013) were significantly associated with overall survival. In only 22% and 13% of patients examined did ipsilateral hilar and paratracheal (and subaortic for left-sided tumor) nodal regions receive a dose of > or = 40 Gy, respectively. Less than 10% of all other nodal regions received a dose of > or = 40 Gy. No patients failed initially at nodal sites. Radiation dose is positively associated with overall survival in patients with medically inoperable T1-3N0 NSCLC, though long-term results remain poor. The nodal failure rate is low and does not seem to be due to high-dose incidental irradiation.

  20. Induction and concurrent chemotherapy with high-dose thoracic conformal radiation therapy in unresectable stage IIIA and IIIB non-small-cell lung cancer: a dose-escalation phase I trial.

    PubMed

    Socinski, Mark A; Morris, David E; Halle, Jan S; Moore, Dominic T; Hensing, Thomas A; Limentani, Steven A; Fraser, Robert; Tynan, Maureen; Mears, Andrea; Rivera, M Patricia; Detterbeck, Frank C; Rosenman, Julian G

    2004-11-01

    Local control rates at conventional radiotherapy doses (60 to 66 Gy) are poor in stage III non-small-cell lung cancer (NSCLC). Dose escalation using three-dimensional thoracic conformal radiation therapy (TCRT) is one strategy to improve local control and perhaps survival. Stage III NSCLC patients with a good performance status (PS) were treated with induction chemotherapy (carboplatin area under the curve [AUC] 5, irinotecan 100 mg/m(2), and paclitaxel 175 mg/m(2) days 1 and 22) followed by concurrent chemotherapy (carboplatin AUC 2 and paclitaxel 45 mg/m(2) weekly for 7 to 8 weeks) beginning on day 43. Pre- and postchemotherapy computed tomography scans defined the initial clinical target volume (CTV(I)) and boost clinical target volume (CTV(B)), respectively. The CTV(I) received 40 to 50 Gy; the CTV(B) received escalating doses of TCRT from 78 Gy to 82, 86, and 90 Gy. The primary objective was to escalate the TCRT dose from 78 to 90 Gy or to the maximum-tolerated dose. Twenty-nine patients were enrolled (25 assessable patients; median age, 59 years; 62% male; 45% stage IIIA; 38% PS 0; and 38% > or = 5% weight loss). Induction CIP was well tolerated (with filgrastim support) and active (partial response rate, 46.2%; stable disease, 53.8%; and early progression, 0%). The TCRT dose was escalated from 78 to 90 Gy without dose-limiting toxicity. The primary acute toxicity was esophagitis (16%, all grade 3). Late toxicity consisted of grade 2 esophageal stricture (n = 3), bronchial stenosis (n = 2), and fatal hemoptysis (n = 2). The overall response rate was 60%, with a median survival time and 1-year survival probability of 24 months and 0.73 (95% CI, 0.55 to 0.89), respectively. CONCLUSION Escalation of the TCRT dose from 78 to 90 Gy in the context of induction and concurrent chemotherapy was accomplished safely in stage III NSCLC patients.

  1. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    PubMed

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-06

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.

  2. 3D conformal planning using low segment multi-criteria IMRT optimization

    PubMed Central

    Khan, Fazal; Craft, David

    2014-01-01

    Purpose To evaluate automated multicriteria optimization (MCO) – designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation – to efficiently produce high quality 3D conformal radiation therapy (3D-CRT) plans. Methods Ten patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis), were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same beam geometry of the original 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose volume objectives for individual organs at risk (OARs), monitor units (MUs), and physician preference. Results The MCO-3D plans reduced the OAR mean doses (41 out of a total of 45 OARs had a mean dose reduction, p<<0.01) and monitor units (seven out of ten plans have reduced MUs; the average reduction is 17%, p=0.08) while maintaining clinical standards on coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. Conclusion High quality 3D plans can be produced using MCO-IMRT optimization, resulting in automated field-in-field type plans with good monitor unit efficiency. Adopting this technology in a clinic could improve plan quality, and streamline treatment plan production by utilizing a single system applicable to both IMRT and 3D planning. PMID:25413405

  3. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    PubMed

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  4. Beam’s-eye-view dosimetrics (BEVD) guided rotational station parameter optimized radiation therapy (SPORT) planning based on reweighted total-variation minimization

    NASA Astrophysics Data System (ADS)

    Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei

    2015-03-01

    Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.

  5. Spot Scanning Proton Therapy for Malignancies of the Base of Skull: Treatment Planning, Acute Toxicities, and Preliminary Clinical Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosshans, David R., E-mail: dgrossha@mdanderson.org; Zhu, X. Ronald; Melancon, Adam

    2014-11-01

    Purpose: To describe treatment planning techniques and early clinical outcomes in patients treated with spot scanning proton therapy for chordoma or chondrosarcoma of the skull base. Methods and Materials: From June 2010 through August 2011, 15 patients were treated with spot scanning proton therapy for chordoma (n=10) or chondrosarcoma (n=5) at a single institution. Toxicity was prospectively evaluated and scored weekly and at all follow-up visits according to Common Terminology Criteria for Adverse Events, version 3.0. Treatment planning techniques and dosimetric data were recorded and compared with those of passive scattering plans created with clinically applicable dose constraints. Results: Tenmore » patients were treated with single-field-optimized scanning beam plans and 5 with multifield-optimized intensity modulated proton therapy. All but 2 patients received a simultaneous integrated boost as well. The mean prescribed radiation doses were 69.8 Gy (relative biological effectiveness [RBE]; range, 68-70 Gy [RBE]) for chordoma and 68.4 Gy (RBE) (range, 66-70) for chondrosarcoma. In comparison with passive scattering plans, spot scanning plans demonstrated improved high-dose conformality and sparing of temporal lobes and brainstem. Clinically, the most common acute toxicities included fatigue (grade 2 for 2 patients, grade 1 for 8 patients) and nausea (grade 2 for 2 patients, grade 1 for 6 patients). No toxicities of grades 3 to 5 were recorded. At a median follow-up time of 27 months (range, 13-42 months), 1 patient had experienced local recurrence and a second developed distant metastatic disease. Two patients had magnetic resonance imaging-documented temporal lobe changes, and a third patient developed facial numbness. No other subacute or late effects were recorded. Conclusions: In comparison to passive scattering, treatment plans for spot scanning proton therapy displayed improved high-dose conformality. Clinically, the treatment was well tolerated, and with short-term follow-up, disease control rates and toxicity profiles were favorable.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Hiraoka, Masahiro

    Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping themore » minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.« less

  7. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    PubMed Central

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2013-01-01

    Introduction The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Methods Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. Results In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. Conclusion VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time. PMID:26229615

  8. Treatment-Related Morbidity in Prostate Cancer: A Comparison of 3-Dimensional Conformal Radiation Therapy With and Without Image Guidance Using Implanted Fiducial Markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jasmeet, E-mail: drsingh.j@gmail.com; Greer, Peter B.; White, Martin A.

    Purpose: To estimate the prevalence of rectal and urinary dysfunctional symptoms using image guided radiation therapy (IGRT) with fiducials and magnetic resonance planning for prostate cancer. Methods and Materials: During the implementation stages of IGRT between September 2008 and March 2010, 367 consecutive patients were treated with prostatic irradiation using 3-dimensional conformal radiation therapy with and without IGRT (non-IGRT). In November 2010, these men were asked to report their bowel and bladder symptoms using a postal questionnaire. The proportions of patients with moderate to severe symptoms in these groups were compared using logistic regression models adjusted for tumor and treatmentmore » characteristic variables. Results: Of the 282 respondents, the 154 selected for IGRT had higher stage tumors, received higher prescribed doses, and had larger volumes of rectum receiving high dosage than did the 128 selected for non-IGRT. The follow-up duration was 8 to 26 months. Compared with the non-IGRT group, improvement was noted in all dysfunctional rectal symptoms using IGRT. In multivariable analyses, IGRT improved rectal pain (odds ratio [OR] 0.07 [0.009-0.7], P=.02), urgency (OR 0.27 [0.11-0.63], P=<.01), diarrhea (OR 0.009 [0.02-0.35], P<.01), and change in bowel habits (OR 0.18 [0.06-0.52], P<.010). No correlation was observed between rectal symptom levels and dose-volume histogram data. Urinary dysfunctional symptoms were similar in both treatment groups. Conclusions: In comparison with men selected for non-IGRT, a significant reduction of bowel dysfunctional symptoms was confirmed in men selected for IGRT, even though they had larger volumes of rectum treated to higher doses.« less

  9. Dosimetric differences between intraoperative and postoperative plans using Cs-131 in transrectal ultrasound–guided brachytherapy for prostatic carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew, E-mail: aojones@geisinger.edu; Treas, Jared; Yavoich, Brian

    2014-01-01

    The aim of the study was to investigate the differences between intraoperative and postoperative dosimetry for transrectal ultrasound–guided transperineal prostate implants using cesium-131 ({sup 131}Cs). Between 2006 and 2010, 166 patients implanted with {sup 131}Cs had both intraoperative and postoperative dosimetry studies. All cases were monotherapy and doses of 115 were prescribed to the prostate. The dosimetric properties (D{sub 90}, V{sub 150}, and V{sub 100} for the prostate) of the studies were compared. Two conformity indices were also calculated and compared. Finally, the prostate was automatically sectioned into 6 sectors (anterior and posterior sectors at the base, midgland, and apex)more » and the intraoperative and postoperative dosimetry was compared in each individual sector. Postoperative dosimetry showed statistically significant changes (p < 0.01) in every dosimetric value except V{sub 150}. In each significant case, the postoperative plans showed lower dose coverage. The conformity indexes also showed a bimodal frequency distribution with the index indicating poorer dose conformity in the postoperative plans. Sector analysis revealed less dose coverage postoperatively in the base and apex sectors with an increase in dose to the posterior midgland sector. Postoperative dosimetry overall and in specific sectors of the prostate differs significantly from intraoperative planning. Care must be taken during the intraoperative planning stage to ensure complete dose coverage of the prostate with the understanding that the final postoperative dosimetry will show less dose coverage.« less

  10. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey

    2015-05-15

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphicalmore » user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI{sub 100} = 1.09 and CI{sub 50} = 4.07) were better than VMAT conformity indices (CI{sub 100} = 1.30 and CI{sub 50} = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI{sub 100} and CI{sub 50} conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI{sub 100} and CI{sub 50} conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. Conclusions: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.« less

  11. Moderately hypofractionated conformal radiation treatment of thoracic esophageal carcinoma.

    PubMed

    Ma, Jin-Bo; Wei, Lin; Chen, Er-Cheng; Qin, Guang; Song, Yi-Peng; Chen, Xiang-Ming; Hao, Chuan-Guo

    2012-01-01

    To prospectively assess the efficacy and safety of moderately hypofractionated conformal radiotherapy in patients with thoracic esophageal cancer. From Sept. 2002 to Oct. 2005, 150 eligible patients with T2-4N0-1M0 stage thoracic esophageal squamous cell cancers were enrolled to receive either conventional fractionated radiation (CFR) or moderately hypofractionated radiation (MHR) with a three- dimensional conformal radiation technique. Of the total, 74 received moderately hypofractionated radiation with total dose of 54-60 Gy/18-20 fractions for 3.5-4 weeks in the MHR arm, and 76 received conventional radiation with total dose of 60 Gy/30 fractions for 6 weeks in the CFR arm. Concurrent chemotherapy comprised of paclitaxel and cisplatin. Safety was evaluated, and local control and overall survival rates were calculated. Statistically significant differences between the CFR versus MHR arms were observed in local/regional failure rate (47.3% v 27.0%, P=0.034) and the percentage of patients with persistent local disease (26.3% v 10.8%, P=0.012). But 3 and 5-year overall survival rates (43.2%, 38.8% v 38.2%, 28.0%, respectively) were not different between the two arms (P=0.268). There were no significant differences in the incidences of grade 3 or higher acute toxicities (66.3% v 50.0%) and late complications rates (27.0% v 22.4%) between the MHR and CFR arms. Moderately hypofractionated, three-dimensional radiation treatment could improve the local control rate of esophageal cancer and potentially increase patient survival.

  12. TU-EF-304-11: Therapeutic Benefits of Collimation in Spot Scanning Proton Therapy in the Treatment of Brain Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, A; Gelover, E; Wang, D

    Purpose: A dynamic collimation system (DCS) based on two orthogonal pairs of mobile trimmer blades has recently been proposed to reduce the lateral penumbra in spot scanning proton therapy (SSPT). The purpose of this work is to quantify the therapeutic benefit of using the DCS for SSPT of brain cancer by comparing un-collimated and collimated treatment plans. Methods: Un-collimated and collimated brain treatment plans were created for five patients, previously treated with SSPT, using an in-house treatment planning system capable of modeling collimated and un-collimated beamlets. Un-collimated plans reproduced the clinically delivered plans in terms of target coverage and organ-at-riskmore » (OAR) sparing, whereas collimated plans were re-optimized to improve the organ-at-risk sparing while maintaining target coverage. Physical and biological comparison metrics such as dose distribution conformity, mean and maximum doses, normal tissue complication probability (NTCP) and risk of secondary brain cancer were used to evaluate the plans. Results: The DCS systematically improved the dose distribution conformity while preserving the target coverage. The average reduction of the mean dose to the 10-mm ring surrounding the target and the healthy brain were 7.1% (95% CI: 4.2%–9.9%; p<0.01) and 14.3% (95% CI: 7.8%–20.8%; p<0.01), respectively. This yielded an average reduction of 12.0% (95% CI: 8.2%–15.7%; p<0.01) for the brain necrosis NTCP using the Flickinger model, and 14.2% (95% CI: 7.7%–20.8%; p<0.01) for the risk of secondary brain cancer. The average maximum dose reductions for the brainstem, chiasm, optic nerves, cochleae and pituitary gland when comparing un-collimated and collimated plans were 14.3%, 10.4%, 11.2%, 13.0%, 12.9% and 3.4%, respectively. Evaluating individual plans using the Lyman-Kutcher-Burman NTCP model also yielded improvements. Conclusion: The lateral penumbra reduction performed by the DCS increases the normal tissue sparing capabilities of SSPT for brain tumor treatment while preserving the target coverage. This research was financially supported by Ion Beam Applications S.A. (IBA, Louvain-La-Neuve, Belgium)« less

  13. Dosimetric comparison of different treatment modalities for stereotactic radiotherapy.

    PubMed

    Hsu, Shih-Ming; Lai, Yuan-Chun; Jeng, Chien-Chung; Tseng, Chia-Ying

    2017-09-16

    The modalities for performing stereotactic radiotherapy (SRT) on the brain include the cone-based linear accelerator (linac), the flattening filter-free (FFF) volumetric modulated arc therapy (VMAT) linac, and tomotherapy. In this study, the cone-based linac, FFF-VMAT linac, and tomotherapy modalities were evaluated by measuring the differences in doses delivered during brain SRT and experimentally assessing the accuracy of the output radiation doses through clinical measurements. We employed a homemade acrylic dosimetry phantom representing the head, within which a thermoluminescent dosimeter (TLD) and radiochromic EBT3 film were installed. Using the conformity/gradient index (CGI) and Paddick methods, the quality of the doses delivered by the various SRT modalities was evaluated. The quality indicators included the uniformity, conformity, and gradient indices. TLDs and EBT3 films were used to experimentally assess the accuracy of the SRT dose output. The dose homogeneity indices of all the treatment modalities were lower than 1.25. The cone-based linac had the best conformity for all tumors, regardless of the tumor location and size, followed by the FFF-VMAT linac; tomography was the worst-performing treatment modality in this regard. The cone-based linac had the best gradient, regardless of the tumor location and size, whereas the FFF-VMAT linac had a better gradient than tomotherapy for a large tumor diameter (28 mm). The TLD and EBT3 measurements of the dose at the center of tumors indicated that the average difference between the measurements and the calculated dose was generally less than 4%. When the 3% 3-mm gamma passing rate metric was used, the average passing rates of all three treatment modalities exceeded 98%. Regarding the dose, the cone-based linac had the best conformity and steepest dose gradient for tumors of different sizes and distances from the brainstem. The results of this study suggest that SRT should be performed using the cone-based linac on tumors that require treatment plans with a steep dose gradient, even as the tumor is slightly irregular, we should also consider using a high dose gradient of the cone base to treat and protect the normal tissue. If normal tissues require special protection exist at positions that are superior or inferior to the tumor, we can consider using tomotherapy or Cone base with couch at 0° for treatment.

  14. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, K; Alopoor, H

    Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less

  15. Evaluation of Sentinel Lymph Node Dose Distribution in 3D Conformal Radiotherapy Techniques in 67 pN0 Breast Cancer Patients.

    PubMed

    Witucki, Gerlo; Degregorio, Nikolaus; Rempen, Andreas; Schwentner, Lukas; Bottke, Dirk; Janni, Wolfgang; Ebner, Florian

    2015-01-01

    Introduction. The anatomic position of the sentinel lymph node is variable. The purpose of the following study was to assess the dose distribution delivered to the surgically marked sentinel lymph node site by 3D conformal radio therapy technique. Material and Method. We retrospectively analysed 70 radiotherapy (RT) treatment plans of consecutive primary breast cancer patients with a successful, disease-free, sentinel lymph node resection. Results. In our case series the SN clip volume received a mean dose of 40.7 Gy (min 28.8 Gy/max 47.6 Gy). Conclusion. By using surgical clip markers in combination with 3D CT images our data supports the pathway of tumouricidal doses in the SN bed. The target volume should be defined by surgical clip markers and 3D CT images to give accurate dose estimations.

  16. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2012-01-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification. PMID:23349649

  17. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques.

    PubMed

    Palmer, Antony; Bradley, David; Nisbet, Andrew

    2012-06-01

    This study provides a review of recent publications on the physics-aspects of dosimetric accuracy in high dose rate (HDR) brachytherapy. The discussion of accuracy is primarily concerned with uncertainties, but methods to improve dose conformation to the prescribed intended dose distribution are also noted. The main aim of the paper is to review current practical techniques and methods employed for HDR brachytherapy dosimetry. This includes work on the determination of dose rate fields around brachytherapy sources, the capability of treatment planning systems, the performance of treatment units and methods to verify dose delivery. This work highlights the determinants of accuracy in HDR dosimetry and treatment delivery and presents a selection of papers, focusing on articles from the last five years, to reflect active areas of research and development. Apart from Monte Carlo modelling of source dosimetry, there is no clear consensus on the optimum techniques to be used to assure dosimetric accuracy through all the processes involved in HDR brachytherapy treatment. With the exception of the ESTRO mailed dosimetry service, there is little dosimetric audit activity reported in the literature, when compared with external beam radiotherapy verification.

  18. Whole-Pelvic Nodal Radiation Therapy in the Context of Hypofractionation for High-Risk Prostate Cancer Patients: A Step Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaidar-Person, Orit; Roach, Mack; Créhange, Gilles, E-mail: gcrehange@cgfl.fr

    2013-07-15

    Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have amore » high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.« less

  19. SU-F-T-188: A Robust Treatment Planning Technique for Proton Pencil Beam Scanning Cranial Spinal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, M; Mehta, M; Badiyan, S

    2016-06-15

    Purpose: To propose a proton pencil beam scanning (PBS) cranial spinal irradiation (CSI) treatment planning technique robust against patient roll, isocenter offset and proton range uncertainty. Method: Proton PBS plans were created (Eclipse V11) for three previously treated CSI patients to 36 Gy (1.8 Gy/fractions). The target volume was separated into three regions: brain, upper spine and lower spine. One posterior-anterior (PA) beam was used for each spine region, and two posterior-oblique beams (15° apart from PA direction, denoted as 2PO-15) for the brain region. For comparison, another plan using one PA beam for the brain target (denoted as 1PA)more » was created. Using the same optimization objectives, 98% CTV was optimized to receive the prescription dose. To evaluate plan robustness against patient roll, the gantry angle was increased by 3° and dose was recalculated without changing the proton spot weights. On the re-calculated plan, doses were then calculated using 12 scenarios that are combinations of isocenter shift (±3mm in X, Y, and Z directions) and proton range variation (±3.5%). The worst-case-scenario (WCS) brain CTV dosimetric metrics were compared to the nominal plan. Results: For both beam arrangements, the brain field(s) and upper-spine field overlap in the T2–T5 region depending on patient anatomy. The maximum monitor unit per spot were 48.7%, 47.2%, and 40.0% higher for 1PA plans than 2PO-15 plans for the three patients. The 2PO-15 plans have better dose conformity. At the same level of CTV coverage, the 2PO-15 plans have lower maximum dose and higher minimum dose to the CTV. The 2PO-15 plans also showed lower WCS maximum dose to CTV, while the WCS minimum dose to CTV were comparable between the two techniques. Conclusion: Our method of using two posterior-oblique beams for brain target provides improved dose conformity and homogeneity, and plan robustness including patient roll.« less

  20. Complexity metric based on fraction of penumbra dose - initial study

    NASA Astrophysics Data System (ADS)

    Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.

    2017-05-01

    Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.

  1. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans

    PubMed Central

    Saenz, Daniel L.; Paliwal, Bhudatt R.; Bayouth, John E.

    2014-01-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system. PMID:24872603

  2. A dose homogeneity and conformity evaluation between ViewRay and pinnacle-based linear accelerator IMRT treatment plans.

    PubMed

    Saenz, Daniel L; Paliwal, Bhudatt R; Bayouth, John E

    2014-04-01

    ViewRay, a novel technology providing soft-tissue imaging during radiotherapy is investigated for treatment planning capabilities assessing treatment plan dose homogeneity and conformity compared with linear accelerator plans. ViewRay offers both adaptive radiotherapy and image guidance. The combination of cobalt-60 (Co-60) with 0.35 Tesla magnetic resonance imaging (MRI) allows for magnetic resonance (MR)-guided intensity-modulated radiation therapy (IMRT) delivery with multiple beams. This study investigated head and neck, lung, and prostate treatment plans to understand what is possible on ViewRay to narrow focus toward sites with optimal dosimetry. The goal is not to provide a rigorous assessment of planning capabilities, but rather a first order demonstration of ViewRay planning abilities. Images, structure sets, points, and dose from treatment plans created in Pinnacle for patients in our clinic were imported into ViewRay. The same objectives were used to assess plan quality and all critical structures were treated as similarly as possible. Homogeneity index (HI), conformity index (CI), and volume receiving <20% of prescription dose (DRx) were calculated to assess the plans. The 95% confidence intervals were recorded for all measurements and presented with the associated bars in graphs. The homogeneity index (D5/D95) had a 1-5% inhomogeneity increase for head and neck, 3-8% for lung, and 4-16% for prostate. CI revealed a modest conformity increase for lung. The volume receiving 20% of the prescription dose increased 2-8% for head and neck and up to 4% for lung and prostate. Overall, for head and neck Co-60 ViewRay treatments planned with its Monte Carlo treatment planning software were comparable with 6 MV plans computed with convolution superposition algorithm on Pinnacle treatment planning system.

  3. Two-dimensional dosimetry of radiotherapeutical proton beams using thermoluminescence foils.

    PubMed

    Czopyk, L; Klosowski, M; Olko, P; Swakon, J; Waligorski, M P R; Kajdrowicz, T; Cuttone, G; Cirrone, G A P; Di Rosa, F

    2007-01-01

    In modern radiation therapy such as intensity modulated radiation therapy or proton therapy, one is able to cover the target volume with improved dose conformation and to spare surrounding tissue with help of modern measurement techniques. Novel thermoluminescence dosimetry (TLD) foils, developed from the hot-pressed mixture of LiF:Mg,Cu,P (MCP TL) powder and ethylene-tetrafluoroethylene (ETFE) copolymer, have been applied for 2-D dosimetry of radiotherapeutical proton beams at INFN Catania and IFJ Krakow. A TLD reader with 70 mm heating plate and CCD camera was used to read the 2-D emission pattern of irradiated foils. The absorbed dose profiles were evaluated, taking into account correction factors specific for TLD such as dose and energy response. TLD foils were applied for measuring of dose distributions within an eye phantom and compared with predictions obtained from the MCNPX code and Eclipse Ocular Proton Planning (Varian Medical Systems) clinical radiotherapy planning system. We demonstrate the possibility of measuring 2-D dose distributions with point resolution of about 0.5 x 0.5 mm(2).

  4. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.

  5. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method.

    PubMed

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Komori, Masataka; Torikoshi, Masami; Asakura, Hiroshi; Ikeda, Noritoshi; Uno, Takayuki; Takei, Yuka

    2006-08-01

    The commissioning of conformal radiotherapy system using heavy-ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC) is described in detail. The system at HIMAC was upgraded for a clinical trial using a new technique: large spot uniform scanning with conformal layer stacking. The system was developed to localize the irradiation dose to the target volume more effectively than with the old system. With the present passive irradiation method using a ridge filter, a scatterer, a pair of wobbler magnets, and a multileaf collimator, the width of the spread-out Bragg peak (SOBP) in the radiation field could not be changed. With dynamic control of the beam-modifying devices during irradiation, a more conformal radiotherapy could be achieved. In order to safely perform treatments with this conformal therapy, the moving devices should be watched during irradiation and the synchronousness among the devices should be verified. This system, which has to be safe for patient irradiations, was constructed and tested for safety and for the quality of the dose localization realized. Through these commissioning tests, we were successfully able to prepare the conformal technique using layer stacking for patients. Subsequent to commissioning the technique has been applied to patients in clinical trials.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Mallory, M; Badkul, R

    Purpose: To retrospectively evaluate quality, efficiency and delivery accuracy of intensity modulated arc therapy (IMAT) plans for thoracic-vertebral metastases using stereotactic body radiotherapy (SBRT). Methods: After obtaining approval of RPC-benchmark plan, seven previously treated thoracic-vertebral metastases patients with non-coplanar hybrid arcs(NC-HA)using 1–2 3D-dynamic conformal partial-arcs plus 7–9 IMRT-beams were re-optimized with IMAT using 3 full co-planar arcs. Tumors were located between T2–T7. T1/T2-weighted MRI images were co-registered with planning-CT. PTVs were between 24.3–240.1cc(median=48.1cc). Prescription was 30Gy in 5 fractions with 6-MV beams at Novalis-TX consisting of HD-MLC.Plans were compared for target coverage:conformality index(CI),homogeneity index(HI),PTVD90. Organs-at-risks(OARs)was evaluated for spinal cord(Dmax, D0.35cc,more » and D1.2cc), esophagus(Dmax and D5cc),heart(Dmax, D15cc)and lung(V5 and V10). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance(QA) plan. Beam-on time was recorded and a gamma index was used to compare agreement between planned and measured doses. Results: SBRT IMAT plans resulted in superior CI(1.02 vs. 1.36, p=0.05) and HI (0.14 vs. 0.27, p=0.01). PTVD90 was improved but statistically insignificant (31.0 vs. 30.4Gy, p=0.38). IMAT resulted in statistically significant improvements in OARs sparing: esophagus max(22.5 vs. 27.0Gy, p=0.03), esophagus 5cc (17.6 vs. 21.5Gy, p=0.02) and heart max(13.1 vs. 15.8Gy, p=0.03). Spinal cord,lung V5 and V10 were lower but statistically insignificant. Average total MU and beam-on time were 2598±354 vs. 3542±495 and 4.7±0.6 min vs. 7.1±1.0min for IMAT vs. NC-HA (without accounting for couch kicks time for NC-HA). IMAT plans demonstrated an accurate dose delivery of 95.5±1.0% for clinical gamma passing-rate of 2%/2mm criteria on MapCHECK, that was comparable to NC-HA plans. Conclusion: IMAT plans provided highly conformal and homogeneous dose distributions to target and reduced OARs doses compared to NC-HA. Total MU was reduced by a factor of 1.4 and subsequently decreased treatment times significantly - potentially minimizing intra-fraction motion error and owing to patient comfort. SBRT using IMAT planning for single fraction thoracic-vertebrae metastases will be investigated.« less

  7. Inverse-optimized 3D conformal planning: Minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites

    PubMed Central

    Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.

    2012-01-01

    Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717

  8. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher

    To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R{sub 50%} values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9 Gy, range: 5.9 to 10.9 Gy); dose to 0.35 cc of spinal cord (average: 7.62 ± 1.7 Gy, range: 5.4 to 9.6 Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5 Gy, range: 3.5 to 8.5 Gy) less than 14, 10, and 10 Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3 Gy, range: 1.5 to 14.9 Gy) and dose to 5 cc of esophagus (average: 7.43 ± 3.8 Gy, range: 1.1 to 11.8 Gy) were kept less than protocol requirements 16 Gy and 11.9 Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5 Gy, range: 1.3 to 10.2 Gy) and dose to 15 cc of heart (average: 2.23 ± 1.8 Gy, range: 0.3 to 5.6 Gy) less than 22 and 16 Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2 mm criteria and 98.3 ± 0.8%, on average, with 3%/3 mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.« less

  9. Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.

    PubMed

    Ong, Chloe C H; Ang, Khong Wei; Soh, Roger C X; Tin, Kah Ming; Yap, Jerome H H; Lee, James C L; Bragg, Christopher M

    2017-01-01

    There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  10. A spectroscopic study of the chromatic properties of GafChromicEBT3 films.

    PubMed

    Callens, M; Crijns, W; Simons, V; De Wolf, I; Depuydt, T; Maes, F; Haustermans, K; D'hooge, J; D'Agostino, E; Wevers, M; Pfeiffer, H; Van Den Abeele, K

    2016-03-01

    This work provides an interpretation of the chromatic properties of GafChromicEBT3 films based on the chemical nature of the polydiacetylene (PDA) molecules formed upon interaction with ionizing radiation. The EBT3 films become optically less transparent with increasing radiation dose as a result of the radiation-induced polymerization of diacetylene monomers. In contrast to empirical quantification of the chromatic properties, less attention has been given to the underlying molecular mechanism that induces the strong decrease in transparency. Unlaminated GafChromicEBT3 films were irradiated with a 6 MV photon beam to dose levels up to 20 Gy. The optical absorption properties of the films were investigated using visible (vis) spectroscopy. The presence of PDA molecules in the active layer of the EBT3 films was investigated using Raman spectroscopy, which probes the vibrational modes of the molecules in the layer. The vibrational modes assigned to PDA's were used in a theoretical vis-absorption model to fit our experimental vis-absorption spectra. From the fit parameters, one can assess the relative contribution of different PDA conformations and the length distribution of PDA's in the film. Vis-spectroscopy shows that the optical density increases with dose in the full region of the visible spectrum. The Raman spectrum is dominated by two vibrational modes, most notably by the ν(C≡C) and the ν(C=C) stretching modes of the PDA backbone. By fitting the vis-absorption model to experimental spectra, it is found that the active layer contains two distinct PDA conformations with different absorption properties and reaction kinetics. Furthermore, the mean PDA conjugation length is found to be 2-3 orders of magnitude smaller than the crystals PDA's are embedded in. Vis- and Raman spectroscopy provided more insight into the molecular nature of the radiochromic properties of EBT3 films through the identification of the excited states of PDA and the presence of two PDA conformations. The improved knowledge on the molecular composition of EBT3's active layer provides a framework for future fundamental modeling of the dose-response.

  11. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of “gentle IGRT.”.« less

  12. SU-F-T-650: The Comparison of Robotic Partial Breast Stereotactic Irradiation Using MLC Vs. Iris Cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Timmerman, R; Jiang, S

    Purpose: To evaluate the dosimetric impact on treatment planning for partial breast stereotactic irradiation using Cyberknife with MLC versus Iris Cone. Methods: Ten patients whom underwent lumpectomy for DCIS or stage I invasive non-lobular epithelial breast cancer were included in this study. All patients were previously treated on the Cyberknife using Iris cone with the prescription dose of 37.5Gy in 5 fractions covering at least 95% of PTV on our phase I SBRT 5 fraction partial breast irradiation trial. Retrospectively, treatment planning was performed and compared using the new Cyberknife M6 MLC system for each patient. Using the same contoursmore » and critical organ constraints for both MLC and Iris cone plans, the dose on target and critical organs were analyzed accordingly. Results: Dose to critical organs such as ipsilateral lung, contralateral lung, heart, skin, ipsilateral breast, and rib were analyzed, as well as conformity index and high dose spillage of the target area. In 9 of 10 patients, the MLC plans had less total ipsilateral breast volume encompassing the 50% prescription isodose (mean:22.3±8.2% MLC vs. 31.6±8.0 Iris, p=0.00014) .The MLC plans mean estimated treatment delivery time was significantly less than the Iris plans (51±3.9min vs. 56.2±9min, p=0.03) Both MLC and Iris cone plans were able to meet all dose constraints and there was no statistical difference between those dose constraints. Conclusion: Both MLC and Iris Cone can deliver conformal dose to a partial breast target and satisfy the dose constraints of critical organs. The new Cyberknife with MLC can deliver a more conformal dose in the lower dose region and spare more ipsilateral breast tissue to the 50% prescription isodose. The treatment time for partial breast SBRT plans was also reduced using MLC. Project receives research support from Accuray Inc.« less

  13. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakai, Nobuhide, E-mail: wakai@naramed-u.ac.jp; Sumida, Iori; Otani, Yuki

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (−3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient indexmore » (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (“V” shape). The optimal leaf margins for conformity index and modified GI were −1.1 ± 0.3 mm (mean ± 1 SD) and −0.2 ± 0.9 mm, respectively, for 7 MV FFF compared to −1.0 ± 0.4 and −0.3 ± 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were −0.9 ± 0.6, −1.1 ± 0.8, and −2.1 ± 1.2 mm, respectively, for 7 MV FFF compared to −0.9 ± 0.6, −1.1 ± 0.8, and −2.2 ± 1.3 mm, respectively, for 6 MV FF. With the heart inside the radiation field, the mean heart dose showed a V-shaped relationship with leaf margins. The optimal leaf margins were −1.0 ± 0.6 mm for both beams. Dmax to the spinal cord showed no clear trend for changes in leaf margin. Conclusions: The differences in doses to OARs between FFF and FF beams were negligible. Conformity index, modified GI, MLD, lung V20 Gy, lung V5 Gy, and mean heart dose showed a V-shaped relationship with leaf margins. There were no significant differences in optimal leaf margins to minimize these parameters between both FFF and FF beams. The authors’ results suggest that a leaf margin of −1 mm achieves high conformity and minimizes doses to OARs for both FFF and FF beams.« less

  14. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  15. Robotic path-finding in inverse treatment planning for stereotactic radiosurgery with continuous dose delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandewouw, Marlee M., E-mail: marleev@mie.utoronto

    Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, aremore » used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.« less

  16. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers

    PubMed Central

    Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-01

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step‐and‐shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose <45 Gy to spinal cord and <50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5±2.2 Gy and 36.7±14.0 Gy), without significant changes on the other OARs. A marked difference (−15.9±1.9 Gy and −10.1±5.7 Gy) was obtained at the expense of a small difference (−1.3%±0.9%) from initial PTV195% coverage (96.6%±0.9%). Similar difference (−15.7±2.2 Gy and −10.2±6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (−0.3%±0.3% from the initial 98.3%±0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer. PACS number: 87.55.D PMID:24423836

  17. Constituent components of out-of-field scatter dose for 18-MV intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy: a comparison with 6-MV and implications for carcinogenesis.

