Osteogenesis imperfecta in childhood: impairment and disability--a follow-up study.
Engelbert, R H; Beemer, F A; van der Graaf, Y; Helders, P J
1999-08-01
To evaluate differences over time (mean follow-up, 14 months) on impairment parameters (range of joint motion and muscle strength), functional limitation parameters (functional ability), and disability parameters (caregiver assistance in achieving functional skills) in osteogenesis imperfecta (OI), related to the different types of the disease. A prospective, descriptive study. Fifty-four children with OI and their parents participated at the start of the study. At the end, 44 children participated in the assessment of functional skills and 42 of them participated in clinical assessment (OI type I, n = 19; OI type III, n = 13; OI type IV, n = 10). Range of joint motion was measured by means of goniometry. Generalized hypermobility was scored according to Bulbena. Manual muscle strength was scored by means of the MRC grading system. The level of ambulation was scored according to Bleck, and functional skills and caregiver assistance were scored with the Pediatric Evaluation of Disability Inventory. The different types of OI have impact on impairment, functional limitation, and disability. Almost all impairment parameters did not change significantly over time, whereas some disability parameters seemed to improve significantly. Impairment parameters in OI are presumably not always preconditions for functional limitation and disability. A 1-year follow-up revealed no significant changes in impairment parameters, whereas some disability parameters improved. Treatment strategies in OI should, therefore, focus primarily on improving functional ability, with respect to the natural course of the disease, and not only on impairment parameters.
Aggarwal, Ankush
2017-08-01
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.
Gonçalvez, Ivan de Oliveira; Callado Sanches, Iris; Gonçalves, Leandro
2018-01-01
The present study aimed to investigate the impact of a 6-month multicomponent exercise program (MCEP) on physical function, cognition, and hemodynamic parameters of elderly normotensive (NTS) and hypertensive (HTS) osteoarthritis patients. A total of 99 elderly osteoarthritis patients (44 NTS and 55 HTS) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. The physical exercises aggregated functional and walking exercises. Results indicate that 6 months of MCEP were able to improve one-leg stand and mobility (walking speeds) of osteoarthritis patients regardless of hypertension. On the other hand, cognitive and hemodynamic parameters were not altered after the MCEP. The findings of the present study demonstrate that 6 months of MCEP were able to improve the physical functioning (i.e., usual and maximal walking speed and balance) of osteoarthritis patients regardless of hypertensive condition. PMID:29721504
LPV Controller Interpolation for Improved Gain-Scheduling Control Performance
NASA Technical Reports Server (NTRS)
Wu, Fen; Kim, SungWan
2002-01-01
In this paper, a new gain-scheduling control design approach is proposed by combining LPV (linear parameter-varying) control theory with interpolation techniques. The improvement of gain-scheduled controllers can be achieved from local synthesis of Lyapunov functions and continuous construction of a global Lyapunov function by interpolation. It has been shown that this combined LPV control design scheme is capable of improving closed-loop performance derived from local performance improvement. The gain of the LPV controller will also change continuously across parameter space. The advantages of the newly proposed LPV control is demonstrated through a detailed AMB controller design example.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
Robot-assisted gait training in multiple sclerosis patients: a randomized trial.
Schwartz, Isabella; Sajin, Anna; Moreh, Elior; Fisher, Iris; Neeb, Martin; Forest, Adina; Vaknin-Dembinsky, Adi; Karusis, Dimitrios; Meiner, Zeev
2012-06-01
Preservation of locomotor activity in multiple sclerosis (MS) patients is of utmost importance. Robotic-assisted body weight-supported treadmill training is a promising method to improve gait functions in neurologically impaired patients, although its effectiveness in MS patients is still unknown. To compare the effectiveness of robot-assisted gait training (RAGT) with that of conventional walking treatment (CWT) on gait and generalized functions in a group of stable MS patients. A prospective randomized controlled trial of 12 sessions of RAGT or CWT in MS patients of EDSS score 5-7. Primary outcome measures were gait parameters and the secondary outcomes were functional and quality of life parameters. All tests were performed at baseline, 3 and 6 months post-treatment by a blinded rater. Fifteen and 17 patients were randomly allocated to RAGT and CWT, respectively. Both groups were comparable at baseline in all parameters. As compared with baseline, although some gait parameters improved significantly following the treatment at each time point there was no difference between the groups. Both FIM and EDSS scores improved significantly post-treatment with no difference between the groups. At 6 months, most gait and functional parameters had returned to baseline. Robot-assisted gait training is feasible and safe and may be an effective additional therapeutic option in MS patients with severe walking disabilities.
Improving the Performance of the Space Surveillance Telescope as a Function of Seeing Parameter
2015-03-26
Center, LAAFB, El Segundo, 2014. [27] G. S. F. S. M. B. a. J. S. H. Viggh, "Applying Electro-Optical Space Surveillance Technology to Asteroid ...IMPROVING THE PERFORMANCE OF THE SPACE SURVEILLANCE TELESCOPE AS A FUNCTION OF SEEING PARAMETER...or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United
Fietkau, Rainer; Lewitzki, Victor; Kuhnt, Thomas; Hölscher, Tobias; Hess, Clemens-F; Berger, Bernhard; Wiegel, Thomas; Rödel, Claus; Niewald, Marcus; Hermann, Robert M; Lubgan, Dorota
2013-09-15
In patients with head and neck and esophageal tumors, nutritional status may deteriorate during concurrent chemoradiotherapy (CRT). The aim of this study was to investigate the influence of enteral nutrition enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on body composition and nutritional and functional status. In a controlled, randomized, prospective, double-blind, multicenter study, 111 patients with head and neck and esophageal cancer undergoing concurrent CRT received either an enteral standard nutrition (control group) or disease-specific enteral nutrition Supportan®-containing EPA+DHA (experimental group) via percutaneous endoscopic gastrostomy. The primary endpoint was the change of body cell mass (BCM) following CRT at weeks 7 and 14 compared with the baseline value. Secondary endpoints were additional parameters of body composition, anthropometric parameters, and nutritional and functional status. The primary endpoint of the study, improvement in BCM, reached borderline statistical significance. Following CRT, patients with experimental nutrition lost only 0.82 ± 0.64 kg of BCM compared with 2.82 ± 0.77 kg in the control group (P = .055). The objectively measured nutritional parameters, such as body weight and fat-free mass, showed a tendency toward improvement, but the differences were not significant. The subjective parameters, in particular the Kondrup score (P = .0165) and the subjective global assessment score (P = .0065) after follow-up improved significantly in the experimental group, compared with the control group. Both enteral regimens were safe and well tolerated. Enteral nutrition with EPA and DHA may be advantageous in patients with head and neck or esophageal cancer by improving parameters of nutritional and functional status during CRT. © 2013 American Cancer Society.
Efficacy of isokinetic exercise on functional capacity and pain in patellofemoral pain syndrome.
Alaca, Ridvan; Yilmaz, Bilge; Goktepe, A Salim; Mohur, Haydar; Kalyon, Tunc Alp
2002-11-01
To assess the effect of an isokinetic exercise program on symptoms and functions of patients with patellofemoral pain syndrome. A total of 22 consecutive patients with the complaint of anterior knee pain who met the inclusion criteria were recruited to assess the efficacy of isokinetic exercise on functional capacity, isokinetic parameters, and pain scores in patients with patellofemoral pain syndrome. A total of 37 knees were examined. Six-meter hopping, three-step hopping, and single-limb hopping course tests were performed for each patient with the measurements of the Lysholm scale and visual analog scale. Tested parameters were peak torque, total work, average power, and endurance ratios. Statistical analyses revealed that at the end of the 6-wk treatment period, functional and isokinetic parameters improved significantly, as did pain scores. There was not statistically significant correlation between different groups of parameters. The isokinetic exercise treatment program used in this study prevented the extensor power loss due to patellofemoral pain syndrome, but the improvement in the functional capacity was not correlated with the gained power.
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
Changes in parameters of right ventricular function with cardiac resynchronization therapy.
Sharma, Abhishek; Lavie, Carl J; Vallakati, Ajay; Garg, Akash; Goel, Sunny; Lazar, Jason; Fonarow, Gregg C
2017-11-01
Studies have shown that cardiac resynchronization therapy (CRT) significantly improves right ventricle (RV) size and function in patients with heart failure (HF). CRT does not lead to improvement in RV function independent of baseline clinical variables. A systematic search of studies published between 1966 to August 31, 2015 was conducted using Pub Med, CINAHL, Cochrane CENTRAL and the Web of Science databases. Studies reporting tricuspid annular plane systolic excursion (TAPSE) or RV basal strain or RV long axis diameter or RV short axis diameter or RV fractional area change (FAC), before and after CRT, were identified. A meta-analysis was performed using random effects with inverse variance method to determine the pooled mean difference in various parameters of RV function after CRT. Meta-regression analysis was performed to test the relationship between change in various parameters of RV functions after CRT and covariates- age, QRS duration, and left ventricular ejection fraction (LVEF). Thirteen studies (N=1541) were selected for final analysis. CRT therapy led to statistically significant increases in TAPSE [1.21 (95% CI 0.55-1.86; p<0.001)], RV FAC [2.26 (95% CI 0.50-4.01; p<0.001)] and basal strain [2.82 (95% CI 0.59-5.05; p<0.001)] and statistically significant decreases in mean RV long axis diameter [-2.94 (95% CI -5.07- -0.82; p=0.005)] and short axis diameter [-1.39 (95% CI -2.10- -0.67; p=0.876)] after a mean follow up period of 9 months. However, after meta-regression analysis for age, QRS duration, and baseline LVEF as covariates, there was no significant improvement in any of the parameters of RV function after CRT. There was a statistically significant improvement in TAPSE, RV basal strain, RV fractional area, RV long axis and short axis with CRT. However, improvement in these echocardiographic parameters of RV function after CRT was not independent of baseline clinical variables but statistically dependent on age, QRS duration and baseline LVEF. © 2017 Wiley Periodicals, Inc.
Parameters of Higher Education Quality Assessment System at Universities
ERIC Educational Resources Information Center
Savickiene, Izabela
2005-01-01
The article analyses the system of institutional quality assessment at universities and lays foundation to its functional, morphological and processual parameters. It also presents the concept of the system and discusses the distribution of systems into groups, defines information, accountability, improvement and benchmarking functions of higher…
NASA Astrophysics Data System (ADS)
Maslakov, M. L.
2018-04-01
This paper examines the solution of convolution-type integral equations of the first kind by applying the Tikhonov regularization method with two-parameter stabilizing functions. The class of stabilizing functions is expanded in order to improve the accuracy of the resulting solution. The features of the problem formulation for identification and adaptive signal correction are described. A method for choosing regularization parameters in problems of identification and adaptive signal correction is suggested.
Francomano, D; Bruzziches, R; Barbaro, G; Lenzi, A; Aversa, A
2014-04-01
Modifications of cardiovascular and metabolic parameters during testosterone (T) replacement and withdrawal have never been investigated in severely obese hypogonadal men. Twenty-four severely obese (mean BMI 42; mean age 54.5) hypogonadal men (mean T = 245 ± 52 ng/dL) were enrolled in an observational, parallel-arm, open-label, 54-week study of hypocaloric diet plus physical activity (DPE; n = 12) or DPE plus T injections (DPE + T; n = 12), followed by 24 weeks of DPE alone. Primary endpoints were variations from baseline of cardiovascular (cardiac performance, blood pressure, endothelial function, carotid intima-media thickness, CIMT; epicardial fat thickness, EF) and body composition (fat/lean mass) parameters. Secondary endpoints were variations from baseline of hormonal (T and GH) and metabolic (oral glucose tolerance test, lipids, fibrinogen) parameters. At 54 weeks, DPE + T showed improvements in EF, ejection fraction, diastolic function, CIMT and endothelial function (p < 0.01 vs. controls). Also, hormonal (T, p < 0.0001; GH, p < 0.01), metabolic (HOMA, p < 0.01; microalbuminuria, p < 0.01), lipid (total cholesterol, p < 0.05) and inflammatory (fibrinogen, p < 0.05) parameters improved. After 24 weeks from T withdrawal, all cardiac and hormonal parameters returned to baseline, while fat but not lean mass and blood pressure ameliorations were maintained. An inverse relationship either between EF vs. endothelial function and EF vs. T levels was found (r (2) = -0.46, p < 0.001 and r (2) = -0.56, p < 0.0005, respectively) while direct relationship between T vs. endothelial function occurred (r (2) = 0.43, p < 0.005) in DPE + T. A 33 % dropout rate was reported in DPE without serious adverse events. In middle-aged hypogonadal obese men, 1-year T treatment was safe and improved cardio-metabolic and hormonal parameters. We firstly demonstrated that T withdrawal determines a return back to hypogonadism within 6 months, with loss of cardiovascular and some body composition improvements attained.
Data transformation methods for multiplexed assays
Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J
2013-07-23
Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.
Drigny, Joffrey; Gremeaux, Vincent; Dupuy, Olivier; Gayda, Mathieu; Bherer, Louis; Juneau, Martin; Nigam, Anil
2014-11-01
To assess the effect of a 4-month high-intensity interval training programme on cognitive functioning, cerebral oxygenation, central haemodynamic and cardiometabolic parameters and aerobic capacity in obese patients. Cognitive functioning, cerebral oxygenation, central haemodynamic, cardiometabolic and exercise para-meters were measured before and after a 4-month high-intensity interval training programme in 6 obese patients (mean age 49 years (standard deviation 8), fat mass percentage 31 ± 7%). Body composition (body mass, total and trunk fat mass, waist circumference) and fasting insulin were improved after the programme (p < 0.05). V. O2 and power output at ventilatory threshold and peak power output were improved after the programme (p < 0.05). Cognitive functioning, including short-term and verbal memory, attention and processing speed, was significantly improved after training (p < 0.05). Cerebral oxygen extraction was also improved after training (p < 0.05). These preliminary results indicate that a 4-month high-intensity interval training programme in obese patients improved both cognitive functioning and cere-bral oxygen extraction, in association with improved exercise capacity and body composition.
Vitamin D and Male Sexual Function: A Transversal and Longitudinal Study.
Tirabassi, Giacomo; Sudano, Maurizio; Salvio, Gianmaria; Cutini, Melissa; Muscogiuri, Giovanna; Corona, Giovanni; Balercia, Giancarlo
2018-01-01
The effects of vitamin D on sexual function are very unclear. Therefore, we aimed at evaluating the possible association between vitamin D and sexual function and at assessing the influence of vitamin D administration on sexual function. We retrospectively studied 114 men by evaluating clinical, biochemical, and sexual parameters. A subsample ( n = 41) was also studied longitudinally before and after vitamin D replacement therapy. In the whole sample, after performing logistic regression models, higher levels of 25(OH) vitamin D were significantly associated with high values of total testosterone and of all the International Index of Erectile Function (IIEF) questionnaire parameters. On the other hand, higher levels of total testosterone were positively and significantly associated with high levels of erectile function and IIEF total score. After vitamin D replacement therapy, total and free testosterone increased and erectile function improved, whereas other sexual parameters did not change significantly. At logistic regression analysis, higher levels of vitamin D increase (Δ-) were significantly associated with high values of Δ-erectile function after adjustment for Δ-testosterone. Vitamin D is important for the wellness of male sexual function, and vitamin D administration improves sexual function.
Çatli, Gönül; Kir, Mustafa; Anik, Ahmet; Yilmaz, Nuh; Böber, Ece; Abaci, Ayhan
2015-02-01
The aim of this study was to search for evidence suggesting treatment for childhood subclinical hypothyroidism (SH) by evaluating left ventricular (LV) functions of children with SH by using M-mode and tissue Doppler echocardiography (TDE). Children with SH and euthyroid healthy children (control group) were enrolled in the study. At baseline and 6 months after euthyroidism was achieved, M-mode and TDE were performed and LV functions were evaluated. Pretreatment parameters of the SH group were compared with those of controls and post-treatment parameters. 31 children with SH and 32 euthyroid healthy children were enrolled in the study. The groups had similar age, gender, puberty and body mass index. Interventricular septum thickness and LV mass index, which are the parameters for LV morphology, were slightly increased in the SH group than in the controls (p<0.05). In TDE, children with SH had significant changes in LV diastolic (lower E'm, higher E/E'm ratio and longer isovolumic relaxation time) and systolic functions (lower isovolumic contraction time) compared with controls (p<0.05). Six months after euthyroidism was achieved, TDE showed a significant improvement of some of the diastolic and systolic parameters (p<0.05). The results of this study showed that SH is associated with subclinical alterations in LV function, and LT4 replacement may improve LV systolic and diastolic parameters. However, since SH is usually a self-limiting process, these improvements in LV functions may simply be associated with the natural course of the disease and/or physiological linear growth of the children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Improved modeling of clinical data with kernel methods.
Daemen, Anneleen; Timmerman, Dirk; Van den Bosch, Thierry; Bottomley, Cecilia; Kirk, Emma; Van Holsbeke, Caroline; Valentin, Lil; Bourne, Tom; De Moor, Bart
2012-02-01
Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. For clinical data consisting of variables of different types, the proposed kernel function--which takes into account the type and range of each variable--has shown to be a better alternative for linear and non-linear classification problems. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
In injection moulding process, the defects will always encountered and affected the final product shape and functionality. This study is concerning on minimizing warpage and optimizing the process parameter of injection moulding part. Apart from eliminating product wastes, this project also giving out best recommended parameters setting. This research studied on five parameters. The optimization showed that warpage have been improved 42.64% from 0.6524 mm to 0.30879 mm in Autodesk Moldflow Insight (AMI) simulation result and Genetic Algorithm (GA) respectively.
Biomechanical and functional efficacy of knee sleeves: A literature review.