    PubMed

    Ruben, Jeremy D; Smith, Ryan; Lancaster, Craig M; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruben, Jeremy D., E-mail: jeremy.ruben@wbrc.org.au; Department of Surgery, Monash University, Melbourne; Smith, Ryan

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. Inmore » absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide.« less

  19. Dosimetric comparison between VMAT and RC3D techniques: case of prostate treatment

    NASA Astrophysics Data System (ADS)

    Chemingui, Fatima Zohra; Benrachi, Fatima; Bali, Mohamed Saleh; Ladjal, Hamid

    2017-09-01

    Considered as the second men cancer in Algeria, prostate cancer is treated in 70% by radiation. That's why radiation therapy is therapeutic weapon for prostate cancer. Conformational Radiotherapy in 3D is the most common technique [1-5]. The use of conventionally optimized treatment plans was compared at case scenario of optimized treatment plans VMAT for prostate cancer. The evaluation of the two optimizations strategies focused on the resulting plans ability to retain dose objectives under the influence of patient set up. Dose Volume Histogram in the Planning Target Volume and dose in the Organs At Risks were used to calculate the conformity index, and evaluation ratio of irradiated volume which represent the main tool of comparison [6,7]. The situation was analysed systematically. The 14% dose increase in the target leads to a decrease in the dose in adjacent organs with 39% in the bladder. Therefore, the criterion for better efficacy and less toxicity reveal that VMAT is the best choice.

  20. Novel Application of Helical Tomotherapy in Whole Skull Palliative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, George; Yartsev, Slav; Coad, Terry

    2008-01-01

    Helical tomotherapy (HT) is a radiation planning/delivery platform that combines inversely planned IMRT with on-board megavoltage imaging. A unique HT radiotherapy whole skull brain sparing technique is described in a patient with metastatic prostate cancer. An inverse HT plan and an accompanying back-up conventional lateral 6-MV parallel opposed pair (POP) plan with corresponding isodose distributions and dose-volume histograms (DVH) were created and assessed prior to initiation of therapy. Plans conforming to the planning treatment volume (PTV) with significant sparing of brain, optic nerve, and eye were created. Dose heterogeneity to the PTV target was slightly higher in the HT planmore » compared to the back-up POP plan. Conformal sparing of brain, optic nerve, and eye was achieved by the HT plan. Similar lens and brain stem/spinal cord doses were seen with both plans. Prospective clinical evaluation with relevant end points (quality of life, symptom relief) are required to confirm the potential benefits of highly conformal therapies applied to palliative situations such as this case.« less

  1. TH-EF-BRB-04: 4π Dynamic Conformal Arc Therapy Dynamic Conformal Arc Therapy (DCAT) for SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Long, T; Tian, Z.

    2016-06-15

    Purpose: To develop an efficient and effective trajectory optimization methodology for 4π dynamic conformal arc treatment (4π DCAT) with synchronized gantry and couch motion; and to investigate potential clinical benefits for stereotactic body radiation therapy (SBRT) to breast, lung, liver and spine tumors. Methods: The entire optimization framework for 4π DCAT inverse planning consists of two parts: 1) integer programming algorithm and 2) particle swarm optimization (PSO) algorithm. The integer programming is designed to find an optimal solution for arc delivery trajectory with both couch and gantry rotation, while PSO minimize a non-convex objective function based on the selected trajectorymore » and dose-volume constraints. In this study, control point interaction is explicitly taken into account. Beam trajectory was modeled as a series of control points connected together to form a deliverable path. With linear treatment planning objectives, a mixed-integer program (MIP) was formulated. Under mild assumptions, the MIP is tractable. Assigning monitor units to control points along the path can be integrated into the model and done by PSO. The developed 4π DCAT inverse planning strategy is evaluated on SBRT cases and compared to clinically treated plans. Results: The resultant dose distribution of this technique was evaluated between 3D conformal treatment plan generated by Pinnacle treatment planning system and 4π DCAT on a lung SBRT patient case. Both plans share the same scale of MU, 3038 and 2822 correspondingly to 3D conformal plan and 4π DCAT. The mean doses for most of OARs were greatly reduced at 32% (cord), 70% (esophagus), 2.8% (lung) and 42.4% (stomach). Conclusion: Initial results in this study show the proposed 4π DCAT treatment technique can achieve better OAR sparing and lower MUs, which indicates that the developed technique is promising for high dose SBRT to reduce the risk of secondary cancer.« less

  2. Late Gastrointestinal Toxicity After Dose-Escalated Conformal Radiotherapy for Early Prostate Cancer: Results From the UK Medical Research Council RT01 Trial (ISRCTN47772397)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syndikus, Isabel; Morgan, Rachel C.; Sydes, Matthew R., E-mail: ms@ctu.mrc.ac.u

    2010-07-01

    Purpose: In men with localized prostate cancer, dose-escalated conformal radiotherapy (CFRT) improves efficacy outcomes at the cost of increased toxicity. We present a detailed analysis to provide further information about the incidence and prevalence of late gastrointestinal side effects. Methods and Materials: The UK Medical Research Council RT01 trial included 843 men with localized prostate cancer, who were treated for 6 months with neoadjuvant radiotherapy and were randomly assigned to either 64-Gy or 74-Gy CFRT. Toxicity was evaluated before CFRT and during long-term follow-up using Radiation Therapy Oncology Group (RTOG) grading, the Late Effects on Normal Tissue: Subjective, Objective, Managementmore » (LENT/SOM) scale, and Royal Marsden Hospital assessment scores. Patients regularly completed Functional Assessment of Cancer Therapy--Prostate (FACT-P) and University of California, Los Angeles, Prostate Cancer Index (UCLA-PCI) questionnaires. Results: In the dose-escalated group, the hazard ratio (HR) for rectal bleeding (LENT/SOM grade {>=}2) was 1.55 (95% CI, 1.17-2.04); for diarrhea (LENT/SOM grade {>=}2), the HR was 1.79 (95% CI, 1.10-2.94); and for proctitis (RTOG grade {>=}2), the HR was 1.64 (95% CI, 1.20-2.25). Compared to baseline scores, the prevalence of moderate and severe toxicities generally increased up to 3 years and than lessened. At 5 years, the cumulative incidence of patient-reported severe bowel problems was 6% vs. 8% (standard vs. escalated, respectively) and severe distress was 4% vs. 5%, respectively. Conclusions: There is a statistically significant increased risk of various adverse gastrointestinal events with dose-escalated CFRT. This remains at clinically acceptable levels, and overall prevalence ultimately decreases with duration of follow-up.« less

  3. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients.

    PubMed

    Ling, Ted C; Slater, Jerry M; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M; Patyal, Baldev; Slater, Jerry D; Yang, Gary Y

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  4. Therapeutic effect of high-dose three-dimensional conformal radiotherapy and conventional radiotherapy for non-small-cell lung cancer.

    PubMed

    Xu, Su-Jun; Shi, Yu-Sheng; Song, Hai-Chun; Chen, Long-Hua

    2002-10-01

    To improve the therapeutic effect of radiotherapy without increasing the risk of radiation injury in patients with non-small cell lung cancer (NSCLC). From August 1998 to August 1999, 135 patients with NSCLC received radiotherapy, of whom 62 were treated with high-dose three-dimensional conformal radiotherapy (3D-CRT) at the total dose of 48 to 64 Gy in 6 to 8 fractions implemented in a course of 2 to 3 weeks, 6 to 8 Gy for each fraction. The other 73 patients underwent conventional radiotherapy (CR) at the total dose of 60 to 70 Gy in 30 to 35 fractions completed in 6 to 7 weeks. Follow-up study was conducted in all the cases, and CT-scan or magnetic resonance imaging was performed once every 3 months after the therapy to assess the local control rate, survival rate, radiation-induced lung and esophageal injuries. Three months after radiation therapy, complete remission of the lesions was achieved in 44.9% (CR group) and 77.8% (3D-CRT group) of the cases with the efficacy rates of 94.4% and 100% respectively, showing significant differences between the 2 groups (P<0.01). The 1- and 2-year survival rate of the patients in the 2 groups were 42.5% vs 77.8% and 30.1% vs 48.6% respectively, also with significant differences between the 2 groups (P<0.01). Significant difference also occurred in the 1- and 2-year local control rates between the 2 groups, but not in the incidences of radiation-induced lung and esophageal injuries. 3D-CRT may yield better therapeutic effect than CR does and has comparable safety with the latter.

  5. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  6. [Doses to organs at risk in conformational and stereotactic body radiation therapy: Liver].

    PubMed

    Debbi, K; Janoray, G; Scher, N; Deutsch, É; Mornex, F

    2017-10-01

    The liver is an essential organ that ensures many vital functions such as metabolism of bilirubin, glucose, lipids, synthesis of coagulation factors, destruction of many toxins, etc. The hepatic parenchyma can be irradiated during the management of digestive tumors, right basithoracic, esophagus, abdomen in toto or TBI. In addition, radiotherapy of the hepatic area, which is mainly stereotactic, now occupies a central place in the management of primary or secondary hepatic tumors. Irradiation of the whole liver, or part of it, may be complicated by radiation-induced hepatitis. It is therefore necessary to respect strict dosimetric constraints both in stereotactic and in conformational irradiation in order to limit the undesired irradiation of the hepatic parenchyma which may vary according to the treatment techniques, the basic hepatic function or the lesion size. The liver is an organ with a parallel architecture, so the average tolerable dose in the whole liver should be considered rather than the maximum tolerable dose at one point. The purpose of this article is to propose a development of dose recommendations during conformation or stereotactic radiotherapy of the liver. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. The use of radiochromic EBT2 film for the quality assurance and dosimetric verification of 3D conformal radiotherapy using Microtek ScanMaker 9800XL flatbed scanner

    PubMed Central

    Sim, GS; Ng, KH

    2013-01-01

    Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two‐dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three‐field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high‐dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution. PACS number: 87.55.Qr PMID:23835383

  8. Volumetric modulated arc therapy vs. c-IMRT for the treatment of upper thoracic esophageal cancer.

    PubMed

    Zhang, Wu-Zhe; Zhai, Tian-Tian; Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT.

  9. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    PubMed

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it; Kuthpady, Shrinivas; Anderson, Anne

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results.more » Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.« less

  11. Conformational and Thermal Stability Improvements for the Large-Scale Production of Yeast-Derived Rabbit Hemorrhagic Disease Virus-Like Particles as Multipurpose Vaccine

    PubMed Central

    Méndez, Lídice; González, Nemecio; Parra, Francisco; Martín-Alonso, José M.; Limonta, Miladys; Sánchez, Kosara; Cabrales, Ania; Estrada, Mario P.; Rodríguez-Mallón, Alina; Farnós, Omar

    2013-01-01

    Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans. PMID:23460801

  12. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cilla, Savino, E-mail: savinocilla@gmail.com; Deodato, Francesco; Macchia, Gabriella

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. Formore » a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36 min/Gy. The mean number of monitor units was 3162, i.e., 121.6 MU/Gy. Pretreatment verification (3%-3 mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta VMAT and Ergo++ TPS. Preliminary clinical outcomes showed a high rate of local control and minimum incidence of acute toxicity.« less

  13. SU-F-T-590: Modeling PTV Dose Fall-Off for Cervical Cancer SBRT Treatment Planning Using VMAT and Step-And-Shoot IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, A Brito; Cohen, D; Eng, T

    Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1)more » IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.« less

  14. SU-E-T-489: Incorporating Skin Flash Into VMAT WBI: Impacts On Surface Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buele, A Bejarano; Tanny, S; Warrell, G

    Purpose: Increased use of inverse planning limits the amount of skin flash in whole breast irradiation (WBI). Strategies to incorporate flash into inverse-planned treatments involve overriding air to the density of water or tissue. This introduces uncertainties to the superficial dose distribution, potentially degrading the coverage at the skin-bolus interface. We investigate the accuracy of various commonly used bolus materials to incorporate flash in VMAT WBI plans while minimizing the perturbation near the skin. Methods: We obtained a CT-simulation of an anthropomorphic phantom with a breast attachment. Three VMAT plans were created with different boluses: 1 cm of 1 g/cm{supmore » 3} bolus (Superflab), 1 cm of 0.65 g/cm{sup 3} bolus (wet towels), and 1 cm of g/cm{sup 3} bolus with 2 dose levels accounting for the difference between bolus and tissue density. The PTV was extended into the bolus, outside the patient body contour to incorporate flash. OSLDs were used to obtain surface doses at the medial, lateral and tip sites of the breast. Each plan was irradiated four times using CBCT for positioning and dosimeter localization. Results: The average thickness of the wet-towel bolus on delivery was 8 mm with a CBCT-measured density of 0.6 g/cm{sup 3}. OSLD measurements demonstrated good agreement with predicted doses from Pinnacle. Average deviations were −5.7%, −2.5%, and −2.6% for plans 1, 2, and 3, respectively. OSLDs placed at the medial and lateral portions of the breast showed the largest average deviations. The maximum recorded deviation from planned values was −8.6%. The largest dose fluctuations occurred near areas where the bolus failed to properly conform to the breast contour. Conclusion: Use of wet-towel bolus improved dose delivery accuracy compared to standard Superflab bolus. Areas of poor bolus conformity adversely affected dose delivery. We recommend the use of wet-towel bolus over Superflab bolus for VMAT WBI.« less

  15. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a similar target coverage and some better dose sparing to the organs at risk; the advantage against conventional 3D-CRT was more evident. RA with FFF beams resulted in minor improvements in plan quality but with the potential for additional useful reduction in the treatment time. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Water, Tara A. van de, E-mail: t.a.van.de.water@rt.umcg.nl; Lomax, Antony J.; Bijl, Hendrik P.

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements.more » In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality of life during and after radiotherapy treatment.« less

  17. Early-stage central lung cancer and volumetric modulated arc therapy: a dosimetric case study with literature review.

    PubMed

    Valakh, Vladimir; Chan, Philip; D'Adamo, Karen; Micaily, Bizhan

    2013-10-01

    In the present article we review on the use of Volumetric Modulated Arc Therapy (VMAT) for a small lung nodule that was centrally located in close proximity to the mediastinal structures. An inoperable patient with central, clinical stage IA adenocarcinoma of the right lung was treated with external-beam radiation therapy of 52.5 Gy in 15 factions. A single 360° coplanar arc VMAT plan (360-VMAT) was used for treatment and compared to step-and-shoot Intensity Modulation Radiotherapy (IMRT) and a single 180° ipsilateral partial arc VMAT plan (180-VMAT). Planning Target Volume (PTV) coverage was not different, and 360-VMAT had the highest dose homogeneity. Both 360-VMAT and 180-VMAT reduced esophageal dose compared to IMRT. While IMRT had the lowest lung dose, all 3 plans achieved acceptable sparing of the lung. 180-VMAT had the highest dose conformity. Both 360-VMAT and 180-VMAT improved esophageal sparing compared to IMRT. Use of VMAT in early-stage, centrally located NSCLC is a promising treatment approach and merits additional investigation.

  18. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measuredmore » (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient observed between an organ at risk and a target at the edge of a VMAT arc plane or plane of IMRT fields was 17%/mm. The average absolute percent difference between the measured and calculated central axis dose for all the VMAT plans was 3.6 {+-} 2.2%. The measured perpendicular profile widths and shifts were on average within 0.5 mm of planned values. The average total MUs for VMAT plans was double the DCA average and similar to the IMRT average. Conclusions: For the aforementioned planning and delivery system and cranial lesions greater than 7 mm in diameter, multiple noncoplanar arc VMAT consistently provides accurate and high quality cranial radiosurgery dose distributions with low doses to healthy brain tissue and high dose conformity to the target. These qualities may make multiple noncoplanar arc VMAT suitable for a greater range of prescription doses or larger and more irregular lesions. For smaller and/or rounder lesions there are other clinically acceptable treatment techniques that may involve fewer couch angles or arcs and reduce treatment times.« less

  19. Acute and Late Toxicity After Dose Escalation to 82 GyE Using Conformal Proton Radiation for Localized Prostate Cancer: Initial Report of American College of Radiology Phase II Study 03-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coen, John J., E-mail: jcoen@partners.org; Bae, Kyounghwa; Zietman, Anthony L.

    Purpose: Several randomized trials have shown a benefit of dose escalation to 78 to 79 Gy for men treated with external radiation for localized prostate cancer. Single-institution data suggest a benefit with even higher doses. American College of Radiology 03-12 is a Phase II trial testing the safety and efficacy of 82 GyE (Gray equivalent) delivered with conformal proton radiation. Methods and Materials: From 2003-2006, 85 men with localized prostate cancer were accrued to American College of Radiology 03-12. Eighty-four were eligible for analysis. They were treated with conformal proton radiation alone to a total dose of 82 GyE. Themore » study was designed to test whether the rate of 18-month Grade 3+ late toxicity was greater than 10%. Results: The median follow-up was 31.6 months. Regarding treatment-related acute toxicity, there were 39 Grade 1 cases (46%), 19 Grade 2 cases (23%) and 2 Grade 3 cases (2%). Regarding genitourinary/gastrointestinal toxicity, there were 42 Grade 1 cases (50%), 12 Grade 2 cases (14%) and 1 Grade 3 case (1%). Regarding late toxicity, there were 28 Grade 1 cases (33%), 22 Grade 2 cases (26%), 6 Grade 3 cases (7%), and 1 Grade 4 case (1%). The late genitourinary/gastrointestinal rates were the same. The estimated rate of Grade 3+ late toxicity at 18 months was 6.08%. Conclusions: Although not free of late toxicity, 82 GyE at 2 GyE per fraction delivered with conformal proton radiation did not exceed the late morbidity target tested in this trial. There was sufficient morbidity, however, that this may be the maximal dose that can be delivered safely with this technique and fractionation.« less

  20. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 02: Feasibility of using multileaf collimation for stereotactic radiosurgery of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young; Ruschin, Mark

    SRS using linac and cones offers steep dose fall-off but a tradeoff exists between conformality and treatment time, which depends on the number of isocentres. Purpose of this study is to quantify planning metrics between cones- and MLC-based SRS for arteriovenous malformation(AVM). Seven AVM cases treated with cones were re-planned with MLC on Pinnacle treatment planning system. Planning target volume(PTV) was created with 1mm uniform margin to the AVM to account for MLC positional variation. Clinically-planned prescription dose(15–25Gy) was used. Four plans were generated per case:non-coplanar VMAT(ncV), single-arc VMAT(saV), non-coplanar IMRT(ncI), non-coplanar conformal(ncC). Plans were compared for conformity(CI), heterogeneity(HI) andmore » gradient(GI) indices and brain doses. Estimated treatment times and monitor units(MU) were compared. Cone-based plans required 2–6 isocentres. Though CI-RTOG was similar for plans(median=0.98), CI-Paddick was most favourable for ncV(median=0.86) and worst for cones(0.54). HI for MLC plans(median=1.19–1.27) were lower than cone-based plans(1.43). GI was similar for all plans. For 2/7 ncC had brainstem maximum dose>16.7Gy and therefore were clinically unacceptable. Brain V12Gy,V10Gy,V2Gy were lowest in the cones plan. ncV brain V12Gy,V10Gy,V2Gy were lowest of all MLC-based plans studied. Treatment MUs were similar for MLC-based plans and up to 70% lower than clinically delivered plans. ncV showed best conformality in this study. Of the MLC-based plans, ncV also showed lowest normal tissue dose with reasonable treatment time.« less

  1. Radiation dose-volume effects in the esophagus.

    PubMed

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B

    2010-03-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. Copyright 2010 Elsevier Inc. All rights reserved.

  2. TU-AB-201-07: Image Guided Endorectal HDR Brachytherapy Using a Compliant Balloon Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, G; Goodman, K

    2015-06-15

    Purpose: High dose rate endorectal brachytherapy is an option to deliver a focal, high-dose radiotherapy to rectal tumors for patients undergoing non-operative management. We investigate a new multichannel, MR compatible applicator with a novel balloon-based design to provide improved treatment geometry. We report on the initial clinical experience using this applicator. Methods: Patients were enrolled on an IRB-approved, dose-escalation protocol evaluating the use of the anorectal (AR-1) applicator (Ancer Medical, Hialeah, FL), a multichannel applicator with two concentric balloons. The inner balloon supports 8 source lumens; the compliant outer balloon expands to separate the normal rectal wall and the sourcemore » lumens, yet deforms around a firm, exophytic rectal mass, leading to dose escalation to tumor while sparing normal rectum. Under general anesthesia, gold fiducial markers were inserted above and below the tumor, and the AR applicator was placed in the rectum. MRI-based treatment plans were prepared to deliver 15 Gy in 3 weekly fractions to the target volume while sparing healthy rectal tissue, bladder, bowel and anal muscles. Prior to each treatment, CBCT/Fluoroscopy were used to place the applicator in the treatment position and confirm the treatment geometry using rigid registration of the CBCT and planning MRI. After registration of the applicator images, positioning was evaluated based on the match of the gold markers. Results: Highly conformal treatment plans were achieved. MR compatibility of the applicator enabled good tumor visualization. In spite of the non-rigid nature of the applicators and the fact that a new applicator was used at each treatment session, treatment geometry was reproducible to within 2.5 mm. Conclusions: This is the first report on using the AR applicator in patients. Highly conformal plans, confidence in MRI target delineation, in combination with reproducible treatment geometry provide encouraging feedback for continuation with dose escalation in these patients.« less

  3. A Dosimetric Comparison of Breast Radiotherapy Techniques to Treat Locoregional Lymph Nodes Including the Internal Mammary Chain.

    PubMed

    Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A

    2018-06-01

    Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P < 0.0001) and VMAT (P < 0.0001) techniques. There was no advantage in target volume coverage or OAR doses for PBT(vDIBH) compared with PBT(FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  4. SU-E-T-486: Effect of the Normalized Prescription Isodose Line On Target Dose Deficiency in Lung SBRT Based On Monte Carlo Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, D; Zhang, Q; Zhou, S

    Purpose: To investigate the impact of normalized prescription isodose line on target dose deficiency calculated with Monte Carlo (MC) vs. pencil Beam (PB) in lung SBRT. RTOG guidelines recommend prescription lines between 60% and 90% for lung SBRT. How this affects the magnitude of MC-calculated target dose deficiency has never been studied. Methods: Under an IRB-approved protocol, four lung SBRT patients were replanned following RTOG0813 by a single physicist. For each patient, four alternative plans were generated based on PB calculation prescribing to 60–90% isodose lines, respectively. Each plan consisted of 360o coplanar dynamic conformal arcs with beam apertures manuallymore » optimized to achieve similar dose coverage and conformity for all plans of the same patient. Dose distribution was calculated with MC and compared to that with PB. PTV dose-volume endpoints were compared, including Dmin, D5, Dmean, D95, and Dmax. PTV V100 coverage, conformity index (CI), and heterogeneity index (HI) were also evaluated. Results: For all 16 plans, median (range) PTV V100 and CI were 99.7% (97.5–100%) and 1.27 (1.20–1.41), respectively. As expected, lower prescription line resulted in higher target dose heterogeneity, yielding median (range) HI of 1.26 (1.05–1.51) for all plans. Comparing MC to PB, median (range) D95, Dmean, D5 PTV dose deficiency were 18.9% (11.2–23.2%), 15.6% (10.0–22.7%), and 9.4%(5.5–13.6%) of the prescription dose, respectively. The Dmean, D5, and Dmax deficiency was found to monotonically increase with decreasing prescription line from 90% to 60%, while the Dmin deficiency monotonically decreased. D95 deficiency exhibited more complex trend, reaching the largest deficiency at 80% for all patients. Conclusion: Dependence on prescription isodose line was found for MC-calculated PTV dose deficiency of lung SBRT. When comparing reported MC dose deficiency values from different institutions, their individual selections of prescription line should be considered in addition to other factors affecting the deficiency magnitude.« less

  5. First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy.

    PubMed

    Belderbos, José S A; De Jaeger, Katrien; Heemsbergen, Wilma D; Seppenwoolde, Yvette; Baas, Paul; Boersma, Liesbeth J; Lebesque, Joos V

    2003-02-01

    To evaluate the feasibility of dose escalation in non-small cell lung cancer (NSCLC) using three-dimensional conformal radiation therapy. The main eligibility criteria of the trial were: pathologically proven inoperable NSCLC, ECOG performance status or=grade 3 (SWOG), grade 3 early and grade 2 late esophageal toxicity or any other (RTOG) grade 3 or 4 complications). Fifty-five patients were included. Tumor stage was I/II in 47%, IIIA in 33% and IIIB in 20%. The majority of the patients received a dose of 74.3 Gy (n=17) or 81.0 Gy (n=23). Radiation pneumonitis occurred in seven patients: four patients developed a grade 2, two patients grade 3 and one patient a grade 4. Esophageal toxicity was mild. In 50 patients tumor response at 3 months follow-up was evaluable. In six patients a complete response was recorded, in 38 a partial response, five patients had stable disease and one patient experienced progressive disease. Only one patient developed an isolated failure in an uninvolved nodal area. So far the radiation dose was safely escalated to 87.8 Gy in group 1 (lowest rMLD), 81.0 Gy in groups 2 and 3 and 74.3 Gy in group 4. Three-dimensional conformal radiotherapy enables significant dose escalation in NSCLC. The maximum tolerable dose has not yet been reached in any risk group.

  6. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eun Young, E-mail: eyhan@uams.edu; Kim, Dong-Wook; Zhang, Xin

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently,more » the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.« less

  7. A dosimetric comparison of 3D-CRT, IMRT, and static tomotherapy with an SIB for large and small breast volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Andrea; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales; Atyeo, John, E-mail: john.atyeo@sydney.edu.au

    2014-07-01

    Radiation therapy to the breast is a complex task, with many different techniques that can be employed to ensure adequate dose target coverage while minimizing doses to the organs at risk. This study compares the dose planning outcomes of 3 radiation treatment modalities, 3 dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and static tomotherapy, for left-sided whole-breast radiation treatment with a simultaneous integrated boost (SIB). Overall, 20 patients with left-sided breast cancer were separated into 2 cohorts, small and large, based on breast volume. Dose plans were produced for each patient using 3D-CRT, IMRT, and static tomotherapy. Allmore » patients were prescribed a dose of 45 Gy in 20 fractions to the breast with an SIB of 56 Gy in 20 fractions to the tumor bed and normalized so that D{sub 98%} > 95% of the prescription dose. Dosimetric comparisons were made between the 3 modalities and the interaction of patient size. All 3 modalities offered adequate planning target volume (PTV) coverage with D{sub 98%} > 95% and D{sub 2%} < 107%. Static tomotherapy offered significantly improved (p = 0.006) dose homogeneity to the PTV{sub boost} {sub eval} (0.079 ± 0.011) and breast minus the SIB volume (Breast{sub SIB}) (p < 0.001, 0.15 ± 0.03) compared with the PTV{sub boost} {sub eval} (0.085 ± 0.008, 0.088 ± 0.12) and Breast{sub SIB} (0.22 ± 0.05, 0.23 ± 0.03) for IMRT and 3D-CRT, respectively. Static tomotherapy also offered statistically significant reductions (p < 0.001) in doses to the ipsilateral lung mean dose of 6.79 ± 2.11 Gy compared with 7.75 ± 2.54 Gy and 8.29 ± 2.76 Gy for IMRT and 3D-CRT, respectively, and significantly (p < 0.001) reduced heart doses (mean = 2.83 ± 1.26 Gy) compared to both IMRT and 3D-CRT (mean = 3.70 ± 1.44 Gy and 3.91 ± 1.58 Gy). Static tomotherapy is the dosimetrically superior modality for the whole breast with an SIB compared with IMRT and 3D-CRT. IMRT is superior to 3D-CRT in both PTV dose conformity and reduction of mean doses to the ipsilateral lung.« less

  8. Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration

    NASA Astrophysics Data System (ADS)

    Bernatowicz, Kinga; Geets, Xavier; Barragan, Ana; Janssens, Guillaume; Souris, Kevin; Sterpin, Edmond

    2018-04-01

    Intensity-modulated proton therapy (IMPT) offers excellent dose conformity and healthy tissue sparing, but it can be substantially compromised in the presence of anatomical changes. A major dosimetric effect is caused by density changes, which alter the planned proton range in the patient. Three different methods, which automatically restore an IMPT plan dose on a daily CT image were implemented and compared: (1) simple dose restoration (DR) using optimization objectives of the initial plan, (2) voxel-wise dose restoration (vDR), and (3) isodose volume dose restoration (iDR). Dose restorations were calculated for three different clinical cases, selected to test different capabilities of the restoration methods: large range adaptation, complex dose distributions and robust re-optimization. All dose restorations were obtained in less than 5 min, without manual adjustments of the optimization settings. The evaluation of initial plans on repeated CTs showed large dose distortions, which were substantially reduced after restoration. In general, all dose restoration methods improved DVH-based scores in propagated target volumes and OARs. Analysis of local dose differences showed that, although all dose restorations performed similarly in high dose regions, iDR restored the initial dose with higher precision and accuracy in the whole patient anatomy. Median dose errors decreased from 13.55 Gy in distorted plan to 9.75 Gy (vDR), 6.2 Gy (DR) and 4.3 Gy (iDR). High quality dose restoration is essential to minimize or eventually by-pass the physician approval of the restored plan, as long as dose stability can be assumed. Motion (as well as setup and range uncertainties) can be taken into account by including robust optimization in the dose restoration. Restoring clinically-approved dose distribution on repeated CTs does not require new ROI segmentation and is compatible with an online adaptive workflow.

  9. Rectal bleeding, fecal incontinence, and high stool frequency after conformal radiotherapy for prostate cancer: Normal tissue complication probability modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Stephanie; Hoogeman, Mischa S.; Heemsbergen, Wilma D.

    2006-09-01

    Purpose: To analyze whether inclusion of predisposing clinical features in the Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model improves the estimation of late gastrointestinal toxicity. Methods and Materials: This study includes 468 prostate cancer patients participating in a randomized trial comparing 68 with 78 Gy. We fitted the probability of developing late toxicity within 3 years (rectal bleeding, high stool frequency, and fecal incontinence) with the original, and a modified LKB model, in which a clinical feature (e.g., history of abdominal surgery) was taken into account by fitting subset specific TD50s. The ratio of these TD50s is the dose-modifyingmore » factor for that clinical feature. Dose distributions of anorectal (bleeding and frequency) and anal wall (fecal incontinence) were used. Results: The modified LKB model gave significantly better fits than the original LKB model. Patients with a history of abdominal surgery had a lower tolerance to radiation than did patients without previous surgery, with a dose-modifying factor of 1.1 for bleeding and of 2.5 for fecal incontinence. The dose-response curve for bleeding was approximately two times steeper than that for frequency and three times steeper than that for fecal incontinence. Conclusions: Inclusion of predisposing clinical features significantly improved the estimation of the NTCP. For patients with a history of abdominal surgery, more severe dose constraints should therefore be used during treatment plan optimization.« less

  10. Quasi-VMAT in high-grade glioma radiation therapy.

    PubMed

    Fadda, G; Massazza, G; Zucca, S; Durzu, S; Meleddu, G; Possanzini, M; Farace, P

    2013-05-01

    To compare a quasi-volumetric modulated arc therapy (qVMAT) with three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) for the treatment of high-grade gliomas. The qVMAT technique is a fast method of radiation therapy in which multiple equispaced beams analogous to those in rotation therapy are radiated in succession. This study included 12 patients with a planning target volume (PTV) that overlapped at least one organ at risk (OAR). 3D-CRT was planned using 2-3 non-coplanar beams, whereby the field-in-field technique (FIF) was used to divide each field into 1-3 subfields to shield the OAR. The qVMAT strategy was planned with 15 equispaced beams and IMRT was planned using 9 beams with a total of 80 segments. Inverse planning for qVMAT and IMRT was performed by direct machine parameter optimization (DMPO) to deliver a homogenous dose distribution of 60 Gy within the PTV and simultaneously limit the dose received by the OARs to the recommended values. Finally, the effect of introducing a maximum dose objective (max. dose < 54 Gy) for a virtual OAR in the form of a 0.5 cm ring around the PTV was investigated. The qVMAT method gave rise to significantly improved PTV95% and conformity index (CI) values in comparison to 3D-CRT (PTV95% = 90.7 % vs. 82.0 %; CI = 0.79 vs. 0.74, respectively). A further improvement was achieved by IMRT (PTV95% = 94.4 %, CI = 0.78). In qVMAT and IMRT, the addition of a 0.5 cm ring around the PTV produced a significant increase in CI (0.87 and 0.88, respectively), but dosage homogeneity within the PTV was considerably reduced (PTV95% = 88.5 % and 92.3 %, respectively). The time required for qVMAT dose delivery was similar to that required using 3D-CRT. These findings suggest that qVMAT should be preferred to 3D-CRT for the treatment of high-grade gliomas. The qVMAT method could be applied in hospitals, for example, which have limited departmental resources and are not equipped with systems capable of VMAT delivery.

  11. Clinical assessment of the jaw-tracking function in IMRT for a brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kim, Shin-Wook; Choe, Bo-Young; Suh, Tae-Suk; Park, Sung-Kwang; Jo, Sun-Mi; Oh, Won-Yong; Shin, Jung-Wook; Cho, Gyu-Seok; Nam, Sang-Hee; Chung, Jin-Beom; Kim, Jung-Ki; Lee, Young-Kyu

    2015-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose conformity and saves critical organs. IMRT is widely used in cases of head and neck, prostate, and brain cancer due to the close location of the targets to critical structures. However, because IMRT has a larger amount of radiation exposure than 3 dimensional-conformal radiation therapy (3D-CRT), it has disadvantages such as increases in the low dose irradiation to normal tissues and in the accumulated dose for the whole volume due to leakage and transmission of the multi-leaf collimator (MLC). The increased accumulated dose and the larger low dose may increase the occurrence of secondary malignant neoplasms. For these reasons, the jaw-tracking function of the TrueBeam (Varian Medical Systems, Palo Alto, CA) was developed to reduce the leakage and the transmission dose of the MLC with linear accelerators. However, the change in the superficial dose has not been verified with a quantitative analysis of the dose reduction in a brain tumor. Therefore, in the present study, we intended to verify the clinical possibility of utilizing the jaw-tracking function for a brain tumor by comparing treatment plans and superficial doses. To accomplish this, we made three types of original treatment plans using Eclipse11 (Varian Medical Systems, Palo Alto, CA): 1) farther than 2 cm from the organs at risk (OAR); 2) within 2 cm of the OAR; and 3) intersecting with the OAR. Jaw-tracking treatment plans were also made with copies of the original treatment plan using Smart LMC Version 11.0.31 (Varian Medical Systems, Palo Alto, CA). A comparison between the original treatment plans and jaw-tracking treatment plans was performed using the difference of the mean dose and maximum dose to the OARs in cumulative Dose Volume Histogram (DVH). In addition, the dependencies of the effects of transmission and the scattering doses according to jaw motion were assessed through the difference in the surface doses. In the DVH comparison, a maximum dose difference of 0.4% was observed between the planning methods in the case of over 2 cm distance, and the maximum dose of 0.6% was obtained for within the 2 cm distance. For the case intersecting with the OAR, the maximum dose difference of 2.3% was achieved. According to these results, the differences in the mean doses and the maximum doses to the OARs ware larger when the OARs and the planning target volume (PTV) were closer. In addition, small differences in the surface dose measurements were observed. In the case of the inside field, the differences were under 2% of the prescription dose while the difference was under 0.1% in the case of the outside field. Therefore, treatment plans with the jaw-tracking function consistently affected the dose reduction for a brain tumor, and the clinical possibility could be verified as the surface dose was not increased.

  12. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.

  13. Multivariate analysis of survival, local control, and time to distant metastases in patients with unresectable non-small-cell lung carcinoma treated with 3-dimensional conformal radiation therapy with or without concurrent chemotherapy.

    PubMed

    Wolski, Michal J; Bhatnagar, Ajay; Flickinger, John C; Belani, Chandra P; Ramalingam, Suresh; Greenberger, Joel S

    2005-09-01

    Three-dimensional (3D) conformal radiation therapy (CRT) and chemotherapy have recently improved lung cancer management. We reviewed outcomes in 68 patients with unresectable stage I-III non-small-cell lung cancer. Treatment consisted of 3D CRT alone or with concurrent chemotherapy (CCR). Concurrent chemotherapy improved survival, to a median of 17 months +/- 4.9 months, compared with 8 months+/- 4.1 months for the radiation therapy (RT) alone group (P=0.0347). The 2- and 5-year survival rates were 40.3%+/-7.7% and 14.1%+/-6.4%, respectively, with CCR, compared with 19.6%+/- 9.6% and 0, respectively, for RT alone. In a subgroup analysis for age > 65, patients who received CCR (n=20) had significantly improved survival and local control (P=0.005 and P=0.0286, respectively). Acute esophageal toxicity Radiation Therapy Oncology Group grade >or= 3 was significantly higher in the CCR group and correlated with the RT dose (19% in CCR vs. 0 in RT, P=0.0234; P=0.050). The overall incidences of esophageal and pulmonary toxicity grade >or= 3 were 20.6% and 5.9%, respectively. Our study confirms that CCR is associated with improved survival over RT alone, with a tolerable increase in acute toxicity.

  14. Results of multifield conformal radiation therapy of nonsmall-cell lung carcinoma using multileaf collimation beams.

    PubMed

    Bahri, S; Flickinger, J C; Kalend, A M; Deutsch, M; Belani, C P; Sciurba, F C; Luketich, J D; Greenberger, J S

    1999-01-01

    A five-field conformal technique with three-dimensional radiation therapy treatment planning (3-DRTP) has been shown to permit better definition of the target volume for lung cancer, while minimizing the normal tissue volume receiving greater than 50% of the target dose. In an initial study to confirm the safety of conventional doses, we used the five-field conformal 3-DRTP technique. We then used the technique in a second study, enhancing the therapeutic index in a series of 42 patients, as well as to evaluate feasibility, survival outcome, and treatment toxicity. Forty-two consecutive patients with nonsmall-cell lung carcinoma (NSCLC) were evaluated during the years 1993-1997. The median age was 60 years (range 34-80). The median radiation therapy (RT) dose to the gross tumor volume was 6,300 cGy (range 5,000-6,840 cGy) delivered over 6 to 6.5 weeks in 180-275 cGy daily fractions, 5 days per week. There were three patients who received a split course treatment of 5,500 cGy in 20 fractions, delivering 275 cGy daily with a 2-week break built into the treatment course after 10 fractions. The stages of disease were II in 2%, IIIA in 40%, IIIB in 42.9%, and recurrent disease in 14.3% of the patients. The mean tumor volume was 324.14 cc (range 88.3-773.7 cc); 57.1% of the patients received combined chemoradiotherapy, while the others were treated with radiation therapy alone. Of the 42 patients, 7 were excluded from the final analysis because of diagnosis of distant metastasis during treatment. Two of the patients had their histology reinterpreted as being other than NSCLC, 2 patients did not complete RT at the time of analysis, and 1 patient voluntarily discontinued treatment because of progressive deterioration. Median follow-up was 11.2 months (range 3-32.5 months). Survival for patients with Stage III disease was 70.2% at 1 year and 51.5% at 2 years, with median survival not yet reached. Local control for the entire series was 23.3+/-11.4% at 2 years. However, for Stage III patients, local control was 50% at 1 year and 30% at 2 years. Patients who received concurrent chemotherapy had significantly improved survival (P = 0.002) and local control (P = 0.004), compared with RT alone. Late esophageal toxicity of > or =Grade 3 occurred in 14.1+/-9.3% of patients (3 of 20) receiving combined chemoradiotherapy, but in none of the 15 patients treated with RT alone. Pulmonary toxicity limited to Grades 1-2 occurred in 6.8% of the patients, and none developed > or =Grade 3 pulmonary toxicity. Patients with locally advanced NSCLC, who commonly have tumor volumes in excess of 200 cc, presenta challenge for adequate dose delivery without significant toxicity. Our five-field conformal 3-DRTP technique, which incorporates treatment planning by dose/volume histogram (DVH) was associated with minimal toxicity and may facilitate dose escalation to the gross tumor.

  15. Phase I/II study of hypofractioned radiation with three-dimensional conformal radiotherapy for clinical T3-4N0-1M0 stage esophageal carcinoma.

    PubMed

    Song, Y-P; Ma, J-B; Hu, L-K; Zhou, W; Chen, E-C; Zhang, W

    2011-02-01

    Compared to conventional fractionated-dose radiotherapy, high hypofractionated-dose radiotherapy could yield tumoricidal effects. However, few clinical trials of hypofractionated radiotherapy in loco-regionally advanced incurable esophageal cancer at present have yet been performed. The purpose of the current study was to evaluate the efficacy and toxicity of hypofractioned radiation with three-dimensional conformal radiotherapy for clinical T3-4N0-1M0 stage esophageal carcinoma. From September 2003 to December 2005, 45 patients with locally advanced esophageal carcinoma were grouped and received three-dimensional conformal hypofractioned radiotherapy (3D-CRT) whose fractionated dose was gradually increase per group. Radiotherapy was administered to a total dose of from 50 to 54 Gy (fractionated dose of from 3.0 to 6.0 Gy, 3 times weekly), over a 3-4 week period. And patients received 4 cycles chemotherapy. The median follow-up period for survivors was 38 months. Treatment tolerance rate was 78.8% with daily dose of from 3 to 5 Gy. There are 21.2% patients occurring Grade ≥ 3 acute toxicities. But patients couldn't tolerate daily dose of 6 Gy (55.6%). The 1-year, 2-year and 3-year local control rates were 62%, 49% and 39% respectively. And the 1-year, 2-year and 3-year overall survival rates were 34%, 21% and 9% respectively. The median overall survival time was 17 months. At the time of following up, 13 patients (31.0%) had occurred esophageal late complications, with mainly esophageal perforation, hemorrhage or stenosis, including initial stenosis aggravation. Therefore hypofractionated irradiation was thought to be feasible for clinical T3-4N0-1M0 stage esophageal carcinoma. And daily dose of ≤5 Gy was comparatively suitable in hypofractionated irradiation for esophageal carcinoma, and the patients tolerated well. But further research was in need also.

  16. Potential of Proton Therapy to Reduce Acute Hematologic Toxicity in Concurrent Chemoradiation Therapy for Esophageal Cancer.

    PubMed

    Warren, Samantha; Hurt, Christopher N; Crosby, Thomas; Partridge, Mike; Hawkins, Maria A

    2017-11-01

    Radiation therapy dose escalation using a simultaneous integrated boost (SIB) is predicted to improve local tumor control in esophageal cancer; however, any increase in acute hematologic toxicity (HT) could limit the predicted improvement in patient outcomes. Proton therapy has been shown to significantly reduce HT in lung cancer patients receiving concurrent chemotherapy. Therefore, we investigated the potential of bone marrow sparing with protons for esophageal tumors. Twenty-one patients with mid-esophageal cancer who had undergone conformal radiation therapy (3D50) were selected. Two surrogates for bone marrow were created by outlining the thoracic bones (bone) and only the body of the thoracic vertebrae (TV) in Eclipse. The percentage of overlap of the TV with the planning treatment volume was recorded for each patient. Additional plans were created retrospectively, including a volumetric modulated arc therapy (VMAT) plan with the same dose as for 3D50; a VMAT SIB plan with a dose prescription of 62.5 Gy to the high-risk subregion within the planning treatment volume; a reoptimized TV-sparing VMAT plan; and a proton therapy plan with the same SIB dose prescription. The bone and TV dose metrics were recorded and compared across all plans and variations with respect to PTV and percentage of overlap for each patient. The 3D50 plans showed the highest bone mean dose and TV percentage of volume receiving ≥30 Gy (V 30Gy ) for each patient. The VMAT plans irradiated a larger bone V 10Gy than did the 3D50 plans. The reoptimized VMAT62.5 VT plans showed improved sparing of the TV volume, but only the proton plans showed significant sparing for bone V 10Gy and bone mean dose, especially for patients with a larger PTV. The results of the present study have shown that proton therapy can reduced bone marrow toxicity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. IMRT vs. 3D Noncoplanar Treatment Plans for Maxillary Sinus Tumors: A New Tool for Quantitative Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Daphne; Menhel, Janna; Alezra, Dror

    2008-01-01

    We compared 9-field, equispaced intensity modulated radiation therapy (IMRT), 4- to 5-field, directionally optimized IMRT, and 3-dimensional (3D) noncoplanar planning approaches for tumors of the maxillary sinus. Ten patients were planned retrospectively to compare the different treatment techniques. Prescription doses were 60 to 70 Gy. Critical structures contoured included optic nerves and chiasm, lacrimal glands, lenses, and retinas. As an aid for plan assessment, we introduced a new tool: Critical Organ Scoring Index (COSI), which allows quantitative evaluation of the tradeoffs between target coverage and critical organ sparing. This index was compared with other, commonly used conformity indices. For amore » reliable assessment of both tumor coverage and dose to critical organs in the different planning techniques, we introduced a 2D, graphical representation of COSI vs. conformity index (CI). Dose-volume histograms and mean, maximum, and minimum organ doses were also compared. IMRT plans delivered lower doses to ipsilateral structures, but were unable to spare them. 3D plans delivered less dose to contralateral structures, and were more homogeneous, as well. Both IMRT approaches gave similar results. In cases where choice of optimal plan was difficult, the novel 2D COSI-CI representation gave an accurate picture of the tradeoffs between target coverage and organ sparing, even in cases where other conformity indices failed. Due to their unique anatomy, maxillary sinus tumors may benefit more from a noncoplanar approach than from IMRT. The new graphical representation proposed is a quick, visual, reliable tool, which may facilitate the physician's choice of best treatment plan for a given patient.« less

  18. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a ⁶⁰Co Magnetic Resonance Image Guidance Radiation Therapy System.

    PubMed

    Wooten, H Omar; Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H Harold; Mutic, Sasa

    2015-07-15

    This work describes a commercial treatment planning system, its technical features, and its capabilities for creating (60)Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. The ViewRay treatment planning system (Oakwood Village, OH) was used to create (60)Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The (60)Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. All (60)Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for (60)Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all (60)Co plan OARs were within clinical tolerances. A commercial (60)Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation.

    PubMed

    Ji, Kai; Zhao, Lujun; Yang, Chengwen; Meng, Maobin; Wang, Ping

    2012-11-27

    To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Thirty-nine patients with medically inoperable T1-4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Under a 60 Gy dosage, the median D mean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40 Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  20. Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study

    NASA Astrophysics Data System (ADS)

    Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral

    2017-09-01

    Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.

  1. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  2. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouaf, Lucie; Girard, Nicolas; Claude Bernard University, Lyon

    2012-03-01

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were comparedmore » with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.« less

  3. The dosimetric effects of photon energy on the quality of prostate volumetric modulated arc therapy.

    PubMed

    Mattes, Malcolm D; Tai, Cyril; Lee, Alvin; Ashamalla, Hani; Ikoro, N C

    2014-01-01

    Studies comparing the dosimetric effects of high- and low-energy photons to treat prostate cancer using 3-dimensional conformal and intensity modulated radiation therapy have yielded mixed results. With the advent of newer radiation delivery systems like volumetric modulated arc therapy (VMAT), the impact of changing photon energy is readdressed. Sixty-five patients treated for prostate cancer at our institution from 2011 to 2012 underwent CT simulation. A target volume encompassing the prostate and entire seminal vesicles was treated to 50.4 Gy, followed by a boost to the prostate and proximal seminal vesicles to a total dose of 81 Gy. The VMAT plans were generated for 6-MV and 10-MV photons under identical optimization conditions using the Eclipse system version 8.6 (Varian Medical Systems, Palo Alto, CA). The analytical anisotropic algorithm was used for all dose calculations. Plans were normalized such that 98% of the planning target volume (PTV) received 100% of the prescribed dose. Dose-volumetric data from the treatment planning system was recorded for both 6-MV and 10-MV plans, which were compared for both the entire cohort and subsets of patients stratified according to the anterior-posterior separation. Plans using 10-MV photons had statistically significantly lower relative integral dose (4.1%), gradient measure (4.1%), skin Dmax (16.9%), monitor units (13.0%), and bladder V(30) (3.1%) than plans using 6-MV photons (P < .05). There was no difference in rectal dose, high-dose-region bladder dose, PTV coverage, or conformity index. The benefit of 10-MV photons was more pronounced for thicker patients (anterior-posterior separation >21 cm) for most parameters, with statistically significant differences in bladder V(30), bladder V(65), integral dose, conformity index, and monitor units. The main dosimetric benefits of 10-MV as compared with 6-MV photons are seen in thicker patients, though for the entire cohort 10-MV plans resulted in a lower integral dose, gradient measure, skin Dmax, monitor units, and bladder V(30), possibly at the expense of higher rectum V(81). Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  4. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy.

    PubMed

    Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona

    2015-12-01

    The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.

  5. Patient-specific Monte Carlo-based dose-kernel approach for inverse planning in afterloading brachytherapy.

    PubMed

    D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc

    2011-12-01

    Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Chained lightning: part III--Emerging technology, novel therapeutic strategies, and new energy modalities for radiosurgery.

    PubMed

    Hoh, Daniel J; Liu, Charles Y; Chen, Joseph C T; Pagnini, Paul G; Yu, Cheng; Wang, Michael Y; Apuzzo, Michael L J

    2007-12-01

    Radiosurgery is fundamentally the harnessing of energy and delivering it to a focal target for a therapeutic effect. The evolution of radiosurgical technology and practice has served toward refining methodologies for better conformal energy delivery. In the past, this has resulted in developing strategies for improved beam generation and delivery. Ultimately, however, our current instrumentation and treatment modalities may be approaching a practical limit with regard to further optimizing energy containment. In looking forward, several strategies are emerging to circumvent these limitations and improve conformal radiosurgery. Refinement of imaging techniques through functional imaging and nanoprobes for cancer detection may benefit lesion localization and targeting. Methods for enhancing the biological effect while reducing radiation-induced changes are being examined through dose fractionation schedules. Radiosensitizers and photosensitizers are being investigated as agents for modulating the biological response of tissues to radiation and alternative energy forms. Discovery of new energy modalities is being pursued through development of microplanar beams, free electron lasers, and high-intensity focused ultrasound. The exploration of these future possibilities will provide the tools for radiosurgical treatment of a broader spectrum of diseases for the next generation.

  7. SU-E-P-47: Evaluation of Improvement of Esophagus Sparing in SBRT Lung Patients with Biologically Based IMRT Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Penagaricano, J; Paudel, N

    2015-06-15

    Purpose: To study the potential of improving esophageal sparing for stereotactic body radiation therapy (SBRT) lung cancer patients by using biological optimization (BO) compared to conventional dose-volume based optimization (DVO) in treatment planning. Methods: Three NSCLC patients (PTV (62.3cc, 65.1cc, and 125.1cc) adjacent to the heart) previously treated with SBRT were re-planned using Varian Eclipse TPS (V11) using DVO and BO. The prescription dose was 60 Gy in 5 fractions normalized to 95% of the PTV volume. Plans were evaluated by comparing esophageal maximum doses, PTV heterogeneity (HI= D5%/D95%), and Paddick’s conformity (CI) indices. Quality of the plans was assessedmore » by clinically-used IMRT QA procedures. Results: By using BO, the maximum dose to the esophagus was decreased 1384 cGy (34.6%), 502 cGy (16.5%) and 532 cGy (16.2%) in patient 1, 2 and 3 respectively. The maximum doses to spinal cord and the doses to 1000 cc and 1500 cc of normal lung were comparable in both plans. The mean doses (Dmean-hrt) and doses to 15cc of the heart (V15-hrt) were comparable for patient 1 and 2. However for patient 3, with the largest PTV, Dmean-hrt and V15-hrt increased by 62.2 cGy (18.3%) and 549.9 cGy (24.9%) respectively for the BO plans. The mean target HI of BO plans (1.13) was inferior to the DVO plans (1.07). The same trend was also observed for mean CI in BO plans (0.77) versus DVO plans (0.83). The QA pass rates (3%, 3mm) were comparable for both plans. Conclusion: This study demonstrated that the use of biological models in treatment planning optimization can substantially improve esophageal sparing without compromising spinal cord and normal lung doses. However, for the large PTV case (125.1cc) we studied here, Dmean-hrt and V15-hrt increased substantially. The target HI and CI were inferior in the BO plans.« less

  8. The Effect of Dose-Volume Parameters and Interfraction Interval on Cosmetic Outcome and Toxicity After 3-Dimensional Conformal Accelerated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, Kara Lynne, E-mail: karalynne.kerr@gmail.com; Hepel, Jaroslaw T.; Department of Radiation Oncology, Rhode Island Hospital, Warren Alpert School of Medicine of Brown University, Providence, Rhode Island

    2013-03-01

    Purpose: To evaluate dose-volume parameters and the interfraction interval (IFI) as they relate to cosmetic outcome and normal tissue effects of 3-dimensional conformal radiation therapy (3D-CRT) for accelerated partial breast irradiation (APBI). Methods and Materials: Eighty patients were treated by the use of 3D-CRT to deliver APBI at our institutions from 2003-2010 in strict accordance with the specified dose-volume constraints outlined in the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 (NSABP-B39/RTOG 0413) protocol. The prescribed dose was 38.5 Gy in 10 fractions delivered twice daily. Patients underwent follow-up with assessment for recurrence, late toxicity, andmore » overall cosmetic outcome. Tests for association between toxicity endpoints and dosimetric parameters were performed with the chi-square test. Univariate logistic regression was used to evaluate the association of interfraction interval (IFI) with these outcomes. Results: At a median follow-up time of 32 months, grade 2-4 and grade 3-4 subcutaneous fibrosis occurred in 31% and 7.5% of patients, respectively. Subcutaneous fibrosis improved in 5 patients (6%) with extended follow-up. Fat necrosis developed in 11% of women, and cosmetic outcome was fair/poor in 19%. The relative volume of breast tissue receiving 5%, 20%, 50%, 80%, and 100% (V5-V100) of the prescribed dose was associated with risk of subcutaneous fibrosis, and the volume receiving 50%, 80%, and 100% (V50-V100) was associated with fair/poor cosmesis. The mean IFI was 6.9 hours, and the minimum IFI was 6.2 hours. The mean and minimum IFI values were not significantly associated with late toxicity. Conclusions: The incidence of moderate to severe late toxicity, particularly subcutaneous fibrosis and fat necrosis and resulting fair/poor cosmesis, remains high with continued follow-up. These toxicity endpoints are associated with several dose-volume parameters. Minimum and mean IFI values were not associated with late toxicity.« less

  9. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements

    PubMed Central

    Whitaker, May

    2016-01-01

    Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129

  10. Robustness of IPSA optimized high-dose-rate prostate brachytherapy treatment plans to catheter displacements.

    PubMed

    Poder, Joel; Whitaker, May

    2016-06-01

    Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.

  11. Potential for intensity-modulated radiation therapy to permit dose escalation for canine nasal cancer.

    PubMed

    Vaudaux, Catherine; Schneider, Uwe; Kaser-Hotz, Barbara

    2007-01-01

    We evaluated the impact of inverse planned intensity-modulated radiation therapy (IMRT) on the dose-volume histograms (DVHs) and on the normal tissue complication probabilities (NTCPs) of brain and eyes in dogs with nasal tumors. Nine dogs with large, caudally located nasal tumors were planned using conventional techniques and inverse planned IMRT for a total prescribed dose of 52.5 Gy in 3.5 Gy fractions. The equivalent uniform dose for brain and eyes was calculated to estimate the normal tissue complication probability (NTCP) of these organs. The NTCP values as well as the DVHs were used to compare the treatment plans. The dose distribution in IMRT plans was more conformal than in conventional plans. The average dose delivered to one-third of the brain was 10 Gy lower with the IMRT plan compared with conventional planning. The mean partial brain volume receiving 43.6 Gy or more was reduced by 25.6% with IMRT. As a consequence, the NTCPs were also significantly lower in the IMRT plans. The mean NTCP of brain was two times lower and at least one eye could be saved in all patients planed with IMRT. Another possibility with IMRT is dose escalation in the target to improve tumor control while keeping the NTCPs at the same level as for conventional planning. Veterinary

  12. A simpler method for total scalp irradiation: the multijaw-size concave arc technique.

    PubMed

    Inoue, Minoru; Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo

    2014-07-08

    The lateral electron-photon technique (LEPT) and intensity-modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time-consuming. We herein present the multijaw-size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper-jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%-95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high-dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT.

  13. A simpler method for total scalp irradiation: the multijaw‐size concave arc technique

    PubMed Central

    Konno, Masahiro; Ogawa, Hirofumi; Harada, Hideyuki; Asakura, Hirofumi; Fuji, Hiroshi; Murayama, Shigeyuki; Nishimura, Tetsuo

    2014-01-01

    The lateral electron‐photon technique (LEPT) and intensity‐modulated radiation therapy (IMRT) are commonly used for total scalp irradiation. However, the treatment planning and irradiation are laborious and time‐consuming. We herein present the multijaw‐size concave arc technique (MCAT) as a total scalp irradiation method that overcomes these problems. CT datasets for eight patients previously treated for angiosarcoma of the scalp were replanned using MCAT, LEPT, and IMRT. The MCAT was designed with a dynamic conformal arc for the total scalp, with a multileaf collimator to shield the brain. Two additional conformal arcs with a decreased upper‐jaw position of the first dynamic conformal arc were used to reduce the cranial hotspots. The prescribed dose was 40 Gy (2 Gy/fraction) to 95% of the planning target volume (PTV, defined as the total scalp plus a 4 mm margin). MCAT was compared with LEPT and IMRT with respect to the PTV dose homogeneity (D5%–95%), underdosage (V < 90%), overdosage (V > 110%), doses to the brain, and the delivery time and monitor units (MUs) for single irradiation. We were able to formulate treatment plans for all three techniques that could deliver the prescription dose in all patients. MCAT was significantly superior to LEPT with respect to PTV dose homogeneity, overdosage, and underdosage, although MCAT was inferior to IMRT with respect to dose homogeneity and overdosage. The mean brain dose and high‐dosage volume of all three techniques were low, but IMRT provided larger volume to the brain than did the other two techniques in the low dosage region. In MCAT, the mean delivery time could be reduced by approximately half or more, and the mean MUs could be reduced by at least 100 compared to the other two techniques. MCAT can achieve total scalp irradiation with substantially fewer MUs and a shorter delivery time than LEPT and IMRT. PACS number: 87.55.D‐ PMID:25207405

  14. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  15. Dosimetric comparison between 10MV-FFF and 6MV-FFF for lung SBRT

    NASA Astrophysics Data System (ADS)

    Durmus, I. F.; Atalay, E. D.

    2017-02-01

    Plans were prepared by using same non-coplanar fields and physical parameters in 6MV-FFF and 10MV-FFF energies for fourteen lung Stereotactic Body Radio Therapy (SBRT) patients. In two plans which have different energies, critic organ doses, PTV doses, quality of plans (Gradient Index (GI), Homogeneity Index (HI), Conformity Index (CI)) and Monitor Unit (MU) values were compared. Quality controls were performed with 2D-Array Iba MatriXX Evolution® dosimetry system for each plans. As a results, plan with 6MV-FFF energy give better results in terms of CI and GI values. In this way, when more conformal dose distributions were provided, there was a rapid dose decrease at out of target volume. Lower MU values were obtained in plans which was prepared with 10MV-FFF energy. In plan with 10MV-FFF energy lower MU values are obtained. Lower values in heart and spinal cord doses are founded and better results are obtained in Body and Ipsa-Lung V5, V10, V20 values with 6MV-FFF energies. When differences were very small in volume which were taken low dose (V5), these differences increased in volume which were taken high dose (V20). High dose rates can be reached by both two unfiltered energies and can be used in lung SBRT.

  16. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.

    PubMed

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-01-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  17. Dose assessment for the fetus considering scattered and secondary radiation from photon and proton therapy when treating a brain tumor of the mother

    NASA Astrophysics Data System (ADS)

    Geng, Changran; Moteabbed, Maryam; Seco, Joao; Gao, Yiming; Xu, X. George; Ramos-Méndez, José; Faddegon, Bruce; Paganetti, Harald

    2016-01-01

    The goal of this work was to determine the scattered photon dose and secondary neutron dose and resulting risk for the sensitive fetus from photon and proton radiotherapy when treating a brain tumor during pregnancy. Anthropomorphic pregnancy phantoms with three stages (3-, 6-, 9-month) based on ICRP reference parameters were implemented in Monte Carlo platform TOPAS, to evaluate the scattered dose and secondary neutron dose and dose equivalent. To evaluate the dose equivalent, dose averaged quality factors were considered for neutrons. This study compared three treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS) and 6-MV 3D conformal photon therapy. The results show that, for 3D conformal photon therapy, the scattered photon dose equivalent to the fetal body increases from 0.011 to 0.030 mSv per treatment Gy with increasing stage of gestation. For PBS, the neutron dose equivalent to the fetal body was significantly lower, i.e. increasing from 1.5  ×  10-3 to 2.5  ×  10-3 mSv per treatment Gy with increasing stage of gestation. For PPT, the neutron dose equivalent of the fetus decreases from 0.17 to 0.13 mSv per treatment Gy with the growing fetus. The ratios of dose equivalents to the fetus for a 52.2 Gy(RBE) course of radiation therapy to a typical CT scan of the mother’s head ranged from 3.4-4.4 for PBS, 30-41 for 3D conformal photon therapy and 180-500 for PPT, respectively. The attained dose to a fetus from the three modalities is far lower than the thresholds of malformation, severe mental retardation and lethal death. The childhood cancer excessive absolute risk was estimated using a linear no-threshold dose-response relationship. The risk would be 1.0 (95% CI: 0.6, 1.6) and 0.1 (95% CI:  -0.01, 0.52) in 105 for the 9-month fetus for PBS with a prescribed dose of 52.2 Gy(RBE). The increased risks for PPT and photon therapy are about two and one orders of magnitude larger than that for PBS, respectively. We can conclude that a pregnant woman with a brain tumor could be treated with pencil beam scanning with acceptable risks to the fetus.

  18. Improved Biochemical Outcomes With Statin Use in Patients With High-Risk Localized Prostate Cancer Treated With Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollmeier, Marisa A.; Katz, Matthew S.; Mak, Kimberley

    Purpose: To investigate the association between 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) and biochemical and survival outcomes after high-dose radiotherapy (RT) for prostate cancer. Methods and Materials: A total of 1711 men with clinical stage T1-T3 prostate cancer were treated with conformal RT to a median dose of 81 Gy during 1995-2007. Preradiotherapy medication data were available for 1681 patients. Three hundred eighty-two patients (23%) were taking a statin medication at diagnosis and throughout RT. Nine hundred forty-seven patients received a short-course of neoadjuvant and concurrent androgen-deprivation therapy (ADT) with RT. The median follow-up was 5.9 years. Results: The 5-more » and 8-year PSA relapse-free survival (PRFS) rates for statin patients were 89% and 80%, compared with 83% and 74% for those not taking statins (p = 0.002). In a multivariate analysis, statin use (hazard ratio [HR]0.69, p = 0.03), National Comprehensive Cancer Network (NCCN) low-risk group, and ADT use were associated with improved PRFS. Only high-risk patients in the statin group demonstrated improvement in PRFS (HR 0.52, p = 0.02). Across all groups, statin use was not associated with improved distant metastasis-free survival (DMFS) (p = 0.51). On multivariate analysis, lower NCCN risk group (p = 0.01) and ADT use (p = 0.005) predicted improved DMFS. Conclusions: Statin use during high-dose RT for clinically localized prostate cancer was associated with a significant improvement in PRFS in high-risk patients. These data suggest that statins have anticancer activity and possibly provide radiosensitization when used in conjunction with RT in the treatment of prostate cancer.« less

  19. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less

  20. Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

    PubMed Central

    Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M

    2006-01-01

    Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055

  1. Emerging Indications for Fractionated Gamma Knife Radiosurgery.

    PubMed

    McTyre, Emory; Helis, Corbin A; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H; Bourland, J Daniel; Dezarn, William A; Munley, Michael T; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W; Tatter, Stephen B; Chan, Michael D

    2017-02-01

    Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors.

  2. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.

  3. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method.

    PubMed

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A; Purdie, Thomas G

    2017-07-06

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.

  4. SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J; Kim, J; Eom, K

    Purpose: The purpose of this study is to determine the optimal treatment planning strategy among the different arc arrangements for prostate stereotactic body radiotherapy (SBRT) plans with volumetric modulated arc therapy (VMAT). Methods: Ten patients with prostate cancer were selected. The SBRT-VMAT plans for each patient were generated with single-full (181° to 179°; 1FA), single-partial (240° to 120°; 1PA), double-full (181° to 179° and 179° to 181°; 2FA), and double-partial (240° to 120° and 120° to 240°; 2PA) arc arrangements. The prescription dose was 42.7 Gy in 7 fractions. Dose distribution was calculated using a 10-MV flattening-filter-free beam and themore » Acuros XB algorithm. Dosimetric parameters of target volume and organs at risk (OARs) were evaluated from cumulative dose-volume histograms on prostate SBRT-VMAT plans between single-arc (1FA and 1PA) and double-arc (2FA and 2PA) arrangements. Results: All plans using four arc arrangements were highly conformal with conformity index (CI)<1.05 and conformation number (CN)=0.91, and the doses to target volume were homogeneous (homogeneity index (HI)= 0.09 0.12). Pertaining to the dose to the OARs, there were significant differences in the rectum, left and right femoral head doses while having no difference in the bladder dose. The partial-arc (1PA and 2PA) had relatively high reductions for the mean rectum dose compared to full-arc (1FA and 2FA). The near-to-maximum dose (D2%) and mean dose of the left and right femoral head were always lower on prostate SBRT-VMAT plan using the full-arc, when compared to the partial-arc arrangement. Conclusion: This study confirmed that prostate SBRT-VMAT using 1PA was feasible fast delivery time and produced equivalent target coverage and better rectum sparing, although the D2% and mean dose of the left and right femoral head increased slightly. Therefore, the results of this study suggest that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.« less

  5. Volumetric Modulated Arc Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    PubMed Central

    Lu, Jia-Yang; Chen, Jian-Zhou; Chen, Zhi-Jian; Li, De-Rui; Chen, Chuang-Zhen

    2015-01-01

    Objective To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 values than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2; however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. PMID:25815477

  6. SU-E-T-811: Volumetric Modulated Arc Therapy Vs. C-IMRT for the Treatment of Upper Thoracic Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W; Wu, L; Lu, J

    2015-06-15

    Purpose: To compare plans using volumetric-modulated arc therapy (VMAT) with conventional sliding window intensity-modulated radiation therapy (c-IMRT) to treat upper thoracic esophageal cancer (EC). Methods: CT datasets of 11 patients with upper thoracic EC were identified. Four plans were generated for each patient: c-IMRT with 5 fields (5F) and VMAT with a single arc (1A), two arcs (2A), or three arcs (3A). The prescribed doses were 64 Gy/32 F for the primary tumor (planning target volume 64, PTV64). The dose-volume histogram data, the number of monitoring units (MUs) and the treatment time (TT) for the different plans were compared. Results:more » All of the plans generated similar dose distributions for PTVs and organs at risk (OARs), except that the 2A- and 3A-VMAT plans yielded a significantly higher conformity index (CI) than the c-IMRT plan. The CI of the PTV64 was improved by increasing the number of arcs in the VMAT plans. The maximum spinal cord dose and the planning risk volume of the spinal cord dose for the two techniques were similar. The 2A- and 3A-VMAT plans yielded lower mean lung doses and heart V50 than the c-IMRT. The V20 and V30 for the lungs in all of the VMAT plans were lower than those in the c-IMRT plan, at the expense of increasing V5, V10 and V13. The VMAT plan resulted in significant reductions in MUs and TT. Conclusion: The 2A-VMAT plan appeared to spare the lungs from moderate-dose irradiation most effectively of all plans, at the expense of increasing the low-dose irradiation volume, and also significantly reduced the number of required MUs and the TT. The CI of the PTVs and the OARs was improved by increasing the arc-number from 1 to 2. however, no significant improvement was observed using the 3A-VMAT, except for an increase in the TT. This work was sponsored by Shantou University Medical College Clinical Research Enhancement Initiative(NO.201424)« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Jean-Baptiste; Falk, Alexander T.; Auberdiac, Pierre

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV)more » were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.« less

  8. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: a dosimetric study.

    PubMed

    Kesarwala, Aparna H; Ko, Christine J; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E; O'Meara, William P; Simone, Charles B; Rengan, Ramesh

    2015-05-01

    Photon involved-field (IF) radiation therapy (IFRT), the standard for locally advanced (LA) non-small cell lung cancer (NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Because of the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. IMPT IFRT plans were generated to the same total dose of 66.6-72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 cobalt Gray equivalent (CGE) to elective nodal planning treatment volumes (PTV) plus 24 CGE to IF-PTVs. Proton IFRT and ENI improved the IF-PTV percentage of volume receiving 95% of the prescribed dose (D95) by 4% (P < .01) compared with photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. The lung percentage of volume receiving 20 Gy/CGE (V20) and mean lung dose decreased 18% (P < .01) and 36% (P < .01), respectively, with proton IFRT, and 11% (P = .03) and 26% (P < .01) with ENI. The mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all P < .01). This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates that IMPT could allow ENI while maintaining a favorable therapeutic ratio compared with photon IFRT. Published by Elsevier Inc.