Mohd Sharif, Nahdatul Aishah; Goh, Siew-Li; Usman, Juliana; Wan Safwani, Wan Kamarul Zaman
2017-11-01
Knee sleeves are widely used for the symptomatic relief and subjective improvements of knee problems. To date, however, their biomechanical effects have not been well understood. To determine whether knee sleeves can significantly improve the biomechanical variables for knee problems. Systematic literature search was conducted on four online databases - PubMed, Web of Science, ScienceDirect and Springer Link - to find peer-reviewed and relevant scientific papers on knee sleeves published from January 2005 to January 2015. Study quality was assessed using the Structured Effectiveness Quality Evaluation Scale (SEQES). Twenty studies on knee sleeves usage identified from the search were included in the review because of their heterogeneous scope of coverage. Twelve studies found significant improvement in gait parameters (3) and functional parameters (9), while eight studies did not find any significant effects of knee sleeves usage. Most improvements were observed in: proprioception for healthy knees, gait and balance for osteoarthritic knees, and functional improvement of injured knees. This review suggests that knee sleeves can effect functional improvements to knee problems. However, further work is needed to confirm this hypothesis, due to the lack of homogeneity and rigor of existing studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Darocha, Szymon; Pietura, Radosław; Pietrasik, Arkadiusz; Norwa, Justyna; Dobosiewicz, Anna; Piłka, Michał; Florczyk, Michał; Biederman, Andrzej; Torbicki, Adam; Kurzyna, Marcin
2017-03-24
The effect of balloon pulmonary angioplasty (BPA) on improvement in functional and hemodynamic parameters in chronic thromboembolic pulmonary hypertension (CTEPH) is known, but the quality of life (QoL) of patients treated with BPA has never been studied before.Methods and Results:Twenty-five patients with inoperable or persistent CTEPH were enrolled in the study and filled out the 36-item Short Form (SF-36v2) questionnaire twice: prior to commencement of BPA treatment and after ≥3 BPA sessions. In addition WHO functional class, distance on the 6-min walk test (6MWT) and hemodynamic parameters such as right atrial pressure (RAP), mean pulmonary artery pressure (mPAP), cardiac index (CI) and pulmonary vascular resistance (PVR) were assessed. QoL improved significantly in all domains, except for physical pain. Improvement in RAP (10.5±3.4 vs. 6.2±2.2 mmHg; P<0.05), mPAP (51.7±10.6 vs. 35.0±9.1 mmHg; P<0.05), CI (2.2±0.5 vs. 2.5±0.4 L/min·m 2 ; P=0.04), PVR (10.4±3.9 vs. 5.5±2.2 Wood units; P<0.05), functional class (96% vs. 20% in WHO class III and IV, P<0.05) and improvement in 6MWT distance (323±135 vs. 410±109 m; P<0.05) was observed. The only significant correlation was between the mental component summary score of QoL after completion of treatment and percentage improvement in the 6MWT (-0.404, P<0.05). Alongside improvement in functional and hemodynamic parameters, BPA also provides significant improvement in QoL.
Antoniou, Christos-Konstantinos; Chrysohoou, Christina; Lerakis, Stamatios; Manolakou, Panagiota; Pitsavos, Christos; Tsioufis, Konstantinos; Stefanadis, Christodoulos; Tousoulis, Dimitrios
2015-11-15
Ventriculoarterial coupling (VAC) status relates to tissue perfusion and its optimization may improve organ function and energy efficiency (EE) of the cardiovascular system. The effects of non-invasively calculated VAC improvement on echocardiographic parameters, renal function indices and EE improvement in patients with acute decompensated systolic heart failure were studied. Furthermore, effects of different treatment modalities on VAC, renal function and echocardiographic parameters were compared. Systolic heart failure patients with ejection fraction <50% were studied, who, at the treating physician's discretion, received 8-hour infusions of: high dose furosemide (20mg/h), low dose furosemide (5mg/h) or dopamine (5μg/kg/min) combined with furosemide (5mg/h). Echocardiographic assessments were performed at 0 and 24h. Renal function was evaluated using serum creatinine and creatinine clearance. VAC and EE were assessed noninvasively, by echocardiography. Significant correlations were noted between VAC improvement and improvements in EE and serum creatinine (rho=0.96, p<0.001, rho=0.32, p=0.04 respectively). Dopamine-furosemide combination had a borderline effect on creatinine (p=0.08) and led to significant improvements in e', E/e' ratio (p=0.015 and p=0.009 respectively) and VAC (value closer to 1). VAC improvement correlated with EE and creatinine improvement, regardless of treatment, supporting a potential role for VAC status assessment and improvement in acute decompensated systolic heart failure. Dopamine and furosemide combination seemed to improve VAC and diastolic function but only had a borderline effect on renal function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T
2003-12-01
To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.
Yaşar, E; Yılmaz, B; Göktepe, S; Kesikburun, S
2015-12-01
Prospective single-arm study. To investigate the effect of functional electrical stimulation (FES) cycling on late functional recovery, spasticity, gait parameters and oxygen consumption during walking in patients with chronic incomplete spinal cord injury (SCI). Turkish Armed Forces Rehabilitation Center, Ankara, Turkey. Ten patients with chronic (duration of more than 2 years) incomplete SCI who could ambulate at least 10 m independently or with the assistance of a cane or walker, but no hip-knee-ankle-foot orthosis. The subjects underwent 1-h FES cycling sessions three times a week for 16 weeks. Outcome measures including the total motor score, the Functional Independence Measure (FIM) score, the Modified Ashworth Scale for knee spasticity, temporal spatial gait parameters and oxygen consumption rate during walking were assessed at baseline, 3 and 6 months after the baseline. There were statistically significant improvements in total motor scores, the FIM scores and spasticity level at the 6-month follow-up (P<0.01). The changes in gait parameters reached no significant level (P>0.05). Oxygen consumption rate of the patients showed significant reduction at only 6 months compared with baseline (P<0.01). The results suggest that FES cycling may provide some functional improvements in the late period of SCI. The study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK).
Sá-Caputo, Danubia C; Dionello, Carla da F; Frederico, Éric Heleno F F; Paineiras-Domingos, Laisa L; Sousa-Gonçalves, Cintia Renata; Morel, Danielle S; Moreira-Marconi, Eloá; Unger, Marianne; Bernardo-Filho, Mario
2017-01-01
Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been reported in strength, motion, gait, balance, posture and bone density in several osteopenic individuals, as in post-menopausal women or children with disabling conditions, as patients with OI. The aim of this investigation was to systematically analyse the current available literature to determine the effect of WBV exercises on functional parameters of OI patients. Three reviewers independently accessed bibliographical databases. Searches were performed in the PubMed, Scopus, Science Direct and PEDro databases using keywords related to possible interventions (including WBV) used in the management of patients with osteogenesis imperfecta . Three eligible studies were identified by searches in the analysed databases. It was concluded that WBV exercises could be an important option in the management of OI patients improving the mobility and functional parameters. However, further studies are necessary for establishing suitable protocols for these patients.
Wolvers, Danielle AW; van Herpen-Broekmans, Wendy MR; Logman, Margot HGM; van der Wielen, Reggy PJ; Albers, Ruud
2006-01-01
Background Supplementation of nutritional deficiencies helps to improve immune function and resistance to infections in malnourished subjects. However, the suggested benefits of dietary supplementation for immune function in healthy well nourished subjects is less clear. Among the food constituents frequently associated with beneficial effects on immune function are micronutrients such as vitamin C, vitamin E, β-carotene and zinc, and colostrum. This study was designed to investigate the effects these ingredients on immune function markers in healthy volunteers. Methods In a double-blind, randomized, parallel, 2*2, placebo-controlled intervention study one hundred thirty-eight healthy volunteers aged 40–80 y (average 57 ± 10 y) received one of the following treatments: (1) bovine colostrum concentrate 1.2 g/d (equivalent to ~500 mg/d immunoglobulins), (2) micronutrient mix of 288 mg vitamin E, 375 mg vitamin C, 12 mg β-carotene and 15 mg zinc/day, (3) combination of colostrum and micronutrient mix, or (4) placebo. Several immune function parameters were assessed after 6 and 10 weeks. Data were analyzed by analysis of variance. Groups were combined to test micronutrient treatment versus no micronutrient treatment, and colostrum treatment versus no colostrum treatment. Results Overall, consumption of the micronutrient mix significantly enhanced delayed-type hypersensitivity (DTH) responses (p < 0.05). Adjusted covariance analysis showed a positive association between DTH and age. Separate analysis of younger and older age groups indicated that it was the older population that benefited from micronutrient consumption. The other immune function parameters including responses to systemic tetanus and oral typhoid vaccination, phagocytosis, oxidative burst, lymphocyte proliferation and lymphocyte subset distribution were neither affected by the consumption of micronutrients nor by the consumption of bovine colostrum concentrate. Conclusion Consumption of bovine colostrum had no effect on any of the immune parameters assessed. The micronutrient mix enhanced cellular immunity as measured by DTH, with an increased effect by incremental age, but did not affect any of the other immune parameters measured. Although correlations between decreased DTH and enhanced risk of certain infection have been reported, it remains unclear whether and enhanced DTH response actually improves immune defense. The present data suggests that improvement of immune parameters in a population with a generally good immune and nutritional status is limited and that improvement of immune function in this population may be difficult. PMID:17118191
NASA Astrophysics Data System (ADS)
Suzuki, Yôiti; Watanabe, Kanji; Iwaya, Yukio; Gyoba, Jiro; Takane, Shouichi
2005-04-01
Because the transfer functions governing subjective sound localization (HRTFs) show strong individuality, sound localization systems based on synthesis of HRTFs require suitable HRTFs for individual listeners. However, it is impractical to obtain HRTFs for all listeners based on measurements. Improving sound localization by adjusting non-individualized HRTFs to a specific listener based on that listener's anthropometry might be a practical method. This study first developed a new method to estimate interaural time differences (ITDs) using HRTFs. Then correlations between ITDs and anthropometric parameters were analyzed using the canonical correlation method. Results indicated that parameters relating to head size, and shoulder and ear positions are significant. Consequently, it was attempted to express ITDs based on listener's anthropometric data. In this process, the change of ITDs as a function of azimuth angle was parameterized as a sum of sine functions. Then the parameters were analyzed using multiple regression analysis, in which the anthropometric parameters were used as explanatory variables. The predicted or individualized ITDs were installed in the nonindividualized HRTFs to evaluate sound localization performance. Results showed that individualization of ITDs improved horizontal sound localization.
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinger, W.M.; Staton, G.W. Jr.; Fajman, W.A.
1985-07-01
To find a pretreatment predictor of steroid responsiveness in pulmonary sarcoidosis the authors studied 21 patients before and after steroid treatment by clinical evaluation, pulmonary function tests, bronchoalveolar lavage (BAL), gallium-67 lung scan, and serum angiotensin-converting enzyme (SACE) level. Although clinical score, forced vital capacity (FVC), BAL percent lymphocytes (% lymphs), quantitated gallium-67 lung uptake, and SACE levels all improved with therapy, only the pretreatment BAL % lymphs correlated with the improvement in FVC (r = 0.47, p less than 0.05). Pretreatment BAL % lymphs of greater than or equal to 35% predicted improvement in FVC of 10/11 patients, whereasmore » among 10 patients with BAL % lymphs less than 35%, 5 patients improved and 5 deteriorated. Clinical score, pulmonary function parameters, quantitated gallium-67 lung uptake, and SACE level used alone, in combination with BAL % lymphs or in combination with each other, did not improve this predictive value. The authors conclude that steroid therapy improves a number of clinical and laboratory parameters in sarcoidosis, but only the pretreatment BAL % lymphs are useful in predicting therapeutic responsiveness.« less
NASA Astrophysics Data System (ADS)
Cheng, Qin-Bo; Chen, Xi; Xu, Chong-Yu; Reinhardt-Imjela, Christian; Schulte, Achim
2014-11-01
In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.
Improving RNA nearest neighbor parameters for helices by going beyond the two-state model.
Spasic, Aleksandar; Berger, Kyle D; Chen, Jonathan L; Seetin, Matthew G; Turner, Douglas H; Mathews, David H
2018-06-01
RNA folding free energy change nearest neighbor parameters are widely used to predict folding stabilities of secondary structures. They were determined by linear regression to datasets of optical melting experiments on small model systems. Traditionally, the optical melting experiments are analyzed assuming a two-state model, i.e. a structure is either complete or denatured. Experimental evidence, however, shows that structures exist in an ensemble of conformations. Partition functions calculated with existing nearest neighbor parameters predict that secondary structures can be partially denatured, which also directly conflicts with the two-state model. Here, a new approach for determining RNA nearest neighbor parameters is presented. Available optical melting data for 34 Watson-Crick helices were fit directly to a partition function model that allows an ensemble of conformations. Fitting parameters were the enthalpy and entropy changes for helix initiation, terminal AU pairs, stacks of Watson-Crick pairs and disordered internal loops. The resulting set of nearest neighbor parameters shows a 38.5% improvement in the sum of residuals in fitting the experimental melting curves compared to the current literature set.
Optimal line drop compensation parameters under multi-operating conditions
NASA Astrophysics Data System (ADS)
Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe
2017-01-01
Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.
2011-01-01
ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516
Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp, K
2003-01-01
Objectives: To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. Methods: The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60°/s (25–90° range of flexion) and 180°/s (full range). These sessions were repeated three times a week for six weeks. Results: Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. Conclusions: The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters. PMID:14665581
Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Burken, John; Ishihara, Abraham
2011-01-01
This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.
Aoike, Danilo Takashi; Baria, Flavia; Kamimura, Maria Ayako; Ammirati, Adriano; Cuppari, Lilian
2018-02-01
The association between chronic kidney disease (CKD) and obesity can decrease the patients' cardiopulmonary capacity, physical functioning and quality of life. The search for effective and practical alternative methods of exercise to engage patients in training programs is of great importance. Therefore, we aimed to compare the effects of home-based versus center-based aerobic exercise on the cardiopulmonary and functional capacities, quality of life and quality of sleep of overweight non-dialysis-dependent patients with CKD (NDD-CKD). Forty sedentary overweight patients CKD stages 3 and 4 were randomly assigned to an exercise group [home-based group (n = 12) or center-based exercise group (n = 13)] or to a control group (n = 15) that did not perform any exercise. Cardiopulmonary exercise test, functional capacity tests, quality of life, quality of sleep and clinical parameters were assessed at baseline, 12 and 24 weeks. The VO 2peak and all cardiopulmonary parameters evaluated were similarly improved (p < 0.05) after 12 and 24 weeks in both exercise groups. The functional capacity tests improved during the follow-up in the home-based group (p < 0.05) and reached values similar to those obtained in the center-based group. The benefits achieved in both exercise groups were also reflected in improvement of quality of life and sleep (p < 0.05). No differences were observed between the exercise groups, and no changes in any of the parameters investigated were found in the control group. Home-based aerobic training was as effective as center-based training in improving the physical and functional capabilities, quality of life and sleep in overweight NDD-CKD patients.
Sá-Caputo, Danubia C; Dionello, Carla da F; Frederico, Éric Heleno F. F; Paineiras-Domingos, Laisa L; Sousa-Gonçalves, Cintia Renata; Morel, Danielle S; Moreira-Marconi, Eloá; Unger, Marianne; Bernardo-Filho, Mario
2017-01-01
Background: Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been reported in strength, motion, gait, balance, posture and bone density in several osteopenic individuals, as in post-menopausal women or children with disabling conditions, as patients with OI. The aim of this investigation was to systematically analyse the current available literature to determine the effect of WBV exercises on functional parameters of OI patients. Materials and methods: Three reviewers independently accessed bibliographical databases. Searches were performed in the PubMed, Scopus, Science Direct and PEDro databases using keywords related to possible interventions (including WBV) used in the management of patients with osteogenesis imperfecta. Results: Three eligible studies were identified by searches in the analysed databases. Conclusion: It was concluded that WBV exercises could be an important option in the management of OI patients improving the mobility and functional parameters. However, further studies are necessary for establishing suitable protocols for these patients. PMID:28480432
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
NASA Astrophysics Data System (ADS)
Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine
2016-04-01
Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
Sczesny-Kaiser, Matthias; Höffken, Oliver; Aach, Mirko; Cruciger, Oliver; Grasmücke, Dennis; Meindl, Renate; Schildhauer, Thomas A; Schwenkreis, Peter; Tegenthoff, Martin
2015-08-20
Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.
Soft context clustering for F0 modeling in HMM-based speech synthesis
NASA Astrophysics Data System (ADS)
Khorram, Soheil; Sameti, Hossein; King, Simon
2015-12-01
This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.
Optimization of microphysics in the Unified Model, using the Micro-genetic algorithm.
NASA Astrophysics Data System (ADS)
Jang, J.; Lee, Y.; Lee, H.; Lee, J.; Joo, S.
2016-12-01
This study focuses on parameter optimization of microphysics in the Unified Model (UM) using the Micro-genetic algorithm (Micro-GA). We need the optimization of microphysics in UM. Because, Microphysics in the Numerical Weather Prediction (NWP) model is important to Quantitative Precipitation Forecasting (QPF). The Micro-GA searches for optimal parameters on the basis of fitness function. The five parameters are chosen. The target parameters include x1, x2 related to raindrop size distribution, Cloud-rain correlation coefficient, Surface droplet number and Droplet taper height. The fitness function is based on the skill score that is BIAS and Critical Successive Index (CSI). An interface between UM and Micro-GA is developed and applied to three precipitation cases in Korea. The cases are (ⅰ) heavy rainfall in the Southern area because of typhoon NAKRI, (ⅱ) heavy rainfall in the Youngdong area, and (ⅲ) heavy rainfall in the Seoul metropolitan area. When the optimized result is compared to the control result (using the UM default value, CNTL), the optimized result leads to improvements in precipitation forecast, especially for heavy rainfall of the late forecast time. Also, we analyze the skill score of precipitation forecasts in terms of various thresholds of CNTL, Optimized result, and experiments on each optimized parameter for five parameters. Generally, the improvement is maximized when the five optimized parameters are used simultaneously. Therefore, this study demonstrates the ability to improve Korean precipitation forecasts by optimizing microphysics in UM.