  9. Adaptive Radiation Therapy for Localized Mesothelioma with Mediastinal Metastasis Using Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James; Yartsev, Slav; Department of Oncology, University of Western Ontario, London, Ontario

    2009-10-01

    The purpose of this study was to compare 2 adaptive radiotherapy strategies with helical tomotherapy. A patient having mesothelioma with mediastinal nodes was treated using helical tomotherapy with pretreatment megavoltage CT (MVCT) imaging. Gross tumor volumes (GTVs) were outlined on every MVCT study. Two alternatives for adapting the treatment were investigated: (1) keeping the prescribed dose to the targets while reducing the dose to the OARs and (2) escalating the target dose while maintaining the original level of healthy tissue sparing. Intensity modulated radiotherapy (step-and-shoot IMRT) and 3D conformal radiotherapy (3DCRT) plans for the patient were generated and compared. Themore » primary lesion and nodal mass regressed by 16.2% and 32.5%, respectively. Adapted GTVs and reduced planning target volume (PTV) margins of 4 mm after 22 fractions decrease the planned mean lung dose by 19.4%. For dose escalation, the planned prescribed doses may be increased from 50.0 to 58.7 Gy in PTV{sub 1} and from 60.0 to 70.5 Gy in PTV{sub 2}. The step-and-shoot IMRT plan was better in sparing healthy tissue but did not provide target coverage as well as the helical tomotherapy plan. The 3DCRT plan resulted in a prohibitively high planned dose to the spinal cord. MVCT studies provide information both for setup correction and plan adaptation. Improved healthy tissue sparing and/or dose escalation can be achieved by adaptive planning.« less

  10. Medical physics practice in the next decade

    PubMed Central

    Paliwal, Bhudatt

    2006-01-01

    Impressive advances in computers and materials science have fueled a broad-based confluence of basic science breakthroughs. These advances are making us reformulate our learning, teaching and credentialing methodologies and research and development frontiers. We are now in the age of molecular medicine. In the entire field of health care, a paradigm shift from population-based solutions to individual specific care is taking place. These trends are reshaping the practice of medical physics. In this short presentation, examples are given to illustrate developments in image-guided intensity-modulated and adaptive helical tomotherapy, enhanced application of intensity modulation radiotherapy (IMRT) using adaptive radiotherapy and conformal avoidance. These advances include improved normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation and reduced radiation toxicity. The intrinsic capability of helical TomoTherapy for megavoltage CT imaging for IMRT image-guidance is also discussed. Finally developments in motion management are described. PMID:22275799

  11. Proton therapy in clinical practice

    PubMed Central

    Liu, Hui; Chang, Joe Y.

    2011-01-01

    Radiation dose escalation and acceleration improves local control but also increases toxicity. Proton radiation is an emerging therapy for localized cancers that is being sought with increasing frequency by patients. Compared with photon therapy, proton therapy spares more critical structures due to its unique physics. The physical properties of a proton beam make it ideal for clinical applications. By modulating the Bragg peak of protons in energy and time, a conformal radiation dose with or without intensity modulation can be delivered to the target while sparing the surrounding normal tissues. Thus, proton therapy is ideal when organ preservation is a priority. However, protons are more sensitive to organ motion and anatomy changes compared with photons. In this article, we review practical issues of proton therapy, describe its image-guided treatment planning and delivery, discuss clinical outcome for cancer patients, and suggest challenges and the future development of proton therapy. PMID:21527064

  12. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer.

    PubMed

    Roelofs, Erik; Engelsman, Martijn; Rasch, Coen; Persoon, Lucas; Qamhiyeh, Sima; de Ruysscher, Dirk; Verhaegen, Frank; Pijls-Johannesma, Madelon; Lambin, Philippe

    2012-01-01

    This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.

  13. Five-year prospective patient evaluation of bladder and bowel symptoms after dose-escalated radiotherapy for prostate cancer with the BeamCath (registered) technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransson, Per; Bergstroem, Per; Loefroth, Per-Olov

    2006-10-01

    Purpose: Late side effects were prospectively evaluated up to 5 years after dose-escalated external beam radiotherapy (EBRT) and were compared with a previously treated series with conventional conformal technique. Methods and Materials: Bladder and bowel symptoms were prospectively evaluated with the Prostate Cancer Symptom Scale (PCSS) questionnaire up to 5 years posttreatment. In all, 257 patients completed the questionnaire 5 years posttreatment. A total of 168 patients were treated with the conformal technique at doses <71 Gy, and 195 were treated with the dose-escalated stereotactic BeamCath (registered) technique comprising three dose levels: 74 Gy (n = 68), 76 Gy (nmore » = 74), and 78 Gy (n = 53). Results: For all dose groups analyzed together, 5 years after treatment, urinary starting problems decreased and urinary incontinence increased in comparison to baseline values. No increase in other bladder symptoms or frequency was detected. When comparing dose groups after 5 years, both the 74-Gy and 78-Gy groups reported increased urinary starting problems compared with patients given the conventional dose (<71 Gy). No increased incontinence was seen in the 76-Gy or the 78-Gy groups. Bowel symptoms were slightly increased during the follow-up period in comparison to baseline. Dose escalation with stereotactic EBRT (74-78 Gy) did not increase gastrointestinal late side effects after 5 years in comparison to doses <71 Gy. Conclusion: Dose-escalated EBRT with the BeamCath (registered) technique with doses up to 78 Gy is tolerable, and the toxicity profile is similar to that observed with conventional doses <71 Gy.« less

  14. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    PubMed

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Intensity-modulated radiotherapy in the standard management of head and neck cancer: promises and pitfalls.

    PubMed

    Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R

    2006-06-10

    The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.

  16. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy.

    PubMed

    Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2010-12-01

    The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.

  17. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy

    PubMed Central

    Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2011-01-01

    Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479

  18. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning.

    PubMed

    Sarkar, B; Pradhan, A; Munshi, A

    2016-01-01

    Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk dose constraints. The only notable difference was the halving of the MU for FFF beam as compared to the plane beam. This has the potential to reduce the total patient on couch time by 15% (approximately 2 min).

  19. Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: preliminary results of an early terminated phase II trial.

    PubMed

    Ren, Xiao-Cang; Wang, Quan-Yu; Zhang, Rui; Chen, Xue-Ji; Wang, Na; Liu, Yue-E; Zong, Jie; Guo, Zhi-Jun; Wang, Dong-Ying; Lin, Qiang

    2016-04-23

    Increasing the biological effective dose (BED) of radiotherapy for non-small cell lung cancer (NSCLC) can increase local control rates and improve overall survival. Compared with conventional fractionated radiotherapy, accelerated hypofractionated radiotherapy can yield higher BED, shorten the total treatment time, and theoretically obtain better efficacy. However, currently, there is no optimal hypofractionated radiotherapy regimen. Based on phase I trial results, we performed this phase II trial to further evaluate the safety and preliminary efficacy of accelerated hypofractionated three-dimensional conformal radiation therapy(3-DCRT) combined with concurrent chemotherapy for patients with unresectable stage III NSCLC. Patients with previously untreated unresectable stage III NSCLC received 3-DCRT with a total dose of 69 Gy, delivered at 3 Gy per fraction, once daily, five fractions per week, completed within 4.6 weeks. At the same time, platinum doublet chemotherapy was applied. After 12 patients were enrolled in the group, the trial was terminated early. There were five cases of grade III radiation esophagitis, of which four cases completed the radiation doses of 51 Gy, 51 Gy, 54 Gy, and 66 Gy, and one case had 16 days of radiation interruption. The incidence of grade III acute esophagitis in patients receiving an irradiation dose per fraction ≥2.7 Gy on the esophagus was 83.3% (5/6). The incidence of symptomatic grade III radiation pneumonitis among the seven patients who completed 69 Gy according to the plan was 28.6% (2/7). The median local control (LC) and overall survival (OS) were not achieved; the 1-year LC rate was 59.3%, and the 1-year OS rate was 78.6%. For unresectable stage III NSCLC, the accelerated hypofractionated radiotherapy with a total dose of 69 Gy (3 Gy/f) combined with concurrent chemotherapy might result in severe radiation esophagitis and pneumonitis to severely affect the completion of the radiotherapy. Therefore, we considered that this regimen was infeasible. During the hypofractionated radiotherapy with concurrent chemotherapy, the irradiation dose per fraction to esophagus should be lower than 2.7 Gy. Further studies should be performed using esophageal tolerance as a metric in dose escalation protocols. NCT02720614, the date of registration: March 23, 2016.

  20. The comparison of 5-field conformal radiotherapy techniques for the treatment of prostate cancer: The best for femoral head sparing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zare, Mahkameh; Lashkari, Marzieh, E-mail: m-lashkari@sina.tums.ac.ir; Ghalehtaki, Reza

    2016-01-01

    External radiotherapy is a standard treatment procedure for localized prostate cancer. Given the relatively high long term survival treatment complications have been brought in center of attention. In this planning study, between 2012 and 2014, CT simulation data of 90 consecutive high-risk prostate cancer patients were collected. In the first phase, all were planned for whole pelvis irradiation up to 46Gy in 23 daily fractions. In the second phase, only the prostate gland was the target of radiation. Next, the subjects were divided randomly into three groups and each received a unique 5field conformal radiation plan including Plan A (Gantrymore » angle: 0, 60, 120, 240, and 300), Plan B (Gantry angles: 0, 90, 120, 240, and 270) and Plan C (Gantry angles: 0, 60, 90, 270, and 300). The total dose was 70Gy. For each patient, the rectum, bladder, and both femoral heads were contoured as the at risk organs (OAR). From dose volume histograms, the proportional dose of PTV V100, the bladder and rectum V80 and V90 and femoral head V50 and V100 were calculated in all subjects and compared across plans. A statistically significant difference in the femoral head V50 and V100 was found between our studied 5field plans so that in Plan A (beam angles: 0, 60, 120, 240 and 300) less dose was received by both heads of femur. This study suggests that 5 field treatment planning including an anterior, two anterior oblique and two posterior oblique portals to be more proper for 3D conformal radiotherapy in order to spare femoral head with acceptable PTV coverage, and bladder and rectal doses.« less

  1. High-Dose Conformal Radiotherapy Reduces Prostate Cancer-Specific Mortality: Results of a Meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com; Godoi Bernardes da Silva, Lucas; Stefano, Eduardo Jose

    2012-08-01

    Purpose: To determine in a meta-analysis whether prostate cancer-specific mortality (PCSM), biochemical or clinical failure (BCF), and overall mortality (OM) in men with localized prostate cancer treated with conformal high-dose radiotherapy (HDRT) are better than those in men treated with conventional-dose radiotherapy (CDRT). Methods and Materials: The MEDLINE, Embase, CANCERLIT, and Cochrane Library databases, as well as the proceedings of annual meetings, were systematically searched to identify randomized, controlled studies comparing conformal HDRT with CDRT for localized prostate cancer. Results: Five randomized, controlled trials (2508 patients) that met the study criteria were identified. Pooled results from these randomized, controlled trialsmore » showed a significant reduction in the incidence of PCSM and BCF rates at 5 years in patients treated with HDRT (p = 0.04 and p < 0.0001, respectively), with an absolute risk reduction (ARR) of PCSM and BCF at 5 years of 1.7% and 12.6%, respectively. Two trials evaluated PCSM with 10 years of follow up. The pooled results from these trials showed a statistical benefit for HDRT in terms of PCSM (p = 0.03). In the subgroup analysis, trials that used androgen deprivation therapy (ADT) showed an ARR for BCF of 12.9% (number needed to treat = 7.7, p < 0.00001), whereas trials without ADT had an ARR of 13.6% (number needed to treat = 7, p < 0.00001). There was no difference in the OM rate at 5 and 10 years (p = 0.99 and p = 0.11, respectively) between the groups receiving HDRT and CDRT. Conclusions: This meta-analysis is the first study to show that HDRT is superior to CDRT in preventing disease progression and prostate cancer-specific death in trials that used conformational technique to increase the total dose. Despite the limitations of our study in evaluating the role of ADT and HDRT, our data show no benefit for HDRT arms in terms of BCF in trials with or without ADT.« less

  2. Phase II multi-institutional clinical trial on a new mixed beam RT scheme of IMRT on pelvis combined with a carbon ion boost for high-risk prostate cancer patients.

    PubMed

    Marvaso, Giulia; Jereczek-Fossa, Barbara A; Vischioni, Barbara; Ciardo, Delia; Giandini, Tommaso; Hasegawa, Azusa; Cattani, Federica; Carrara, Mauro; Ciocca, Mario; Bedini, Nice; Villa, Sergio; Morlino, Sara; Russo, Stefania; Zerini, Dario; Colangione, Sarah Pia; Panaino, Costanza Maria Vittoria; Fodor, Cristiana; Santoro, Luigi; Pignoli, Emanuele; Valvo, Francesca; Valdagni, Riccardo; De Cobelli, Ottavio; Orecchia, Roberto

    2017-05-12

    Definition of the optimal treatment schedule for high-risk prostate cancer is under debate. A combination of photon intensity modulated radiotherapy (IMRT) on pelvis with a carbon ion boost might be the optimal treatment scheme to escalate the dose on prostate and deliver curative dose with respect to normal tissue and quality of dose distributions. In fact, carbon ion beams offer the advantage to deliver hypofractionated radiotherapy (RT) using a significantly smaller number of fractions compared to conventional RT without increasing risks of late effects. This study is a prospective phase II clinical trial exploring safety and feasibility of a mixed beam scheme of carbon ion prostate boost followed by photon IMRT on pelvis. The study is designed to enroll 65 patients with localized high-risk prostate cancer at 3 different oncologic hospitals: Istituto Europeo di Oncologia, Fondazione IRCCS Istituto Nazionale dei Tumori, and Centro Nazionale di Adroterapia Oncologica. The primary endpoint is the evaluation of safety and feasibility with acute toxicity scored up to 1 month after the end of RT. Secondary endpoints are treatment early (3 months after the end of RT) and long-term tolerability, quality of life, and efficacy. The study is not yet recruiting; in silico studies are ongoing and we expect to start recruitment by 2017. The present clinical trial aims at improving the current treatment for high-risk prostate cancer, evaluating safety and feasibility of a new RT mixed-beam scheme including photons and carbon ions. Encouraging results are coming from carbon ion facilities worldwide on the treatment of different tumors including prostate cancers. Carbon ions combine physical properties allowing for high dose conformity and advantageous radiobiological characteristics. The proposed mixed beam treatment has the advantage to combine a photon high conformity standard of care IMRT phase with a hypofractionated carbon ion RT boost delivered in a short overall treatment time.

  3. Technical Note: A treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment

    PubMed Central

    Smith, Blake; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Lin, Liyong; Kirk, Maura; Solberg, Tim; Hyer, Daniel E.

    2016-01-01

    Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans. PMID:27487886

  4. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, X; Zhang, Y; Yale University, New Haven, CT, US

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{submore » 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.« less

  5. Three-dimensional dose verification of the clinical application of gamma knife stereotactic radiosurgery using polymer gel and MRI.

    PubMed

    Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M

    2005-05-07

    This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.

  6. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    PubMed

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  7. In vivo verification of particle therapy: how Compton camera configurations affect 3D image quality

    NASA Astrophysics Data System (ADS)

    Mackin, D.; Draeger, E.; Peterson, S.; Polf, J.; Beddar, S.

    2017-05-01

    The steep dose gradients enabled by the Bragg peaks of particle therapy beams are a double edged sword. They enable highly conformal dose distributions, but even small deviations from the planned beam range can cause overdosing of healthy tissue or under-dosing of the tumour. To reduce this risk, particle therapy treatment plans include margins large enough to account for all the sources of range uncertainty, which include patient setup errors, patient anatomy changes, and CT number to stopping power ratios. Any system that could verify the beam range in vivo, would allow reduced margins and more conformal dose distributions. Toward our goal developing such a system based on Compton camera (CC) imaging, we studied how three configurations (single camera, parallel opposed, and orthogonal) affect the quality of the 3D images. We found that single CC and parallel opposed configurations produced superior images in 2D. The increase in parallax produced by an orthogonal CC configuration was shown to be beneficial in producing artefact free 3D images.

  8. Environmental standards for ionizing radiation: theoretical basis for dose-response curves.

    PubMed Central

    Upton, A C

    1983-01-01

    The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell. PMID:6653536

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacaci, P; Cebe, M; Mabhouti, H

    Purpose: In this study, dosimetric comparison of field in field (FIF) and intensity modulated radiation therapy (IMRT) techniques used for treatment of whole breast radiotherapy (WBRT) were made. The dosimetric accuracy of treatment planning system (TPS) for Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithms in predicting PTV and OAR doses was also investigated. Methods: Two different treatment planning techniques of left-sided breast cancer were generated for rando phantom. FIF and IMRT plans were compared for doses in PTV and OAR volumes including ipsilateral lung, heart, left ascending coronary artery, contralateral lung and the contralateral breast. PTV and OARsmore » doses and homogeneity and conformality indexes were compared between two techniques. The accuracy of TPS dose calculation algorithms was tested by comparing PTV and OAR doses measured by thermoluminescent dosimetry with the dose calculated by the TPS using AAA and AXB for both techniques. Results: IMRT plans had better conformality and homogeneity indexes than FIF technique and it spared OARs better than FIF. While both algorithms overestimated PTV doses they underestimated all OAR doses. For IMRT plan, PTV doses, overestimation up to 2.5 % was seen with AAA algorithm but it decreased to 1.8 % when AXB algorithm was used. Based on the results of the anthropomorphic measurements for OAR doses, underestimation greater than 7 % is possible by the AAA. The results from the AXB are much better than the AAA algorithm. However, underestimations of 4.8 % were found in some of the points even for AXB. For FIF plan, similar trend was seen for PTV and OARs doses in both algorithm. Conclusion: When using the Eclipse TPS for breast cancer, AXB the should be used instead of the AAA algorithm, bearing in mind that the AXB may still underestimate all OAR doses.« less

  10. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer.

    PubMed

    Dickey, Mike; Roa, Wilson; Drodge, Suzanne; Ghosh, Sunita; Murray, Brad; Scrimger, Rufus; Gabos, Zsolt

    2015-01-01

    The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van׳t Riet conformation number (CN), monitor units (MUs), and actual and calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R100%, p < 0.0001), the maximum dose 2cm away from the PTV (D2cm, p = 0.005), and van׳t Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R50%, p = 0.05). VMAT was significantly better than CA for R100% (p < 0.0001), R50% (p < 0.0001), D2cm (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    NASA Astrophysics Data System (ADS)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  12. Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar, E-mail: dpokhrel@kumc.edu; Sood, Sumit; McClinton, Christopher

    Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured onmore » T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D{sub 100%}) less than 16 and 9 Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. Conclusions: All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.« less

  13. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Santam, E-mail: drsantam@gmail.com; Ghoshal, Sushmita; Patil, Vijay Maruti

    2011-08-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptivemore » analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.« less

  14. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, H. Omar, E-mail: hwooten@radonc.wustl.edu; Green, Olga; Yang, Min

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated bymore » attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.« less

  15. Multi-Institution Prospective Trial of Reduced-Dose Craniospinal Irradiation (23.4 Gy) Followed by Conformal Posterior Fossa (36 Gy) and Primary Site Irradiation (55.8 Gy) and Dose-Intensive Chemotherapy for Average-Risk Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E.; Kun, Larry E.; Krasin, Matthew J.

    2008-03-01

    Purpose: Limiting the neurocognitive sequelae of radiotherapy (RT) has been an objective in the treatment of medulloblastoma. Conformal RT to less than the entire posterior fossa (PF) after craniospinal irradiation might reduce neurocognitive sequelae and requires evaluation. Methods and Materials: Between October 1996 and August 2003, 86 patients, 3-21 years of age, with newly diagnosed, average-risk medulloblastoma were treated in a prospective, institutional review board-approved, multi-institution trial of risk-adapted RT and dose-intensive chemotherapy. RT began within 28 days of definitive surgery and consisted of craniospinal irradiation (23.4 Gy), conformal PF RT (36.0 Gy), and primary site RT (55.8 Gy). Themore » planning target volume for the primary site included the postoperative tumor bed surrounded by an anatomically confined margin of 2 cm that was then expanded with a geometric margin of 0.3-0.5 cm. Chemotherapy was initiated 6 weeks after RT and included four cycles of high-dose cyclophosphamide, cisplatin, and vincristine. Results: At a median follow-up of 61.2 months (range, 5.2-115.0 months), the estimated 5-year event-free survival and cumulative incidence of PF failure rate was 83.0% {+-} 5.3% and 4.9% {+-} 2.4% ({+-} standard error), respectively. The targeting guidelines used in this study resulted in a mean reduction of 13% in the volume of the PF receiving doses >55 Gy compared with conventionally planned RT. The reductions in the dose to the temporal lobes, cochleae, and hypothalamus were statistically significant. Conclusion: This prospective trial has demonstrated that irradiation of less than the entire PF after 23.4 Gy craniospinal irradiation for average-risk medulloblastoma results in disease control comparable to that after treatment of the entire PF.« less

  16. Radiation Therapy Planning for Early-Stage Hodgkin Lymphoma: Experience of the International Lymphoma Radiation Oncology Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maraldo, Maja V., E-mail: dra.maraldo@gmail.com; Dabaja, Bouthaina S.; Filippi, Andrea R.

    Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontouredmore » clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.« less

  17. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    PubMed Central

    2012-01-01

    Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions. PMID:23186308

  18. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  19. Self-limiting atomic layer deposition of conformal nanostructured silver films

    NASA Astrophysics Data System (ADS)

    Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.

    2016-02-01

    The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.

  20. SU-E-T-587: Optimal Volumetric Modulated Arc Radiotherapy Treatment Planning Technique for Multiple Brain Metastases with Increasing Number of Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Hossain, S; Hildebrand, K

    Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPTmore » vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.« less

  1. Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.

    PubMed

    Pallara, Chiara; Rueda, Manuel; Abagyan, Ruben; Fernández-Recio, Juan

    2016-07-12

    To understand cellular processes at the molecular level we need to improve our knowledge of protein-protein interactions, from a structural, mechanistic, and energetic point of view. Current theoretical studies and computational docking simulations show that protein dynamics plays a key role in protein association and support the need for including protein flexibility in modeling protein interactions. Assuming the conformational selection binding mechanism, in which the unbound state can sample bound conformers, one possible strategy to include flexibility in docking predictions would be the use of conformational ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein-Protein Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with MODELLER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal binding and investigated the role of protein conformational heterogeneity in protein-protein recognition. Our results show that a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be exploited for practical docking predictions of improved efficiency.

  2. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Saenz, D

    Purpose: Stereotactic radiosurgery (SRS) outcomes are related to the delivered dose to the target and to surrounding tissue. We have commissioned a Monte Carlo based dose calculation algorithm to recalculated the delivered dose planned using pencil beam calculation dose engine. Methods: Twenty consecutive previously treated patients have been selected for this study. All plans were generated using the iPlan treatment planning system (TPS) and calculated using the pencil beam algorithm. Each patient plan consisted of 1 to 3 targets and treated using dynamically conformal arcs or intensity modulated beams. Multi-target treatments were delivered using multiple isocenters, one for each target.more » These plans were recalculated for the purpose of this study using a single isocenter. The CT image sets along with the plan, doses and structures were DICOM exported to Monaco TPS and the dose was recalculated using the same voxel resolution and monitor units. Benchmark data was also generated prior to patient calculations to assess the accuracy of the two TPS against measurements using a micro ionization chamber in solid water. Results: Good agreement, within −0.4% for Monaco and +2.2% for iPlan were observed for measurements in water phantom. Doses in patient geometry revealed up to 9.6% differences for single target plans and 9.3% for multiple-target-multiple-isocenter plans. The average dose differences for multi-target-single-isocenter plans were approximately 1.4%. Similar differences were observed for the OARs and integral dose. Conclusion: Accuracy of the beam is crucial for the dose calculation especially in the case of small fields such as those used in SRS treatments. A superior dose calculation algorithm such as Monte Carlo, with properly commissioned beam models, which is unaffected by the lack of electronic equilibrium should be preferred for the calculation of small fields to improve accuracy.« less

  4. Biological Modeling Based Outcome Analysis (BMOA) in 3D Conformal Radiation Therapy (3DCRT) Treatments for Lung and Breast Cancers

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil; Chen, Chiu-Hao; Dhungana, Sudarshan

    2010-03-01

    3DCRT treatments are the most commonly used techniques in the treatment of lung and breast cancers. The purpose of this study was to perform the BMOA of the 3DCRT plans designed for the treatment of breast and lung cancers utilizing HART program (Med. Phys. 36, p.2547(2009)). The BMOA parameters include normal tissue complication probability (NTCP), tumor control probability (TCP), and the complication-free tumor control probability (P+). The 3DCRT plans were designed for (i) the palliative treatment of 8 left lung cancer patients (CPs) at early stage (m=8), (ii) the curative treatment of 8 left lung CPs at stages II and III (k=8), and (iii) the curative treatment of 8 left breast CPs (n=8). The NTCPs were noticeably small (<2%) for heart, lungs and cord in both types of treatments except for the esophagus in lung CPs (k=8). Assessments of the TCPs and P+s also indicated good improvements in local tumor control in all plans. Homogeneous target coverage and improved dose conformality were the major advantages of such techniques in the treatment of breast cancer. These achievements support the efficacy of the 3DCRT techniques for the efficient treatment of various types of cancer.

  5. Irradiation with protons for the individualized treatment of patients with locally advanced rectal cancer: a planning study with clinical implications.

    PubMed

    Wolff, Hendrik Andreas; Wagner, Daniela Melanie; Conradi, Lena-Christin; Hennies, Steffen; Ghadimi, Michael; Hess, Clemens Friedrich; Christiansen, Hans

    2012-01-01

    Ongoing clinical trials aim to improve local control and overall survival rates by intensification of therapy regimen for patients with locally advanced rectal cancer. It is well known that whenever treatment is intensified, risk of therapy-related toxicity rises. An irradiation with protons could possibly present an approach to solve this dilemma by lowering the exposure to the organs-at-risk (OAR) without compromising tumor response. Twenty five consecutive patients were treated from 04/2009 to 5/2010. For all patients, four different treatment plans including protons, RapidArc, IMRT and 3D-conformal-technique were retrospectively calculated and analyzed according to dosimetric aspects. Detailed DVH-analyses revealed that protons clearly reduced the dose to the OAR and entire normal tissue when compared to other techniques. Furthermore, the conformity index was significantly better and target volumes were covered consistent with the ICRU guidelines. Planning results suggest that treatment with protons can improve the therapeutic tolerance for the irradiation of rectal cancer, particularly for patients scheduled for an irradiation with an intensified chemotherapy regimen and identified to be at high risk for acute therapy-related toxicity. However, clinical experiences and long-term observation are needed to assess tumor response and related toxicity rates. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, B; Kirkby, C; Dept. of Oncology, Dept. Of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumourmore » containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.« less

  7. Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience.

    PubMed

    Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok

    2018-03-01

    The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

  8. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra-target-tissue irradiation.

    PubMed

    Gerardina, Stimato; Edy, Ippolito; Sonia, Silipigni; Cristina, Di Venanzio; Carla Germana, Rinaldi; Diego, Gaudino; Michele, Fiore; Lucio, Trodella; Maria, D'Angelillo Rolando; Sara, Ramella

    2016-09-01

    To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm(3) and/or BMI >25 kg m(-2)], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial-lateral beam and additional fields were added to reduce hot spot areas and extra-target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a "proper" normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra-target-tissue irradiation was significantly reduced using S5F for V105% (cm(3)) and V107% (cm(3)) with a very high difference in tissue irradiation (46.6 vs 3.0 cm(3), p ≤ 0.001 for V105% and 12.2 vs 0.0 cm(3), p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra-target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm(3), p = 0.002). The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be easily implemented in breast cancer radiotherapy. The treatment planning strategy proposed in this study has several advantages: (a) it is extremely reliable as the standard supine positioning is used; (b) the standardized class solution allows for widespread use; (c) time and cost of treatment are not increased; and (d) it can be used for both large breasted and obese patients not compliant to different treatment positioning.

  9. Comparing photon and proton-based hypofractioned SBRT for prostate cancer accounting for robustness and realistic treatment deliverability.

    PubMed

    Goddard, Lee C; Brodin, N Patrik; Bodner, William R; Garg, Madhur K; Tomé, Wolfgang A

    2018-05-01

    To investigate whether photon or proton-based stereotactic body radiation therapy (SBRT is the preferred modality for high dose hypofractionation prostate cancer treatment. Achievable dose distributions were compared when uncertainties in target positioning and range uncertainties were appropriately accounted for. 10 patients with prostate cancer previously treated at our institution (Montefiore Medical Center) with photon SBRT using volumetric modulated arc therapy (VMAT) were identified. MRI images fused to the treatment planning CT allowed for accurate target and organ at risk (OAR) delineation. The clinical target volume was defined as the prostate gland plus the proximal seminal vesicles. Critical OARs include the bladder wall, bowel, femoral heads, neurovascular bundle, penile bulb, rectal wall, urethra and urogenital diaphragm. Photon plan robustness was evaluated by simulating 2 mm isotropic setup variations. Comparative proton SBRT plans employing intensity modulated proton therapy (IMPT) were generated using robust optimization. Plan robustness was evaluated by simulating 2 mm setup variations and 3% or 1% Hounsfield unit (HU) calibration uncertainties. Comparable maximum OAR doses are achievable between photon and proton SBRT, however, robust optimization results in higher maximum doses for proton SBRT. Rectal maximum doses are significantly higher for Robust proton SBRT with 1% HU uncertainty compared to photon SBRT (p = 0.03), whereas maximum doses were comparable for bladder wall (p = 0.43), urethra (p = 0.82) and urogenital diaphragm (p = 0.50). Mean doses to bladder and rectal wall are lower for proton SBRT, but higher for neurovascular bundle, urethra and urogenital diaphragm due to increased lateral scatter. Similar target conformality is achieved, albeit with slightly larger treated volume ratios for proton SBRT, >1.4 compared to 1.2 for photon SBRT. Similar treatment plans can be generated with IMPT compared to VMAT in terms of target coverage, target conformality, and OAR sparing when range and HU uncertainties are neglected. However, when accounting for these uncertainties during robust optimization, VMAT outperforms IMPT in terms of achievable target conformity and OAR sparing. Advances in knowledge: Comparison between achievable dose distributions using modern, robust optimization of IMPT for high dose per fraction SBRT regimens for the prostate has not been previously investigated.

  10. Initial Results from the Royal College of Radiologists' UK National Audit of Anal Cancer Radiotherapy 2015.

    PubMed

    Muirhead, R; Drinkwater, K; O'Cathail, S M; Adams, R; Glynne-Jones, R; Harrison, M; Hawkins, M A; Sebag-Montefiore, D; Gilbert, D C

    2017-03-01

    UK guidance was recently developed for the treatment of anal cancer using intensity-modulated radiotherapy (IMRT). We audited the current use of radiotherapy in UK cancer centres for the treatment of anal cancer against such guidance. We describe the acute toxicity of IMRT in comparison with patient population in the audit treated with two-phase conformal radiotherapy and the previous published data from two-phase conformal radiotherapy, in the UK ACT2 trial. A Royal College of Radiologists' prospective national audit of patients treated with radiotherapy in UK cancer centres was carried out over a 6 month period between February and July 2015. Two hundred and forty-two cases were received from 40/56 cancer centres (71%). In total, 231 (95%) underwent full dose radiotherapy with prophylactic nodal irradiation. Of these, 180 (78%) received IMRT or equivalent, 52 (22%) two-phase conformal (ACT2) technique. The number of interruptions in radiotherapy treatment in the ACT2 trial was 15%. Interruptions were noted in 7% (95% confidence interval 0-14%) of courses receiving two-phase conformal and 4% (95% confidence interval 1-7%) of those receiving IMRT. The percentage of patients completing the planned radiotherapy dose, irrelevant of gaps, was 90% (95% confidence interval 82-98%) and 96% (95% confidence interval 93-99%), in two-phase conformal and IMRT respectively. The toxicity reported in the ACT2 trial, in patients receiving two-phase conformal in the audit and in patients receiving IMRT in the audit was: any toxic effect 71%, 54%, 48%, non-haematological 62%, 49%, 40% and haematological 26%, 13%, 18%, respectively. IMRT implementation for anal cancer is well underway in the UK with most patients receiving IMRT delivery, although its usage is not yet universal. This audit confirms that IMRT results in reduced acute toxicity and minimised treatment interruptions in comparison with previous two-phase conformal techniques. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  11. Elucidating the Aβ42 Anti-Aggregation Mechanism of Action of Tramiprosate in Alzheimer's Disease: Integrating Molecular Analytical Methods, Pharmacokinetic and Clinical Data.

    PubMed

    Kocis, Petr; Tolar, Martin; Yu, Jeremy; Sinko, William; Ray, Soumya; Blennow, Kaj; Fillit, Howard; Hey, John A

    2017-06-01

    Amyloid beta (Aβ) oligomers play a critical role in the pathogenesis of Alzheimer's disease (AD) and represent a promising target for drug development. Tramiprosate is a small-molecule Aβ anti-aggregation agent that was evaluated in phase III clinical trials for AD but did not meet the primary efficacy endpoints; however, a pre-specified subgroup analysis revealed robust, sustained, and clinically meaningful cognitive and functional effects in patients with AD homozygous for the ε4 allele of apolipoprotein E4 (APOE4/4 homozygotes), who carry an increased risk for the disease. Therefore, to build on this important efficacy attribute and to further improve its pharmaceutical properties, we have developed a prodrug of tramiprosate ALZ-801 that is in advanced stages of clinical development. To elucidate how tramiprosate works, we investigated its molecular mechanism of action (MOA) and the translation to observed clinical outcomes. The two main objectives of this research were to (1) elucidate and characterize the MOA of tramiprosate via an integrated application of three independent molecular methodologies and (2) present an integrated translational analysis that links the MOA, conformation of the target, stoichiometry, and pharmacokinetic dose exposure to the observed clinical outcome in APOE4/4 homozygote subjects. We used three molecular analytical methods-ion mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR), and molecular dynamics-to characterize the concentration-related interactions of tramiprosate versus Aβ42 monomers and the resultant conformational alterations affecting aggregation into oligomers. The molecular stoichiometry of the tramiprosate versus Aβ42 interaction was further analyzed in the context of clinical pharmacokinetic dose exposure and central nervous system Aβ42 levels (i.e., pharmacokinetic-pharmacodynamic translation in humans). We observed a multi-ligand interaction of tramiprosate with monomeric Aβ42, which differs from the traditional 1:1 binding. This resulted in the stabilization of Aβ42 monomers and inhibition of oligomer formation and elongation, as demonstrated by IMS-MS and molecular dynamics. Using NMR spectroscopy and molecular dynamics, we also showed that tramiprosate bound to Lys16, Lys28, and Asp23, the key amino acid side chains of Aβ42 that are responsible for both conformational seed formation and neuronal toxicity. The projected molar excess of tramiprosate versus Aβ42 in humans using the dose effective in patients with AD aligned with the molecular stoichiometry of the interaction, providing a clear clinical translation of the MOA. A consistent alignment of these preclinical-to-clinical elements describes a unique example of translational medicine and supports the efficacy seen in symptomatic patients with AD. This unique "enveloping mechanism" of tramiprosate also provides a potential basis for tramiprosate dose selection for patients with homozygous AD at earlier stages of disease. We have identified the molecular mechanism that may account for the observed clinical efficacy of tramiprosate in patients with APOE4/4 homozygous AD. In addition, the integrated application of the molecular methodologies (i.e., IMS-MS, NMR, and thermodynamics analysis) indicates that it is feasible to modulate and control the Aβ42 conformational dynamics landscape by a small molecule, resulting in a favorable Aβ42 conformational change that leads to a clinically relevant amyloid anti-aggregation effect and inhibition of oligomer formation. This novel enveloping MOA of tramiprosate has potential utility in the development of disease-modifying therapies for AD and other neurodegenerative diseases caused by misfolded proteins.