Fontes-Carvalho, Ricardo; Sampaio, Francisco; Teixeira, Madalena; Gama, Vasco; Leite-Moreira, Adelino F
2015-03-12
Exercise training is effective in improving functional capacity and quality of life in patients with coronary artery disease, but its effects on left ventricular systolic and diastolic function are controversial. Diastolic dysfunction is a major determinant of adverse outcome after myocardial infarction and, contrary to systolic function, no therapy or intervention has proved to significantly improve diastolic function. Data from animal studies and from patients with diastolic heart failure has suggested that exercise training can have a positive effect on diastolic function parameters. This trial aims to evaluate if a structured exercise training program can improve resting left ventricular diastolic and systolic function in patients who have had an acute myocardial infarction. This is a phase II, prospective, randomized, open-label, blinded-endpoint trial that will include at least 96 consecutive patients who have had an acute myocardial infarction one month previously. Patients will be randomized (1:1) to an exercise training program or a control group, receiving standard of care. At enrolment, and at the end of the follow-up period, patients will be submitted to an echocardiography (with detailed assessment of diastolic and systolic function using recent consensus guidelines), cardiopulmonary exercise testing, an anthropometric assessment, blood testing, and clinical evaluation. Patients randomized to the intervention group will be submitted to an eight-week outpatient exercise program, combining endurance and resistance training, for three sessions per week. The primary endpoint will be the change in lateral E' velocity immediately after the eight-week exercise training program. Secondary endpoints will include other echocardiographic parameters of left ventricular diastolic and systolic function, cardiac structure, metabolic and inflammation biomarkers (high-sensitivity C-reactive protein and pro-BNP), functional capacity (peak oxygen consumption and anaerobic threshold) and anthropometric measurements. New strategies that can improve left ventricular diastolic function are clinically needed. This will be the first trial to evaluate, in patients who have had an acute myocardial infarction, the effects of a structured program of exercise training on diastolic and systolic function, assessed by novel echocardiographic parameters. Registered with ClinicalTrials.gov (reference: NCT02224495 ) on 21 August 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; Mayes, Melanie; Parker, Jack C
2010-01-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less
Double-hybrid density-functional theory with meta-generalized-gradient approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
Coelho Junior, Hélio José; Callado Sanches, Iris; Doro, Marcio; Asano, Ricardo Yukio; Feriani, Daniele Jardim; Brietzke, Cayque; Gonçalves, Ivan de Oliveira; Uchida, Marco Carlos; Capeturo, Erico Chagas; Rodrigues, Bruno
2018-01-01
The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP) on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM) patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed) after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.
NASA Astrophysics Data System (ADS)
Kamaltdinov, V. G.; Markov, V. A.; Lysov, I. O.
2018-03-01
To analyze the peculiarities of the combustion process in an overload diesel engine with the system of Common Rail type with one-stage injection, the indicator diagram was registered. The parameters of the combustion process simulated by the double-Wiebe function were calculated as satisfactorily reconstructing the law of burning rate variation. The main parameters of the operating cycle obtained through the indicator diagram processing and the double-Wiebe function calculation differed insignificantly. And the calculated curve of the cylinder pressure differed notably only in the end of the expansion stroke. To improve the performance of the diesel engine, a two-stage fuel injection was recommended.
Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks
NASA Astrophysics Data System (ADS)
Shirvany, Yazdan; Hayati, Mohsen; Moradian, Rostam
2008-12-01
We present a method to solve boundary value problems using artificial neural networks (ANN). A trial solution of the differential equation is written as a feed-forward neural network containing adjustable parameters (the weights and biases). From the differential equation and its boundary conditions we prepare the energy function which is used in the back-propagation method with momentum term to update the network parameters. We improved energy function of ANN which is derived from Schrodinger equation and the boundary conditions. With this improvement of energy function we can use unsupervised training method in the ANN for solving the equation. Unsupervised training aims to minimize a non-negative energy function. We used the ANN method to solve Schrodinger equation for few quantum systems. Eigenfunctions and energy eigenvalues are calculated. Our numerical results are in agreement with their corresponding analytical solution and show the efficiency of ANN method for solving eigenvalue problems.
Kocur, Piotr; Wiernicka, Marzena; Wilski, Maciej; Kaminska, Ewa; Furmaniuk, Lech; Maslowska, Marta Flis; Lewandowski, Jacek
2015-01-01
[Purpose] To assess the effect of 12-weeks Nordic walking training on gait parameters and some elements of postural control. [Subjects and Methods] Sixty-seven women aged 65 to 74 years were enrolled in this study. The subjects were divided into a Nordic Walking group (12 weeks of Nordic walking training, 3 times a week for 75 minutes) and a control group. In both study groups, a set of functional tests were conducted at the beginning and at the end of the study: the Forward Reach Test (FRT) and the Upward Reach Test (URT) on a stabilometric platform, and the analysis of gait parameters on a treadmill. [Results] The NW group showed improvements in: the range of reach in the FRT test and the URT test in compared to the control group. The length of the gait cycle and gait cycle frequency also showed changes in the NW group compared to the control group. [Conclusion] A 12-week NW training program had a positive impact on selected gait parameters and may improve the postural control of women aged over 65 according to the results selected functional tests. PMID:26834341
Kocur, Piotr; Wiernicka, Marzena; Wilski, Maciej; Kaminska, Ewa; Furmaniuk, Lech; Maslowska, Marta Flis; Lewandowski, Jacek
2015-12-01
[Purpose] To assess the effect of 12-weeks Nordic walking training on gait parameters and some elements of postural control. [Subjects and Methods] Sixty-seven women aged 65 to 74 years were enrolled in this study. The subjects were divided into a Nordic Walking group (12 weeks of Nordic walking training, 3 times a week for 75 minutes) and a control group. In both study groups, a set of functional tests were conducted at the beginning and at the end of the study: the Forward Reach Test (FRT) and the Upward Reach Test (URT) on a stabilometric platform, and the analysis of gait parameters on a treadmill. [Results] The NW group showed improvements in: the range of reach in the FRT test and the URT test in compared to the control group. The length of the gait cycle and gait cycle frequency also showed changes in the NW group compared to the control group. [Conclusion] A 12-week NW training program had a positive impact on selected gait parameters and may improve the postural control of women aged over 65 according to the results selected functional tests.
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Neuman, S. P.
2009-12-01
Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.
The impact of patient's weight on post-stroke rehabilitation.
Kalichman, Leonid; Alperovitch-Najenson, Deborah; Treger, Iuly
2016-08-01
Purpose To evaluate the influence of patient's weight on rehabilitation outcomes in first-event stroke patients. Design Retrospective, observational comparative study. 102 first-time stroke male and female patients admitted to the 52-bed neurology rehabilitation department in a rehabilitation hospital were included in the study. Body mass index (BMI), Functional Independence Measure (FIM) on admission and at discharge, as well as the delta-FIM (FIM on admission - FIM at discharge) were evaluated. The Kruskal-Wallis test was used to compare the FIM and the NIHSS scores between BMI groups (normal, overweight, moderate and severe obesity). Results A statistically significant negative correlation (rho = -0.20, p = 0.049) was found between FIM change and BMI, that remained significant after adjustments for age, sex and hospitalisation days. No difference was found between groups in FIM or NIHSS change between BMI groups. Conclusions In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. Further investigations are needed to identify the functional parameters affected by the patients' BMI. Implications for Rehabilitation In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. New rehabilitation strategies should be designed to improve the functional outcomes of rehabilitation of obese patients.
Mustafaev, I I; Nurmamedova, G S
2013-01-01
Aim of the study was to assess effect of monotherapy with nebivolol, bisoprolol, carvedilol for 2 months on sexual function in men with arterial hypertension (AH). Men with 1-2 degree of AH (n=75, age 35-55 years, mean age 48+/-3,5 years) received monotherapy with these drugs for 2 months. Registration of parameters of heart rate variability (HRV), Dopplerography of penile arteries, and the Vasilchenko questionnaire were implemented at the end of 4 months of placebo period and after 2 months of therapy with a study drug. Therapy with bisoprolol, carvedilol, and nebivolol was associated with significant elevation of parasympathetic part of vegetative nervous system tone, improvement of systolic blood flow in cavernous and dorsal arteries. Analysis of data obtained by Vasilchenko questionnaire demonstrated improvement of psychic and erectile components of sexual function. Thus bisoprolol, carvedilol, and nebivolol did not worsen sexual function of men with AH, improved spectral parameters of HRV and vascular blood flow in arteries of cavernous bodies.
Effect of balloon mitral valvotomy on left ventricular function in rheumatic mitral stenosis.
Rajesh, Gopalan Nair; Sreekumar, Pradeep; Haridasan, Vellani; Sajeev, C G; Bastian, Cicy; Vinayakumar, D; Kadermuneer, P; Mathew, Dolly; George, Biju; Krishnan, M N
Mitral stenosis (MS) is found to produce left ventricular (LV) dysfunction in some studies. We sought to study the left ventricular function in patients with rheumatic MS undergoing balloon mitral valvotomy (BMV). Ours is the first study to analyze effect of BMV on mitral annular plane systolic excursion (MAPSE), and to quantify prevalence of longitudinal left ventricular dysfunction in rheumatic MS. In this prospective cohort study, we included 43 patients with severe rheumatic mitral stenosis undergoing BMV. They were compared to twenty controls whose distribution of age and gender were similar to that of patients. The parameters compared were LV ejection fraction (EF) by modified Simpson's method, mitral annular systolic velocity (MASV), MAPSE, mitral annular early diastolic velocity (E'), and myocardial performance index (MPI). These parameters were reassessed immediately following BMV and after 3 months of procedure. MASV, MAPSE, E', and EF were significantly lower and MPI was higher in mitral stenosis group compared to controls. Impaired longitudinal LV function was present in 77% of study group. MAPSE and EF did not show significant change after BMV while MPI, MASV, and E' improved significantly. MASV and E' showed improvement immediately after BMV, while MPI decreased only at 3 months follow-up. There were significantly lower mitral annular motion parameters including MAPSE in patients with rheumatic mitral stenosis. Those with atrial fibrillation had higher MPI. Immediately after BMV, there was improvement in LV long axis function with a gradual improvement in global LV function. There was no significant change of MAPSE after BMV. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Generalized Langevin equation with a three parameter Mittag-Leffler noise
NASA Astrophysics Data System (ADS)
Sandev, Trifce; Tomovski, Živorad; Dubbeldam, Johan L. A.
2011-10-01
The relaxation functions for a given generalized Langevin equation in the presence of a three parameter Mittag-Leffler noise are studied analytically. The results are represented by three parameter Mittag-Leffler functions. Exact results for the velocity and displacement correlation functions of a diffusing particle are obtained by using the Laplace transform method. The asymptotic behavior of the particle in the short and long time limits are found by using the Tauberian theorems. It is shown that for large times the particle motion is subdiffusive for β-1<αδ<β, and superdiffusive for β<αδ. Many previously obtained results are recovered. Due to the many parameters contained in the noise term, the model considered in this work may be used to improve the description of data and to model anomalous diffusive processes in complex media.
Linear-quadratic-Gaussian synthesis with reduced parameter sensitivity
NASA Technical Reports Server (NTRS)
Lin, J. Y.; Mingori, D. L.
1992-01-01
We present a method for improving the tolerance of a conventional LQG controller to parameter errors in the plant model. The improvement is achieved by introducing additional terms reflecting the structure of the parameter errors into the LQR cost function, and also the process and measurement noise models. Adjusting the sizes of these additional terms permits a trade-off between robustness and nominal performance. Manipulation of some of the additional terms leads to high gain controllers while other terms lead to low gain controllers. Conditions are developed under which the high-gain approach asymptotically recovers the robustness of the corresponding full-state feedback design, and the low-gain approach makes the closed-loop poles asymptotically insensitive to parameter errors.
NASA Astrophysics Data System (ADS)
Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.
2016-03-01
The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .
Individualized dry-land intervention program for an élite Paralympic swimmer: a case report.
Cavaggioni, Luca; Trecroci, Athos; Tosin, Massimiliano; Iaia, F Marcello; Alberti, Giampietro
2018-03-01
The aim of this retrospective case study is the longitudinal description of the physical and functional parameters of a top-level Paralympic swimmer class S9-SB8-SM9 during four swimming seasons of training, from the Paralympic games in London 2012 to the Paralympic games in Rio 2016. A 22-year-old male swimmer underwent a specific preventive dry-land training based on diaphragmatic breathing, postural alignment, and slow-velocity resistance training aimed to improve his muscle strength. He was tested by using the Functional Movement ScreenTM, photographic postural assessment and vertical jump. The swimmer improved his functional, postural and strength parameters indicating a better functional movement and muscular power. These results shows that a four-year specific dry-land intervention could be capable of enhancing the functional and physical requirements of a top-level Paralympic swimmer. This approach might be a suitable novel alternative for physical therapists and athletic trainers to integrate their training protocols for athletes with similar impairments.
Kleefeld, Felix; Heller, Sophie; Ingiliz, Patrick; Jessen, Heiko; Petersen, Anders; Kopp, Ute; Kraft, Antje; Hahn, Katrin
2018-05-21
The efficacy and safety of interferon-free therapies for hepatitis C virus (HCV) infection have been reported. Considering the accumulating evidence for a direct central nervous system infection by HCV, we aim to evaluate the effect of direct acting antivirals (DAA) therapy on cognitive function in HCV patients. We conducted a longitudinal analysis of the cognitive performance of 22 patients (8 HCV+, 14 HCV+/HIV+) who completed neuropsychological testing at baseline and at week 12 after DAA therapy. In 20 patients, we analyzed specific attention parameters derived from an experimental testing based on the Theory of Visual Attention (TVA). Depression, fatigue, and mental health were assessed as patient reported outcomes. At baseline, 54.5% of the patients met the criteria for cognitive impairment and 40% showed impairment in TVA parameters. Follow-up analysis revealed significant improvements in the domains of visual memory/learning, executive functions, verbal fluency, processing speed, and motor skills but not in verbal learning and attention/working memory. We did not observe significant improvement in visual attention measured by TVA. Fatigue and mental health significantly improved at follow-up. Our findings indicate that successful DAA treatment leads to cognitive improvements in several domains measured by standard neuropsychological testing. The absence of improvement in TVA parameters and of significant improvement in the domain of attention/working memory might reflect the persistence of specific cognitive deficits after HCV eradication. In summary, DAA treatment seems to have a positive effect on some cognitive domains and leads to an improvement in mental health and fatigue in HCV-infected patients.
LETTER TO THE EDITOR: Two-centre exchange integrals for complex exponent Slater orbitals
NASA Astrophysics Data System (ADS)
Kuang, Jiyun; Lin, C. D.
1996-12-01
The one-dimensional integral representation for the Fourier transform of a two-centre product of B functions (finite linear combinations of Slater orbitals) with real parameters is generalized to include B functions with complex parameters. This one-dimensional integral representation allows for an efficient method of calculating two-centre exchange integrals with plane-wave electronic translational factors (ETF) over Slater orbitals of real/complex exponents. This method is a significant improvement on the previous two-dimensional quadrature method of the integrals. A new basis set of the form 0953-4075/29/24/005/img1 is proposed to improve the description of pseudo-continuum states in the close-coupling treatment of ion - atom collisions.
Lunder, Mojca; Janić, Miodrag; Savić, Vedran; Janež, Andrej; Kanc, Karin; Šabovič, Mišo
2017-05-01
Previously we revealed the effectiveness of a new therapeutic approach with a short-term, very-low dose fluvastatin-valsartan combination on the improvement of arterial function in type 1 diabetes mellitus patients (T1DM). In this study we explored whether this approach influences inflammation and oxidative stress and explored any association of these effects with arterial function improvement. This was a supplementary analysis of the two previous double blind randomized studies (included 44 T1DM patients). Treatment group received very-low dose fluvastatin-valsartan, the control group received placebo. Blood samples were collected and inflammation parameters: high-sensitivity CRP (hsCRP), interleukin 6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1) and oxidative stress parameter total antioxidant status (TAS) were measured. Treatment decreased hsCRP values (by 56.5%, P<0.05) and IL-6 values (by 33.6%, P<0.05) and increased TAS values (by 21.1%; P<0.05) after 30days of treatment. High sensitivity CRP and TAS remained decreased 3months after treatment discontinuation. Importantly, the anti-inflammatory and anti-oxidative action significantly correlated with arterial function improvement. The approach consisting of short-term (30days) treatment with a very low-dose fluvastatin-valsartan combination acts anti-inflammatory and anti-oxidative in T1DM patients. These observations along with the improvement of arterial function support the assumption that this approach could have an important clinical benefit in T1DM patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum Monte Carlo for atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations,more » the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.« less
Optimal Wonderful Life Utility Functions in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)
2000-01-01
The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.
Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J
2016-10-01
To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Martin, Ralph J; Santiago, Bartolo
2015-09-01
Left ventricular (LV) function parameters have major diagnostic and prognostic importance in heart disease. Measurement of ventricular function with tomographic (SPECT) radionuclide ventriculography (MUGA) decreases camera time, improves contrast resolution, accuracy of interpretation and the overall reliability of the study as compared to planar MUGA. The relationship between these techniques is well established particularly with LV ejection fraction (LVEF), while there is limited data comparing the diastolic function parameters. Our goal was to validate the LV function parameters in our Hispanic population. Studies from 44 patients, available from 2009-2010, were retrospectively evaluated. LVEF showed a good correlation between the techniques (r=0.94) with an average difference of 3.8%. In terms of categorizing the results as normal or abnormal, this remained unchanged in 95% of the cases (p=0.035). For the peak filling rate, there was a moderate correlation between the techniques (r=0.71), whereas the diagnosis remained unchanged in 89% of cases (p=0.0004). Time to peak filling values only demonstrated a weak correlation (r=0.22). Nevertheless, the diagnosis remained the same in 68% of the cases (p=0.089). Systolic function results in our study were well below the 7-10% difference reported in the literature. Only a weak to moderate correlation was observed with the diastolic function parameters. Comparison with echocardiogram (not available) may be of benefit to evaluate which of these techniques results in more accurate diastolic function parameters.
NASA Technical Reports Server (NTRS)
Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue
2009-01-01
We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.
Predicting mining activity with parallel genetic algorithms
Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,
2005-01-01
We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.
Improving information retrieval in functional analysis.
Rodriguez, Juan C; González, Germán A; Fresno, Cristóbal; Llera, Andrea S; Fernández, Elmer A
2016-12-01
Transcriptome analysis is essential to understand the mechanisms regulating key biological processes and functions. The first step usually consists of identifying candidate genes; to find out which pathways are affected by those genes, however, functional analysis (FA) is mandatory. The most frequently used strategies for this purpose are Gene Set and Singular Enrichment Analysis (GSEA and SEA) over Gene Ontology. Several statistical methods have been developed and compared in terms of computational efficiency and/or statistical appropriateness. However, whether their results are similar or complementary, the sensitivity to parameter settings, or possible bias in the analyzed terms has not been addressed so far. Here, two GSEA and four SEA methods and their parameter combinations were evaluated in six datasets by comparing two breast cancer subtypes with well-known differences in genetic background and patient outcomes. We show that GSEA and SEA lead to different results depending on the chosen statistic, model and/or parameters. Both approaches provide complementary results from a biological perspective. Hence, an Integrative Functional Analysis (IFA) tool is proposed to improve information retrieval in FA. It provides a common gene expression analytic framework that grants a comprehensive and coherent analysis. Only a minimal user parameter setting is required, since the best SEA/GSEA alternatives are integrated. IFA utility was demonstrated by evaluating four prostate cancer and the TCGA breast cancer microarray datasets, which showed its biological generalization capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving the Bandwidth Selection in Kernel Equating
ERIC Educational Resources Information Center
Andersson, Björn; von Davier, Alina A.
2014-01-01
We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…
Improved cognitive functioning in obese adolescents after a 30-week inpatient weight loss program.
Vantieghem, Stijn; Bautmans, Ivan; Guchtenaere, Ann De; Tanghe, Ann; Provyn, Steven
2018-06-15
Studies linked obesity with a large number of medical conditions including decreased cognitive functioning. The relation between BMI and cognition was proven in adults, but in adolescents the results are conflicting. Further, limited data are available on the impact of weight loss on cognition. This study analyzed the impact of a 30-week lasting weight loss program on cognition and determined the impact of changes in body composition and self-perceived fatigue on changes in cognition. Sixty-two obese adolescents were evaluated at baseline and after 30 weeks. Stroop test (ST; selective attention), Continuous Performance Test (CPT; sustained attention) and Ray Auditory verbal learning test (RAVLT; short-term memory) were assessed. Additionally, body composition parameters and fatigue (MFI-20) were evaluated. Improved reaction times were found for ST and CPT after the intervention, but were independent for reductions in BMI, fat mass, fat%, and fatigue. Short memory also improved with decreased fatigue as an influencing parameter. Accuracy of ST and CPT showed no significant changes. A 30-week lasting inpatient weight loss program improved selective attention, sustained attention, and short-term memory. Changes in body composition did not explain the improvements in cognitive functioning. Decreased fatigue resulted in improved aspects of cognition.
Cohen-Holzer, Marilyn; Sorek, Gilad; Schless, Simon; Kerem, Julie; Katz-Leurer, Michal
2016-01-01
To assess the influence of an intensive combined constraint and bimanual upper extremity (UE) training program using a variety of modalities including the fitness room and pool, on UE functions as well as the effects of the program on gait parameters among children with hemiparetic cerebral palsy. Ten children ages 6-10 years participated in the program for 2 weeks, 5 days per week for 6 hr each day. Data from the Assisting Hand Assessment (AHA) for bimanual function , the Jebsen-Taylor Test of Hand Function (JTTHF) for unimanual function, the six-minute walk test (6MWT), and the temporal-spatial aspects of gait using the GAITRite walkway were collected prior to, immediately post and 3-months post-intervention. A significant improvement was noted in both unimanual as well as bimanual UE performance; A significant improvement in the 6MWT was noted, from a median of 442 meter [range: 294-558] at baseline to 466 [432-592] post intervention and 528 [425-609] after 3 months (p = .03). Combining intensive practice in a variety of modalities, although targeting to the UE is associated with substantial improvement both in the upper as well as in the lower extremity function.
Identifying aMCI with Functional Connectivity Network Characteristics based on Subtle AAL Atlas.
Zhuo, Zhizheng; Mo, Xiao; Ma, Xiangyu; Han, Ying; Li, Haiyun
2018-05-02
To investigate the subtle functional connectivity alterations of aMCI based on AAL atlas with 1024 regions (AAL_1024 atlas). Functional MRI images of 32 aMCI patients (Male/Female:15/17, Ages:66.8±8.36y) and 35 normal controls (Male/Female:13/22, Ages: 62.4±8.14y) were obtained in this study. Firstly, functional connectivity networks were constructed by Pearson's Correlation based on the subtle AAL_1024 atlas. Then, local and global network parameters were calculated from the thresholding functional connectivity matrices. Finally, multiple-comparison analysis was performed on these parameters to find the functional network alterations of aMCI. And furtherly, a couple of classifiers were adopted to identify the aMCI by using the network parameters. More subtle local brain functional alterations were detected by using AAL_1024 atlas. And the predominate nodes including hippocampus, inferior temporal gyrus, inferior parietal gyrus were identified which was not detected by AAL_90 atlas. The identification of aMCI from normal controls were significantly improved with the highest accuracy (98.51%), sensitivity (100%) and specificity (97.14%) compared to those (88.06%, 84.38% and 91.43% for the highest accuracy, sensitivity and specificity respectively) obtained by using AAL_90 atlas. More subtle functional connectivity alterations of aMCI could be found based on AAL_1024 atlas than those based on AAL_90 atlas. Besides, the identification of aMCI could also be improved. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
Schega, Lutz; Peter, Beate; Brigadski, Tanja; Leßmann, Volkmar; Isermann, Berend; Hamacher, Dennis; Törpel, Alexander
2016-11-01
Physical exercise, especially aerobic training, improves physical performance and cognitive function of older people. Furthermore, it has been speculated that age-associated deteriorations in physical performance and cognitive function could be counteracted through exposures to passive intermittent normobaric hypoxia (IH). Thus, the present investigation aimed at investigating the effect of passive IH combined with subsequent aerobic training on hematological parameters and aerobic physical performance (V˙O 2max ) as well as peripheral levels of the neurotrophin brain-derived neurotrophic factor (BDNF) and cognitive function. Randomized controlled trial in a repeated measure design. 34 older participants were randomly assigned to an intervention group (IG) or control group (CG). While IG was supplied with passive IH for 90min, CG breathed ambient air. Subsequently, both groups underwent 30min of aerobic training three times per week for four consecutive weeks. Aerobic physical performance and cognitive function was tested with spiroergometry and the Stroop test. Blood samples were taken to measure hematological parameters and the peripheral serum BDNF-level. We found increases in the values of hematological parameters, the time to exhaustion in the load test and an augmented and sustainable improvement in cognitive function within the IG of the older people only. However, in both groups, the V˙O 2max and serum BDNF-level did not increase. Based on these results, hypoxic training seems to be beneficial to enhance hematological parameters, physical performance and cognitive function in older people. The current hypoxic-dose was not able to enhance the serum BDNF-level or V˙O 2max . Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Karaahmet, Özgür Zeliha; Gürçay, Eda; Kara, Murat; Serçe, Azize; Kıraç Ünal, Zeynep; Çakcı, Aytül
2017-12-19
Background/aim: This study aimed to compare the effectiveness of ultrasound (US)-guided injection versus blind injection of corticosteroids in the treatment of carpal tunnel syndrome (CTS). Materials and methods: This prospective, randomized clinical trial included patients with severe CTS based on clinical and electrophysiological criteria. The patients were evaluated for clinical and electrophysiological parameters at baseline and 4 weeks after treatment. Symptom severity and hand function were assessed by the Boston questionnaire. The patients underwent blind injection or US-guided injection. Results: When compared with baseline, both groups showed significant improvement in Boston questionnaire scores and all electrophysiological parameters. Significant differences were observed between the groups for clinical parameters (Boston Symptom Severity Scale: P = 0.007; Functional Status Scale: P < 0.001) in favor of the US-guided group. Conclusion: This study demonstrated that both US-guided and blind injections were effective in reducing symptoms and improving hand function. US-guided injections may yield more effective clinical results in the short-term than blind injections in the treatment of patients with severe CTS.
Relaxed Fidelity CFD Methods Applied to Store Separation Problems
2004-06-01
accuracy-productivity characteristics of influence function methods and time-accurate CFD methods. Two methods are presented in this paper, both of...which provide significant accuracy improvements over influence function methods while providing rapid enough turn around times to support parameter and
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jufeng; Xia, Bing; Shang, Yunlong
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...
2016-12-22
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Effects of Trimetazidine on T Wave Alternans in Stable Coronary Artery Disease
Yaman, Mehmet; Gümrükçüoğlu, Hasan Ali; Şahin, Musa; Şimşek, Hakkı; Akdağ, Serkan
2016-01-01
Background and Objectives Studies reveal that the microvolt T wave alternans (MTWA) test has a high negative predictive value for arrhythmic mortality among patients with ischemic or non-ischemic cardiomyopathy. In this study, we investigate the effects of trimetazidine treatment on MTWA and several echocardiographic parameters in patients with stable coronary artery disease. Subjects and Methods One hundred patients (23 females, mean age 55.6±9.2 years) with stable ischemic heart disease were included in the study group. Twenty-five age- and sex-matched patients with stable coronary artery disease formed the control group. All patients were stable with medical treatment, and had no active complaints. Trimetazidine, 60 mg/day, was added to their current treatment for a minimum three months in the study group and the control group received no additional treatment. Pre- and post-treatment MTWA values were measured by 24 hour Holter testing. Left ventricular systolic and diastolic functions were assessed by echocardiography. Results After trimetazidine treatment, several echocardiographic parameters related with diastolic dysfunction significantly improved. MTWA has been found to be significantly improved after trimethazidine treatment (63±8 μV vs. 53±7 μV, p<0.001). Abnormal MTWA was present in 29 and 11 patients pre- and post-treatment, respectively (p< 0.001). Conclusion Trimetazidine improves MTWA, a non-invasive determinant of electrical instability. Moreover, several echocardiographic parameters related with left ventricular functions also improved. Thus, we can conclude that trimetazidine may be an effective agent to prevent arrhythmic complications and improve myocardial functions in patients with stable coronary artery disease. PMID:27275171
Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael
2011-01-01
With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen
2015-11-01
The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.
Fink, Reinhold F
2010-11-07
A rigorous perturbation theory is proposed, which has the same second order energy as the spin-component-scaled Møller-Plesset second order (SCS-MP2) method of Grimme [J. Chem. Phys. 118, 9095 (2003)]. This upgrades SCS-MP2 to a systematically improvable, true wave-function-based method. The perturbation theory is defined by an unperturbed Hamiltonian, Ĥ(0), that contains the ordinary Fock operator and spin operators Ŝ(2) that act either on the occupied or the virtual orbital spaces. Two choices for Ĥ(0) are discussed and the importance of a spin-pure Ĥ((0)) is underlined. Like the SCS-MP2 approach, the theory contains two parameters (c(os) and c(ss)) that scale the opposite-spin and the same-spin contributions to the second order perturbation energy. It is shown that these parameters can be determined from theoretical considerations by a Feenberg scaling approach or a fit of the wave functions from the perturbation theory to the exact one from a full configuration interaction calculation. The parameters c(os)=1.15 and c(ss)=0.75 are found to be optimal for a reasonable test set of molecules. The meaning of these parameters and the consequences following from a well defined improved MP method are discussed.
Santi, Daniele; Granata, Antonio R M; Guidi, Alessandro; Pignatti, Elisa; Trenti, Tommaso; Roli, Laura; Bozic, Roberto; Zaza, Stefano; Pacchioni, Chiara; Romano, Stefania; Nofer, Jerzy Roch; Rochira, Vincenzo; Carani, Cesare; Simoni, Manuela
2016-04-01
Type 2 diabetes mellitus (T2DM) is associated with endothelial dysfunction, characterized by a reduction of nitric oxide (NO)-mediated relaxation. Phosphodiesterase type 5 inhibitors (PDE5i) improve NO levels. The aim of the study was to investigate whether long-term, chronic treatment with the PDE5i vardenafil improves systemic endothelial function in diabetic men. A prospective, investigator-initiated, randomized, placebo-controlled, double-blind, clinical trial was conducted. In total, 54 male patients affected by T2DM, diagnosed within the last 5 years, and erectile dysfunction were enrolled, regardless of testosterone levels. In all, 26 and 28 patients were assigned to verum and placebo groups respectively. The study consisted of an enrollment phase, a treatment phase (24 weeks) (vardenafil/placebo 10 mg twice in a day) and a follow-up phase (24 weeks). Parameters evaluated were as follows: International Index of Erectile Function 15 (IIEF-15), flow-mediated dilation (FMD), serum interleukin 6 (IL6), endothelin 1 (ET-1), gonadotropins and testosterone (measured by liquid chromatography/tandem mass spectrometry). IIEF-15 erectile function improved during the treatment (P<0.001). At the end of the treatment both FMD (P=0.040) and IL6 (P=0.019) significantly improved. FMD correlated with serum testosterone levels (R(2)=0.299; P<0.001). Testosterone increased significantly under vardenafil treatment and returned in the eugonadal range only in hypogonadal men (n=13), without changes in gonadotropins. Chronic vardenafil treatment did not result in relevant side effects. This is the first double-blind, placebo-controlled clinical trial designed to evaluate the effects of chronic treatment of vardenafil on endothelial health-related parameters and sexual hormones in patients affected by a chronic disease. Chronically administered vardenafil is effective and improves endothelial parameters in T2DM patient. Moreover, chronic vardenafil therapy improves hypogonadism in diabetic, hypogonadal men. © 2016 European Society of Endocrinology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, Jonathan D.; Tozer, David J., E-mail: d.j.tozer@durham.ac.uk
Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisationmore » potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.« less
Spontaneous improvement in oculomotor function of children with cerebral palsy.
Ego, Caroline; Orban de Xivry, Jean-Jacques; Nassogne, Marie-Cécile; Yüksel, Demet; Lefèvre, Philippe
2014-11-20
Eye movements are essential to get a clear vision of moving objects. In the present study, we assessed quantitatively the oculomotor deficits of children with cerebral palsy (CP). We recorded eye movements of 51 children with cerebral palsy (aged 5-16 years) with relatively mild motor impairment and compared their performance with age-matched control and premature children. Overall eye movements of children with CP are unexpectedly close to those of controls even though some oculomotor parameters are biased by the side of hemiplegia. Importantly, the difference in performance between children with CP and controls decreases with age, demonstrating that the oculomotor function of children with CP develops as fast as or even faster than controls for some visual tracking parameters. That is, oculomotor function spontaneously improves over the course of childhood. This evolution highlights the ability of lesioned brain of children with CP to compensate for impaired motor function beyond what would be achieved by normal development on its own. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cogniet, A; Aunoble, S; Rigal, J; Demezon, H; Sadikki, R; Le Huec, J C
2016-08-01
Pedicle subtraction osteotomy (PSO) is one of the surgical options for treating alignment disorders of the fused spine (due to post-surgical fusion or related to arthritis). It enables satisfactory sagittal realignment and improved function due to economic sagittal balance. The aim of this study was to analyze clinical and radiological results of PSO after a minimum follow-up of 2 years and demonstrate the benefit of sub-group analysis as a function of pelvic incidence (PI). A descriptive prospective single center study of 63 patients presenting with spinal global malalignment who underwent correction by PSO. Function was assessed by the Oswestry disability index (ODI), a visual analog scale of lumbar pain (VAS) and a SF-36 questionnaire. Radiographic analyses of pre- and post-operative pelvic-spinal parameters were performed on X-rays obtained by EOS(®) imaging after 3D modeling. Global analysis and analysis of sub-groups as a function of pelvic incidence were performed and the full balance integrated index (FBI) was calculated. this series showed a marked clinical improvement and significant progress of functional scores. Global post-operative radiological analysis showed a significant improvement in all pelvic and spinal parameters. The mean correction obtained after PSO was 31.7° ± 8.4°, hence global improvement of lumbar lordosis of 22°. The sagittal vertical angle (SVA) decreased from +9 cm before surgery to +4.3 cm after surgery. Sub-group analysis demonstrated greater improvement in pelvic tilt, sacral slope and spinal parameters of patients with a small or moderate pelvic incidence; all had an FBI index <10°. Most of the pelvic and spinal parameters of patients with a large pelvic incidence were insufficiently corrected and they had an FBI index >10° PSO is a surgical procedure enabling correction of multiplane rigid spinal deformities that require major sagittal correction. It was seen to be highly effective in patients with a small or moderate pelvic incidence (PI <60°) but was sometimes less effective in patients with large pelvic incidence due to insufficient lordosis correction. Clinical results were highly correlated with the value of the FBI index.