  12. Hampton Roads, Virginia eight-hour ozone maintenance area transportation conformity analysis : 2030 long range transportation plan and FY 09-12 transportation improvement program, draft report.

    DOT National Transportation Integrated Search

    2010-05-01

    This report presents the regional conformity analysis and recommendation for a finding : of conformity for the Hampton Roads 2030 Long Range Transportation Plan (LRTP, or : "Plan") and associated Fiscal Year (FY) 2009-2012 Transportation Improvement ...

  13. Hampton Roads, Virginia eight-hour ozone maintenance area transportation conformity analysis : 2030 long range transportation plan and FY 09-12 transportation improvement program, draft executive summary.

    DOT National Transportation Integrated Search

    2010-05-01

    This report presents the regional conformity analysis and recommendation for a finding of conformity for the Hampton Roads 2030 Long Range Transportation Plan (LRTP, or "Plan") and associated Fiscal Year (FY) 2009-2012 Transportation Improvement Prog...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas

    Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices,more » dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.« less

  15. SU-E-J-86: Functional Conformal Planning for Stereotactic Body Radiation Therapy with CT-Pulmonary Ventilation Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosawa, T; Moriya, S; Sato, M

    2015-06-15

    Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less

  16. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plansmore » were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique.« less

  17. TU-H-BRC-03: Evaluation of Very High-Energy Electron (VHEE) Beams in Comparison to VMAT and PBS Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, E; Loo, B; Maxim, P

    2016-06-15

    Purpose: The aim of this study was to evaluate the performance of very high-energy electron (VHEE) beams in comparison to clinically delivered treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PBS) technology. Methods: Three clinical cases were selected (prostate, lung, and pediatric CNS). The VHEE plans were calculated in the Monte Carlo EGSnrc code and pencil beam doses were calculated using the DOSxyznrc MC code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PBS were optimized in a research version of RayStation using an in house build script in ordermore » to minimize operator bias between the different techniques. Results: For the prostate cancer case, the PBS plan showed lower mean organ at risk (OAR) doses compared to the other modalities. An exception was the femoral heads, due to the lateral beam arrangements. The VMAT plan showed lower mean doses to the rectum and the bladder compared to the 100 MeV VHEE plan. The lung cancer case showed minor differences between the three modalities. However, the PBS plan showed a lower contralateral lung dose. The pediatric CNS case showed a better conformity and lower spinal cord dose for the 100 MeV VHEE plan. For all cases, the 200 MeV VHEE plans were found to be similar to or better than the 100 MeV VHEE plans. Conclusion: The present study showed that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses can be achieved. Funding: DoD, Award#:W81XWH-13-1-0165, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation. BL and PM are founders of TibaRay,Inc. BL and PM have received research grants from Varian and RaySearch Laboratory.« less

  18. Knowledge-based IMRT planning for individual liver cancer patients using a novel specific model.

    PubMed

    Yu, Gang; Li, Yang; Feng, Ziwei; Tao, Cheng; Yu, Zuyi; Li, Baosheng; Li, Dengwang

    2018-03-27

    The purpose of this work is to benchmark RapidPlan against clinical plans for liver Intensity-modulated radiotherapy (IMRT) treatment of patients with special anatomical characteristics, and to investigate the prediction capability of the general model (Model-G) versus our specific model (Model-S). A library consisting of 60 liver cancer patients with IMRT planning was used to set up two models (Model-S, Model-G), using the RapidPlan knowledge-based planning system. Model-S consisted of 30 patients with special anatomical characteristics where the distance from planning target volume (PTV) to the right kidney was less than three centimeters and Model-G was configurated using all 60 patients in this library. Knowledge-based IMRT plans were created for the evaluation group formed of 13 patients similar to those included in Model-S by Model-G, Model-S and manually (M), named RPG-plans, RPS-plans and M-plans, respectively. The differences in the dose-volume histograms (DVHs) were compared, not only between RP-plans and their respective M-plans, but also between RPG-plans and RPS-plans. For all 13 patients, RapidPlan could automatically produce clinically acceptable plans. Comparing RP-plans to M-plans, RP-plans improved V 95% of PTV and had greater dose sparing in the right kidney. For the normal liver, RPG-plans delivered similar doses, while RPS-plans delivered a higher dose than M-plans. With respect to RapidPlan models, RPS-plans had better conformity index (CI) values and delivered lower doses to the right kidney V 20Gy and maximizing point doses to spinal cord, while delivering higher doses to the normal liver. The study shows that RapidPlan can create high-quality plans, and our specific model can improve the CI of PTV, resulting in more sparing of OAR in IMRT for individual liver cancer patients.

  19. Lung Size and the Risk of Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briere, Tina Marie, E-mail: tmbriere@mdanderson.org; Krafft, Shane; Liao, Zhongxing

    2016-02-01

    Purpose: The purpose of this study was to identify patient populations treated for non-small cell lung cancer (NSCLC) who may be more at risk of radiation pneumonitis. Methods and Materials: A total of 579 patients receiving fractionated 3D conformal or intensity modulated radiation therapy (IMRT) for NSCLC were included in the study. Statistical analysis was performed to search for cohorts of patients with higher incidences of radiation pneumonitis. In addition to conventional risk factors, total and spared lung volumes were analyzed. The Lyman-Kutcher-Burman (LKB) and cure models were then used to fit the incidence of radiation pneumonitis as a functionmore » of lung dose and other factors. Results: Total lung volumes with a sparing of less than 1854 cc at 40 Gy were associated with a significantly higher incidence of radiation pneumonitis at 6 months (38% vs 12% for patients with larger volumes, P<.001). This patient cohort was overwhelmingly female and represented 22% of the total female population of patients and nearly 30% of the cases of radiation pneumonitis. An LKB fit to normal tissue complication probability (NTCP) including volume as a dose modifying factor resulted in a dose that results in a 50% probability of complication for the smaller spared volume cohort that was 9 Gy lower than the fit to all mean lung dose data and improved the ability to predict radiation pneumonitis (P<.001). Using an effective dose parameter of n=0.42 instead of mean lung dose further improved the LKB fit. Fits to the data using the cure model produced similar results. Conclusions: Spared lung volume should be considered when treating NSCLC patients. Separate dose constraints based on smaller spared lung volume should be considered. Smaller spared lung volume patients should be followed closely for signs of radiation pneumonitis.« less

  20. Volumetric-modulated arc therapy in postprostatectomy radiotherapy patients: A planning comparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forde, Elizabeth, E-mail: eforde@tcd.ie; Kneebone, Andrew; Northern Clinical School, University of Sydney, New South Wales

    2013-10-01

    The purpose of this study was to compare postprostatectomy planning for volumetric-modulated arc therapy (VMAT) with both single arc (SA) and double arcs (DA) against dynamic sliding window intensity-modulated radiotherapy (IMRT). Ten cases were planned with IMRT, SA VMAT, and DA VMAT. All cases were planned to achieve a minimum dose of 68 Gy to 95% of the planning target volume (PTV) and goals to limit rectal volume >40 Gy to 35% and >65 Gy to 17%, and bladder volumes >40 Gy to 50% and >65 Gy to 25%. Plans were averaged across the 10 patients and compared for meanmore » dose, conformity, homogeneity, rectal and bladder doses, and monitor units. The mean dose to the clinical target volume and PTV was significantly higher (p<0.05) for SA compared with DA or IMRT. The homogeneity index was not significantly different: SA = 0.09; DA = 0.08; and IMRT = 0.07. The rectal V40 was lowest for the DA plan. The rectal V20 was significantly lower (p<0.05) for both the VMAT plans compared with IMRT. There were no significant differences for bladder V40 or rectal and bladder V65. The IMRT plans required 1400 MU compared with 745 for DA and 708 for SA. This study shows that for equivalent dose coverage, SA and DA VMAT plans result in higher mean doses to the clinical target volume and PTV. This greater dose heterogeneity is balanced by improved low-range rectal doses and halving of the monitor units.« less

  1. Validation of GPU-accelerated superposition-convolution dose computations for the Small Animal Radiation Research Platform.

    PubMed

    Cho, Nathan; Tsiamas, Panagiotis; Velarde, Esteban; Tryggestad, Erik; Jacques, Robert; Berbeco, Ross; McNutt, Todd; Kazanzides, Peter; Wong, John

    2018-05-01

    The Small Animal Radiation Research Platform (SARRP) has been developed for conformal microirradiation with on-board cone beam CT (CBCT) guidance. The graphics processing unit (GPU)-accelerated Superposition-Convolution (SC) method for dose computation has been integrated into the treatment planning system (TPS) for SARRP. This paper describes the validation of the SC method for the kilovoltage energy by comparing with EBT2 film measurements and Monte Carlo (MC) simulations. MC data were simulated by EGSnrc code with 3 × 10 8 -1.5 × 10 9 histories, while 21 photon energy bins were used to model the 220 kVp x-rays in the SC method. Various types of phantoms including plastic water, cork, graphite, and aluminum were used to encompass the range of densities of mouse organs. For the comparison, percentage depth dose (PDD) of SC, MC, and film measurements were analyzed. Cross beam (x,y) dosimetric profiles of SC and film measurements are also presented. Correction factors (CFz) to convert SC to MC dose-to-medium are derived from the SC and MC simulations in homogeneous phantoms of aluminum and graphite to improve the estimation. The SC method produces dose values that are within 5% of film measurements and MC simulations in the flat regions of the profile. The dose is less accurate at the edges, due to factors such as geometric uncertainties of film placement and difference in dose calculation grids. The GPU-accelerated Superposition-Convolution dose computation method was successfully validated with EBT2 film measurements and MC calculations. The SC method offers much faster computation speed than MC and provides calculations of both dose-to-water in medium and dose-to-medium in medium. © 2018 American Association of Physicists in Medicine.

  2. Radiation dose management in thoracic CT: an international survey.

    PubMed

    Molinari, Francesco; Tack, Denis M; Boiselle, Philip; Ngo, Long; Mueller-Mang, Christina; Litmanovich, Diana; Bankier, Alexander A

    2013-01-01

    We aimed to examine current practice patterns of international thoracic radiologists regarding radiation dose management in adult thoracic computed tomography (CT) examinations. An electronic questionnaire was sent to 800 members of five thoracic radiology societies in North America, Europe, Asia, and Latin America addressing radiation dose training and education, standard kVp and mAs settings for thoracic CT, dose reduction practices, clinical scenarios, and demographics. Of the 800 radiologists, 146 responded to our survey. Nearly half (66/146, 45% [95% confidence interval, 37%-53%]) had no formal training in dose reduction, with "self-study of the literature" being the most common form of training (54/146, 37% [29%-45%]). One hundred and seventeen (80% [74%-87%]) had automatic exposure control, and 76 (65% [56%-74%]) used it in all patients. Notably, most respondents (89% [84%-94%]) used a 120 to 125 kVp standard setting, whereas none used 140 kVp. The most common average dose-length-product (DLP) value was 150 to 249 mGy.cm (75/146, 51% [43%-59%]), and 59% (51%-67%) delivered less than 250 mGy.cm in a 70 kg patient. There was a tendency towards higher DLP values with multidetector-row CT. Age, gender, and pregnancy were associated more with dose reduction than weight and clinical indication. Efforts for reducing patient radiation dose are highly prevalent among thoracic radiologists. Areas for improvement include reduction of default tube current settings, reduction of anatomical scan coverage, greater use of automatic exposure control, and eventually, reduction of current reference dose values. Our study emphasizes the need for international guidelines to foster greater conformity in dose reduction by thoracic radiologists.

  3. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    PubMed

    Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M

    2009-10-01

    To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealedmore » that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.« less

  5. Analysis of dose-volume parameters predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-conformal radiation therapy or IMRT.

    PubMed

    Kumar, Gaurav; Rawat, Sheh; Puri, Abhishek; Sharma, Manoj Kumar; Chadha, Pranav; Babu, Anand Giri; Yadav, Girigesh

    2012-01-01

    Multimodality therapy for esophageal cancer can cause various kinds of treatment-related sequelae, especially pulmonary toxicities. This prospective study aims to investigate the clinical and dosimetric parameters predicting lung injury in patients undergoing radiation therapy for esophageal cancer. Forty-five esophageal cancer patients were prospectively analyzed. The pulmonary toxicities (or sequelae) were evaluated by comparing chest X-ray films, pulmonary function tests and symptoms caused by pulmonary damage before and after treatment. All patients were treated with either three-dimensional radiotherapy (3DCRT) or with intensity-modulated radiotherapy (IMRT). The planning dose volume histogram was used to compute the lung volumes receiving more than 5, 10, 20 and 30 Gy (V5, V10, V20, V30) and mean lung dose. V20 was larger in the IMRT group than in the 3DCRT group (p = 0.002). V20 (>15%) and V30 (>20%) resulted in a statistically significant increase in the occurrence of chronic pneumonitis (p = 0.03) and acute pneumonitis (p = 0.007), respectively. The study signifies that a larger volume of lung receives lower doses because of multiple beam arrangement and a smaller volume of lung receives higher doses because of better dose conformity in IMRT plans. Acute pneumonitis correlates more with V30 values, whereas chronic pneumonitis was predominantly seen in patients with higher V20 values.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrington, J; Price, M; Brindle, J

    Purpose: To evaluate the equivalence of spine SBRT treatment plans created in Eclipse for the TrueBeam STx (Varian Medical System, Palo Alto, CA) compared to plans using CyberKnife and MultiPlan (Accuray, Sunnyvale, CA). Methods: CT data and contours for 23 spine SBRT patients previously treated using CyberKnife (CK) were exported from MultiPlan treatment planning system into Eclipse where they were planned using static IMRT 6MV coplanar beams. Plans were created according to the original prescription dose and fractionation schedule while limiting spinal dose according to the RTOG 0631 protocol and maintaining target coverage comparable to the original CK plans. Plansmore » were evaluated using new conformity index (nCI), homogeneity index (HI), dose-volume histogram data, number of MU, and estimated treatment time. To ensure all Eclipse plans were deliverable, standard clinical IMRT QA was performed. The plan results were matched with their complimentary CK plans for paired statistical analysis. Results: Plans generated in Eclipse demonstrated statistically significant (p<0.01) improvements compared to complimentary CK plans in median values of maximum spinal cord dose (17.39 vs. 18.12 Gy), RTOG spinal cord constraint dose (14.50 vs. 16.93 Gy), nCI (1.28 vs. 1.54), HI (1.13 vs. 1.27), MU (3918 vs. 36416), and estimated treatment time (8 vs. 48 min). All Eclipse generated plans passed our clinically used protocols for IMRT QA. Conclusion: CK spine SBRT replanned utilizing Eclipse for LINAC delivery demonstrated dosimetric advantages. We propose improvements in plan quality metrics reviewed in this study may be attributed to dynamic MLCs that facilitate treatment of complicated geometries as well as posterior beams ideal for centrally located and/or posterior targets afforded by gantry-based RT delivery.« less

  7. Biothermal modeling of transurethral ultrasound applicators for MR-guided prostate thermal therapy (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ross, Anthony B.; Diederich, Chris J.; Nau, William H.; Tyreus, Per D.; Gill, Harcharan; Bouley, Donna; Butts, R. K.; Rieke, Viola; Daniel, Bruce; Sommer, Graham

    2005-04-01

    Thermal ablation is a minimally-invasive treatment option for benign prostatic hyperplasia (BPH) and localized prostate cancer. Accurate spatial control of thermal dose delivery is paramount to improving thermal therapy efficacy and avoiding post-treatment complications. We have recently developed three types of transurethral ultrasound applicators, each with different degrees of heating selectivity. These applicators have been evaluated in vivo in coordination with magnetic resonance temperature imaging, and demonstrated to accurately ablate specific regions of the canine prostate. A finite difference biothermal model of the three types of transurethral ultrasound applicators (sectored tubular, planar, and curvilinear transducer sections) was developed and used to further study the performance and heating capabilities of each these devices. The biothermal model is based on the Pennes bioheat equation. The acoustic power deposition pattern corresponding to each applicator type was calculated using the rectangular radiator approximation to the Raleigh Sommerfield diffraction integral. In this study, temperature and thermal dose profiles were calculated for different treatment schemes and target volumes, including single shot and angular scanning procedures. This study also demonstrated the ability of the applicators to conform the cytotoxic thermal dose distribution to a predefined target area. Simulated thermal profiles corresponded well with MR temperature images from previous in vivo experiments. Biothermal simulations presented in this study reinforce the potential of improved efficacy of transurethral ultrasound thermal therapy of prostatic disease.

  8. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.

    PubMed

    Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.

  9. A geometrically based method for automated radiosurgery planning.

    PubMed

    Wagner, T H; Yi, T; Meeks, S L; Bova, F J; Brechner, B L; Chen, Y; Buatti, J M; Friedman, W A; Foote, K D; Bouchet, L G

    2000-12-01

    A geometrically based method of multiple isocenter linear accelerator radiosurgery treatment planning optimization was developed, based on a target's solid shape. Our method uses an edge detection process to determine the optimal sphere packing arrangement with which to cover the planning target. The sphere packing arrangement is converted into a radiosurgery treatment plan by substituting the isocenter locations and collimator sizes for the spheres. This method is demonstrated on a set of 5 irregularly shaped phantom targets, as well as a set of 10 clinical example cases ranging from simple to very complex in planning difficulty. Using a prototype implementation of the method and standard dosimetric radiosurgery treatment planning tools, feasible treatment plans were developed for each target. The treatment plans generated for the phantom targets showed excellent dose conformity and acceptable dose homogeneity within the target volume. The algorithm was able to generate a radiosurgery plan conforming to the Radiation Therapy Oncology Group (RTOG) guidelines on radiosurgery for every clinical and phantom target examined. This automated planning method can serve as a valuable tool to assist treatment planners in rapidly and consistently designing conformal multiple isocenter radiosurgery treatment plans.

  10. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.

    PubMed

    Merna, Catherine; Rwigema, Jean-Claude M; Cao, Minsong; Wang, Pin-Chieh; Kishan, Amar U; Michailian, Argin; Lamb, James; Sheng, Ke; Agazaryan, Nzhde; Low, Daniel A; Kupelian, Patrick; Steinberg, Michael L; Lee, Percy

    2016-01-01

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator–based stereotactic body radiotherapy for central early-stage non−small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merna, Catherine; Rwigema, Jean-Claude M.; Cao, Minsong

    We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non−small cell lung cancer with a tri-cobalt-60 (tri-{sup 60}Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)–based SBRT. In all, 20 patients with large central early-stage non−small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-{sup 60}Co system for a prescription dose of 50 Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R{sub 100} values were calculatedmore » as the total tissue volume receiving 100% of the dose (V{sub 100}) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-{sup 60}Co SBRT plans were performed using Student's t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3 cc (range: 12.1 to 139.4 cc). Of the tri-{sup 60}Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R{sub 100} values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-{sup 60}Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-{sup 60}Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial.« less

  12. Emerging Indications for Fractionated Gamma Knife Radiosurgery

    PubMed Central

    McTyre, Emory; Helis, Corbin A.; Farris, Michael; Wilkins, Lisa; Sloan, Darrell; Hinson, William H.; Bourland, J. Daniel; Dezarn, William. A.; Munley, Michael T.; Watabe, Kounosuke; Xing, Fei; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.

    2016-01-01

    BACKGROUND Gamma Knife radiosurgery (GKRS) allows for the treatment of intracranial tumors with a high degree of dose conformality and precision. There are, however, certain situations wherein the dose conformality of GKRS is desired, but single session treatment is contraindicated. In these situations, a traditional pin-based GKRS head frame cannot be used, as it precludes fractionated treatment. OBJECTIVE To report our experience in treating patients with fractionated GKRS using a relocatable, noninvasive immobilization system. METHODS Patients were considered candidates for fractionated GKRS if they had one or more of the following indications: a benign tumor >10 cc in volume or abutting the optic pathway, a vestibular schwannoma with the intent of hearing preservation, or a tumor previously irradiated with single fraction GKRS. The immobilization device used for all patients was the Extend system (Leksell Gamma Knife Perfexion, Elekta, Kungstensgatan, Stockholm). RESULTS We identified 34 patients treated with fractionated GKRS between August 2013 and February 2015. There were a total of 37 tumors treated including 15 meningiomas, 11 pituitary adenomas, 6 brain metastases, 4 vestibular schwannomas, and 1 hemangioma. At last follow-up, all 21 patients treated for perioptic tumors had stable or improved vision and all 4 patients treated for vestibular schwannoma maintained serviceable hearing. No severe adverse events were reported. CONCLUSION Fractionated GKRS was well-tolerated in the treatment of large meningiomas, perioptic tumors, vestibular schwannomas with intent of hearing preservation, and in reirradiation of previously treated tumors. PMID:28536486

  13. SU-E-T-326: Dosimetric Impact of Beam Energies and Jaw Tracking On Intracranial Tumors Using RapidArc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ali, I

    2015-06-15

    Purpose: To determine the dosimetric impact of jaw tracking and beam energies on dose conformity and normal-brain-tissue doses for intracranial tumors using VMAT (RapidArc). Methods: Seven patients with 1–2 and three patients with 4–6 intracranial tumors were planned using RapidArc for Varian TrueBeam STx machine with beam energies 6MV-FFF (Flattening-Filter-Free), 8MV, 10MV, and 10MV-FFF. The prescription dose ranged from 14–23Gy. Between 2 and 8 arcs were used with the following geometries: 2 full coplanar arcs and the non-coplanar half arcs. Plans were optimized (jaw tracking ON) with a high priority to Normal-Tissue-Objective and normal-brain-tissue. Plans were calculated on 1mm gridmore » size using AAA algorithm and then normalized so that 99% of each target volume received the prescription dose. Plans for the 6MV-FFF were also optimized without jaw tracking (No-JT) for comparison. Plan quality was assessed by target coverage using Paddick Conformity Index (PCI), sparing of normal-brain-tissue through analysis of V4Gy, V8Gy and V12Gy, and integral dose. Results: The average PCI ± standard deviation was 0.76±0.21 and 0.76±0.22 for 6MV-FFF and 10 MV-FFF, respectively. The average ratio in normal brain tissue volume (reported as follows V4,V8,V12) were (1.12±0.07,1.12±0.07,1.14±0.04), (1.12±0.08,1.12±0.09,1.13±0.06), (1.19±0.10,1.18±0.10,1.20±0.04), and (1.04±0.03,1.03±0.03,1.03±0.04) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, 6MV-FFF No-JT/6MV-FFF, respectively. Statistically significant differences in normal-brain-tissue for V4, V8, and V12 were observed in all cases for the different energies (p-values <0.05). V4 data shows significant differences in JT vs. No-JT (p=0.04), however no difference was found for V8 and V12. Brain tissue sparing from best to worst occurred in this order 6MV-FFF, 6MV-FFF no-JT, 10MV-FFF, 8MV, and 10MV. The average ratio of integral brain dose was 1.05±0.04 (p=0.21), 1.04±0.05 (p=0.33), 1.09±0.06 (p=0.04), and 1.02±0.06 (p=0.61) for 8MV/6MV-FFF, 10MV-FFF/6MV-FFF, 10MV/6MV-FFF, and 6MV-FFF No-JT/6MV-FFF, respectively. Conclusion: Normal brain tissue and integral dose improved using the lower energy and FFF beams, though plan conformity showed energy independence.« less

  14. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation.

    PubMed

    Mishra, Sushil Kumar; Kara, Mahmut; Zacharias, Martin; Koca, Jaroslav

    2014-01-01

    Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.

  15. Three dimensional intensity modulated brachytherapy (IMBT): dosimetry algorithm and inverse treatment planning.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko

    2010-07-01

    The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0.04, respectively. The maximum dose to the skin was reduced by 56 and 28 cGy, respectively, per fraction. Also, the maximum dose to the ribs was reduced by 104 and 96 cGy, respectively, per fraction. The mean dose to the ipsilateral and contralateral breasts and lungs were also slightly reduced by the IMBT plan. The limitations of IMBT are the longer planning and delivery time. The IMBT plan took around 2 h to optimize, while the isotropic plan optimization could reach the global minimum within 5 min. The delivery time for the IMBT plan is typically four to six times longer than the corresponding isotropic plan. In this study, a dosimetry method for IMBT sources was proposed and an inverse treatment planning system prototype for IMBT was developed. The improvement of plan quality by 3D IMBT was demonstrated using ten APBI case studies. Faster computers and higher output of the source can further reduce plan optimization and delivery time, respectively.

  16. Dose-Escalated Robotic SBRT for Stage I–II Prostate Cancer

    PubMed Central

    Meier, Robert

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is the precise external delivery of very high-dose radiotherapy to targets in the body, with treatment completed in one to five fractions. SBRT should be an ideal approach for organ-confined prostate cancer because (I) dose-escalation should yield improved rates of cancer control; (II) the unique radiobiology of prostate cancer favors hypofractionation; and (III) the conformal nature of SBRT minimizes high-dose radiation delivery to immediately adjacent organs, potentially reducing complications. This approach is also more convenient for patients, and is cheaper than intensity-modulated radiotherapy (IMRT). Several external beam platforms are capable of delivering SBRT for early-stage prostate cancer, although most of the mature reported series have employed a robotic non-coplanar platform (i.e., CyberKnife). Several large studies report 5-year biochemical relapse rates which compare favorably to IMRT. Rates of late GU toxicity are similar to those seen with IMRT, and rates of late rectal toxicity may be less than with IMRT and low-dose rate brachytherapy. Patient-reported quality of life (QOL) outcomes appear similar to IMRT in the urinary domain. Bowel QOL may be less adversely affected by SBRT than with other radiation modalities. After 5 years of follow-up, SBRT delivered on a robotic platform is yielding outcomes at least as favorable as IMRT, and may be considered appropriate therapy for stage I–II prostate cancer. PMID:25905037

  17. 21 CFR 520.2380c - Thiabendazole bolus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Limitations. As a single oral dose; may repeat once in 2 to 3 weeks; do not treat animals within 3 days of...) Chemical name. 2-(4-Thiazolyl) benzimidazole. (b) Specifications. Conforms to N.F. XII. (c) Sponsor. See No...) Limitations. As a single oral dose; as a drench or bolus; may repeat once in 2 to 3 weeks; do not treat...

  18. 21 CFR 520.2380c - Thiabendazole bolus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Limitations. As a single oral dose; may repeat once in 2 to 3 weeks; do not treat animals within 3 days of...) Chemical name. 2-(4-Thiazolyl) benzimidazole. (b) Specifications. Conforms to N.F. XII. (c) Sponsor. See No...) Limitations. As a single oral dose; as a drench or bolus; may repeat once in 2 to 3 weeks; do not treat...

  19. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  20. Methods in Enzymology: “Flexible backbone sampling methods to model and design protein alternative conformations”

    PubMed Central

    Ollikainen, Noah; Smith, Colin A.; Fraser, James S.; Kortemme, Tanja

    2013-01-01

    Sampling alternative conformations is key to understanding how proteins work and engineering them for new functions. However, accurately characterizing and modeling protein conformational ensembles remains experimentally and computationally challenging. These challenges must be met before protein conformational heterogeneity can be exploited in protein engineering and design. Here, as a stepping stone, we describe methods to detect alternative conformations in proteins and strategies to model these near-native conformational changes based on backrub-type Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves improve modeling of point mutant side chain conformations, native side chain conformational heterogeneity, functional conformational changes, tolerated sequence space, protein interaction specificity, and amino acid co-variation across protein-protein interfaces. We include relevant Rosetta command lines and RosettaScripts to encourage the application of these types of simulations to other systems. Our work highlights that critical scoring and sampling improvements will be necessary to approximate conformational landscapes. Challenges for the future development of these methods include modeling conformational changes that propagate away from designed mutation sites and modulating backbone flexibility to predictively design functionally important conformational heterogeneity. PMID:23422426

  1. Intensity-Modulated Proton Therapy for Elective Nodal Irradiation and Involved-Field Radiation in the Definitive Treatment of Locally Advanced Non-Small Cell Lung Cancer: A Dosimetric Study

    PubMed Central

    Kesarwala, Aparna H.; Ko, Christine J.; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E.; O’Meara, William P.; Simone, Charles B.; Rengan, Ramesh

    2015-01-01

    Background Photon involved-field radiation therapy (IFRT), the standard for locally advanced non-small cell lung cancer (LA-NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Given the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. Materials and Methods IMPT IFRT plans were generated to the same total dose of 66.6–72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 CGE to elective nodal (EN) planning treatment volumes (PTV) plus 24 CGE to involved field (IF)-PTVs. Results Proton IFRT and ENI both improved D95 involved field (IF)-PTV coverage by 4% (p<0.01) compared to photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. Lung V20 and mean lung dose decreased 18% (p<0.01) and 36% (p<0.01), respectively, with proton IFRT and 11% (p=0.03) and 26% (p<0.01) with ENI. Mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all p<0.01). Conclusions This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates IMPT could allow ENI while maintaining a favorable therapeutic ratio compared to photon IFRT. PMID:25604729

  2. Direct plan comparison of RapidArc and CyberKnife for spine stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Choi, Young Eun; Kwak, Jungwon; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Cho, Byungchul

    2015-07-01

    We compared the treatment planning performance of RapidArc (RA) vs. CyberKnife (CK) for spinal stereotactic body radiation therapy (SBRT). Ten patients with spinal lesions who had been treated with CK were re-planned with RA, which consisted of two complete arcs. Computed tomography (CT) and volumetric dose data of CK, generated using the Multiplan (Accuray) treatment planning system (TPS) and the Ray-trace algorithm, were imported to Varian Eclipse TPS in Dicom format, and the data were compared with the RA plan by using an analytical anisotropic algorithm (AAA) dose calculation. The optimized dose priorities for both the CK and the RA plans were similar for all patients. The highest priority was to provide enough dose coverage to the planned target volume (PTV) while limiting the maximum dose to the spinal cord. Plan quality was evaluated with respect to PTV coverage, conformity index (CI), high-dose spillage, intermediate-dose spillage (R50% and D2cm), and maximum dose to the spinal cord, which are criteria recommended by the RTOG 0631 spine and 0915 lung SBRT protocols. The mean CI' SD values of the PTV were 1.11' 0.03 and 1.17' 0.10 for RA and CK ( p = 0.02), respectively. On average, the maximum dose delivered to the spinal cord in CK plans was approximately 11.6% higher than that in RA plans, and this difference was statistically significant ( p < 0.001). High-dose spillages were 0.86% and 2.26% for RA and CK ( p = 0.203), respectively. Intermediate-dose spillage characterized by D2cm was lower for RA than for CK; however, R50% was not statistically different. Even though both systems can create highly conformal volumetric dose distributions, the current study shows that RA demonstrates lower high- and intermediate-dose spillages than CK. Therefore, RA plans for spinal SBRT may be superior to CK plans.

  3. Impact of geometric uncertainties on dose calculations for intensity modulated radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing

    Intensity-modulated radiation therapy (IMRT) uses non-uniform beam intensities within a radiation field to provide patient-specific dose shaping, resulting in a dose distribution that conforms tightly to the planning target volume (PTV). Unavoidable geometric uncertainty arising from patient repositioning and internal organ motion can lead to lower conformality index (CI) during treatment delivery, a decrease in tumor control probability (TCP) and an increase in normal tissue complication probability (NTCP). The CI of the IMRT plan depends heavily on steep dose gradients between the PTV and organ at risk (OAR). Geometric uncertainties reduce the planned dose gradients and result in a less steep or "blurred" dose gradient. The blurred dose gradients can be maximized by constraining the dose objective function in the static IMRT plan or by reducing geometric uncertainty during treatment with corrective verification imaging. Internal organ motion and setup error were evaluated simultaneously for 118 individual patients with implanted fiducials and MV electronic portal imaging (EPI). A Gaussian probability density function (PDF) is reasonable for modeling geometric uncertainties as indicated by the 118 patients group. The Gaussian PDF is patient specific and group standard deviation (SD) should not be used for accurate treatment planning for individual patients. In addition, individual SD should not be determined or predicted from small imaging samples because of random nature of the fluctuations. Frequent verification imaging should be employed in situations where geometric uncertainties are expected. Cumulative PDF data can be used for re-planning to assess accuracy of delivered dose. Group data is useful for determining worst case discrepancy between planned and delivered dose. The margins for the PTV should ideally represent true geometric uncertainties. The measured geometric uncertainties were used in this thesis to assess PTV coverage, dose to OAR, equivalent uniform dose per fraction (EUDf) and NTCP. The dose distribution including geometric uncertainties was determined from integration of the convolution of the static dose gradient with the PDF. Integration of the convolution of the static dose and derivative of the PDF can also be used to determine the dose including geometric uncertainties although this method was not investigated in detail. Local maximum dose gradient (LMDG) was determined via optimization of dose objective function by manually adjusting DVH control points or selecting beam numbers and directions during IMRT treatment planning. Minimum SD (SDmin) is used when geometric uncertainty is corrected with verification imaging. Maximum SD (SDmax) is used when the geometric uncertainty is known to be large and difficult to manage. SDmax was 4.38 mm in anterior-posterior (AP) direction, 2.70 mm in left-right (LR) direction and 4.35 mm in superior-inferior (SI) direction; SDmin was 1.1 mm in all three directions if less than 2 mm threshold was used for uncorrected fractions in every direction. EUDf is a useful QA parameter for interpreting the biological impact of geometric uncertainties on the static dose distribution. The EUD f has been used as the basis for the time-course NTCP evaluation in the thesis. Relative NTCP values are useful for comparative QA checking by normalizing known complications (e.g. reported in the RTOG studies) to specific DVH control points. For prostate cancer patients, rectal complications were evaluated from specific RTOG clinical trials and detailed evaluation of the treatment techniques (e.g. dose prescription, DVH, number of beams, bean angles). Treatment plans that did not meet DVH constraints represented additional complication risk. Geometric uncertainties improved or worsened rectal NTCP depending on individual internal organ motion within patient.

  4. WE-EF-BRA-07: High Performance Preclinical Irradiation Through Optimized Dual Focal Spot Dose Painting and Online Virtual Isocenter Radiation Field Targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Princess Margaret Cancer Centre, University Health Network, Toronto, CA; Lindsay, P

    Purpose: Advances in radiotherapy practice facilitated by collimation systems to shape radiation fields and image guidance to target these conformal beams have motivated proposals for more complex dose patterns to improve the therapeutic ratio. Recent progress in small animal radiotherapy platforms has provided the foundation to validate the efficacy of such interventions, but robustly delivering heterogeneous dose distributions at the scale and accuracy demanded by preclinical studies remains challenging. This work proposes a dual focal spot optimization method to paint spatially heterogeneous dose regions and an online virtual isocenter targeting method to accurately target the dose distributions. Methods: Two-dimensional dosemore » kernels were empirically measured for the 1 mm diameter circular collimator with radiochromic film in a solid water phantom for the small and large x-ray focal spots on the X-RAD 225Cx microirradiator. These kernels were used in an optimization framework which determined a set of animal stage positions, beam-on times, and focal spot settings to optimally deliver a given desired dose distribution. An online method was developed which defined a virtual treatment isocenter based on a single image projection of the collimated radiation field. The method was demonstrated by optimization of a 6 mm circular 2 Gy target adjoining a 4 mm semicircular avoidance region. Results: The dual focal spot technique improved the optimized dose distribution with the proportion of avoidance region receiving more than 0.5 Gy reduced by 40% compared to the large focal spot technique. Targeting tests performed by irradiating ball bearing targets on radiochromic film pieced revealed the online targeting method improved the three-dimensional accuracy from 0.48 mm to 0.15 mm. Conclusion: The dual focal spot optimization and online virtual isocenter targeting framework is a robust option for delivering dose at the preclinical level and provides a new experimental option for unique radiobiological investigations This work is supported, in part, by the Natural Sciences and Engineering Research Council of Canada and a Mitacs-Accelerate fellowship. P.E. Lindsay, and D.A. Jaffray are listed as inventors of the system described herein. This system has been licensed to Precision X-Ray Inc. for commercial development.« less

  5. Very high-energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS.

    PubMed

    Schüler, Emil; Eriksson, Kjell; Hynning, Elin; Hancock, Steven L; Hiniker, Susan M; Bazalova-Carter, Magdalena; Wong, Tony; Le, Quynh-Thu; Loo, Billy W; Maxim, Peter G

    2017-06-01

    The aim of this study was to evaluate the performance of very high-energy electron beams (VHEE) in comparison to clinically derived treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PPBS) technology. We developed a custom optimization script that could be applied automatically across modalities to eliminate operator bias during IMRT optimization. Four clinical cases were selected (prostate cancer, lung cancer, pediatric brain tumor, and head and neck cancer (HNC)). The VHEE beams were calculated in the EGSnrc/DOSXYZnrc Monte Carlo code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PPBS were optimized in a research version of RayStation using an in-house developed script to minimize operator bias between the different techniques. The in-house developed script generated similar or superior plans to the clinically used plans. In the comparisons between the modalities, the integral dose was lowest for the PPBS-generated plans in all cases. For the prostate case, the 200 MeV VHEE plan showed reduced integral dose and reduced organ at risk (OAR) dose compared to the VMAT plan. For all other cases, both the 100 and the 200 MeV VHEE plans were superior to the VMAT plans, and the VHEE plans showed better conformity and lower spinal cord dose in the pediatric brain case and lower brain stem dose in the HNC case when compared to the PPBS plan. The automated optimization developed in this study generated similar or superior plans as compared to the clinically used plan and represents an unbiased approach to compare treatment plans generated for different modalities. In the present study, we also show that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases, and VHEE plans can even achieve reductions in OAR doses compared to PPBS plans for shallow targets. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses are achieved. On the whole, VHEE was intermediate between photon VMAT and PPBS for OAR sparing. © 2017 American Association of Physicists in Medicine.

  6. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q; Lei, Y; Zheng, D

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less

  7. Cardiac Dose Reduction with Deep-Inspiratory Breath Hold Technique of Radiotherapy for Left-Sided Breast Cancer.

    PubMed

    Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet

    2017-01-01

    Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.

  8. Cardiac Dose Reduction with Deep-Inspiratory Breath Hold Technique of Radiotherapy for Left-Sided Breast Cancer

    PubMed Central

    Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet

    2017-01-01

    Introduction: Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. Aim: In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Materials and Methods: Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart Dmean), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Results: Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRTDIBH decreased the Heart Dmean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRTFB. IMRT further lowered mean LAD dose by 18%. Heart Dmean was lower with 3DCRTDIBH over IMRTDIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V20 of ipsilateral lung were lower with 3DCRTDIBH over IMRTDIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. Conclusions: 3DCRTDIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT. PMID:28974856

  9. Dose-per-fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer.

    PubMed

    Kepka, Lucyna; Tyc-Szczepaniak, Dobromira; Bujko, Krzysztof

    2009-07-01

    To determine the efficacy of accelerated hypofractionated three-dimensional conformal radiotherapy (3D-CRT) with dose-per-fraction escalation for treatment of stage III non-small cell lung cancer (NSCLC). Between 2001 and 2007, 173 patients with stage III NSCLC were treated using accelerated 3D-CRT and the simultaneous boost technique. Initially, the total dose of 56.7 Gy (including 39.9 Gy to the elective area) was delivered over 4 weeks in fractions of 2.7 Gy (1.9 Gy to the elective area). The dose-per-fraction escalation study commenced after the outcomes of 70 patients had been evaluated. The dose per fraction was increased from 2.7 through 2.8 Gy (level 1 escalation) to 2.9 Gy (level 2 escalation); the total dose increased, respectively, from 56.7 Gy through 58.8 Gy to 60.9 Gy. The dose to the elective area and the overall treatment time remained unchanged. Fit patients received two to three courses of chemotherapy before radiotherapy. The 2- and 3-year overall survival rates were 32 and 19%, respectively (median survival = 17 months). Of the patients, 7% had grade III acute esophageal toxicity and 6% had grade III or greater late pulmonary toxicity. Two of the nine patients who received the level 2 escalation (60.9 Gy) died of pulmonary toxicity. The study was terminated at a dose of 58.8 Gy and this schema was adopted as the institutional policy for treatment of stage III NSCLC. Although dose escalation with accelerated hypofractionated 3D-CRT was limited, the results and toxicity profiles obtained using this technique are promising.

  10. Automated treatment planning for a dedicated multi-source intracranial radiosurgery treatment unit using projected gradient and grassfire algorithms.

    PubMed

    Ghobadi, Kimia; Ghaffari, Hamid R; Aleman, Dionne M; Jaffray, David A; Ruschin, Mark

    2012-06-01

    The purpose of this work is to develop a framework to the inverse problem for radiosurgery treatment planning on the Gamma Knife(®) Perfexion™ (PFX) for intracranial targets. The approach taken in the present study consists of two parts. First, a hybrid grassfire and sphere-packing algorithm is used to obtain shot positions (isocenters) based on the geometry of the target to be treated. For the selected isocenters, a sector duration optimization (SDO) model is used to optimize the duration of radiation delivery from each collimator size from each individual source bank. The SDO model is solved using a projected gradient algorithm. This approach has been retrospectively tested on seven manually planned clinical cases (comprising 11 lesions) including acoustic neuromas and brain metastases. In terms of conformity and organ-at-risk (OAR) sparing, the quality of plans achieved with the inverse planning approach were, on average, improved compared to the manually generated plans. The mean difference in conformity index between inverse and forward plans was -0.12 (range: -0.27 to +0.03) and +0.08 (range: 0.00-0.17) for classic and Paddick definitions, respectively, favoring the inverse plans. The mean difference in volume receiving the prescribed dose (V(100)) between forward and inverse plans was 0.2% (range: -2.4% to +2.0%). After plan renormalization for equivalent coverage (i.e., V(100)), the mean difference in dose to 1 mm(3) of brainstem between forward and inverse plans was -0.24 Gy (range: -2.40 to +2.02 Gy) favoring the inverse plans. Beam-on time varied with the number of isocenters but for the most optimal plans was on average 33 min longer than manual plans (range: -17 to +91 min) when normalized to a calibration dose rate of 3.5 Gy/min. In terms of algorithm performance, the isocenter selection for all the presented plans was performed in less than 3 s, while the SDO was performed in an average of 215 min. PFX inverse planning can be performed using geometric isocenter selection and mathematical modeling and optimization techniques. The obtained treatment plans all meet or exceed clinical guidelines while displaying high conformity. © 2012 American Association of Physicists in Medicine.

  11. WE-DE-207B-11: Implementation of Size-Specific 3D Beam Modulation Filters On a Dedicated Breast CT Platform Using Breast Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Boone, J

    Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically.more » These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less

  12. Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hojin; Becker, Stephen; Lee, Rena

    2013-07-15

    Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of themore » objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments by 10-15 and 30-35, relative to TV min. and quadratic min. based plans, while MIs decreases by about 20%-30% and 40%-60% over the plans by two existing techniques, respectively. With such conditions, the total treatment time of the plans obtained from our proposed method can be reduced by 12-30 s and 30-80 s mainly due to greatly shorter multileaf collimator (MLC) traveling time in IMRT step-and-shoot delivery.Conclusions: The reweighted L1-minimization technique provides a promising solution to simplify the fluence-map variations in IMRT inverse planning. It improves the delivery efficiency by reducing the entire segments and treatment time, while maintaining the plan quality in terms of target conformity and critical structure sparing.« less

  13. SU-E-T-621: Planning Methodologies for Cancer of the Anal Canal: Comparing IMRT, Rapid Arc, and Pencil Beam Scanning Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlade, J; Kassaee, A

    2015-06-15

    Purpose: To evaluate planning methods for anal canal cancer and compare the results of 9-field Intensity Modulated Radiotherapy (IMRT), Volumetric Modulated Arc Therapy (Varian, RapidArc), and Proton Pencil Beam Scanning (PBS). Methods: We generated plans with IMRT, RapidArc (RA) and PBS for twenty patients for both initial phase including nodes and cone down phase of treatment using Eclipe (Varian). We evaluated the advantage of each technique for each phase. RA plans used 2 to 4 arcs and various collimator orientations. PBS used two posterior oblique fields. We evaluated the plans comparing dose volume histogram (DVH), locations of hot spots, andmore » PTV dose conformity. Results: Due to complex shape of target, for RA plans, multiple arcs (>2) are required to achieve optimal PTV conformity. When the PTV exceeds 15 cm in the superior-inferior direction, limitations of deliverability start to dominate. The PTV should be divided into a superior and an inferior structure. The optimization is performed with fixed jaws for each structure and collimator set to 90 degrees for the inferior PTV. Proton PBS plans show little advantage in small bowel sparing when treating the nodes. However, PBS plan reduces volumetric dose to the bladder at the cost of higher doses to the perineal skin. IMRT plans provide good target conformity, but they generate hot spots outside of the target volume. Conclusion: When using one planning technique for entire course of treatment, Multiple arc (>2) RA plans are better as compared to IMRT and PBS plans. When combining techniques, RA for the initial phase in combination with PBS for the cone down phase results in the most optimal plans.« less

  14. Comparative evaluation of two dose optimization methods for image-guided, highly-conformal, tandem and ovoids cervix brachytherapy planning

    NASA Astrophysics Data System (ADS)

    Ren, Jiyun; Menon, Geetha; Sloboda, Ron

    2013-04-01

    Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.

  15. Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases.

    PubMed

    Jang, Si Young; Lalonde, Ron; Ozhasoglu, Cihat; Burton, Steven; Heron, Dwight; Huq, M Saiful

    2016-09-08

    We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty-four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC- and clinical cone/Iris-based plans. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney signed-rank test. The planning accuracy of the MLC-based plans was validated using chamber and film measurements. The InCise MLC-based plans achieved mean dose and target coverage comparable to the cone/Iris-based plans. Although the conformity indices of the MLC-based plans were slightly higher than those of the cone/Iris-based plans, beam delivery time for the MLC-based plans was shorter by 30% ~ 40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC-based plans provided inferior dose conformity compared to cone/Iris-based plans. The QA results of MLC-based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases. © 2016 The Authors.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, K; Qamar, K; Thompson, M

    Purpose: The RTOG 1005 trial offered a hypofractionated arm in delivering WBRT+SIB. Traditionally, treatments were planned at our institution using field-in-field (FiF) tangents with a concurrent 3D conformal boost. With the availability of VMAT, it is possible that a hybrid VMAT-3D planning technique could provide another avenue in treating WBRT+SIB. Methods: A retrospective study of nine patients previously treated using RTOG 1005 guidelines was performed to compare FiF+3D plans with the hybrid technique. A combination of static tangents and partial VMAT arcs were used in base-dose optimization. The hybrid plans were optimized to deliver 4005cGy to the breast PTVeval andmore » 4800cGy to the lumpectomy PTVeval over 15 fractions. Plans were optimized to meet the planning goals dictated by RTOG 1005. Results: Hybrid plans yielded similar coverage of breast and lumpectomy PTVs (average D95 of 4013cGy compared to 3990cGy for conventional), while reducing the volume of high dose within the breast; the average D30 and D50 for the hybrid technique were 4517cGy and 4288cGy, compared to 4704cGy and 4377cGy for conventional planning. Hybrid plans increased conformity as well, yielding CI95% values of 1.22 and 1.54 for breast and lumpectomy PTVeval volumes; in contrast, conventional plans averaged 1.49 and 2.27, respectively. The nearby organs at risk (OARs) received more low dose with the hybrid plans due to low dose spray from the partial arcs, but all hybrid plans did meet the acceptable constraints, at a minimum, from the protocol. Treatment planning time was also reduced, as plans were inversely optimized (VMAT) rather than forward optimized. Conclusion: Hybrid-VMAT could be a solution in delivering WB+SIB, as plans yield very conformal treatment plans and maintain clinical standards in OAR sparing. For treating breast cancer patients with a simultaneously-integrated boost, Hybrid-VMAT offers superiority in dosimetric conformity and planning time as compared to FIF techniques.« less

  17. Intensity-modulated radiation therapy and volumetric-modulated arc therapy for adult craniospinal irradiation—A comparison with traditional techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studenski, Matthew T., E-mail: matthew.studenski@jeffersonhospital.org; Shen, Xinglei; Yu, Yan

    2013-04-01

    Craniospinal irradiation (CSI) poses a challenging planning process because of the complex target volume. Traditional 3D conformal CSI does not spare any critical organs, resulting in toxicity in patients. Here the dosimetric advantages of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are compared with classic conformal planning in adults for both cranial and spine fields to develop a clinically feasible technique that is both effective and efficient. Ten adult patients treated with CSI were retrospectively identified. For the cranial fields, 5-field IMRT and dual 356° VMAT arcs were compared with opposed lateral 3D conformal radiotherapy (3D-CRT) fields. Formore » the spine fields, traditional posterior-anterior (PA) PA fields were compared with isocentric 5-field IMRT plans and single 200° VMAT arcs. Two adult patients have been treated using this IMRT technique to date and extensive quality assurance, especially for the junction regions, was performed. For the cranial fields, the IMRT technique had the highest planned target volume (PTV) maximum and was the least efficient, whereas the VMAT technique provided the greatest parotid sparing with better efficiency. 3D-CRT provided the most efficient delivery but with the highest parotid dose. For the spine fields, VMAT provided the best PTV coverage but had the highest mean dose to all organs at risk (OAR). 3D-CRT had the highest PTV and OAR maximum doses but was the most efficient. IMRT provides the greatest OAR sparing but the longest delivery time. For those patients with unresectable disease that can benefit from a higher, definitive dose, 3D-CRT–opposed laterals are the most clinically feasible technique for cranial fields and for spine fields. Although inefficient, the IMRT technique is the most clinically feasible because of the increased mean OAR dose with the VMAT technique. Quality assurance of the beams, especially the junction regions, is essential.« less

  18. MO-F-CAMPUS-T-05: Correct Or Not to Correct for Rotational Patient Set-Up Errors in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briscoe, M; Ploquin, N; Voroney, JP

    2015-06-15

    Purpose: To quantify the effect of patient rotation in stereotactic radiation therapy and establish a threshold where rotational patient set-up errors have a significant impact on target coverage. Methods: To simulate rotational patient set-up errors, a Matlab code was created to rotate the patient dose distribution around the treatment isocentre, located centrally in the lesion, while keeping the structure contours in the original locations on the CT and MRI. Rotations of 1°, 3°, and 5° for each of the pitch, roll, and yaw, as well as simultaneous rotations of 1°, 3°, and 5° around all three axes were applied tomore » two types of brain lesions: brain metastasis and acoustic neuroma. In order to analyze multiple tumour shapes, these plans included small spherical (metastasis), elliptical (acoustic neuroma), and large irregular (metastasis) tumour structures. Dose-volume histograms and planning target volumes were compared between the planned patient positions and those with simulated rotational set-up errors. The RTOG conformity index for patient rotation was also investigated. Results: Examining the tumour volumes that received 80% of the prescription dose in the planned and rotated patient positions showed decreases in prescription dose coverage of up to 2.3%. Conformity indices for treatments with simulated rotational errors showed decreases of up to 3% compared to the original plan. For irregular lesions, degradation of 1% of the target coverage can be seen for rotations as low as 3°. Conclusions: This data shows that for elliptical or spherical targets, rotational patient set-up errors less than 3° around any or all axes do not have a significant impact on the dose delivered to the target volume or the conformity index of the plan. However the same rotational errors would have an impact on plans for irregular tumours.« less

  19. Bowel sparing in pediatric cranio-spinal radiotherapy: a comparison of combined electron and photon and helical TomoTherapy techniques to a standard photon method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harron, Elizabeth, E-mail: elizabeth.harron@nuh.nhs.uk; Lewis, Joanne

    2012-07-01

    The aim of this study was to compare the dose to organs at risk (OARs) from different craniospinal radiotherapy treatment approaches available at the Northern Centre for Cancer Care (NCCC), with a particular emphasis on sparing the bowel. Method: Treatment plans were produced for a pediatric medulloblastoma patient with inflammatory bowel disease using 3D conformal 6-MV photons (3DCP), combined 3D 6-MV photons and 18-MeV electrons (3DPE), and helical photon TomoTherapy (HT). The 3DPE plan was a modification of the standard 3DCP technique, using electrons to treat the spine inferior to the level of the diaphragm. The plans were compared inmore » terms of the dose-volume data to OARs and the nontumor integral dose. Results: The 3DPE plan was found to give the lowest dose to the bowel and the lowest nontumor integral dose of the 3 techniques. However, the coverage of the spine planning target volume (PTV) was least homogeneous using this technique, with only 74.6% of the PTV covered by 95% of the prescribed dose. HT was able to achieve the best coverage of the PTVs (99.0% of the whole-brain PTV and 93.1% of the spine PTV received 95% of the prescribed dose), but delivered a significantly higher integral dose. HT was able to spare the heart, thyroid, and eyes better than the linac-based techniques, but other OARs received a higher dose. Conclusions: Use of electrons was the best method for reducing the dose to the bowel and the integral dose, at the expense of compromised spine PTV coverage. For some patients, HT may be a viable method of improving dose homogeneity and reducing selected OAR doses.« less

  20. Ataxia with isolated vitamin E deficiency in four siblings.

    PubMed

    Shorer, Z; Parvari, R; Bril, G; Sela, B A; Moses, S

    1996-11-01

    We describe 4 siblings of a consanguineous Bedouin family with Friedreich ataxia phenotype in whom low serum vitamin E levels without other indicators of fat malabsorption were detected. Although age of onset and some of the clinical features were alike in all 4 patients, the electrophysiological parameters were markedly abnormal in 2, but normal in the other 2. Erythrocytes revealed both membranous and intracellular evidence of oxidative damage. The mutations described in other families with ataxia with isolated vitamin E deficiency were not detectable, nor was an abnormal single-stranded conformation polymorphism pattern apparent in the three exons at the 3' region of the gene. Vitamin E administration in pharmacological doses improved the neurological condition in 2 patients and also corrected some of the patients' erythrocyte cell abnormalities. The finding of vitamin E deficiency in other cases of Friedreich ataxia phenotype may allow treatment at an early stage of the disease, when large dose Vitamin E therapy may reverse the neurological lesions.

  1. The Utility of Proton Beam Therapy with Concurrent Chemotherapy for the Treatment of Esophageal Cancers

    PubMed Central

    Lin, Steven H.

    2011-01-01

    The standard of care for the management of locally advanced esophageal cancers in the United States is chemotherapy combined with radiation, either definitively, or for those who could tolerate surgery, preoperatively before esophagectomy. Although the appropriate radiation dose remains somewhat controversial, the quality of the radiation delivery is critical for the treatment of esophageal cancer since the esophagus is positioned close to vital structures, such as the heart and lung. The volume and relative doses to these normal tissues affect acute and late term complications. Advances in radiation delivery from 2D to 3D conformal radiation therapy, to Intensity Modulated Radiation Therapy (IMRT) or charged particle therapy (carbon ion or proton beam therapy (PBT)), allow incremental improvements in the therapeutic ratio. This could have implications in non-cancer related morbidity for long term survivors. This article reviews the evolution in radiation technologies and the use of PBT with chemotherapy in the management of esophageal cancer. PMID:24213126

  2. SU-C-16A-04: Dosimetric Validation of a Partially-Shielded Gd-153 Brachytherapy Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Adams, Q; Flynn, R

    Purpose: To demonstrate by measurement that using partially shielded Gd-153 sources for rotating-shield brachytherapy (RSBT) is feasible. RSBT is a potentially superior alternative to conventional high-dose-rate brachytherapy and provides the opportunity to dramatically improve tumor dose conformity for the treatment of, for example, prostate cancer. Methods: A custom-built, stainless steel encapsulated 150 mCi Gd-153 capsule with an outer length of 12.8 mm, outer diameter of 2.10 mm, active length of 9.98 mm, and active diameter of 1.53 mm was used. A partially shielded catheter was constructed with a 500 μm platinum shield and a 500 μm aluminum emission window, bothmore » with 180° azimuthal coverage. An acrylic phantom was constructed to measure the dose distributions from the shielded catheter in the transverse plane using Gafchromic EBT3 films. Film calibration curves were generated from 50, 70, and 100 kVp x-ray beams with NIST-traceable air kerma values to account for energy variation. Results: The transmission ratios of platinum to aluminum shielding at 1 cm off-axis are 7.5% and 7.6% for Monte Carlo (MCNP5) predicted and experimental results, respectively. The predicted/measured relative dose rates at 1 cm, 2 cm and 3 cm off-axis through the Al window were 100%/92.9%, 28.6%/27.0% and 13.8%/12.7%, respectively. Through the Pt shield, the predicted/measured relative dose rates were 7.5%/7.1%, 3.8%/3.0% and 2.4%/1.7%, respectively. Conclusion: Using partially-shielded Gd-153 sources for RSBT is a promising approach to improving brachytherapy dose distributions. The next step in making Gd-153 based RSBT a reality is developing a Gd-153 source that is small enough such that the source, shield, and catheter all fit within a 16 gauge needle, which has a 1.65 mm diameter. University of Iowa Research Foundation.« less

  3. Dosimetric comparison between intensity-modulated with coplanar field and 3D conformal radiotherapy with noncoplanar field for postocular invasion tumor.

    PubMed

    Wenyong, Tu; Lu, Liu; Jun, Zeng; Weidong, Yin; Yun, Li

    2010-01-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 degrees , 30-45 degrees , 240-270 degrees , and 310-335 degrees degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D(max) and D(min) dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed. 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. SU-F-T-184: 3D Range-Modulator for Scanned Particle Therapy: Development, Monte Carlo Simulations and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeonov, Y; Penchev, P; Ringbaek, T Printz

    2016-06-15

    Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less

  5. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform.

    PubMed

    Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D

    2017-10-01

    Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm 3 or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm 3 or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with 60 Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V 12Gy and R 50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for translational setup errors of each shot at each staged treatment. © 2017 American Association of Physicists in Medicine.

  6. Dosimetric comparison of volumetric modulated Arc therapy, step-and-shoot, and sliding window IMRT for prostate cancer

    NASA Astrophysics Data System (ADS)

    Schnell, Erich; Herman, Tania De La Fuente; Young, Julie; Hildebrand, Kim; Algan, Ozer; Syzek, Elizabeth; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study aims to evaluate treatment plans generated by Step-and-Shoot (SS), Sliding Window (SW) and Volumetric Modulated Arc Therapy (VMAT) in order to assess the differences in dose volume histograms of planning target volume (PTV) and organs at risk (OAR), conformity indices, radiobiological evaluations, and plan quality for prostate cancer cases. Six prostate cancer patients treated in our center were selected for this retrospective study. Treatment plans were generated with Eclipse version 8.9 using 10 MV photon beams. For VMAT, Varian Rapid Arc with 1 or 2 arcs, and for SS and SW IMRT, 7-9 fields were used. Each plan had three PTVs with prescription doses of 81, 59.4, and 45 Gy to prostate, to prostate and lymph nodes, and to pelvis, respectively. Doses to PTV and OAR and the conformal indices (COIN) were compared among three techniques. The equivalent uniform dose (EUD), tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated and compared. The mean doses to the PTV prostate on average were 83 Gy and the percent differences of mean dose among all techniques were below 0.28. For bladder and rectum, the percent differences of mean dose among all techniques were below 2.2. The COIN did not favour any particular delivery method over the other. The TCP was higher with SS and SW for four patients and higher with VMAT for two patients. The NTCP for the rectum was the lowest with VMAT in five out of the six patients. The results show similar target coverage in general.

  7. SU-E-T-233: Cyberknife Versus Linac IMRT for Dose Comparision in Hypofractionated Hemi Larynx Irradiation of Early Stage True Vocal Cord Cancer: A Dosimetric Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Lee, P; Jiang, S

    2015-06-15

    Purpose: To compare dosimetric data of patients treated for early-stage larynx cancer on Cyberknife and Linac IMRT. Methods: Nine patients were treated with Cyberknife to a dose of 45 Gy in 10 fractions of the involved hemilarynx. The prescription dose provided at least 95% of PTV coverage. After Cyberknife treatment, the CT images and contours were sent to Pinnacle treatment planning system for IMRT planning on a regular SBRT linac with same dose prescription and constrains. Dose to target and normal tissue, including the arytenoids, cord, carotid arteries, thyroid, and skin, were analyzed using dose volume histograms. Results: For Cyberknifemore » plan, the conformity indices are within 1.11–1.33. The average dose to the contralateral arytenoids for Cyberknife plans was 28.9±6.5Gy), which is lower than the same mean dose for IMRT plans (34.0±5.2 Gy). The average maximum dose to the ipsilateral and contralateral carotid artery were 20.6 ±9.1 Gy and 10.2±6.0 Gy respectively for Cybeknife comparing with 22.1±8.0 Gy and 12.0±5.1 Gy for IMRT. The mean dose to the thyroid was 3.6±2.2 Gy for Cyberknife and 3.4±2.4 Gy for IMRT. As shown in DVH, the Cyberknife can deliver less dose to the normal tissue which is close to target area comparing with IMRT Plans. However, IMRT plan’s can give more sparing for the critical organs which is far away from the target area. Conclusion: We have compared the dosimetric parameters of Cyberknife and linac IMRT plans for patients with early-stage larynx cancer. Both Cyberknife and IMRT plans can achieve conformal dose distribution to the target area. Cyberknife was able to reduce normal tissue dose in high doses region while IMRT plans can reduce the dose of the normal tissue at the low dose region. These dosimetric parameters can be used to guide future prospective protocols using SBRT for larynx cancer.« less

  8. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  9. DockRank: Ranking docked conformations using partner-specific sequence homology-based protein interface prediction

    PubMed Central

    Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2015-01-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. PMID:23873600

  10. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction.

    PubMed

    Xue, Li C; Jordan, Rafael A; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-02-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. Copyright © 2013 Wiley Periodicals, Inc.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krayenbuehl, Jerome Dipl.Phys. E.T.H.; Oertel, Susanne; Davis, J. Bernard

    Purpose: The optimal technique for postoperative radiotherapy (RT) after extrapleural pleuropneumonectomy (EPP) of malignant pleural mesothelioma (MPM) remains debated. Methods and Materials: The data from 8 right-sided and 9 left-sided consecutive cases of MPM treated with RT after radical EPP were reviewed. Of the 17 patients, 8 had been treated with three-dimensional (3D) conformal RT (3D-CRT) and 9 with intensity-modulated RT (IMRT) with 6-MV photons. The clinical outcome and adverse events were assessed. For comparative planning, each case was replanned with 3D-CRT using photons and electrons or with IMRT. Homogeneity, doses to the organs at risk, and target volume coveragemore » were analyzed. Results: Both techniques yielded acceptable plans. The dose coverage and homogeneity of IMRT increased by 7.7% for the first planning target volume and 9.7% for the second planning target volume, ensuring {>=}95% of the prescribed dose compared with 3D-CRT (p < 0.01). Compared with 3D-CRT, IMRT increased the dose to the contralateral lung, with an increase in the mean lung dose of 7.8 Gy and an increase in the volume receiving 13 Gy and 20 Gy by 20.5% and 7.2%, respectively (p < 0.01). A negligible dose increase to the contralateral kidney and liver was observed. No differences were seen for the spinal cord and ipsilateral kidney. Two adverse events of clinical relevant lung toxicity were observed with IMRT. Conclusion: Intensity-modulated RT and 3D-CRT are both suitable for adjuvant RT. IMRT improves the planning target volume coverage but delivered greater doses to the organs at risk. Rigid dose constraints for the lung should be respected.« less

  12. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumesmore » of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.« less

  13. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator

    PubMed Central

    Putha, Suman Kumar; Saxena, P. U.; Banerjee, S.; Srinivas, Challapalli; Vadhiraja, B. M.; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K. Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (St) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. Sts were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (Diso,TPS), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (Diso,Transit) from the measured Sts. A locally fabricated pelvic phantom validated the estimations of Diso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The Diso,Transit agreement with Diso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is −1.37% ±2.03% (n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery. PMID:28144114

  14. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator.

    PubMed

    Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.

  15. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  16. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.

  17. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  18. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less

  19. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.

    2013-02-15

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively,more » whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94.62%, respectively, for the bolus ECT plans and 89.2% and 95.1%, respectively, for the mixed beam plans. For all regions, pass rates for the parotid and CW plans were 98.8% and 97.3%, respectively, for the bolus ECT plans and 97.5% and 95.9%, respectively, for the mixed beam plans. For the IMXT component of the mixed beam plans, pass rates for the parotid and CW plans were 93.7% and 95.8%. Conclusions: Bolus ECT and mixed beam therapy dose delivery to the phantom were more accurate than IMXT delivery, adding confidence to the use of planning, fabrication, and delivery for bolus ECT tools either alone or as part of mixed beam therapy. The methodology reported in this work could serve as a basis for future standardization of the commissioning of bolus ECT or mixed beam therapy. When applying this technology to patients, it is recommended that an electron dose algorithm more accurate than the pencil beam algorithm, e.g., a Monte Carlo algorithm or analytical transport such as the pencil beam redefinition algorithm, be used for planning to ensure the desired accuracy.« less

  20. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hyer, Daniel Ellis

    Advances in radiation treatment delivery, such as intensity modulated radiation therapy (IMRT), have made it possible to deliver large doses of radiation with a high degree of conformity. While highly conformal treatments offers the advantage of sparing surrounding normal tissue, this benefit can only be realized if the patient is accurately positioned during each treatment fraction. The need to accurately position the patient has led to the development and use of gantry mounted kilovoltage cone-beam computed tomography (kV-CBCT) systems. These systems are used to acquire high resolution volumetric images of the patient which are then digitally registered with the planning CT dataset to confirm alignment of the patient on the treatment table. While kV-CBCT is a very useful tool for aligning the patient prior to treatment, daily use in a high fraction therapy regimen results in a substantial radiation dose. In order to quantify the radiation dose associated with CBCT imaging, an anthropomorphic phantom representing a 50th percentile adult male and a fiber-optic coupled (FOC) dosimetry system were both constructed as part of this dissertation. These tools were then used to directly measure organ doses incurred during clinical protocols for the head, chest, and pelvis. For completeness, the dose delivered from both the X-ray Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) and the On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) were investigated. While this study provided a direct measure of organ doses for estimating risk to the patient, a practical method for estimating organ doses that could be performed with phantoms and dosimeters currently available at most clinics was also desired. To accomplish this goal, a 100 mm pencil ion chamber was used to measure the "cone beam dose index" (CBDI) inside standard CT dose index (CTDI) acrylic phantoms. A weighted CBDI (CBDIw), similar to the weighted CT dose index (CTDIw), was then calculated to represent the average dose in the acrylic phantom. By comparing this value to the measured organ doses, organ dose conversion coefficients were developed. These conversion coefficients allow specific organ doses to be estimated quickly and easily using readily available clinical equipment.

  1. SU-E-T-217: Comprehensive Dosimetric Evaluation On 3D-CRT, IMRT and Non-Coplanar Arc Treatment for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Yan, Y; Ramirez, E

    2015-06-15

    Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less

  2. SU-E-T-187: Feasibility Study of Stereotactic Liver Radiation Therapy Using Multiple Divided Partial Arcs in Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; Ozawa, S; Tsegmed, U

    2014-06-01

    Purpose: To verify volumetric modulated arc therapy (VMAT) using flattening filter free (FFF) mode with jaw tracking (JT) feature for single breath hold as long as 15 s per arc in liver stereotactic body radiation therapy (SBRT) against intensity modulated radiation therapy (IMRT) FFF-JT. Methods: Ten hepatocellular carcinoma (HCC) cases were planned with 10 MV FFF using Pinnacle3 treatment planning system which delivered by TrueBeam to administer 48 Gy/ 4 fractions. Eight non-coplanar beams were assigned to IMRT using step-and-shoot technique. For VMAT, two or three non-coplanar partial arcs (up to 180 degrees) were further divided into subarcs with gantrymore » rotation less than 80 degrees to limit delivery time within 15 s. Dose distributions were verified using OCTAVIUS II system and pass rates were evaluated using gamma analysis with criteria of 3%/3 mm at threshold of 5% to the maximum dose. The actual irradiation time was measured. Results: The VMAT-FFF-JT of partial-arcs with sub-divided arcs was able to produce a highly conformal plan as well as IMRT-FFF-JT. Isodose lines and DVH showed slight improvement in dosimetry when JT was employed for both IMRT and VMAT. Consequently, VMAT-FFF-JT was superior in reducing the dose to liver minus gross tumor volume. VMAT-FFF-JT has shorter total treatment time compared with 3D conformal radiation therapy (3D-CRT) FFF because the gantry was rotated simultaneously with the beam delivery in VMAT. Moreover, due to the small and regular shape of HCC, VMAT-FFF-JT offered less multileaf collimator motion, thus the interplay effect is expected to be reduced. The patient specific QA of IMRT and VMAT acquired the pass rates higher than 90%. Conclusion: VMAT-FFF-JT could be a promising technique for liver SBRT as the sub-divided arcs method was able to accommodate a single breath hold irradiation time of less than 15 s without deterioration of the dose distribution compared with IMRT-FFF-JT.« less

  3. SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, H

    2015-06-15

    Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  4. Three-dimensional radiotherapy of head and neck and esophageal carcinomas: a monoisocentric treatment technique to achieve improved dose distributions.