Zhu, Xiao-Xue; Zhu, Da-Long; Li, Xiao-Ying; Li, Ya-Lin; Jin, Xiao-Wei; Hu, Tian-Xin; Zhao, Yu; Li, Yong-Guo; Zhao, Gui-Yu; Ren, Shuang; Zhang, Yi; Ding, Yan-Hua; Chen, Li
2018-04-29
To investigate pharmacokinetics and pharmacodynamics of a dual acting glucokinase activator dorzagliatin and its safety, tolerability and effect on pancreatic β-cell function in Chinese type 2 diabetes patients. Twenty-four T2D subjects were selected utilizing a set of predefined clinical biomarkers. They were randomized to receive dorzagliatin 75mg twice or once a day (BID, QD) for 28 days. Changes in HbA1c and glycemic parameters from baseline to Day 28 were assessed. In addition, changes of β-cell function from baseline to Day 32 were evaluated. Significant HbA1c reduction were observed in both regimens on Day 28 (-0.79%, 75mg BID; -1.22%, 75 mg QD). Similar trends were found in the following parameters, including reductions from baseline of fasting plasma glucose by 1.20 mmol/L and 1.51 mmol/L, 2-hour postprandial glucose by 2.48 mmol/L and 5.03 mmol/L, and glucose AUC 0-24 by 18.59% and 20.98%, for BID and QD groups, respectively. Both regimens resulted in improvement of β-cell function as measured by steady state HOMA 2 parameter, %B, which increased by 36.31% and 40.59%, and by dynamic state parameter, ΔC 30 /ΔG 30 , which increased by 24.66% and 167.67%, for BID and QD groups, respectively. Dorzagliatin was well tolerated in both regimens with good pharmacokinetics profiles. Dorzagliatin treatment for 28 days in Chinese T2D patients selected based on pre-defined biomarkers resulted in significant improvement of β-cell function and glycemic control. The safety and pharmacokinetics profile of dorzagliatin supports a subsequent Phase II trial design and continued clinical development. This article is protected by copyright. All rights reserved.
Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil
NASA Astrophysics Data System (ADS)
Zhu, Q.
2017-12-01
Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.
Agbalalah, Tari; Hughes, Stephen F; Freeborn, Ellen J; Mushtaq, Sohail
2017-10-01
This systematic review aims to evaluate randomised controlled trials (RCTs) investigating the effect of vitamin D supplementation on endothelial function and inflammation in adults. An electronic search of published randomised controlled trials, using Cochrane, Pubmed and Medline databases was conducted, with the search terms related to vitamin D and endothelial function. Inclusion criteria were RCTs in adult humans with a measure of vitamin D status using serum/plasma 25(OH)D and studies which administered the intervention through the oral route. Among the 1107 studies retrieved, 29 studies met the full inclusion criteria for this systematic review. Overall, 8 studies reported significant improvements in the endothelial/inflammatory biomarkers/parameters measured. However, in 2 out of the 8 studies, improvements were reported at interim time points, but improvements were absent post-intervention. The remaining 21 trial studies did not show significant improvements in the markers of interest measured. Evidence from the studies included in this systematic review did not demonstrate that vitamin D supplementation in adults, results in an improvement in circulating inflammatory and endothelial function biomarkers/parameters. This systematic review does not therefore support the use of vitamin D supplementation as a therapeutic or preventative measure for CVD in this respect. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard
2010-11-01
In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Prévost, Alain; Lafitte, Marianne; Pucheu, Yann; Couffinhal, Thierry
2015-03-01
Supervised exercise programs increase physical performance in patients with peripheral artery disease (PAD). However, there are a limited number of programs, and to date they have failed to provide evidence of long-term adherence to exercise or any meaningful effect on Quality of Life (QoL). We created a program of therapeutic education and a personalized program of reconditioning exercise for patients with PAD. Patients with an ankle-brachial index (ABI) below 0.9 in at least one limb, and an absolute claudication distance (ACD) ≤500 meters, were included in the study. Quality of Life (QoL) as measured by SF-36, cardiovascular risk factors and functional parameters were evaluated at 0, 3, 6 and 12 months. Forty-six patients completed the program. Cardiovascular risks were controlled and stabilized over time. SF-36 scores improved significantly and remained stable. Initial and absolute claudication distance (ICD and ACD) as well as other functional parameters improved significantly (6 months: +138 m or +203% ICD and +139 m or +84% ACD). Ten patients (22%) did not show improvement in ICD or ACD within the first 3 months, but their SF-36 score did increase at subsequent visits. Interestingly, these patients had a significantly lower ACD at baseline. This study measured beneficial effects of an educational therapeutic program for patients with PAD. The results demonstrate a significant improvement in functional and QoL parameters during the first 3 months of coaching, and long-term persistence of the results even when patients were no longer coached. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Pan, Qing; Yao, Jialiang; Wang, Ruofan; Cao, Ping; Ning, Gangmin; Fang, Luping
2017-08-01
The vessels in the microcirculation keep adjusting their structure to meet the functional requirements of the different tissues. A previously developed theoretical model can reproduce the process of vascular structural adaptation to help the study of the microcirculatory physiology. However, until now, such model lacks the appropriate methods for its parameter settings with subsequent limitation of further applications. This study proposed an improved quantum-behaved particle swarm optimization (QPSO) algorithm for setting the parameter values in this model. The optimization was performed on a real mesenteric microvascular network of rat. The results showed that the improved QPSO was superior to the standard particle swarm optimization, the standard QPSO and the previously reported Downhill algorithm. We conclude that the improved QPSO leads to a better agreement between mathematical simulation and animal experiment, rendering the model more reliable in future physiological studies.
ERIC Educational Resources Information Center
Boer, P. H.
2018-01-01
Background: Structured exercise has shown to improve parameters of functional fitness in adults with Down syndrome (DS). However, few, if any, continue to exercise after exercise intervention studies. Consequently, the purpose of this study was to determine the effects of detraining on anthropometry, aerobic capacity and functional ability of…
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
Gross, R; Robertson, J; Leboeuf, F; Hamel, O; Brochard, S; Perrouin-Verbe, B
2017-02-01
Stiff knee gait is a troublesome gait disturbance related to spastic paresis, frequently associated with overactivity of the rectus femoris muscle in the swing phase of gait. The aim of this study was to assess the short-term effects of rectus femoris neurotomy for the treatment of spastic stiff-knee gait in patients with hemiparesis. An Intervention study (before-after trial) with an observational design was carried out in a university hospital. Seven ambulatory patients with hemiparesis of spinal or cerebral origin and spastic stiff-knee gait, which had previously been improved by botulinum toxin injections, were proposed a selective neurotomy of the rectus femoris muscle. A functional evaluation (Functional Ambulation Classification and maximal walking distance), clinical evaluation (spasticity - Ashworth scale and Duncan-Ely test, muscle strength - Medical Research Council scale), and quantitative gait analysis (spatiotemporal parameters, stiff knee gait-related kinematic and kinetic parameters, and dynamic electromyography of rectus femoris) were performed as outcome measures, before and 3 months after rectus femoris neurotomy. Compared with preoperative values, there was a significant increase in maximal walking distance, gait speed, and stride length at 3 months. All kinematic parameters improved, and the average early swing phase knee extension moment decreased. The duration of the rectus femoris burst decreased post-op. This study is the first to show that rectus femoris neurotomy helps to normalise muscle activity during gait, and results in improvements in kinetic, kinematic, and functional parameters in patients with spastic stiff knee gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada
2018-04-01
Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.
Valadares, Fabiana; Garbi Novaes, Maria Rita Carvalho; Cañete, Roberto
2013-01-01
Breast cancer (BC) represents the highest incidence of malignancy in women throughout the world. Medicinal fungi can stimulate the body, reduce side-effects associated with chemotherapy and improve the quality of life in patients with cancer. To evaluate the effects of dietary supplementation of Agaricus sylvaticus on clinical and nutritional parameters in BC patients undergoing chemotherapy. A randomized, placebo-controlled, double-blind, clinical trial was carried out at the Oncology Clinic, Hospital of the Federal District-Brazil from September 2007 to July 2009. Forty six patients with BC, Stage II and III, were randomly assigned to receive either nutritional supplement with A. sylvaticus (2.1 g/day) or placebo. Patients were evaluated during treatment period. Patient supplemented with A. sylvaticus improved in clinical parameters and gastrointestinal functions. Poor appetite decreased by 20% with no changes in bowel functions (92.8%), nausea and vomiting (80%). Dietary supplementation with A. sylvaticus improved nutritional status and reduced abnormal bowel functions, nausea, vomiting, and anorexia in patients with BC receiving chemotherapy.
Aydemir, Koray; Tok, Fatih; Peker, Fatma; Safaz, Ismail; Taskaynatan, Mehmet Ali; Ozgul, Ahmet
2010-01-01
This study aimed to determine the effects of balneotherapy on disease activity, functional status, metrology index, pulmonary function and quality of life in patients with ankylosing spondylitis (AS). The study included 28 patients (27 male and 1 female) diagnosed with AS according to modified New York criteria. The patients were treated with balneotherapy for 3 weeks (30 min/day, 5 days/week). The patients were evaluated using the global index, Bath ankylosing spondylitis disease activity index (BASDAI), disease functional index (BASFI), metrology index (BASMI), chest expansion measures, pulmonary function testing, and the medical outcomes study-short form-36 Health Survey (SF-36) (measure of quality of life) before balneotherapy and 1 month after treatment. Post balneotherapy BASDAI and global index decreased, BASMI parameters improved, chest expansion increased, and some SF-36 parameters improved; however, none of these changes were statistically significant (P > 0.05), except for the decrease in BASMI total score (P < 0.05). Before balneotherapy 6 patients had restrictive pulmonary disorder, according to pulmonary function test results. Pulmonary function test results in 3 (50%) patients were normalized following balneotherapy; however, as for the other index, balneotherapy did not significantly affect pulmonary function test results. The AS patients' symptoms, clinical findings, pulmonary function test results, and quality of life showed a trend to improve following balneotherapy, although without reaching significant differences. Comprehensive randomized controlled spa intervention studies with longer follow-up periods may be helpful in further delineating the therapeutic efficacy of balneotherapy in AS patients.
Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E
1999-08-01
Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses. In this study we present a new measurement, wrap pressure. We also present that in aortomyoplasty using LDM, the most significant improvement in wrap pressure, aortic diastolic pressure and changes in aortic diastolic pressure occurs when the stimulation consists of an amplitude of 4 V, a frequency of 33 Hz and a train stimulation of 6 pulses.
NASA Astrophysics Data System (ADS)
Yuan, Chunhua; Wang, Jiang; Yi, Guosheng
2017-03-01
Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.
Ramalho, Fátima; Santos-Rocha, Rita; Branco, Marco; Moniz-Pereira, Vera; André, Helô-Isa; Veloso, António P; Carnide, Filomena
2018-01-01
Gait ability in older adults has been associated with independent living, increased survival rates, fall prevention, and quality of life. There are inconsistent findings regarding the effects of exercise interventions in the maintenance of gait parameters. The aim of the study was to analyze the effects of a community-based periodized exercise intervention on the improvement of gait parameters and functional fitness in an older adult group compared with a non-periodized program. A quasi-experimental study with follow-up was performed in a periodized exercise group (N=15) and in a non-periodized exercise group (N=13). The primary outcomes were plantar pressure gait parameters, and the secondary outcomes were physical activity, aerobic endurance, lower limb strength, agility, and balance. These variables were recorded at baseline and after 6 months of intervention. Both programs were tailored to older adults' functional fitness level and proved to be effective in reducing the age-related decline regarding functional fitness and gait parameters. Gait parameters were sensitive to both the exercise interventions. These exercise protocols can be used by exercise professionals in prescribing community exercise programs, as well as by health professionals in promoting active aging.
The potential of multiparametric MRI of the breast
Pinker, Katja; Helbich, Thomas H
2017-01-01
MRI is an essential tool in breast imaging, with multiple established indications. Dynamic contrast-enhanced MRI (DCE-MRI) is the backbone of any breast MRI protocol and has an excellent sensitivity and good specificity for breast cancer diagnosis. DCE-MRI provides high-resolution morphological information, as well as some functional information about neoangiogenesis as a tumour-specific feature. To overcome limitations in specificity, several other functional MRI parameters have been investigated and the application of these combined parameters is defined as multiparametric MRI (mpMRI) of the breast. MpMRI of the breast can be performed at different field strengths (1.5–7 T) and includes both established (diffusion-weighted imaging, MR spectroscopic imaging) and novel MRI parameters (sodium imaging, chemical exchange saturation transfer imaging, blood oxygen level-dependent MRI), as well as hybrid imaging with positron emission tomography (PET)/MRI and different radiotracers. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the underlying oncogenic processes of cancer development and progression and can provide additional specificity. This article will review the current and emerging functional parameters for mpMRI of the breast for improved diagnostic accuracy in breast cancer. PMID:27805423
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.
Bamonti, Fabrizia; Pellegatta, Marco; Novembrino, Cristina; Vigna, Luisella; De Giuseppe, Rachele; de Liso, Federica; Gregori, Dario; Noce, Cinzia Della; Patrini, Lorenzo; Schiraldi, Gianfranco; Bonara, Paola; Calvelli, Laura; Maiavacca, Rita; Cighetti, Giuliana
2013-01-01
Cigarette smoking is associated with reduced pulmonary function and increased risk factors for cardiovascular disease. This randomized placebo-controlled double-blind study evaluated the effects of two different combinations of mixed fruit and vegetable juice powder concentrate (Juice Plus+, NSA, Collierville, TN) on heavy smokers. At baseline (T 0) and after 3 months' supplementation (T 1), pulmonary function parameters and cardiovascular risk factors-that is, plasma total homocysteine (tHcy) with related B vitamins and cysteine (tCys) concentrations-were assessed in 75 apparently healthy smokers (aged 49.2 ± 10.6 years, >20 cigarettes/d, duration ≥10 years) randomized into 3 groups: placebo (P), fruit/vegetable (FV) and fruit/vegetable/berry (FVB). T 0: most smokers showed abnormalities in tHcy and tCys concentrations. T 1: respiratory function was unchanged in P and slightly, but not significantly, improved in FV, whereas FVB showed a significant improvement in forced expiratory flow at 25% (FEF25; p < 0.0001 vs P and FV) and significant improvement in CO diffusion lung/alveolar volume (DLCO/VA). FV and FVB (50%) showed significant reduction in tHcy and tCys compared to T 0 ( p < 0.0001) and P ( p < 0.0001). At T 1, both supplemented groups, but to a greater extent the FVB group, showed improvements in some pulmonary parameters, cardiovascular risk factors, and folate status. The beneficial effects of Juice Plus+ supplementation could potentially help smokers, even if smoking cessation is advisable.
Zhou, Min; Dai, Ji; Du, Min; Wang, Wei; Guo, Changxing; Wang, Yi; Tang, Rui; Xu, Fengling; Rao, Zhuqing; Sun, Gengyun
2016-08-01
The role of dobutamine in the relief of pulmonary edema during septic shock-induced acute respiratory distress syndrome (ARDS) remains undetermined, due to a lack of controllable and quantitative clinical studies. Our objective was to assess the potential effects of dobutamine on extravascular lung water index (ELWI) in septic shock-induced ARDS, reflecting its importance in pulmonary edema. At the same time, ventilator function and perfusion parameters were evaluated. We designed a prospective, non-randomized, non-blinded, controlled study to compare the differences in PiCCO parameters after 6 h of constant dobutamine infusion (15 μg/kg/min), in the baseline parameters in 26 septic shock-related ARDS patients with cardiac index ≥ 2.5I/min/m(2) and hyperlactatemia. These patients (12 survivors/14 non-survivors) were monitored using the PiCCO catheter system within 48 h of onset of septic shock. The dynamic changes in ELWI, which is typically used for quantifying the extent of pulmonary edema, were evaluated, and the corresponding ventilator function and tissue perfusion parameters were also measured. Decreasing ELWI (p = 0.0376) was accompanied by significantly decreased SVRI (p < 0.0001). Despite a significant increase in cardiac output (p < 0.0001), no differences were found in ITBI or GEDI. Moreover, the required dose of norepinephrine was decreased (p = 0.0389), and urine output was increased (p = 0.0358), accompanied by stabilized lactacidemia and MAP. Additionally, airway pressure was moderately improved. During the early stage of septic shock-induced ARDS, dobutamine treatment demonstrated a beneficial effect by relieving pulmonary edema in patients, without a negative elevation in preload or hemodynamics, which might account for the improvements in ventilator function and tissue hypoperfusion.
Optimized Design and Analysis of Sparse-Sampling fMRI Experiments
Perrachione, Tyler K.; Ghosh, Satrajit S.
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione, Tyler K; Ghosh, Satrajit S
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.
Nakatsui, M; Horimoto, K; Lemaire, F; Ürgüplü, A; Sedoglavic, A; Boulier, F
2011-09-01
Recent remarkable advances in computer performance have enabled us to estimate parameter values by the huge power of numerical computation, the so-called 'Brute force', resulting in the high-speed simultaneous estimation of a large number of parameter values. However, these advancements have not been fully utilised to improve the accuracy of parameter estimation. Here the authors review a novel method for parameter estimation using symbolic computation power, 'Bruno force', named after Bruno Buchberger, who found the Gröbner base. In the method, the objective functions combining the symbolic computation techniques are formulated. First, the authors utilise a symbolic computation technique, differential elimination, which symbolically reduces an equivalent system of differential equations to a system in a given model. Second, since its equivalent system is frequently composed of large equations, the system is further simplified by another symbolic computation. The performance of the authors' method for parameter accuracy improvement is illustrated by two representative models in biology, a simple cascade model and a negative feedback model in comparison with the previous numerical methods. Finally, the limits and extensions of the authors' method are discussed, in terms of the possible power of 'Bruno force' for the development of a new horizon in parameter estimation.
Robust support vector regression networks for function approximation with outliers.
Chuang, Chen-Chia; Su, Shun-Feng; Jeng, Jin-Tsong; Hsiao, Chih-Ching
2002-01-01
Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not straightforward. Besides, in SVR, outliers may also possibly be taken as support vectors. Such an inclusion of outliers in support vectors may lead to seriously overfitting phenomena. In this paper, a novel regression approach, termed as the robust support vector regression (RSVR) network, is proposed to enhance the robust capability of SVR. In the approach, traditional robust learning approaches are employed to improve the learning performance for any selected parameters. From the simulation results, our RSVR can always improve the performance of the learned systems for all cases. Besides, it can be found that even the training lasted for a long period, the testing errors would not go up. In other words, the overfitting phenomenon is indeed suppressed.
Midha, M; Schmitt, J K; Sclater, M
1999-03-01
To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.
Gunathilake, K D P P; Yu, Li Juan; Rupasinghe, H P Vasantha
2014-04-01
Reverse osmosis (RO) as a potential technique to improve the antioxidant properties of cranberry, blueberry and apple juices was evaluated for the formulation of a functional beverage. The effects of temperature (20-40 °C) and trans-membrane pressure (25-35 bars) on physico-chemical and antioxidant properties of fruit juices were evaluated to optimize the operating parameters for each fruit juice. There was no significant effect on any quality parameters of fruit juices under studied operating parameters of RO. However, total soluble solid, total acidity and colour (a(∗)) of the concentrated juices increased in proportion to their volumetric concentrations. Antioxidant capacity measured by FRAP assay of concentrated apple, blueberry and cranberry juice was increased by 40%, 34%, and 30%, respectively. LDL oxidation inhibition by concentrated blueberry and cranberry juice was increased up to 41% and 45%, respectively. The results suggest that RO can be used for enhancing the health promoting properties of fruit juices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sliepen, Maik; Mauricio, Elsa; Rosenbaum, Dieter
2018-05-01
Knee osteoarthritis (KOA) is a painful disease commonly caused by high loads on the articular cartilage. Orthotic interventions aim to reduce mechanical loading, thereby alleviating pain. Traditional orthotics appear effective, but high drop-out rates have been reported over prolonged periods. The aim of this study was to examine the effect of a novel ankle-foot orthosis (AFO) on gait parameters, physical function and activity of KOA patients. 29 clinically diagnosed KOA patients with varus malalignment wore an AFO for 6 weeks. Prior to and after the intervention period, 3D gait analysis, physical function tests and the KOOS questionnaire were administered. Physical activity was objectively assessed with accelerometers. The AFO immediately reduced the first peak of the knee adduction moment (KAM) and the KAM impulse by 41% and 19%. The knee flexion moment (KFM) was increased by 48%. After six weeks, the first KAM peak and KAM impulse were decreased by 27% and 19% while using the AFO. The KFM was increased by 71%. Furthermore, patients completed the functional tests faster (1.4-2.6%). The KOOS scores decreased significantly. No significant differences were found in physical activity parameters. The six-week AFO application significantly reduced the KAM. The patients' physical function appeared improved; yet these improvements were only minor and therefore arguably clinically irrelevant. The KFM appeared to be negatively affected after six weeks, as were the scores on the KOOS subscales. In summary, even though the AFO reduced the KAM and improved physical function, the clinical benefit for KOA patients with varus malalignment after the 6-week AFO application is debatable. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.
Echinaka, Yuki; Ozeki, Yukiyasu
2016-10-01
The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh
2017-07-04
Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p < 0.01) and significant increase in the values of P-R segments (p < 0.01) were detected following exercise post-supplementation in TG rather than in PG. Significantly higher values of taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values <0.01). Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.
NASA Astrophysics Data System (ADS)
Xu, Chun-Long; Zhang, Min-Cang
2017-01-01
The arbitrary l-wave solutions to the Schrödinger equation for the deformed hyperbolic Manning-Rosen potential is investigated analytically by using the Nikiforov-Uvarov method, the centrifugal term is treated with an improved Greene and Aldrich's approximation scheme. The wavefunctions depend on the deformation parameter q, which is expressed in terms of the Jocobi polynomial or the hypergeometric function. The bound state energy is obtained, and the discrete spectrum is shown to be independent of the deformation parameter q.
Precise analytic approximations for the Bessel function J1 (x)
NASA Astrophysics Data System (ADS)
Maass, Fernando; Martin, Pablo
2018-03-01
Precise and straightforward analytic approximations for the Bessel function J1 (x) have been found. Power series and asymptotic expansions have been used to determine the parameters of the approximation, which is as a bridge between both expansions, and it is a combination of rational and trigonometric functions multiplied with fractional powers of x. Here, several improvements with respect to the so called Multipoint Quasirational Approximation technique have been performed. Two procedures have been used to determine the parameters of the approximations. The maximum absolute errors are in both cases smaller than 0.01. The zeros of the approximation are also very precise with less than 0.04 per cent for the first one. A second approximation has been also determined using two more parameters, and in this way the accuracy has been increased to less than 0.001.
Aubuchon, Mira; Kunselman, Allen R; Schlaff, William D; Diamond, Michael P; Coutifaris, Christos; Carson, Sandra A; Steinkampf, Michael P; Carr, Bruce R; McGovern, Peter G; Cataldo, Nicholas A; Gosman, Gabriella G; Nestler, John E; Myers, Evan R; Legro, Richard S
2011-10-01
Nonalcoholic fatty liver disease is common to insulin-resistant states such as polycystic ovary syndrome (PCOS). Metformin (MET) is often used to treat PCOS but information is limited as to its effects on liver function. We sought to determine the effects of MET on serum hepatic parameters in PCOS patients. This was a secondary analysis of a randomized, doubled-blind trial from 2002-2004. This multi-center clinical trial was conducted in academic centers. Six hundred twenty-six infertile women with PCOS with serum liver function parameters less than twice the upper limit of normal were included. Clomiphene citrate (n = 209), MET (n = 208), or combined (n = 209) were given for up to 6 months. The percent change from baseline in renal and liver function between- and within-treatment arms was assessed. Renal function improved in all treatment arms with significant decreases in serum blood urea nitrogen levels (range, -14.7 to -21.3%) as well as creatinine (-4.2 to -6.9%). There were similar decreases in liver transaminase levels in the clomiphene citrate and combined arms (-10% in bilirubin, -9 to -11% in transaminases) without significant changes in the MET arm. When categorizing baseline bilirubin, aspartate aminotransferase, and alanine aminotransferase into tertiles, there were significant within-treatment arm differences between the tertiles with the highest tertile having the largest decrease from baseline regardless of treatment arm. Women with PCOS can safely use metformin and clomiphene even in the setting of mildly abnormal liver function parameters, and both result in improved renal function.
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Naumenko, A. P.; Kudryavtseva, I. S.
2018-01-01
Improvement of distinguishing criteria, determining defects of machinery and mechanisms, by vibroacoustic signals is a recent problem for technical diagnostics. The work objective is assessment of instantaneous values by methods of statistical decision making theory and risk of regulatory values of characteristic function modulus. The modulus of the characteristic function is determined given a fixed parameter of the characteristic function. It is possible to determine the limits of the modulus, which correspond to different machine’s condition. The data of the modulus values are used as diagnostic features in the vibration diagnostics and monitoring systems. Using such static decision-making methods as: minimum number of wrong decisions, maximum likelihood, minimax, Neumann-Pearson characteristic function modulus limits are determined, separating conditions of a diagnosed object.
Chamorro-Moriana, Gema; Moreno, Antonio José
2018-01-01
This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Conclusion: Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback. PMID:29316645
Chamorro-Moriana, Gema; Moreno, Antonio José; Sevillano, José Luis
2018-01-06
This systematic review synthesized and analyzed clinical findings related to the effectiveness of innovative technological feedback for tackling functional gait recovery. An electronic search of PUBMED, PEDro, WOS, CINAHL, and DIALNET was conducted from January 2011 to December 2016. The main inclusion criteria were: patients with modified or abnormal gait; application of technology-based feedback to deal with functional recovery of gait; any comparison between different kinds of feedback applied by means of technology, or any comparison between technological and non-technological feedback; and randomized controlled trials. Twenty papers were included. The populations were neurological patients (75%), orthopedic and healthy subjects. All participants were adults, bar one. Four studies used exoskeletons, 6 load platforms and 5 pressure sensors. The breakdown of the type of feedback used was as follows: 60% visual, 40% acoustic and 15% haptic. 55% used terminal feedback versus 65% simultaneous feedback. Prescriptive feedback was used in 60% of cases, while 50% used descriptive feedback. 62.5% and 58.33% of the trials showed a significant effect in improving step length and speed, respectively. Efficacy in improving other gait parameters such as balance or range of movement is observed in more than 75% of the studies with significant outcomes. Treatments based on feedback using innovative technology in patients with abnormal gait are mostly effective in improving gait parameters and therefore useful for the functional recovery of patients. The most frequently highlighted types of feedback were immediate visual feedback followed by terminal and immediate acoustic feedback.
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
NASA Astrophysics Data System (ADS)
Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.
2015-12-01
Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Serel Arslan, S; Demir, N; Karaduman, A A
2017-01-01
Cerebral palsy (CP) is a group of permanent sensorimotor impairments. Children with CP have various feeding difficulties including chewing disorder, which may affect their nutritional status. Functional Chewing Training (FuCT) was designed as a holistic approach to improve chewing function by providing postural alignment, sensory and motor training, and food and environmental adjustments. This study aimed to investigate the effect of FuCT on chewing function in children with CP. This study was designed as a double-blind, randomised controlled trial. Eighty CP children with chewing disorder were randomised and split between the FuCT group (31 males, 19 females; mean age 3·5 ± 1·9 years) and the control group (16 males, 14 females; 3·4 ± 2·3 years) receiving traditional oral motor exercises. Each group received the training programme for 12 weeks with weekly follow-up and with two evaluations at baseline and end of 12 weeks. Chewing function was evaluated by analysing video recordings and scored with the Karaduman Chewing Performance Scale (KCPS). The Behavioral Pediatrics Feeding Assessment Scale (BPFAS) was used to evaluate feeding behaviours of children. A significant improvement was observed in KCPS scores at 12 weeks after training in the FuCT group (P < 0·001), but no change was found in the control group (P = 0·07). A significant improvement was detected in all parameters of BPFAS at 12 weeks after training in the FuCT group (P < 0·001) and in four parameters of BPFAS in the control group (P = 0·02, P = 0·02). FuCT is an effective method to improve chewing function compared with traditional oral motor exercises. © 2016 John Wiley & Sons Ltd.
Impact of a Pharmacy-Cardiology Collaborative Practice on Dofetilide Safety Monitoring.
Quffa, Lieth H; Panna, Mark; Kaufmann, Michael R; McKillop, Matthew; Dietrich, Nicole Maltese; Franck, Andrew J
2017-01-01
Limited studies have been published examining dofetilide's postmarketing use and its recommended monitoring. To evaluate the impact of a collaborative pharmacy-cardiology antiarrhythmic drug (AAD) monitoring program on dofetilide monitoring. This retrospective cohort study was performed to assess if a novel monitoring program improved compliance with dofetilide-specific monitoring parameters based on the Food and Drug Administration's Risk Evaluation and Mitigation Strategy. A total of 30 patients were included in the analysis. The monitoring parameters evaluated included electrocardiogram, serum potassium, serum magnesium, and kidney function. The primary outcome evaluated was the composite of these dofetilide monitoring parameters obtained in each cohort. In the standard cohort, 245 of 352 (69.6%) monitoring parameters were completed versus 134 of 136 (98.5%) in the intervention group ( P < 0.05). A collaborative pharmacy-cardiology AAD monitoring program was associated with a significant improvement in dofetilide monitoring. This improvement could potentially translate into enhanced patient safety outcomes, such as prevention of adverse drug reactions and decreased hospitalizations.
Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment
DeBlasio, Dan
2013-01-01
Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379
Blurred image restoration using knife-edge function and optimal window Wiener filtering.
Wang, Min; Zhou, Shudao; Yan, Wei
2018-01-01
Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects.
Blurred image restoration using knife-edge function and optimal window Wiener filtering
Zhou, Shudao; Yan, Wei
2018-01-01
Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950
Improving the realism of hydrologic model through multivariate parameter estimation
NASA Astrophysics Data System (ADS)
Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis
2017-04-01
Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10.1002/2016WR019430
Calibration of DEM parameters on shear test experiments using Kriging method
NASA Astrophysics Data System (ADS)
Bednarek, Xavier; Martin, Sylvain; Ndiaye, Abibatou; Peres, Véronique; Bonnefoy, Olivier
2017-06-01
Calibration of powder mixing simulation using Discrete-Element-Method is still an issue. Achieving good agreement with experimental results is difficult because time-efficient use of DEM involves strong assumptions. This work presents a methodology to calibrate DEM parameters using Efficient Global Optimization (EGO) algorithm based on Kriging interpolation method. Classical shear test experiments are used as calibration experiments. The calibration is made on two parameters - Young modulus and friction coefficient. The determination of the minimal number of grains that has to be used is a critical step. Simulations of a too small amount of grains would indeed not represent the realistic behavior of powder when using huge amout of grains will be strongly time consuming. The optimization goal is the minimization of the objective function which is the distance between simulated and measured behaviors. The EGO algorithm uses the maximization of the Expected Improvement criterion to find next point that has to be simulated. This stochastic criterion handles with the two interpolations made by the Kriging method : prediction of the objective function and estimation of the error made. It is thus able to quantify the improvement in the minimization that new simulations at specified DEM parameters would lead to.
Delwel, E J; de Jong, D A; Avezaat, C J J
2005-10-01
It is difficult to predict which patients with symptoms and radiological signs of normal pressure hydrocephalus (NPH) will benefit from a shunting procedure and which patients will not. Risk of this procedure is also higher in patients with NPH than in the overall population of hydrocephalic patients. The aim of this study is to investigate which clinical characteristics, CT parameters and parameters of cerebrospinal fluid dynamics could predict improvement after shunting. Eighty-three consecutive patients with symptoms and radiological signs of NPH were included in a prospective study. Parameters of the cerebrospinal fluid dynamics were measured by calculation of computerised data obtained by a constant-flow lumbar infusion test. Sixty-six patients considered candidates for surgery were treated with a medium-pressure Spitz-Holter valve; in seventeen patients a shunting procedure was not considered indicated. Clinical and radiological follow-up was performed for at least one year postoperatively. The odds ratio, the sensitivity and specificity as well as the positive and negative predictive value of individual and combinations of measured parameters did not show a statistically significant relation to clinical improvement after shunting. We conclude that neither individual parameters nor combinations of measured parameters show any statistically significant relation to clinical improvement following shunting procedures in patients suspected of NPH. We suggest restricting the term normal pressure hydrocephalus to cases that improve after shunting and using the term normal pressure hydrocephalus syndrome for patients suspected of NPH and for patients not improving after implantation of a proven well-functioning shunt.
NASA Astrophysics Data System (ADS)
Bo, T. L.; Fu, L. T.; Liu, L.; Zheng, X. J.
2017-06-01
The studies on wind-blown sand are crucial for understanding the change of climate and landscape on Mars. However, the disadvantages of the saltation models may result in unreliable predictions. In this paper, the saltation model has been improved from two main aspects, the aerodynamic surface roughness and the lift-off parameters. The aerodynamic surface roughness is expressed as function of particle size, wind strength, air density, and air dynamic viscosity. The lift-off parameters are improved through including the dependence of restitution coefficient on incident parameters and the correlation between saltating speed and angle. The improved model proved to be capable of reproducing the observed data well in both stable stage and evolution process. The modeling of wind-blown sand is promoted by all improved aspects, and the dependence of restitution coefficient on incident parameters could not be ignored. The constant restitution coefficient and uncorrelated lift-off parameter distributions would lead to both the overestimation of the sand transport rate and apparent surface roughness and the delay of evolution process. The distribution of lift-off speed and the evolution of lift-off parameters on Mars are found to be different from those on Earth. This may thus suggest that it is inappropriate to predict the evolution of wind-blown sand by using the lift-off velocity obtained in steady state saltation. And it also may be problematic to predict the wind-blown sand on Mars through applying the lift-off velocity obtained upon terrestrial conditions directly.
NASA Astrophysics Data System (ADS)
Tadross, A. L.
2005-12-01
The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.
Audio visual speech source separation via improved context dependent association model
NASA Astrophysics Data System (ADS)
Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz
2014-12-01
In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.