    PubMed

    Ahmad, M; Nath, R

    2001-02-20

    The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.

  5. Improvements to robotics-inspired conformational sampling in rosetta.

    PubMed

    Stein, Amelie; Kortemme, Tanja

    2013-01-01

    To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC) method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new "next-generation KIC" method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions.

  6. Improvements to Robotics-Inspired Conformational Sampling in Rosetta

    PubMed Central

    Stein, Amelie; Kortemme, Tanja

    2013-01-01

    To accurately predict protein conformations in atomic detail, a computational method must be capable of sampling models sufficiently close to the native structure. All-atom sampling is difficult because of the vast number of possible conformations and extremely rugged energy landscapes. Here, we test three sampling strategies to address these difficulties: conformational diversification, intensification of torsion and omega-angle sampling and parameter annealing. We evaluate these strategies in the context of the robotics-based kinematic closure (KIC) method for local conformational sampling in Rosetta on an established benchmark set of 45 12-residue protein segments without regular secondary structure. We quantify performance as the fraction of sub-Angstrom models generated. While improvements with individual strategies are only modest, the combination of intensification and annealing strategies into a new “next-generation KIC” method yields a four-fold increase over standard KIC in the median percentage of sub-Angstrom models across the dataset. Such improvements enable progress on more difficult problems, as demonstrated on longer segments, several of which could not be accurately remodeled with previous methods. Given its improved sampling capability, next-generation KIC should allow advances in other applications such as local conformational remodeling of multiple segments simultaneously, flexible backbone sequence design, and development of more accurate energy functions. PMID:23704889

  7. MO-G-201-04: Knowledge-Based Planning for Single-Isocenter Stereotactic Radiosurgery to Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemer, B; Shiraishi, S; Hattangadi-Gluth, J

    Purpose: Single-isocenter, linac-based SRS for multiple brain metastases (multi-mets) can deliver highly conformal radiation doses and reduce overall patient treatment time compared to other therapy techniques. This study aims to quantify the dosimetric benefits of knowledge-based planning (KBP) for multi-met treatments. Methods: Using a previously-published KBP methodology (an artificial neural network (ANN) trained on single-target linac-based SRS plans), 3D dose distribution predictions for multi-met patients were obtained by treating each brain lesion as a solitary target and subsequently combining individual predictions into a single distribution using a dose-weighted geometric averaging to obtain the best results in the inter-target space. 17more » previously-treated multi-met plans, with target numbers ranging from N=2–5, were used to validate the ANN predictions and subsequent KBP auto-planning routine. The fully-deliverable KBP plans were developed by converting dose distribution predictions into patient-specific optimization objectives while maintaining identical target normalizations (typically PTV V100%=D98%). Plan quality improvements were quantified by the difference between SRS quality metrics (QMs): δdQM=QM(clinical)-QM(KBP). QMs of interest were: gradient measure (GM), conformity index (CI), brain V10 and V5, brainstem D0.1cc and heterogeneity index (HI). Finally, overall plan quality was judged via blinded plan comparison by SRS-specializing physicians. Results: Two clinical plans were found to be significant outliers wherein plan quality was dramatically worse than KBP. Despite indicating KBP superiority, these were removed from the QM analysis to prevent skewing the results. In the remaining cases, clinical and KBP QMs were nearly identical with modest improvements in the KBP sample: δGM=0.12±0.56mm, δCI=−0.01±0.04, Brain δV10=0.8±2.6cc, brain δV5=6.3 ±10.7cc, brainstem δD0.1cc=0.06±1.19Gy and δHI= −0.04±0.05. Ultimately, 13/17 KBP plans were deemed superior to the manual plans in blinded physician review. Conclusion: The results demonstrate that KBP-driven automated planning in linac-based single-isocenter treatments for multiple brain metastases is indistinguishable from, or even better than, traditional manual planning. J. Hattangadi: Research Grant; Varian Medical Systems; K.L. Moore: Research Grant: Varian Medical Systems.« less

  8. Assuring high quality treatment delivery in clinical trials - Results from the Trans-Tasman Radiation Oncology Group (TROG) study 03.04 "RADAR" set-up accuracy study.

    PubMed

    Haworth, Annette; Kearvell, Rachel; Greer, Peter B; Hooton, Ben; Denham, James W; Lamb, David; Duchesne, Gillian; Murray, Judy; Joseph, David

    2009-03-01

    A multi-centre clinical trial for prostate cancer patients provided an opportunity to introduce conformal radiotherapy with dose escalation. To verify adequate treatment accuracy prior to patient recruitment, centres submitted details of a set-up accuracy study (SUAS). We report the results of the SUAS, the variation in clinical practice and the strategies used to help centres improve treatment accuracy. The SUAS required each of the 24 participating centres to collect data on at least 10 pelvic patients imaged on a minimum of 20 occasions. Software was provided for data collection and analysis. Support to centres was provided through educational lectures, the trial quality assurance team and an information booklet. Only two centres had recently carried out a SUAS prior to the trial opening. Systematic errors were generally smaller than those previously reported in the literature. The questionnaire identified many differences in patient set-up protocols. As a result of participating in this QA activity more than 65% of centres improved their treatment delivery accuracy. Conducting a pre-trial SUAS has led to improvement in treatment delivery accuracy in many centres. Treatment techniques and set-up accuracy varied greatly, demonstrating a need to ensure an on-going awareness for such studies in future trials and with the introduction of dose escalation or new technologies.

  9. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra–target-tissue irradiation

    PubMed Central

    Stimato, Gerardina; Ippolito, Edy; Silipigni, Sonia; Venanzio, Cristina Di; Gaudino, Diego; Fiore, Michele; Trodella, Lucio; D'Angelillo, Rolando Maria; Ramella, Sara

    2016-01-01

    Objective: To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Methods: Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm3 and/or BMI >25 kg m−2], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial–lateral beam and additional fields were added to reduce hot spot areas and extra–target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a “proper” normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). Results: In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra–target-tissue irradiation was significantly reduced using S5F for V105% (cm3) and V107% (cm3) with a very high difference in tissue irradiation (46.6 vs 3.0 cm3, p ≤ 0.001 for V105% and 12.2 vs 0.0 cm3, p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra–target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm3, p = 0.002). Conclusion: The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be easily implemented in breast cancer radiotherapy. Advances in knowledge: The treatment planning strategy proposed in this study has several advantages: (a) it is extremely reliable as the standard supine positioning is used; (b) the standardized class solution allows for widespread use; (c) time and cost of treatment are not increased; and (d) it can be used for both large breasted and obese patients not compliant to different treatment positioning. PMID:27355127

  10. Evaluation of MLC leaf transmission on IMRT treatment plan quality of patients with advanced lung cancer.

    PubMed

    Chen, Jiayun; Fu, Guishan; Li, Minghui; Song, Yixin; Dai, Jianrong; Miao, Junjie; Liu, Zhiqiang; Li, Yexiong

    2017-12-14

    The purpose of this paper was to evaluate the impact of leaf treatment of multileaf collimator (MLC) in plan quality of intensity-modulated radiotherapy (IMRT) of patients with advanced lung cancer. Five MLCs with different leaf transmissions (0.01%, 0.5%, 1.2%, 1.8%, and 3%) were configured for an accelerator in a treatment planning system. Correspondingly, 5 treatment plans with the same optimization setting were created and evaluated quantitatively for each patient (11 patients total) who was diagnosed with advanced lung cancer. All of the 5 plans for each patient met the dose requirement for the planning treatment volumes (PTVs) and had similar target dose homogeneity and conformity. On average, the doses to selected organs were as follows: (1) V 5 , V 20 , and the mean dose of total lung; (2) the maximum and mean dose to spinal cord planning organ-at-risk volume (PRV); and (3) V 30 and V 40 of heart, decreased slightly when MLC transmission was decreased, but with no statistical differences. There is a clear grouping of plans having total quality score (S D ) value, which is used to evaluate plan quality: (1) more than 1 (patient nos. 1 to 3, 5, and 8), and more than 2.5 (patient no. 6); (2) less than 1 (patient nos. 7 and 10); (3) around 1 (patient nos. 4, 9, and 11). As MLC transmission increased, overall S D values increased as well and plan dose requirement was harder to meet. The clinical requirements were violated increasingly as MLC transmission became large. Total S D with and without normal tissue (NT) showed similar results, with no statistically significant differences. Therefore, decrease of MLC transmission did have minimum impact on plan, and it improved target coverage and reduced normal tissue radiation slightly, with no statistical significance. Plan quality could not be significantly improved by MLC transmission reduction. However, lower MLC transmission may have advantages on lung sparing to low- and intermediate-dose exposure. Besides conventional fraction, hyperfraction, or stereotactic body radiotherapy (SBRT), the reduction on lung sparing is still essential because it is highly relevant to radiation pneumonitis (RP). It has potential to diminish incidence of RP and improve patient's quality of life after irradiation with lowered MLC transmission. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma.

    PubMed

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity-modulated radiation therapy technique. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Standing in the Hallway Improves Students' Understanding of Conformity

    ERIC Educational Resources Information Center

    Lawson, Timothy J.; Haubner, Richard R.; Bodle, James H.

    2013-01-01

    To help beginning psychology students understand how they are influenced by social pressures to conform, we developed a demonstration designed to elicit their conformity to a small group of students standing in the hallway before class. Results showed the demonstration increased students' recognition of their own tendency to conform, knowledge of…

  13. Is a single isocenter sufficient for volumetric modulated arc therapy radiosurgery when multiple intracranial metastases are spatially dispersed?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Jay; Hood, Rodney; Yin, Fang-Fang

    2016-01-01

    Previous work demonstrated improved dosimetry of single isocenter volumetric modulated arc therapy (VMAT) of multiple intracranial targets when they are located ≤ 4 cm from isocenter because of narrower multileaf collimators (MLCs). In follow-up, we sought to determine if decreasing isocenter-target distance (d{sub iso}) by using 2 to 3 isocenters would improve dosimetry for spatially dispersed targets. We also investigated the effect of a maximum dose constraint during VMAT optimization, and the dosimetric effect of the number of VMAT arcs used for a larger number of targets (i.e., 7 to 9). We identified radiosurgery cases that had multiple intracranial targetsmore » with d{sub iso} of at least 1 target > 5 cm. A single isocenter VMAT plan was created using a standardized 4-arc technique with 18 Gy per target. Each case was then replanned (1) using 2 to 3 isocenters, (2) including a maximum dose constraint per target, and in the case of 7 to 9 targets, (3) using 3 to 6 arcs. Dose evaluation included brain V{sub 6} {sub Gy} and V{sub 12} {sub Gy}, and conformity index (CI), gradient index (GI), and heterogeneity index (HI) per target. Two isocenters were sufficient to limit d{sub iso} to ≤ 4 cm and ≤ 5 cm for 11/15 and 13/15 cases, respectively; after replanning with 2 to 3 isocenters, d{sub iso} decreased from 5.8 ± 2.8 cm (2.3 14.9) to 2.5 ± 1.4 cm (0 5.2). All dose statistics improved on average, albeit modestly: V{sub 6} {sub Gy} = 6.9 ± 7.1%, V{sub 12} {sub Gy} = 0.9% ± 4.4%, CI = 2.6% ± 4.6%, GI = 0.9% ± 12.7%, and HI = 2.6% ± 5.2%; however, the number of arcs doubled and monitor units increase by nearly 2-fold. A maximum dose constraint had a negative effect on all dose indices, increasing V{sub 12} {sub Gy} by 9.7 ± 6.9%. For ≥ 7 targets, increasing number of arcs to > 3 improved CI, V{sub 12} {sub Gy}, and V{sub 6} {sub Gy}. A single isocenter is likely sufficient for VMAT radiosurgery of multiple intracranial metastases. Optimal treatment plan quality is achieved when no constraint is placed on the maximum target dose; for cases with many targets at least 4 arcs are needed for optimal plan quality.« less

  14. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  15. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the measured neutron dose equivalent among the three therapy machines for both the in vivo and phantom exposures.

  16. Real-time inverse planning for Gamma Knife radiosurgery.

    PubMed

    Wu, Q Jackie; Chankong, Vira; Jitprapaikulsarn, Suradet; Wessels, Barry W; Einstein, Douglas B; Mathayomchan, Boonyanit; Kinsella, Timothy J

    2003-11-01

    The challenges of real-time Gamma Knife inverse planning are the large number of variables involved and the unknown search space a priori. With limited collimator sizes, shots have to be heavily overlapped to form a smooth prescription isodose line that conforms to the irregular target shape. Such overlaps greatly influence the total number of shots per plan, making pre-determination of the total number of shots impractical. However, this total number of shots usually defines the search space, a pre-requisite for most of the optimization methods. Since each shot only covers part of the target, a collection of shots in different locations and various collimator sizes selected makes up the global dose distribution that conforms to the target. Hence, planning or placing these shots is a combinatorial optimization process that is computationally expensive by nature. We have previously developed a theory of shot placement and optimization based on skeletonization. The real-time inverse planning process, reported in this paper, is an expansion and the clinical implementation of this theory. The complete planning process consists of two steps. The first step is to determine an optimal number of shots including locations and sizes and to assign initial collimator size to each of the shots. The second step is to fine-tune the weights using a linear-programming technique. The objective function is to minimize the total dose to the target boundary (i.e., maximize the dose conformity). Results of an ellipsoid test target and ten clinical cases are presented. The clinical cases are also compared with physician's manual plans. The target coverage is more than 99% for manual plans and 97% for all the inverse plans. The RTOG PITV conformity indices for the manual plans are between 1.16 and 3.46, compared to 1.36 to 2.4 for the inverse plans. All the inverse plans are generated in less than 2 min, making real-time inverse planning a reality.

  17. A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases.

    PubMed

    Narayanasamy, Ganesh; Stathakis, Sotirios; Gutierrez, Alonso N; Pappas, Evangelos; Crownover, Richard; Floyd, John R; Papanikolaou, Niko

    2017-10-01

    In this treatment planning study, we compare the plan quality and delivery parameters for the treatment of multiple brain metastases using 2 monoisocentric techniques: the Multiple Metastases Element from Brainlab and the RapidArc volumetric-modulated arc therapy from Varian Medical Systems. Eight patients who were treated in our institution for multiple metastases (3-7 lesions) were replanned with Multiple Metastases Element using noncoplanar dynamic conformal arcs. The same patients were replanned with the RapidArc technique in Eclipse using 4 noncoplanar arcs. Both techniques were designed using a single isocenter. Plan quality metrics (conformity index, homogeneity index, gradient index, and R 50% ), monitor unit, and the planning time were recorded. Comparison of the Multiple Metastases Element and RapidArc plans was performed using Shapiro-Wilk test, paired Student t test, and Wilcoxon signed rank test. A paired Wilcoxon signed rank test between Multiple Metastases Element and RapidArc showed comparable plan quality metrics and dose to brain. Mean ± standard deviation values of conformity index were 1.8 ± 0.7 and 1.7 ± 0.6, homogeneity index were 1.3 ± 0.1 and 1.3 ± 0.1, gradient index were 5.0 ± 1.8 and 5.1 ± 1.9, and R 50% were 4.9 ± 1.8 and 5.0 ± 1.9 for Multiple Metastases Element and RapidArc plans, respectively. Mean brain dose was 2.3 and 2.7 Gy for Multiple Metastases Element and RapidArc plans, respectively. The mean value of monitor units in Multiple Metastases Element plan was 7286 ± 1065, which is significantly lower than the RapidArc monitor units of 9966 ± 1533 ( P < .05). For the planning of multiple brain lesions to be treated with stereotactic radiosurgery, Multiple Metastases Element planning software produced equivalent conformity, homogeneity, dose falloff, and brain V 12 Gy but required significantly lower monitor units, when compared to RapidArc plans.

  18. A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases

    PubMed Central

    Stathakis, Sotirios; Gutierrez, Alonso N.; Pappas, Evangelos; Crownover, Richard; Floyd, John R.; Papanikolaou, Niko

    2016-01-01

    Background: In this treatment planning study, we compare the plan quality and delivery parameters for the treatment of multiple brain metastases using 2 monoisocentric techniques: the Multiple Metastases Element from Brainlab and the RapidArc volumetric-modulated arc therapy from Varian Medical Systems. Methods: Eight patients who were treated in our institution for multiple metastases (3-7 lesions) were replanned with Multiple Metastases Element using noncoplanar dynamic conformal arcs. The same patients were replanned with the RapidArc technique in Eclipse using 4 noncoplanar arcs. Both techniques were designed using a single isocenter. Plan quality metrics (conformity index, homogeneity index, gradient index, and R50%), monitor unit, and the planning time were recorded. Comparison of the Multiple Metastases Element and RapidArc plans was performed using Shapiro-Wilk test, paired Student t test, and Wilcoxon signed rank test. Results: A paired Wilcoxon signed rank test between Multiple Metastases Element and RapidArc showed comparable plan quality metrics and dose to brain. Mean ± standard deviation values of conformity index were 1.8 ± 0.7 and 1.7 ± 0.6, homogeneity index were 1.3 ± 0.1 and 1.3 ± 0.1, gradient index were 5.0 ± 1.8 and 5.1 ± 1.9, and R50% were 4.9 ± 1.8 and 5.0 ± 1.9 for Multiple Metastases Element and RapidArc plans, respectively. Mean brain dose was 2.3 and 2.7 Gy for Multiple Metastases Element and RapidArc plans, respectively. The mean value of monitor units in Multiple Metastases Element plan was 7286 ± 1065, which is significantly lower than the RapidArc monitor units of 9966 ± 1533 (P < .05). Conclusion: For the planning of multiple brain lesions to be treated with stereotactic radiosurgery, Multiple Metastases Element planning software produced equivalent conformity, homogeneity, dose falloff, and brain V12 Gy but required significantly lower monitor units, when compared to RapidArc plans. PMID:27612917

  19. Technical Note: A treatment plan comparison between dynamic collimation and a fixed aperture during spot scanning proton therapy for brain treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Blake, E-mail: bsmith34@wisc.edu; Gelover,

    Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layersmore » which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.« less

  20. Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.

    PubMed

    Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N

    2018-01-01

    There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2  ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These improvements are further pronounced with the use of 10-MV photons. Published by Elsevier Inc.

  1. Beam Path Toxicities to Non-Target Structures During Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.

    2008-11-01

    Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less

  2. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose receivedmore » by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.« less

  3. Can We Spare the Pancreas and Other Abdominal Organs at Risk? A Comparison of Conformal Radiotherapy, Helical Tomotherapy and Proton Beam Therapy in Pediatric Irradiation.

    PubMed

    Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane

    2016-01-01

    Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.

  4. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    PubMed

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose

    NASA Astrophysics Data System (ADS)

    Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.

    2009-12-01

    The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.

  6. Effectiveness of different rescanning techniques for scanned proton radiotherapy in lung cancer patients

    NASA Astrophysics Data System (ADS)

    Engwall, E.; Glimelius, L.; Hynning, E.

    2018-05-01

    Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.

  7. SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R; Wunderle, K; Lingenfelter, M

    Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third partymore » vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fall outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating processes for increased efficiencies.« less

  8. Dynamics of magnetized plasma sheaths around a trench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatami, M. M., E-mail: m-hatami@kntu.ac.ir

    2016-08-15

    Considering a magnetized plasma sheath, the temporal evolution of the ion properties (the incident ion flux, the ion impact angle, and the incident ion dose) around a rectangular trench is studied numerically. Our results show that the ion flux along the bottom surface greatly reduces in the presence of magnetic field and its uniformity improves, but the magnetic field does not considerably affect the ion flux along the sidewall. In addition, the thickness of the plasma sheath increases by increasing the magnetic field while its conformality to the target surface reduces faster. Moreover, it is shown that any increase inmore » the magnitude (inclination angle) of the magnetic field causes a decrease (an increase) in the angle of incidence of ions on the bottom and sidewall surfaces. Furthermore, in the presence of magnetic field, the ions strike nearly normal to the surface of the bottom while they become less oblique along the sidewall surface. In addition, contrary to the corners of the trench, it is found that the magnetic field greatly affects the incident ion dose at the center of the trench surfaces. Also, it is shown that the incident ion dose along the sidewall is the highest near the center of the sidewall in both magnetized and magnetic-free cases. However, uniformity of the incident ion dose along the sidewall is better than that along the bottom in both magnetized and unmagnetized plasma sheath.« less

  9. Comparison of 3D CRT and IMRT Tratment Plans

    PubMed Central

    Bakiu, Erjona; Telhaj, Ervis; Kozma, Elvisa; Ruçi, Ferdinand; Malkaj, Partizan

    2013-01-01

    Plans of patients with prostate tumor have been studied. These patients have been scanned in the CT simulator and the images have been sent to the Focal, the system where the doctor delineates the tumor and the organs at risk. After that in the treatment planning system XiO there are created for the same patients three dimensional conformal and intensity modulated radiotherapy treatment plans. The planes are compared according to the dose volume histograms. It is observed that the plans with IMRT technique conform better the isodoses to the planning target volume and protect more the organs at risk, but the time needed to create such plans and to control it is higher than 3D CRT. So it necessary to decide in which patients to do one or the other technique depending on the full dose given to PTV and time consuming in genereral. PMID:24167395

  10. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  11. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data.

    PubMed

    Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi

    2014-11-11

    To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively. Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.

  12. Potential for reduced radiation‐induced toxicity using intensity‐modulated arc therapy for whole‐brain radiotherapy with hippocampal sparing

    PubMed Central

    Sood, Sumit; Lominska, Christopher; Kumar, Parvesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-01-01

    The purpose of this study was to retrospectively investigate the accuracy, plan quality, and efficiency of using intensity‐modulated arc therapy (IMAT) for whole brain radiotherapy (WBRT) patients with sparing not only the hippocampus (following RTOG 0933 compliance criteria) but also other organs at risk (OARs). A total of 10 patients previously treated with nonconformal opposed laterals whole‐brain radiotherapy (NC‐WBRT) were retrospectively replanned for hippocampal sparing using IMAT treatment planning. The hippocampus was volumetrically contoured on fused diagnostic T1‐weighted MRI with planning CT images and hippocampus avoidance zone (HAZ) was generated using a 5 mm uniform margin around the hippocampus. Both hippocampi were defined as one paired organ. Whole brain tissue minus HAZ was defined as the whole‐brain planning target volume (WB‐PTV). Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis TX linear accelerator consisting of high‐definition multileaf collimators (HD‐MLCs: 2.5 mm leaf width at isocenter) and 6 MV beam for a prescription dose of 30 Gy in 10 fractions following RTOG 0933 dosimetric criteria. Two full coplanar arcs with orbits avoidance sectors were used. In addition to RTOG criteria, doses to other organs at risk (OARs), such as parotid glands, cochlea, external/middle ear canals, skin, scalp, optic pathways, brainstem, and eyes/lens, were also evaluated. Subsequently, dose delivery efficiency and accuracy of each IMAT plan was assessed by delivering quality assurance (QA) plans with a MapCHECK device, recording actual beam‐on time and measuring planed vs. measured dose agreement using a gamma index. On IMAT plans, following RTOG 0933 dosimetric criteria, the maximum dose to WB‐PTV, mean WB‐PTV D2%, and mean WB‐PTV D98% were 34.9±0.3 Gy,33.2±0.4 Gy, and 26.0±0.4 Gy, respectively. Accordingly, WB‐PTV received the prescription dose of 30 Gy and mean V30 was 90.5%±0.5%. The D100%, and mean and maximum doses to hippocampus were 8.4±0.3 Gy,11.2±0.3 Gy, and 15.6±0.4 Gy, on average, respectively. The mean values of homogeneity index (HI) and conformity index (CI) were 0.23×0.02 and 0.96×0.02, respectively. The maximum point dose to WB‐PTV was 35.3 Gy, well below the optic pathway tolerance of 37.5 Gy. In addition, compared to NC‐WBRT, dose reduction of mean and maximum of parotid glands from IMAT were 65% and 50%, respectively. Ear canals mean and maximum doses were reduced by 26% and 12%, and mean and maximum scalp doses were reduced by 9 Gy (32%) and 2 Gy (6%), on average, respectively. The mean dose to skin was 9.7 Gy with IMAT plans compared to 16 Gy with conventional NC‐WBRT, demonstrating that absolute reduction of skin dose by a factor of 2. The mean values of the total number of monitor units (MUs) and actual beam on time were 719×44 and 2.34×0.14 min, respectively. The accuracy of IMAT QA plan delivery was (98.1±0.8) %, on average, with a 3%/3 mm gamma index passing rate criteria. All of these plans were considered clinically acceptable per RTOG 0933 criteria. IMAT planning provided highly conformal and homogenous plan with a fast and effective treatment option for WBRT patients, sparing not only hippocampi but also other OARs, which could potentially result in an additional improvement of the quality life (QoL). In the future, we plan to evaluate the clinical potential of IMAT planning and treatment option with hippocampal and other OARs avoidance in our patient's cohort and asses the QoL of the WBRT patients, as well as simultaneous integrated boost (SIB) for the brain metastases diseases. PACS number: 87 PMID:26699321

  13. TU-CD-304-03: Dosimetric Verification and Preliminary Comparison of Dynamic Wave Arc for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burghelea, M; BRAINLAB AG, Munich; Babes Bolyai University, Cluj-Napoca

    2015-06-15

    Purpose: To evaluate the potential dosimetric benefits and verify the delivery accuracy of Dynamic Wave Arc, a novel treatment delivery approach for the Vero SBRT system. Methods: Dynamic Wave Arc (DWA) combines simultaneous movement of gantry/ring with inverse planning optimization, resulting in an uninterrupted non-coplanar arc delivery technique. Thirteen SBRT complex cases previously treated with 8–10 conformal static beams (CRT) were evaluated in this study. Eight primary centrally-located NSCLC (prescription dose 4×12Gy or 8×7.5Gy) and five oligometastatic cases (2×2 lesions, 10×5Gy) were selected. DWA and coplanar VMAT plans, partially with dual arcs, were generated for each patient using identical objectivemore » functions for target volumes and OARs on the same TPS (RayStation, RaySearch Laboratories). Dosimetric differences and delivery time among these three planning schemes were evaluated. The DWA delivery accuracy was assessed using the Delta4 diode array phantom (ScandiDos AB). The gamma analysis was performed with the 3%/3mm dose and distance-to-agreement criteria. Results: The target conformity for CRT, VMAT and DWA were 0.95±0.07, 0.96±0.04 and 0.97±0.04, while the low dose spillage gradient were 5.52±1.36, 5.44±1.11, and 5.09±0.98 respectively. Overall, the bronchus, esophagus and spinal cord maximum doses were similar between VMAT and DWA, but highly reduced compared with CRT. For the lung cases, the mean dose and V20Gy were lower for the arc techniques compares with CRT, while for the liver cases, the mean dose and the V30Gy presented slightly higher values. The average delivery time of VMAT and DWA were 2.46±1.10 min and 4.25±1.67 min, VMAT presenting shorter treatment time in all cases. The DWA dosimetric verification presented an average gamma index passing rate of 95.73±1.54% (range 94.2%–99.8%). Conclusion: Our preliminary data indicated that the DWA is deliverable with clinically acceptable accuracy and has the potential to further improve the plan quality. This collaborative work was supported by the Flemish government through the Hercules foundation and corporate funding from BrainLab AG. The first and the sixth author are financially supported by Brainlab AG. The other authors have no conflict of interest.« less

  14. Development of NTCP models for head and neck cancer patients treated with three-dimensional conformal radiotherapy for xerostomia and sticky saliva: the role of dosimetric and clinical factors.

    PubMed

    Beetz, Ivo; Schilstra, Cornelis; Burlage, Fred R; Koken, Phil W; Doornaert, Patricia; Bijl, Henk P; Chouvalova, Olga; Leemans, C René; de Bock, Geertruida H; Christianen, Miranda E M C; van der Laan, Bernard F A M; Vissink, Arjan; Steenbakkers, Roel J H M; Langendijk, Johannes A

    2012-10-01

    The purpose of this multicentre prospective study was to investigate the significance of the radiation dose in the major and minor salivary glands, and other pre-treatment and treatment factors, with regard to the development of patient-rated xerostomia and sticky saliva among head and neck cancer (HNC) patients treated with primary (chemo-) radiotherapy ((CH)RT). The study population was composed of 167 consecutive HNC patients treated with three-dimensional conformal (3D-CRT) (CH) RT. The primary endpoint was moderate to severe xerostomia (XER6m) as assessed by the EORTC QLQ-H&N35 at 6 months after completing (CH)RT. The secondary endpoint was moderate to severe sticky saliva at 6 months (STIC6m). All organs at risk (OARs) potentially involved in salivary function were delineated on planning-CT, including the parotid, submandibular and sublingual glands and the minor glands in the soft palate, cheeks and lips. Patients with moderate to severe xerostomia or sticky saliva at baseline were excluded. The optimum number of variables for a multivariate logistic regression model was determined using a bootstrapping method. The multivariate analysis showed the mean parotid dose, age and baseline xerostomia (none versus a bit) to be the most important predictors for XER6m. The risk of developing xerostomia increased with age and was higher when minor baseline xerostomia was present in comparison with patients without any xerostomia complaints at baseline. Model performance was good with an area under the curve (AUC) of 0.82. For STIC6m, the mean submandibular dose, age, the mean sublingual dose and baseline sticky saliva (none versus a bit) were most predictive for sticky saliva. The risk of developing STIC6m increased with age and was higher when minor baseline sticky saliva was present in comparison with patients without any sticky saliva complaints at baseline. Model performance was good with an AUC of 0.84. Dose distributions in the minor salivary glands in patients receiving 3D-CRT have limited significance with regard to patient-rated symptoms related to salivary dysfunction. Besides the parotid and submandibular glands, only the sublingual glands were significantly associated with sticky saliva. In addition, reliable risk estimation also requires information from other factors such as age and baseline subjective scores. When these selected factors are included in predictive models, instead of only dose volume histogram parameters, model performance can be improved significantly. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology.

    PubMed

    Shahbazi-Gahrouei, Daryoush; Saeb, Mohsen; Monadi, Shahram; Jabbari, Iraj

    2017-01-01

    Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Nonhomogeneous phantom as quality dose verification phantom, Farmer ionization chambers, and PC-electrometer (Sun Nuclear, USA) as a reference class electrometer was employed throughout the audit in linear accelerators 6 and 18 MV energies (Siemens ONCOR Impression Plus, Germany). Seven test cases were performed using semi CIRS phantom. In homogeneous regions and simple plans for both energies, there was a good agreement between measured and treatment planning system calculated dose. Their relative error was found to be between 0.8% and 3% which is acceptable for audit, but in nonhomogeneous organs, such as lung, a few errors were observed. In complex treatment plans, when wedge or shield in the way of energy is used, the error was in the accepted criteria. In complex beam plans, the difference between measured and calculated dose was found to be 2%-3%. All differences were obtained between 0.4% and 1%. A good consistency was observed for the same type of energy in the homogeneous and nonhomogeneous phantom for the three-dimensional conformal field with a wedge, shield, asymmetric using the TiGRT treatment planning software in studied center. The results revealed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy was globally within acceptable standards with no major causes for concern.

  16. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less

  17. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leicher, Brian, E-mail: bleicher@wpahs.org; Day, Ellen; Colonias, Athanasios

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outsidemore » of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.« less

  18. Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification.

    PubMed

    Jafari, Shakardokht M; Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water(®), Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, -0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be -1.2%, -1.4%, -0.1%, -0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification.

  19. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Saeb, Mohsen; Monadi, Shahram; Jabbari, Iraj

    2017-01-01

    Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose verification phantom, Farmer ionization chambers, and PC-electrometer (Sun Nuclear, USA) as a reference class electrometer was employed throughout the audit in linear accelerators 6 and 18 MV energies (Siemens ONCOR Impression Plus, Germany). Seven test cases were performed using semi CIRS phantom. Results: In homogeneous regions and simple plans for both energies, there was a good agreement between measured and treatment planning system calculated dose. Their relative error was found to be between 0.8% and 3% which is acceptable for audit, but in nonhomogeneous organs, such as lung, a few errors were observed. In complex treatment plans, when wedge or shield in the way of energy is used, the error was in the accepted criteria. In complex beam plans, the difference between measured and calculated dose was found to be 2%–3%. All differences were obtained between 0.4% and 1%. Conclusions: A good consistency was observed for the same type of energy in the homogeneous and nonhomogeneous phantom for the three-dimensional conformal field with a wedge, shield, asymmetric using the TiGRT treatment planning software in studied center. The results revealed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy was globally within acceptable standards with no major causes for concern. PMID:28989910

  20. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  1. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  2. SU-E-T-454: Impact of Calculation Grid Size On Dosimetry and Radiobiological Parameters for Head and Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN

    2014-06-01

    Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less

  3. Discovery of Potent and Centrally Active 6-Substituted 5-Fluoro-1,3-dihydro-oxazine β-Secretase (BACE1) Inhibitors via Active Conformation Stabilization.

    PubMed

    Nakahara, Kenji; Fuchino, Kouki; Komano, Kazuo; Asada, Naoya; Tadano, Genta; Hasegawa, Tsuyoshi; Yamamoto, Takahiko; Sako, Yusuke; Ogawa, Masayoshi; Unemura, Chie; Hosono, Motoko; Ito, Hisanori; Sakaguchi, Gaku; Ando, Shigeru; Ohnishi, Shuichi; Kido, Yasuto; Fukushima, Tamio; Dhuyvetter, Deborah; Borghys, Herman; Gijsen, Harrie J M; Yamano, Yoshinori; Iso, Yasuyoshi; Kusakabe, Ken-Ichi

    2018-06-14

    β-Secretase (BACE1) has an essential role in the production of amyloid β peptides that accumulate in patients with Alzheimer's disease (AD). Thus, inhibition of BACE1 is considered to be a disease-modifying approach for the treatment of AD. Our hit-to-lead efforts led to a cellular potent 1,3-dihydro-oxazine 6, which however inhibited hERG and showed high P-gp efflux. The close analogue of 5-fluoro-oxazine 8 reduced P-gp efflux; further introduction of electron withdrawing groups at the 6-position improved potency and also mitigated P-gp efflux and hERG inhibition. Changing to a pyrazine followed by optimization of substituents on both the oxazine and the pyrazine culminated in 24 with robust Aβ reduction in vivo at low doses as well as reduced CYP2D6 inhibition. On the basis of the X-ray analysis and the QM calculation of given dihydro-oxazines, we reasoned that the substituents at the 6-position as well as the 5-fluorine on the oxazine would stabilize a bioactive conformation to increase potency.