Jansen, Oliver; Schildhauer, Thomas A; Meindl, Renate C; Tegenthoff, Martin; Schwenkreis, Peter; Sczesny-Kaiser, Matthias; Grasmücke, Dennis; Fisahn, Christian; Aach, Mirko
2017-12-01
Longitudinal prospective study. Whether 1-year HAL-BWSTT of chronic spinal cord injured patients can improve independent ambulated mobility further as a function of training frequency, after an initial 3-month training period. Eight patients with chronic SCI were enrolled. They initially received full standard physical therapy and neurorehabilitation in the acute/subacute posttrauma phase. During this trial, all patients first underwent a daily (5 per week) HAL-BWSTT for 12 weeks. Subsequently, these patients performed a 40-week HAL-BWSTT with a training session frequency of either 1 or 3 to 5 sessions per week. The patients' functional status including HAL-associated treadmill-walking time, -distance, and -speed with additional analysis of gait pattern, and their independent (without wearing the robot suit) functional mobility improvements, were assessed using the 10-Meter-Walk Test (10MWT), Timed-Up-and-Go Test (TUG) and 6-Minute-Walk Test (6MinWT) on admission, at 6 weeks, 12 weeks, and 1 year after enrollment. The data were analyzed separately for the 2 training frequency subgroups after the initial 12-week training period, which was identical in both groups. During the 1-year follow-up, HAL-associated walking parameters and independent functional improvements were maintained in all the patients. This result held irrespective of the training frequency. Long-term 1-year maintenance of HAL-associated treadmill walking parameters and of improved independent walking abilities after initial 12 weeks of daily HAL-BWSTT is possible and depends mainly on the patients' ambulatory status accomplished after initial training period. Subsequent regular weekly training, but not higher frequency training, seems to be sufficient to preserve the improvements accomplished.
Schildhauer, Thomas A.; Meindl, Renate C.; Tegenthoff, Martin; Schwenkreis, Peter; Sczesny-Kaiser, Matthias; Grasmücke, Dennis; Fisahn, Christian; Aach, Mirko
2017-01-01
Study Design: Longitudinal prospective study. Objectives: Whether 1-year HAL-BWSTT of chronic spinal cord injured patients can improve independent ambulated mobility further as a function of training frequency, after an initial 3-month training period. Methods: Eight patients with chronic SCI were enrolled. They initially received full standard physical therapy and neurorehabilitation in the acute/subacute posttrauma phase. During this trial, all patients first underwent a daily (5 per week) HAL-BWSTT for 12 weeks. Subsequently, these patients performed a 40-week HAL-BWSTT with a training session frequency of either 1 or 3 to 5 sessions per week. The patients’ functional status including HAL-associated treadmill-walking time, -distance, and -speed with additional analysis of gait pattern, and their independent (without wearing the robot suit) functional mobility improvements, were assessed using the 10-Meter-Walk Test (10MWT), Timed-Up-and-Go Test (TUG) and 6-Minute-Walk Test (6MinWT) on admission, at 6 weeks, 12 weeks, and 1 year after enrollment. The data were analyzed separately for the 2 training frequency subgroups after the initial 12-week training period, which was identical in both groups. Results: During the 1-year follow-up, HAL-associated walking parameters and independent functional improvements were maintained in all the patients. This result held irrespective of the training frequency. Conclusions: Long-term 1-year maintenance of HAL-associated treadmill walking parameters and of improved independent walking abilities after initial 12 weeks of daily HAL-BWSTT is possible and depends mainly on the patients’ ambulatory status accomplished after initial training period. Subsequent regular weekly training, but not higher frequency training, seems to be sufficient to preserve the improvements accomplished. PMID:29238636
Buechter, Matthias; Gerken, Guido; Hoyer, Dieter P; Bertram, Stefanie; Theysohn, Jens M; Thodou, Viktoria; Kahraman, Alisan
2018-06-20
Acute liver failure (ALF) is a life-threatening entity particularly when infectious complications worsen the clinical course. Urgent liver transplantation (LT) is frequently the only curative treatment. However, in some cases, recovery is observed under conservative treatment. Therefore, prognostic tools for estimating course of the disease are of great clinical interest. Since laboratory parameters sometimes lack sensitivity and specificity, enzymatic liver function measured by liver maximum capacity (LiMAx) test may offer novel and valuable additional information in this setting. We here report the case of a formerly healthy 20-year old male caucasian patient who was admitted to our clinic for ALF of unknown origin in December 2017. Laboratory parameters confirmed the diagnosis with an initial MELD score of 28 points. Likewise, enzymatic liver function was significantly impaired with a value of 147 [> 315] μg/h/kg. Clinical and biochemical analyses for viral-, autoimmune-, or drug-induced hepatitis were negative. Liver synthesis parameters further deteriorated reaching a MELD score of 40 points whilst clinical course was complicated by septic pneumonia leading to severe hepatic encephalopathy grade III-IV, finally resulting in mechanical ventilation of the patient. Interestingly, although clinical course and laboratory data suggested poor outcome, serial LiMAx test revealed improvement of the enzymatic liver function at this time point increasing to 169 μg/h/kg. Clinical condition and laboratory data slowly improved likewise, however with significant time delay of 11 days. Finally, the patient could be dismissed from our clinic after 37 days. Estimating prognosis in patients with ALF is challenging by use of the established scores. In our case, improvement of enzymatic liver function measured by the LiMAx test was the first parameter predicting beneficial outcome in a patient with ALF complicated by sepsis.
Sanuki, Tetsuji; Yumoto, Eiji; Kodama, Narihiro; Minoda, Ryosei; Kumai, Yoshihiko
2014-06-01
To determine the long-term functional outcomes of type II thyroplasty using titanium bridges for adductor spasmodic dysphonia (AdSD) by perceptual analysis using the Voice Handicap Index-10 (VHI-10) and by acoustic analysis. Fifteen patients with AdSD underwent type II thyroplasty using titanium brides between August 2006 and February 2011. VHI-10 scores, a patient-based survey that quantifies a patient's perception of his or her vocal handicap, were determined before and at least 2 years after surgery. Concurrent with the VHI-10 evaluation, acoustic parameters were assessed, including jitter, shimmer, harmonic-to-noise ratio (HNR), standard deviation of F0 (SDF0), and degree of voice breaks (DVB). The average follow-up interval was 30.1 months. No patient had strangulation of the voice, and all were satisfied with the voice postoperatively. In the perceptual analysis, the mean VHI-10 score improved significantly, from 26.7 to 4.1 two years after surgery. All patients had significantly improved each score of three different aspects of VHI-10, representing improved functional, physical, and emotional well-being. All acoustic parameters improved significantly 2 years after surgery. The treatment of AdSD with type II thyroplasty significantly improved the voice-related quality of life and acoustic parameters 2 years after surgery. The results of the study suggest that type II thyroplasty using titanium bridges provides long-term relief of vocal symptoms in patients with AdSD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
Beleslin, Branko; Ostojic, Miodrag; Djordjevic-Dikic, Ana; Vukcevic, Vladan; Stojkovic, Sinisa; Nedeljkovic, Milan; Stankovic, Goran; Orlic, Dejan; Milic, Natasa; Stepanovic, Jelena; Giga, Vojislav; Saponjski, Jovica
2008-11-01
The aim of the study was to evaluate the relation between fractional flow reserve (FFR) and simultaneously evaluated coronary flow reserve by thermodilution (CFRthermo), with the improvement of left ventricular (LV) function in patients with previous myocardial infarction (MI) undergoing percutaneous coronary intervention (PCI). Study population consisted of 46 patients (mean age 53 +/- 7 years; 36 male) with previous MI and significant coronary stenosis undergoing PCI of infarct-related coronary artery. In all patients, we evaluated FFR and CFRthermo by single pressure/thermo wire during maximal hyperaemia before and immediately after PCI. We performed echocardiographic assessment of LV ejection fraction before and 6 months after PCI. Dobutamine stress echocardiography test was also performed before PCI. LV functional improvement was observed in 33/46 (72%) of patients. In patients with LV functional recovery in comparison with patients with no recovery, there was a significant difference in FFR before PCI (0.56 +/- 0.14 vs. 0.70 +/- 0.07, P < 0.001), improvement of FFR (0.35 +/- 0.14 vs. 0.21 +/- 0.07, P < 0.001), improvement of CFRthermo (1.3 +/- 0.6 vs. 0.5 +/- 0.3, P < 0.001), and CFRthermo after PCI (2.6 +/- 0.7 vs. 2.0 +/- 0.4, P < 0.001). When only parameters evaluated before PCI were taken into account, FFR before angioplasty (P = 0.001) and dobutamine-assessed viability (P = 0.006) were the most significant multivariate predictors of myocardial recovery. When all significant univariate parameters were evaluated, the most significant independent predictors for improvement in myocardial function were the improvement of CFRthermo during angioplasty (P < 0.001) and FFR before angioplasty (P = 0.002). Simultaneous evaluation of FFR and CFRthermo provide significant complementary data on the improvement in myocardial function in patients with previous MI. However, the evaluation of FFR before angioplasty identifies viable myocardium that may recover following revascularization and may be used as an alternative to non-invasive testing.
Real efficiency of ambulatory laser treatment at the patients with different rheumatic diseases
NASA Astrophysics Data System (ADS)
Sidenco, Elena-Luminita; Ristache, Sanda; Belu, Luminita
2001-06-01
We consulted 189 patients, with different locomotory diseases: degenerative, posttraumatic and chronic inflammatory rheumatic diseases. We followed the main clinical parameters: pain, limitation of mobility, affected function, inflammation and disorders of sensitivity. We applied an infrared LASER source of 100 mW (BTL), daily, for 5 days. The tolerance of the patients at the LASER treatment was excellent (100%). The evolution of the clinical parameters was variated, but inflammation, limitation of mobility and the affected function significantly improved (30-50%). We found a significant diminution of pain (27- 39%). We believe the LASER treatment in ambulatory conditions is essential for the function of the patients with different locomotory diseases.
Zheng, Jiao; Liu, Binglin; Lun, Qixing; Yao, Weijuan; Zhao, Yunfang; Xiao, Wei; Huang, Wenzhe; Wang, Yonghua; Li, Jun; Tu, Pengfei
2016-01-01
Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia. PMID:26649134
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
Hashempur, Mohammad Hashem; Lari, Zeinab Nasiri; Ghoreishi, Parissa Sadat; Daneshfard, Babak; Ghasemi, Mohammad Sadegh; Homayouni, Kaynoosh; Zargaran, Arman
2015-11-01
To assess the effectiveness of standardized topical Chamomile (Matricaria chamomilla L.) oil in patients with severe carpal tunnel syndrome, as a complementary treatment. A pilot randomized double-blind placebo-controlled trial was conducted. Twenty six patients with documented severe carpal tunnel syndrome were treated in two parallel groups with a night splint plus topical chamomile oil or placebo. They were instructed to use their prescribed oil for 4 weeks, twice daily. Symptomatic and functional status of the patients and their electrodiagnostic parameters were evaluated when enrolled and after the trial period, as our outcome measures. A significant improvement of symptomatic and functional status of patients in the chamomile oil group was observed (p = 0.019 and 0.016, respectively) compared with those in the placebo group. However, electrodiagnostic parameters showed no significant changes between the two groups. Chamomile oil improved symptomatic and functional status of patients with severe carpal tunnel syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd
2017-01-01
Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.
Nakai, S; Li-Chan, E
1985-10-01
According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.
Najafi, Abozar; Kia, Hossein Daghigh; Mohammadi, Hossein; Najafi, Mir Hossein; Zanganeh, Zaynab; Sharafi, Mohsen; Martinez-Pastor, Felipe; Adeldust, Hamideh
2014-08-01
The aim of this study was to evaluate the effects of ergothioneine and cysteamine as antioxidant supplements in a soybean lecithin extender for freezing ram semen. Twenty-four ejaculates were collected from four rams and diluted with extenders (1.5% soybean lecithin, 7% glycerol) containing no supplements (control) and cysteamine or ergothioneine (2, 4, 6 or 8mM). Motility by CASA, viability, plasma membrane functionality (HOS test), total abnormality, lipid peroxidation, glutathione peroxidase (GPx) activity and capacitation status (CTC staining) were assessed after thawing. Using 6mM of either antioxidant improved total motility. Cysteamine at 6mM and ergothioneine at 4 and 6mM improved viability and reduced lipid peroxidation (malondialdehyde concentration). Both antioxidants improved membrane functionality significantly, except at 8mM. Progressive motility, kinematic parameters, GPx activity, capacitation status and sperm abnormalities were not influenced by the antioxidant supplements. In conclusion, cysteamine at 6mM and ergothioneine at 4 or 6mM seem to improve the post-thawing quality of ram semen cryopreserved in a soybean lecithin extender. Copyright © 2014 Elsevier Inc. All rights reserved.
Real-time feedback to improve gait in children with cerebral palsy.
van Gelder, Linda; Booth, Adam T C; van de Port, Ingrid; Buizer, Annemieke I; Harlaar, Jaap; van der Krogt, Marjolein M
2017-02-01
Real-time feedback may be useful for enhancing information gained from clinical gait analysis of children with cerebral palsy (CP). It may also be effective in functional gait training, however, it is not known if children with CP can adapt gait in response to real-time feedback of kinematic parameters. Sixteen children with cerebral palsy (age 6-16; GMFCS I-III), walking with a flexed-knee gait pattern, walked on an instrumented treadmill with virtual reality in three conditions: regular walking without feedback (NF), feedback on hip angle (FH) and feedback on knee angle (FK). Clinically relevant gait parameters were calculated and the gait profile score (GPS) was used as a measure of overall gait changes between conditions. All children, except one, were able to improve hip and/or knee extension during gait in response to feedback, with nine achieving a clinically relevant improvement. Peak hip extension improved significantly by 5.1±5.9° (NF: 8.9±12.8°, FH: 3.8±10.4°, p=0.01). Peak knee extension improved significantly by 7.7±7.1° (NF: 22.2±12.0°, FK: 14.5±12.7°, p<0.01). GPS did not change between conditions due to increased deviations in other gait parameters. Responders to feedback were shown to have worse initial gait as measured by GPS (p=0.005) and functional selectivity score (p=0.049). In conclusion, ambulatory children with CP show adaptability in gait and are able to respond to real-time feedback, resulting in significant and clinically relevant improvements in peak hip and knee extension. These findings show the potential of real-time feedback as a tool for functional gait training and advanced gait analysis in CP. Copyright © 2016 Elsevier B.V. All rights reserved.
Bifurcation Phenomena of Opinion Dynamics in Complex Networks
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, Xu
In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ɛ increasing. Furthermore, the evolution of the steady opinion s * as a function of ɛ, and the relation between the minority steady opinion s_{*}^{min} and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.
An approach to adjustment of relativistic mean field model parameters
NASA Astrophysics Data System (ADS)
Bayram, Tuncay; Akkoyun, Serkan
2017-09-01
The Relativistic Mean Field (RMF) model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN) method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs) of 58Ni and 208Pb have been found in agreement with the literature values.
Lo, Wai Leung; Lin, Qiang; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function. PMID:26649295
Mao, Yu-Rong; Lo, Wai Leung; Lin, Qiang; Li, Le; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Inpatient department of rehabilitation medicine at a university-affiliated hospital. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.
Coenzyme Q supplementation in pulmonary arterial hypertension
Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.
2014-01-01
Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165
Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0
NASA Astrophysics Data System (ADS)
Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.
2016-08-01
Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.
Hetzel, Juergen; Spengler, Werner; Horger, Marius; Boeckeler, Michael
2015-06-01
Endoscopic lung volume reduction is an emerging technique meant to improve lung function parameters, quality of life, and exercise tolerance in patients with severe lung emphysema. This is the first report of lung volume reduction by autologous blood in a patient with non-bullous lung emphysema. A 74-year-old woman with heterogeneous lung emphysema developed accidentally diffuse lobar bleeding immediately after valve placement. Due to persistent hemorrhage, the valves had to be removed shortly thereafter. Despite extraction of the valves, respiratory function of the patient improved rapidly indicated also by a drop in the COPD assessment test questionnaire, 3 months later. This was consistent with both improvement of lung function tests and six-minute walking test.
Stenemo, Fredrik; Jarvis, Nicholas
2007-09-01
A simulation tool for site-specific vulnerability assessments of pesticide leaching to groundwater was developed, based on the pesticide fate and transport model MACRO, parameterized using pedotransfer functions and reasonable worst-case parameter values. The effects of uncertainty in the pedotransfer functions on simulation results were examined for 48 combinations of soils, pesticides and application timings, by sampling pedotransfer function regression errors and propagating them through the simulation model in a Monte Carlo analysis. An uncertainty factor, f(u), was derived, defined as the ratio between the concentration simulated with no errors, c(sim), and the 80th percentile concentration for the scenario. The pedotransfer function errors caused a large variation in simulation results, with f(u) ranging from 1.14 to 1440, with a median of 2.8. A non-linear relationship was found between f(u) and c(sim), which can be used to account for parameter uncertainty by correcting the simulated concentration, c(sim), to an estimated 80th percentile value. For fine-textured soils, the predictions were most sensitive to errors in the pedotransfer functions for two parameters regulating macropore flow (the saturated matrix hydraulic conductivity, K(b), and the effective diffusion pathlength, d) and two water retention function parameters (van Genuchten's N and alpha parameters). For coarse-textured soils, the model was also sensitive to errors in the exponent in the degradation water response function and the dispersivity, in addition to K(b), but showed little sensitivity to d. To reduce uncertainty in model predictions, improved pedotransfer functions for K(b), d, N and alpha would therefore be most useful. 2007 Society of Chemical Industry
Gandolla, Marta; Molteni, Franco; Ward, Nick S; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra
2015-11-01
The foreseen outcome of a rehabilitation treatment is a stable improvement on the functional outcomes, which can be longitudinally assessed through multiple measures to help clinicians in functional evaluation. In this study, we propose an automatic comprehensive method of combining multiple measures in order to assess a functional improvement. As test-bed, a functional electrical stimulation based treatment for foot drop correction performed with chronic post-stroke participants is presented. Patients were assessed on five relevant outcome measures before, after intervention, and at a follow-up time-point. A novel algorithm based on variables minimum detectable change is proposed and implemented in a custom-made software, combining the outcome measures to obtain a unique parameter: capacity score. The difference between capacity scores at different timing is three holded to obtain improvement evaluation. Ten clinicians evaluated patients on the Improvement Clinical Global Impression scale. Eleven patients underwent the treatment, and five resulted to achieve a stable functional improvement, as assessed by the proposed algorithm. A statistically significant agreement between intra-clinicians and algorithm-clinicians evaluations was demonstrated. The proposed method evaluates functional improvement on a single-subject yes/no base by merging different measures (e.g., kinematic, muscular) and it is validated against clinical evaluation.