  4. Catch me if you can--the use of image guidance in the radiotherapy of an unusual case of esophageal cancer.

    PubMed

    Jensen, Alexandra D; Grehn, Christian; Nikoghosyan, Anna; Thieke, Christian; Krempien, Robert; Huber, Peter E; Debus, Jürgen; Münter, Marc W

    2009-07-01

    Despite maximum therapy the prognosis of esophageal carcinoma still remains extremely poor. New treatment strategies including improved radiation therapy techniques promise better outcome by improving local control through precise dose delivery due to higher conformality. A 62-year-old patient with locally advanced carcinoma of the gastroesophageal junction underwent definitive radiochemotherapy with intensity-modulated radiation therapy (IMRT). On positioning control with the in-room CT, the distal esophagus, and hence the tumor, was found to be highly mobile exhibiting changes in position of up to 4 cm from fraction to fraction. IMRT plans were created for various positions establishing a plan library to choose from as appropriate. CT scans were performed prior to each treatment fraction to clarify esophagus position in order to choose the adequate treatment plan. Image guidance was crucial in this unusual case of esophageal carcinoma. Without the information from position control CTs, the tumor would have received only about half the prescribed dose due to variations in position. For this specific case, in-room CT scans are probably superior to kilo- or megavoltage CTs due to the higher soft-tissue contrast enabling detection of positioning variation of the organ and offering the possibility to use the CT for treatment planning.

  5. The feasibility and benefits of using volumetric arc therapy in patients with brain metastases: a systematic review.

    PubMed

    Andrevska, Adriana; Knight, Kellie A; Sale, Charlotte A

    2014-12-01

    Radiotherapy management of patients with brain metastases most commonly involve a whole-brain radiation therapy (WBRT) regime, as well as newer techniques such as stereotactic radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). The long treatment times incurred by these techniques indicates the need for a novel technique that has shorter treatment times, whilst still producing highly conformal treatment with the potential to deliver escalated doses to the target area. Volumetric modulated arc therapy (VMAT) is a dynamic, highly conformal technique that may deliver high doses of radiation through a single gantry arc and reduce overall treatment times. The aim of this systematic review is to determine the feasibility and benefits of VMAT treatment in regard to overall survival rates and local control in patients with brain metastases, in comparison with patients treated with WBRT, SRS and IMRT. A search of the literature identified 23 articles for the purpose of this review. Articles were included on the basis they were human-based studies, with sample sizes of more than five patients who were receiving treatment for 1-10 metastatic brain lesions. VMAT was found to be highly conformal, have a reduced treatment delivery time and incurred no significant toxicities in comparison with WBRT, SRS and IMRT. Compared to other treatment techniques, VMAT proved to have fewer toxicities than conventional WBRT, shorter treatment times than SRS and similar dose distributions to IMRT plans. Future prospective studies are needed to accurately assess the prognostic benefits of VMAT as well as the occurrence of late toxicities.

  6. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    NASA Astrophysics Data System (ADS)

    Yoon, S. W.; Miles, D.; Cramer, C.; Reinsvold, M.; Kirsch, D.; Oldham, M.

    2017-05-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose.

  7. A randomized controlled trial of conventional fraction and late course accelerated hyperfraction three-dimensional conformal radiotherapy for esophageal cancer.

    PubMed

    Wang, Jian-Hua; Lu, Xu-Jing; Zhou, Jian; Wang, Feng

    2012-01-01

    We compared the curative and side-effects in esophageal carcinoma treated by conventional fraction (CF) and late course accelerated hyperfraction (LCAF) three-dimensional conformal radiotherapy. Ninety-eight patients were randomly assigned to two different radiotherapy model groups. Fifty patients were treated using CF three-dimensional conformal radiotherapy at a total dose of 60-68 Gy; 2 Gy/F; 5 fractions/week (median 64 Gy), 48 patients were treated with LCAF (First CF-treated at the dose 40 Gy. Later, LCAF-treated 1.5 Gy/F; 2 fractions/day; 21-27 Gy; a total dose of 61-67 Gy; median 64 Gy). The data showed that the 1-, 2- and 3-year-survival rates in LCAF group were 79.2, 56.3, and 43.8%, compared to 74, 54, and 36% in CF group (P = 0.476). The 1-, 2- and 3-year-local control rates in LCAF group were 81.3, 62.5, and 50%, compared to 78, 58, and 42% in CF group (P = 0.454). In CF group, the incidence of radiation-induced esophagitis was lower than that in LCAF group (72 vs. 93.8%; P = 0.008) and there was no significant difference between rates of radiation-induced pneumonitis in CF and LCAF groups (10 vs. 6.25%; P = 0.498). It was concluded that the 1-, 2- and 3-year-local control and survival rates of esophageal carcinoma patients treated with LCAF were slightly better than CF radiotherapy; however, the radiation side-effects in LCAF group were greater than those in CF group.

  8. Monte Carlo replica-exchange based ensemble docking of protein conformations.

    PubMed

    Zhang, Zhe; Ehmann, Uwe; Zacharias, Martin

    2017-05-01

    A replica-exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein-protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1-2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924-937. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Volumetric modulated arc therapy versus step-and-shoot intensity modulated radiation therapy in the treatment of large nerve perineural spread to the skull base: a comparative dosimetric planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorayski, Peter; Fitzgerald, Rhys; Barry, Tamara

    Cutaneous squamous cell carcinoma with large nerve perineural (LNPN) infiltration of the base of skull is a radiotherapeutic challenge given the complex target volumes to nearby organs at risk (OAR). A comparative planning study was undertaken to evaluate dosimetric differences between volumetric modulated arc therapy (VMAT) versus intensity modulated radiation therapy (IMRT) in the treatment of LNPN. Five consecutive patients previously treated with IMRT for LNPN were selected. VMAT plans were generated for each case using the same planning target volumes (PTV), dose prescriptions and OAR constraints as IMRT. Comparative parameters used to assess target volume coverage, conformity and homogeneitymore » included V95 of the PTV (volume encompassed by the 95% isodose), conformity index (CI) and homogeneity index (HI). In addition, OAR maximum point doses, V20, V30, non-target tissue (NTT) point max doses, NTT volume above reference dose, monitor units (MU) were compared. IMRT and VMAT plans generated were comparable for CI (P = 0.12) and HI (P = 0.89). VMAT plans achieved better V95 (P = < 0.001) and reduced V20 and V30 by 652 cubic centimetres (cc) (28.5%) and 425.7 cc (29.1%), respectively. VMAT increased MU delivered by 18% without a corresponding increase in NTT dose. Compared with IMRT plans for LNPN, VMAT achieved comparable HI and CI.« less

  10. Radiation-induced Liver Injury after 3D-conformal Radiotherapy for Hepatocellular Carcinoma: Quantitative Assessment Using Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Fukugawa, Yoshiyuki; Namimoto, Tomohiro; Toya, Ryo; Saito, Tetsuo; Yuki, Hideaki; Matsuyama, Tomohiko; Ikeda, Osamu; Yamashita, Yasuyuki; Oya, Natsuo

    2017-02-01

    Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary- phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule.

  11. Phase I Study of Concurrent High-Dose Three-Dimensional Conformal Radiotherapy With Chemotherapy Using Cisplatin and Vinorelbine for Unresectable Stage III Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekine, Ikuo, E-mail: isekine@ncc.go.jp; Sumi, Minako; Ito, Yoshinori

    Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of themore » 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.« less

  12. [Dosimetry verification of radioactive seed implantation with 3D printing template and CT guidance for paravertebral/retroperitoneal malignant tumor].

    PubMed

    Ji, Z; Jiang, Y L; Guo, F X; Peng, R; Sun, H T; Fan, J H; Wang, J J

    2017-04-04

    Objective: To compare the dose distributions of postoperative plans with preoperative plans for seeds implantations of paravertebral/retroperitoneal tumors assisted by 3D printing guide template and CT guidance, explore the effects of the technology for seeds implantations in dosimetry level and provide data support for the optimization and standardization in seeds implantation. Methods: Between December 2015 and July 2016, a total of 10 patients with paravertebral/retroperitoneal tumors (12 lesions) received 3D printing template assist radioactive seeds implantations in department of radiation oncology of Peking University Third Hospital, and included in the study. The diseases included cervical cancer, kidney cancer, abdominal stromal tumor, leiomyosarcoma of kidney, esophageal cancer and carcinoma of ureter. The prescribed doses was 110-150 Gy. All patients received preoperative planning design, individual template design and production, and the dose distribution of postoperative plan was compared with preoperative plan. Dose parameters including D(90), MPD, V(100), V(150,)conformal index(CI), EI of target volume and D(2cc) of organs at risk (spinal cord, aorta, kidney). Statistical software was SPSS 19.0 and statistical method was non-parameters Wilcoxon symbols test. Results: A total of 10 3D printing templates were designed and produced which were including 12 treatment areas.The mean D(90) of postoperative target area (GTV) was 131.1 (97.8-167.4 Gy) Gy. The actual seeds number of post operation increased by 3 to 12 in 5 cases (42.0%). The needle was well distributed. For postoperative plans, the mean D(90,)MPD, V(100,)V(150) was 131.1 Gy, 69.3 Gy, 90.2% and 65.2%, respectively, and which was 140.2 Gy, 65.6 Gy, 91.7% and 26.8%, respectively, in preoperative plans. This meant that the actual dose of target volume was slightly lower than preplanned dose, and the high dose area of target volume was larger than preplanned range, but there was no statistical difference in P value between the two groups except V(150)( P =0.004). The actual dose conformity of target volume was worse than preplanned (CI was 0.58 and 0.62, respectively) and the difference was statistically significant( P =0.019). The actual dose of external target volume was higher than preplanned (EI was 55% and 45.9%, respectively) and the difference had no significance. For organs at risk, the actual mean D(2cc) of spinal cord, aorta and kidney was 24.7, 54.4 and 29.7 Gy, respectively, which was higher than preplanned(20.6, 51.6 and 28.6 Gy, respectively), and there was no significant difference in two groups. Conclusions: Most parameters of postoperative validations for 3D printing template assisted seeds implantation in paravertebral/retroperitoneal are closed to the expectations of preoperative plans which means the improvement of accuracy in treatment.

  13. Analysis of incidental radiation dose to uninvolved mediastinal/supraclavicular lymph nodes in patients with limited-stage small cell lung cancer treated without elective nodal irradiation.

    PubMed

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes within the mediastinum. The ENI(on) plans demonstrate that intergroup-style treatments, as actually delivered, had statistically reduced coverage to the mediastinum and tumor volumes than was reported. Furthermore, SNI leads to improved tumor coverage and reduced esophageal/spinal cord dose, which suggests the possibility of dose escalation using SNI. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  14. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.

  15. Conformal re-irradiation of recurrent and new primary head-and-neck cancer.

    PubMed

    Dawson, L A; Myers, L L; Bradford, C R; Chepeha, D B; Hogikyan, N D; Teknos, T N; Terrell, J E; Wolf, G T; Eisbruch, A

    2001-06-01

    To review the outcome of head-and-neck cancer patients re-irradiated using conformal radiation. From 1983 to 1999, 60 patients with recurrent or new primary head-and-neck cancer received re-irradiation at the University of Michigan. Twenty patients were excluded due to the planned cumulative radiation dose being less than 100 Gy (18) and absence of prior radiation details (2), leaving 40 patients. Thirty-five patients were re-irradiated for unresectable disease, while 4 patients received adjuvant re-irradiation for high-risk disease. Thirty-eight patients had recurrences from previously treated cancer (19 regional, 14 local, 5 regional and local), and 2 patients had new primary tumors. The median time from the first course of radiation to re-irradiation was 21 months. Thirty-one patients (78%) were re-irradiated with curative intent, whereas 9 were treated with palliative intent. Re-irradiation was delivered using conformal techniques in the majority of patients and with concurrent chemotherapy in 14 patients. The median re-irradiation dose was 60 Gy. The median cumulative dose received was 121 Gy. Five patients (13%) did not complete their prescribed course of re-irradiation. The median survival following completion of re-irradiation was 12.5 months. The 1- and 2-year actuarial survival rates were 51.1% and 32.6%, respectively. On multivariate analysis, palliative intent of treatment, tumor bulk, and tumor site other than nasopharynx or larynx were associated with worse survival. The patients treated for unresectable disease did no worse than those treated adjuvantly. The median times to relapse-free survival, local-regional recurrence (LRR)-free survival, and ultimate LRR-free survival (allowing for surgical salvage) were 3.9 months, 7.8 months, and 8.7 months, respectively. Seven patients (18%) are presently alive with no evidence of disease, with a median follow-up of 49.9 months (range 3.3-78.9). Severe radiation-induced complications were seen in 7 patients (18%). Two other patients developed orocutaneous fistulas in the presence of tumor recurrence. Moderate fibrosis and trismus were common. Despite the use of conformal techniques, the prognosis of patients treated with re-irradiation is poor, and complications are not infrequent. A subset of patients is salvageable, and high-dose re-irradiation should be considered in selected patients.

  16. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    PubMed

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural reflections of posterior fossa cranial nerves unless these structures are specifically included in the CTV. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Air Quality Conformity for Fiscal Years 1997-2000 Transportation Improvement Program for the Cincinnati Nonattainment Region

    DOT National Transportation Integrated Search

    1996-06-01

    The Clean Air Act Amendments (CAAA) of 1990 required emissions reductions in : nonattainment areas. The CAAA contains conformity provisions requiring : transportation plans and programs to conform to air quality plans. Based on the : documented analy...

  18. SU-E-T-548: How To Decrease Spine Dose In Patients Who Underwent Sterotactic Spine Radiosurgery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, H; Altinok, A; Kucukmorkoc, E

    2014-06-01

    Purpose: Stereotactic radiosurgery for spine metastases involves irradiation using a single high dose fraction. The purpose of this study was to dosimetrically compare stereotactic spine radiosurgery(SRS) plans using a recently new volumetric modulated arc therapy(VMAT) technique against fix-field intensity-modulated radiotherapy(IMRT). Plans were evaluated for target conformity and spinal cord sparing. Methods: Fifteen previously treated patients were replanned using the Eclipse 10.1 TPS AAA calculation algorithm. IMRT plans with 7 fields were generated. The arc plans used 2 full arc configurations. Arc and IMRT plans were normalized and prescribed to deliver 16.0 Gy in a single fraction to 90% of themore » planning target volume(PTV). PTVs consisted of the vertebral body expanded by 3mm, excluding the PRV-cord, where the cord was expanded by 2mm.RTOG 0631 recommendations were applied for treatment planning. Partial spinal cord volume was defined as 5mm above and below the radiosurgery target volume. Plans were compared for conformity and gradient index as well as spinal cord sparing. Results: The conformity index values of fifteen patients for two different treatment planning techniques were shown in table 1. Conformity index values for 2 full arc planning (average CI=0.84) were higher than that of IMRT planning (average CI=0.79). The gradient index values of fifteen patients for two different treatment planning techniques were shown in table 2. Gradient index values for 2 full arc planning (average GI=3.58) were higher than that of IMRT planning (average GI=2.82).The spinal cord doses of fifteen patients for two different treatment planning techniques were shown in table 3. D0.35cc, D0.03cc and partial spinal cord D10% values in 2 full arc plannings (average D0.35cc=819.3cGy, D0.03cc=965.4cGy, 10%partial spinal=718.1cGy) were lower than IMRT plannings (average D0.35cc=877.4cGy, D0.03c=1071.4cGy, 10%partial spinal=805.1cGy). Conclusions: The two arc VMAT technique is superior to 7 field IMRT technique in terms of both spinal cord sparing and better conformity and gradient indexes.« less

  19. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  20. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE PAGES

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    2015-01-01

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  1. Commentary on Inhaled 239PuO 2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO 2 inhalation, as a prophylaxis against lung cancer.

  2. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    NASA Astrophysics Data System (ADS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment planning showed a higher dose concentration on the part to be treated than the 3D-CT treatment planning with a lower dose to the adjacent normal tissues. Overall, the gating-based 4D-CT treatment planning is believed to be more helpful than the 3D-CT treatment planning.

  3. Combined Proton and Photon Conformal Radiotherapy for Intracranial Atypical and Malignant Meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boskos, Christos; 251 General Hospital of Airforce, Athens; Feuvret, Loic

    2009-10-01

    Purpose: To evaluate retrospectively the efficacy of conformal fractionated radiotherapy combining proton and photon beams after primary surgery for treatment of atypical and malignant meningiomas. Patients and Methods: Between September 1999 and October 2006, 24 patients (12 male, 12 female) with histopathologically proven meningioma (atypical 19, malignant 5) received postoperative combined radiotherapy with a 201-MeV proton beam at the Centre Protontherapie d'Orsay and a high-energy photon beam. Six patients underwent gross total resection and 18 a subtotal resection. Median gross tumor volume and clinical target volume were 44.7 cm{sup 3} and 153.3 cm{sup 3}, respectively. Mean total irradiation dose wasmore » 65.01 CGE (cobalt gray equivalent), with a mean proton total dose of 34.05 CGE and a mean photon total dose 30.96 CGE. Results: The median (range) follow-up interval was 32.2 (1-72) months. The overall mean local relapse-free interval was 27.2 (10-50) months, 28.3 (10-50) months for atypical meningioma and 23 (13-33) months for malignant meningioma. Ten tumors recurred locally. One-, 2-, 3-, 4-, 5-, and 8- year local control rates for the entire group of patients were 82.9% {+-} 7.8%, 82.9% {+-} 7.8%, 61.3% {+-} 11%, 61.3% {+-} 11%, 46.7% {+-} 12.3%, and 46.7% {+-} 12.3%, respectively. One-, 2-, 3-, 4-, 5-, and 8- year overall survival rates were 100%, 95.5% {+-} 4.4%, 80.4% {+-} 8.8%, 65.3% {+-} 10.6%, 53.2% {+-} 11.6%, and 42.6% {+-} 13%, respectively. Survival was significantly associated with total dose. There was no acute morbidity of radiotherapy. One patient developed radiation necrosis 16 months after treatment. Conclusions: Postoperative combination of conformal radiotherapy with protons and photons for atypical and malignant meningiomas is a well-tolerated treatment producing long-term tumor stabilization.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, J; Sintay, B; Manning, M

    Purpose: This study evaluates a novel algorithm that can be used with any treatment planning system for simple and rapid generation of stereotactic radiosurgery (SRS) plans for treating multiple brain metastases using a single isocenter dynamic conformal arc (DCA) approach. This technique is compared with a single isocenter volumetric modulated arc therapy (VMAT) technique in terms of delivery time, conformity, low dose spread and delivery accuracy. Methods: Five patients, with a total of 37 (5 – 11) targets were planned using a previously published method for generating optimal VMAT plans and using the proposed DCA algorithm. All planning target volumesmore » (PTVs) were planned to 20 Gy, meeting a minimum 99% coverage and maximum 135 % hot spot for both techniques. Quality assurance was performed using radiochromic film, with films placed in the high dose regions of each PTV. Normal tissue volumes receiving 12 Gy and 6 Gy (V12 and V6) were computed for each plan. Conformity index (CI) and gamma evaluations (95% of points passing 4%/0.5mm) were computed for each PTV. Results: Delivery times, including beam on and table rotation times, were comparable: 17 – 22 minutes for all deliveries. V12s for DCA plans were (18.5±15.2 cc) vs. VMAT (19.7±14.4 cc). V6s were significantly lower for DCA (69.0±52.0 cc) compared with VMAT (154.0±91.0 cc) (p <<0.05). CIs for VMAT targets were (1.38±0.50) vs. DCA (1.61±0.41). 36 of 37 DCA planned targets passed gamma tests, while 29 of 37 VMAT planned targets passed. Conclusion: Single isocenter DCA plans were easily achieved. The evaluation suggests that DCA may represent a favorable technique compared with VMAT for multiple target SRS by reducing dose to normal tissue and more accurately depicting deliverable dose.« less

  5. Automated medial axis seeding and guided evolutionary simulated annealing for optimization of gamma knife radiosurgery treatment plans

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng

    The Leksell Gamma KnifeRTM (LGK) is a tool for providing accurate stereotactic radiosurgical treatment of brain lesions, especially tumors. Currently, the treatment planning team "forward" plans radiation treatment parameters while viewing a series of 2D MR scans. This primarily manual process is cumbersome and time consuming because the difficulty in visualizing the large search space for the radiation parameters (i.e., shot overlap, number, location, size, and weight). I hypothesize that a computer-aided "inverse" planning procedure that utilizes tumor geometry and treatment goals could significantly improve the planning process and therapeutic outcome of LGK radiosurgery. My basic observation is that the treatment team is best at identification of the location of the lesion and prescribing a lethal, yet safe, radiation dose. The treatment planning computer is best at determining both the 3D tumor geometry and optimal LGK shot parameters necessary to deliver a desirable dose pattern to the tumor while sparing adjacent normal tissue. My treatment planning procedure asks the neurosurgeon to identify the tumor and critical structures in MR images and the oncologist to prescribe a tumoricidal radiation dose. Computer-assistance begins with geometric modeling of the 3D tumor's medial axis properties. This begins with a new algorithm, a Gradient-Phase Plot (G-P Plot) decomposition of the tumor object's medial axis. I have found that medial axis seeding, while insufficient in most cases to produce an acceptable treatment plan, greatly reduces the solution space for Guided Evolutionary Simulated Annealing (GESA) treatment plan optimization by specifying an initial estimate for shot number, size, and location, but not weight. They are used to generate multiple initial plans which become initial seed plans for GESA. The shot location and weight parameters evolve and compete in the GESA procedure. The GESA objective function optimizes tumor irradiation (i.e., as close to the prescribed dose as possible) and minimizes normal tissue and critical structure damage. In tests of five patient data sets (4 acoustic neuromas and 1 meningioma), the G-P Plot/GESA-generated treatment plans improved conformality of the lethal dose to the tumor, required no human interaction, improved dose homogeneity, suggested use of fewer shots, and reduced treatment administration time.

  6. Thermal Characteristics of ThermoBrachytherapy Surface Applicators (TBSA) for Treating Chestwall Recurrence

    PubMed Central

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-01-01

    Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154

  7. Volumetric-modulated arc therapy vs c-IMRT in esophageal cancer: A treatment planning comparison

    PubMed Central

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-01-01

    AIM: To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage. PMID:23066322

  8. Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison.

    PubMed

    Yin, Li; Wu, Hao; Gong, Jian; Geng, Jian-Hao; Jiang, Fan; Shi, An-Hui; Yu, Rong; Li, Yong-Heng; Han, Shu-Kui; Xu, Bo; Zhu, Guang-Ying

    2012-10-07

    To compare the volumetric-modulated arc therapy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning system: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (9F), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the planning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normalized to 95% of the PTV that received 100% of the prescribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different locations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1.1 and 2A 1.09). Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs. 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs. 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and V10) were increased. V30 (1A 48.12 Gy vs. 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. Compared with c-IMRT, VMAT, especially the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.

  9. SU-G-BRC-02: A Novel Multi-Criteria Optimization Approach to Generate Deliverable Intensity-Modulated Radiation Therapy (IMRT) Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirlik, G; D’Souza, W; Zhang, H

    2016-06-15

    Purpose: To present a novel multi-criteria optimization (MCO) solution approach that generates treatment plans with deliverable apertures using column generation. Methods: We demonstrate our method with 10 locally advanced head-and-neck cancer cases retrospectively. In our MCO formulation, we defined an objective function for each structure in the treatment volume. This resulted in 9 objective functions, including 3 distinct objectives for primary target volume, high-risk and low-risk target volumes, 5 objectives for each of the organs-at-risk (OARs) (two parotid glands, spinal cord, brain stem and oral cavity), and one for the non-target non-OAR normal tissue. Conditional value-at-risk (CVaR) constraints were utilizedmore » to ensure at least certain fraction of the target volumes receiving the prescription doses. To directly generate deliverable plans, column generation algorithm was embedded within our MCO approach for aperture shape generation. Final dose distributions for all plans were generated using a Monte Carlo kernel-superposition dose calculation. We compared the MCO plans with the clinical plans, which were created by clinicians. Results: At least 95% target coverage was achieved by both MCO plans and clinical plans. However, the average conformity indices of clinical plans and the MCO plans were 1.95 and 1.35, respectively (31% reduction, p<0.01). Compared to the conventional clinical plan, the proposed MCO method achieved average reductions in left parotid mean dose of 5% (p=0.06), right parotid mean dose of 18% (p<0.01), oral cavity mean dose of 21% (p=0.03), spinal cord maximum dose of 20% (p<0.01), brain stem maximum dose of 61% (p<0.01), and normal tissue maximum dose of 5% (p<0.01), respectively. Conclusion: We demonstrated that the proposed MCO method was able to obtain deliverable IMRT treatment plans while achieving significant improvements in dosimetric plan quality.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, B; Chung, H; Mutaf, Y

    Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field sizemore » (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.« less

  11. Monaco and film dosimetry of 3D CRT, IMRT and VMAT cases in a realistic pelvic prosthetic phantom

    NASA Astrophysics Data System (ADS)

    Ade, Nicholas; du Plessis, F. C. P.

    2018-04-01

    The dosimetry of patients with metallic hip implants during irradiation of pelvic lesions is challenging due to dose distortions caused by implants. This work presents a dosimetric comparison of various multi-field photon-beam dose distributions in the presence of unilateral hip titanium prosthesis (UHTiP) embedded in a unique pelvic phantom made out of water-equivalent nylon slices. The impact of the UHTiP on the accuracy of dose calculations from a Monaco TPS (treatment planning system) using the X-ray voxel Monte Carlo (XVMC) algorithm was benchmarked against measured dose data using Gafchromic EBT3 film. Multi-field beam arrangements including a 4-field box, 5-field 3DCRT (three-dimensional conformal radiation therapy), 6-field IMRT (intensity modulated radiation therapy) and a single-arc VMAT (volumetric modulated arc therapy) plan were set up for 6 MV and 15 MV beams. These plans were generated for the pelvic phantom that contains the prosthesis with film inserted. Compared to Monaco TPS dose calculations, film measurements showed enhanced dose in the prosthesis which was not predicted by Monaco due to its limitation in relative density assignment. The enhanced prosthesis dose increased with increase in beam energy and decreased with the complexity of the treatment plans, with VMAT giving the least escalated dose. The dose increased between 5% and 19% for 6 MV and between 6% and 21% for 15 MV. A gamma index analysis showed that 70-92% of dose points (excluding the prosthesis) were within 3% discrepancy. Increasing the number of treatment fields increases target dose coverage and improves the agreement between film and Monaco. When the relative electron density (RED) in the prosthesis was varied between 3.72 and 15 the dose discrepancy between film and Monaco increased from 30% to 57% for 6 MV and from 30% to 50% for 15 MV. The study indicates that beam weights for fields that pass through the prosthesis should be minimised and its RED must be correct for accurate dose calculation on Monaco.

  12. Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients

    PubMed Central

    Jelonek, Karol; Pietrowska, Monika; Ros, Malgorzata; Zagdanski, Adam; Suchwalko, Agnieszka; Polanska, Joanna; Marczyk, Michal; Rutkowski, Tomasz; Skladowski, Krzysztof; Clench, Malcolm R.; Widlak, Piotr

    2014-01-01

    Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation. PMID:24747595

  13. Feasibility of tomotherapy to reduce normal lung and cardiac toxicity for distal esophageal cancer compared to three-dimensional radiotherapy.

    PubMed

    Nguyen, Nam P; Krafft, Shane P; Vinh-Hung, Vincent; Vos, Paul; Almeida, Fabio; Jang, Siyoung; Ceizyk, Misty; Desai, Anand; Davis, Rick; Hamilton, Russ; Modarresifar, Homayoun; Abraham, Dave; Smith-Raymond, Lexie

    2011-12-01

    To compare the effectiveness of tomotherapy and three-dimensional (3D) conformal radiotherapy to spare normal critical structures (spinal cord, lungs, and ventricles) from excessive radiation in patients with distal esophageal cancers. A retrospective dosimetric study of nine patients who had advanced gastro-esophageal (GE) junction cancer (7) or thoracic esophageal cancer (2) extending into the distal esophagus. Two plans were created for each of the patients. A three-dimensional plan was constructed with either three (anteroposterior, right posterior oblique, and left posterior oblique) or four (right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique) fields. The second plan was for tomotherapy. Doses were 45 Gy to the PTV with an integrated boost of 5 Gy for tomotherapy. Mean lung dose was respectively 7.4 and 11.8 Gy (p=0.004) for tomotherapy and 3D plans. Corresponding values were 12.4 and 18.3 Gy (p=0.006) for cardiac ventricles. Maximum spinal cord dose was respectively 31.3 and 37.4 Gy (p < 0.007) for tomotherapy and 3D plans. Homogeneity index was two for both groups. Compared to 3D conformal radiotherapy, tomotherapy decreased significantly the amount of normal tissue irradiated and may reduce treatment toxicity for possible dose escalation in future prospective studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  15. Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170

  16. [Proton imaging applications for proton therapy: state of the art].

    PubMed

    Amblard, R; Floquet, V; Angellier, G; Hannoun-Lévi, J M; Hérault, J

    2015-04-01

    Proton therapy allows a highly precise tumour volume irradiation with a low dose delivered to the healthy tissues. The steep dose gradients observed and the high treatment conformity require a precise knowledge of the proton range in matter and the target volume position relative to the beam. Thus, proton imaging allows an improvement of the treatment accuracy, and thereby, in treatment quality. Initially suggested in 1963, radiographic imaging with proton is still not used in clinical routine. The principal difficulty is the lack of spatial resolution, induced by the multiple Coulomb scattering of protons with nuclei. Moreover, its realization for all clinical locations requires relatively high energies that are previously not considered for clinical routine. Abandoned for some time in favor of X-ray technologies, research into new imaging methods using protons is back in the news because of the increase of proton radiation therapy centers in the world. This article exhibits a non-exhaustive state of the art in proton imaging. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view

    NASA Astrophysics Data System (ADS)

    Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas

    2012-11-01

    To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (<5 cm3) and large motion range (1.2-3.5 cm) were retrospectively studied for stereotactic body radiotherapy (SBRT) using 3D conformal radiotherapy planning tools. The 3.5DCT-based 4D plan (3.5DCT plan) with 9-10 conformal beams was compared with the 4DCT-based 4D plan (4DCT plan). The 4DCT plan was derived from multiple 3D plans based on all phase CT images, each of which used the same conformal beam configuration but with an isocenter shift to aim at the moving tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the displacement vector field (DVF) from a free-form deformable image registration (DIR). The DVH3.5D (for the 3.5DCT plan) was compared with both iDVH4D and DVH4D. To quantify the DVH difference between the 3.5DCT plan and the 4DCT plan, two methods were used: relative difference (%) of the areas underneath the DVH curves and the volumes receiving more than 20% (V20) and 50% (V50) of prescribed dose of these 4D plans. The volume of the delineated GTV from different phase CTs varied dramatically from 24% to 112% among the five patients, whereas the GTV from 3.5DCT deviated from the averaged GTV in 4DCT by only -6%±6%. For planning tumor volume (PTV) coverage, the difference between the DVH3.5D and iDVH4D was negligible (<1% area), whereas the DVH3.5D and DVH4D were quite different, due to DIR uncertainty (˜2 mm), which propagates to PTV dose coverage with a pronounced uncertainty for small tumors (0.3-4.0 cm3) in stereotactic plans with sharp dose falloff around PTV. For OARs, such as the lung, heart, cord and esophagus, the three DVH curves (DVH3.5D, DVH4D and iDVH4D) were found to be almost identical for the same patients, especially in high-dose regions. For the tumor-containing lung, the relative difference of the areas underneath the DVH curves was found to be small (5.3% area on average), of which 65% resulted from the low-dose region (D < 20%). The averaged V20 difference between the two 4D plans was 1.2% ± 0.8%. For the mean lung dose (MLD), the 3.5DCT plan differed from the 4DCT plan by -1.1%±1.3%. GTV-motion-compensated CT (3.5DCT) produces an accurate and reliable GTV delineation, which is close to the mean GTV from 4DCT. The 3.5DCT plan is equivalent to the 4DCT plan with <1% dose difference to the PTV and negligible dose difference in OARs. The 3.5DCT approach simplifies 4D planning and provides accurate dose calculation without a substantial increase of clinical workload for motion-tracking delivery to treat small peripheral lung tumors with large motion.

  18. Glioblastoma in Children: A Single-Institution Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Stephanie M.; Rubin, Joshua B.; Leonard, Jeffrey R.

    2011-07-15

    Purpose: Current treatment recommendations for pediatric glioblastoma include surgery, chemotherapy, and radiation therapy. However, even with this multispecialty approach, overall survival remains poor. To assess outcome and evaluate treatment-related prognostic factors, we retrospectively reviewed the experience at our institution. Methods and Materials: Twenty-four glioblastoma patients under the age of 21 were treated with radiation therapy with curative intent at Washington University, St. Louis, from 1970 to 2008. Patients underwent gross total resection, subtotal resection or biopsy alone. Fourteen (58%) of the patients received chemotherapy. All patients received radiation therapy. Radiation consisted of whole-brain radiation therapy in 7 (29%) patients withmore » a median dose of 50.4 Gy. Seventeen (71%) patients received three-dimensional conformal radiation therapy with a median dose of 54 Gy. Results: Median follow-up was 12.5 months from diagnosis. One and 2-year overall survival rates were 57% and 32%, respectively. Median overall survival was 13.5 months. There were no differences in overall survival based on patients' age, race, gender, tumor location, radiation volume, radiation dose, or the use of chemotherapy. There was a significant improvement in overall survival for patients in whom gross total resection was achieved (p = 0.023). Three patients were alive 5 years after gross total resection, and 2 patients were alive at 10 and 24 years after diagnosis. Conclusions: Survival for children with glioblastoma remains poor. Data from this and other studies demonstrate the importance of achieving a gross total resection. Continued investigation into new treatment options is needed in an attempt to improve outcome for these patients.« less

  19. State Fiscal Year 1997-2000 State Transportation Improvement Program (STIP) Cleveland/Akron/Lorain Moderate Ozone Nonattainment Area Air Quality Conformity Documentation

    DOT National Transportation Integrated Search

    1996-06-01

    This document, which is a portion of the Ohio 1997-2000 State Transportation Improvement Program (STIP), describes the conformity determination for the former eight county Cleveland/Akron/Lorain (CAL) Moderate Ozone Nonattainment Area, which includes...

  20. Improving Group Processes in Transdisciplinary Case Studies for Sustainability Learning

    ERIC Educational Resources Information Center

    Hansmann, Ralf; Crott, Helmut W.; Mieg, Harald A.; Scholz, Roland W.

    2009-01-01

    Purpose: Deficient group processes such as conformity pressure can lead to inadequate group decisions with negative social, economic, or environmental consequences. The study aims to investigate how a group technique (called INFO) improves students' handling of conformity pressure and their collective judgments in the context of a…

Top