The quasi-optimality criterion in the linear functional strategy
NASA Astrophysics Data System (ADS)
Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey
2018-07-01
The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.
NASA Astrophysics Data System (ADS)
Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas
2018-07-01
This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
Aubuchon, Mira; Kunselman, Allen R.; Schlaff, William D.; Diamond, Michael P.; Coutifaris, Christos; Carson, Sandra A.; Steinkampf, Michael P.; Carr, Bruce R.; McGovern, Peter G.; Cataldo, Nicholas A.; Gosman, Gabriella G.; Nestler, John E.; Myers, Evan R.
2011-01-01
Context: Nonalcoholic fatty liver disease is common to insulin-resistant states such as polycystic ovary syndrome (PCOS). Metformin (MET) is often used to treat PCOS but information is limited as to its effects on liver function. Objective: We sought to determine the effects of MET on serum hepatic parameters in PCOS patients. Design: This was a secondary analysis of a randomized, doubled-blind trial from 2002–2004. Setting: This multi-center clinical trial was conducted in academic centers. Patients: Six hundred twenty-six infertile women with PCOS with serum liver function parameters less than twice the upper limit of normal were included. Interventions: Clomiphene citrate (n = 209), MET (n = 208), or combined (n = 209) were given for up to 6 months. Main Outcome Measure: The percent change from baseline in renal and liver function between- and within-treatment arms was assessed. Results: Renal function improved in all treatment arms with significant decreases in serum blood urea nitrogen levels (range, −14.7 to −21.3%) as well as creatinine (−4.2 to −6.9%). There were similar decreases in liver transaminase levels in the clomiphene citrate and combined arms (−10% in bilirubin, −9 to −11% in transaminases) without significant changes in the MET arm. When categorizing baseline bilirubin, aspartate aminotransferase, and alanine aminotransferase into tertiles, there were significant within-treatment arm differences between the tertiles with the highest tertile having the largest decrease from baseline regardless of treatment arm. Conclusion: Women with PCOS can safely use metformin and clomiphene even in the setting of mildly abnormal liver function parameters, and both result in improved renal function. PMID:21832111
Fanari, Zaher; Choudhry, Usman I; Reddy, Vivek K; Eze-Nliam, Chete; Hammami, Sumaya; Kolm, Paul; Weintraub, William S.; Marshall, Erik S
2015-01-01
Background Accurate assessment of cardiac structures, ventricular function, and hemodynamics are essential for any echocardiographic laboratory. Quality Improvement (QI) processes described by the American Society of Echocardiography (ASE) and the Intersocietal Commission (IAC) should be instrumental in reaching this goal. Methods All patients undergoing transthoracic echocardiogram (TTE) followed by cardiac catheterization within 24 hours at Christiana Care Health System in 2011 and 2012 were identified, with 126 and 133 cases respectively. Hemodynamic parameters of diastolic function, Pulmonary Artery Systolic Pressure (PASP) on TTE correlated poorly with catheterization in 2011. An educational process was developed and implemented at quarterly QI meetings based on ASE and IAC recommendations to target frequently encountered errors and provide methods for improved performance. The hemodynamic parameters were then re-examined in 2012 post-intervention. Results Following the QI process, there was significant improvement in the correlation between invasive and echocardiographic hemodynamic measurements in both systolic and diastolic function, and PASP. This reflected in significant better correlations between echo and cath LVEF [R = 0.88, ICC=0.87 vs. R = 0.85, ICC=0.85; p <0.001], Average E/E’ and of left Ventricle End Diastolic Pressure (LVEDP) [R = 0.62vs. R = 0.09, p = 0.006] and a better correlation for PASP [R= 0.77, ICC=0.77 vs. R = 0.30, ICC=0.31; p = 0.05] in 2012 compared to 2011. Conclusion The QI process, as recommended by ASE and IAC, can allow for identification as well as rectification of quality issues in a large regional academic medical center hospital. PMID:26033297
Fanari, Zaher; Choudhry, Usman I; Reddy, Vivek K; Eze-Nliam, Chete; Hammami, Sumaya; Kolm, Paul; Weintraub, William S; Marshall, Erik S
2015-12-01
Accurate assessment of cardiac structures, ventricular function, and hemodynamics is essential for any echocardiographic laboratory. Quality improvement (QI) processes described by the American Society of Echocardiography (ASE) and the Intersocietal Commission (IAC) should be instrumental in reaching this goal. All patients undergoing transthoracic echocardiogram (TTE) followed by cardiac catheterization within 24 hours at Christiana Care Health System in 2011 and 2012 were identified, with 126 and 133 cases, respectively. Hemodynamic parameters of diastolic function and pulmonary artery systolic pressure (PASP) on TTE correlated poorly with catheterization in 2011. An educational process was developed and implemented at quarterly QI meetings based on ASE and IAC recommendations to target frequently encountered errors and provide methods for improved performance. The hemodynamic parameters were then reexamined in 2012 postintervention. Following the QI process, there was significant improvement in the correlation between invasive and echocardiographic hemodynamic measurements in both systolic and diastolic function, and PASP. This reflected in significant better correlations between echo and cath LVEF [R = 0.88, ICC = 0.87 vs. R = 0.85, ICC = 0.85; P < 0.001], average E/E' and of left ventricle end-diastolic pressure (LVEDP) [R = 0.62 vs. R = 0.09, P = 0.006] and a better correlation for PASP [R = 0.77, ICC = 0.77 vs. R = 0.30, ICC = 0.31; P = 0.05] in 2012 compared to 2011. The QI process, as recommended by ASE and IAC, can allow for identification as well as rectification of quality issues in a large regional academic medical center hospital. © 2015, Wiley Periodicals, Inc.
Glorion, M; Polard, V; Favereau, F; Hauet, T; Zal, F; Fadel, E; Sage, E
2017-10-25
We describe the results of adding a new biological agent HEMO 2 life ® to a standard preservation solution for hypothermic static lung preservation aiming to improve early functional parameters after lung transplantation. HEMO 2 life ® is a natural oxygen carrier extracted from Arenicola marina with high oxygen affinity developed as an additive to standard organ preservation solutions. Standard preservation solution (Perfadex ® ) was compared with Perfadex ® associated with HEMO 2 life ® and with sham animals after 24 h of hypothermic preservation followed by lung transplantation. During five hours of lung reperfusion, functional parameters and biomarkers expression in serum and in bronchoalveolar lavage fluid (BALF) were measured. After five hours of reperfusion, HEMO 2 life ® group led to significant improvement in functional parameters: reduction of graft vascular resistance (p < .05) and increase in graft oxygenation ratio (p < .05). Several ischemia-reperfusion related biomarkers showed positive trends in the HEMO 2 life ® group: expression of HMG B1 in serum tended to be lower in comparison (2.1 ± 0.8 vs. 4.6 ± 1.5) with Perfadex ® group, TNF-α and IL-8 in BALF were significantly higher in the two experimental groups compared to control (p < .05). During cold ischemia, expression of HIF1α and histology remained unchanged and similar to control. Supplementation of the Perfadex ® solution by an innovative oxygen carrier HEMO 2 life ® during hypothermic static preservation improves early graft function after prolonged cold ischemia in lung transplantation.
Kim, Janis; Arora, Pooja; Zhang, Yunhui
2016-01-01
Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955
Buesing, Carolyn; Fisch, Gabriela; O'Donnell, Megan; Shahidi, Ida; Thomas, Lauren; Mummidisetty, Chaithanya K; Williams, Kenton J; Takahashi, Hideaki; Rymer, William Zev; Jayaraman, Arun
2015-08-20
Robots offer an alternative, potentially advantageous method of providing repetitive, high-dosage, and high-intensity training to address the gait impairments caused by stroke. In this study, we compared the effects of the Stride Management Assist (SMA®) System, a new wearable robotic device developed by Honda R&D Corporation, Japan, with functional task specific training (FTST) on spatiotemporal gait parameters in stroke survivors. A single blinded randomized control trial was performed to assess the effect of FTST and task-specific walking training with the SMA® device on spatiotemporal gait parameters. Participants (n=50) were randomly assigned to FTST or SMA. Subjects in both groups received training 3 times per week for 6-8 weeks for a maximum of 18 training sessions. The GAITRite® system was used to collect data on subjects' spatiotemporal gait characteristics before training (baseline), at mid-training, post-training, and at a 3-month follow-up. After training, significant improvements in gait parameters were observed in both training groups compared to baseline, including an increase in velocity and cadence, a decrease in swing time on the impaired side, a decrease in double support time, an increase in stride length on impaired and non-impaired sides, and an increase in step length on impaired and non-impaired sides. No significant differences were observed between training groups; except for SMA group, step length on the impaired side increased significantly during self-selected walking speed trials and spatial asymmetry decreased significantly during fast-velocity walking trials. SMA and FTST interventions provided similar, significant improvements in spatiotemporal gait parameters; however, the SMA group showed additional improvements across more parameters at various time points. These results indicate that the SMA® device could be a useful therapeutic tool to improve spatiotemporal parameters and contribute to improved functional mobility in stroke survivors. Further research is needed to determine the feasibility of using this device in a home setting vs a clinic setting, and whether such home use provides continued benefits. This study is registered under the title "Development of walk assist device to improve community ambulation" and can be located in clinicaltrials.gov with the study identifier: NCT01994395 .
Clinical impact of exercise in patients with peripheral arterial disease.
Novakovic, Marko; Jug, Borut; Lenasi, Helena
2017-08-01
Increasing prevalence, high morbidity and mortality, and decreased health-related quality of life are hallmarks of peripheral arterial disease. About one-third of peripheral arterial disease patients have intermittent claudication with deleterious effects on everyday activities, such as walking. Exercise training improves peripheral arterial disease symptoms and is recommended as first line therapy for peripheral arterial disease. This review examines the effects of exercise training beyond improvements in walking distance, namely on vascular function, parameters of inflammation, activated hemostasis and oxidative stress, and quality of life. Exercise training not only increases walking distance and physiologic parameters in patients with peripheral arterial disease, but also improves the cardiovascular risk profile by helping patients achieve better control of hypertension, hyperglycemia, obesity and dyslipidemia, thus further reducing cardiovascular risk and the prevalence of coexistent atherosclerotic diseases. American guidelines suggest supervised exercise training, performed for a minimum of 30-45 min, at least three times per week, for at least 12 weeks. Walking is the most studied exercise modality and its efficacy in improving cardiovascular parameters in patients with peripheral arterial disease has been extensively proven. As studies have shown that supervised exercise training improves walking performance, cardiovascular parameters and quality of life in patients with peripheral arterial disease, it should be encouraged and more often prescribed.
Stochastic seismic response of building with super-elastic damper
NASA Astrophysics Data System (ADS)
Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik
2016-05-01
Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.
ERIC Educational Resources Information Center
Rhoads, Christopher
2014-01-01
Recent publications have drawn attention to the idea of utilizing prior information about the correlation structure to improve statistical power in cluster randomized experiments. Because power in cluster randomized designs is a function of many different parameters, it has been difficult for applied researchers to discern a simple rule explaining…
Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin
2017-01-01
Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.
Sczesny-Kaiser, Matthias; Kowalewski, Rebecca; Schildhauer, Thomas A.; Aach, Mirko; Jansen, Oliver; Grasmücke, Dennis; Güttsches, Anne-Katrin; Vorgerd, Matthias; Tegenthoff, Martin
2017-01-01
Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb) can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD). Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT), 6-minute walk test, and timed-up-and-go test (TUG). Parameters were assessed pre and post training and 6 weeks later (follow-up). Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up). Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies. PMID:28848377
Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry
2018-06-19
Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.
Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete
2016-01-01
Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.
Incorporation of MRI-AIF Information For Improved Kinetic Modelling of Dynamic PET Data
NASA Astrophysics Data System (ADS)
Sari, Hasan; Erlandsson, Kjell; Thielemans, Kris; Atkinson, David; Ourselin, Sebastien; Arridge, Simon; Hutton, Brian F.
2015-06-01
In the analysis of dynamic PET data, compartmental kinetic analysis methods require an accurate knowledge of the arterial input function (AIF). Although arterial blood sampling is the gold standard of the methods used to measure the AIF, it is usually not preferred as it is an invasive method. An alternative method is the simultaneous estimation method (SIME), where physiological parameters and the AIF are estimated together, using information from different anatomical regions. Due to the large number of parameters to estimate in its optimisation, SIME is a computationally complex method and may sometimes fail to give accurate estimates. In this work, we try to improve SIME by utilising an input function derived from a simultaneously obtained DSC-MRI scan. With the assumption that the true value of one of the six parameter PET-AIF model can be derived from an MRI-AIF, the method is tested using simulated data. The results indicate that SIME can yield more robust results when the MRI information is included with a significant reduction in absolute bias of Ki estimates.
Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.
2015-01-01
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677
Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A
2015-06-29
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Made-to-measure modelling of observed galaxy dynamics
NASA Astrophysics Data System (ADS)
Bovy, Jo; Kawata, Daisuke; Hunt, Jason A. S.
2018-01-01
Amongst dynamical modelling techniques, the made-to-measure (M2M) method for modelling steady-state systems is amongst the most flexible, allowing non-parametric distribution functions in complex gravitational potentials to be modelled efficiently using N-body particles. Here, we propose and test various improvements to the standard M2M method for modelling observed data, illustrated using the simple set-up of a one-dimensional harmonic oscillator. We demonstrate that nuisance parameters describing the modelled system's orientation with respect to the observer - e.g. an external galaxy's inclination or the Sun's position in the Milky Way - as well as the parameters of an external gravitational field can be optimized simultaneously with the particle weights. We develop a method for sampling from the high-dimensional uncertainty distribution of the particle weights. We combine this in a Gibbs sampler with samplers for the nuisance and potential parameters to explore the uncertainty distribution of the full set of parameters. We illustrate our M2M improvements by modelling the vertical density and kinematics of F-type stars in Gaia DR1. The novel M2M method proposed here allows full probabilistic modelling of steady-state dynamical systems, allowing uncertainties on the non-parametric distribution function and on nuisance parameters to be taken into account when constraining the dark and baryonic masses of stellar systems.
Estimation of distances to stars with stellar parameters from LAMOST
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...
2015-06-05
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Estimation of distances to stars with stellar parameters from LAMOST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Lee, Eunyoung; Cumberbatch, Jewel; Wang, Meng; Zhang, Qiong
2017-03-01
Anaerobic co-digestion has a potential to improve biogas production, but limited kinetic information is available for co-digestion. This study introduced regression-based models to estimate the kinetic parameters for the co-digestion of microalgae and Waste Activated Sludge (WAS). The models were developed using the ratios of co-substrates and the kinetic parameters for the single substrate as indicators. The models were applied to the modified first-order kinetics and Monod model to determine the rate of hydrolysis and methanogenesis for the co-digestion. The results showed that the model using a hyperbola function was better for the estimation of the first-order kinetic coefficients, while the model using inverse tangent function closely estimated the Monod kinetic parameters. The models can be used for estimating kinetic parameters for not only microalgae-WAS co-digestion but also other substrates' co-digestion such as microalgae-swine manure and WAS-aquatic plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Linear functional minimization for inverse modeling
Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...
2015-06-01
In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less
Continuous quality improvement for the clinical decision unit.
Mace, Sharon E
2004-01-01
Clinical decision units (CDUs) are a relatively new and growing area of medicine in which patients undergo rapid evaluation and treatment. Continuous quality improvement (CQI) is important for the establishment and functioning of CDUs. CQI in CDUs has many advantages: better CDU functioning, fulfillment of Joint Commission on Accreditation of Healthcare Organizations mandates, greater efficiency/productivity, increased job satisfaction, better performance improvement, data availability, and benchmarking. Key elements include a database with volume indicators, operational policies, clinical practice protocols (diagnosis specific/condition specific), monitors, benchmarks, and clinical pathways. Examples of these important parameters are given. The CQI process should be individualized for each CDU and hospital.
Sildenafil improves renal function in patients with pulmonary arterial hypertension
Webb, David J; Vachiery, Jean-Luc; Hwang, Lie-Ju; Maurey, Julie O
2015-01-01
Aim Elevated serum creatinine (sCr) and low estimated glomerular filtration rate (eGFR) are associated with poor outcomes in patients with pulmonary arterial hypertension (PAH) whereas sildenafil treatment improves PAH outcomes. This post hoc analysis assessed the effect of sildenafil on kidney function and links with clinical outcomes including 6-min walk distance, functional class, time to clinical worsening and survival. Methods Patients with PAH received placebo or sildenafil 20, 40 or 80 mg three times daily in the SUPER-1 study and open-label sildenafil titrated to 80 mg three times daily (as tolerated) in the extension study. Results Baseline characteristics were similar among groups (n = 277). PAH was mostly idiopathic (63%) and functional class II (39%) or III (58%). From baseline to week 12, kidney function improved (increased eGFR, decreased sCr) with sildenafil and worsened with placebo. In univariate logistic regression, improved kidney function was associated with significantly improved exercise and functional class (odds ratios 1.17 [95% CI 1.01, 1.36] and 1.21 [95% CI 1.03, 1.41], respectively, for sCr and 0.97 [95% CI 0.94, 0.99] and 0.97 [95% CI 0.94, 0.99] for eGFR, all P < 0.05). In patients who maintained or improved kidney function, time to worsening was significantly delayed (P < 0.02 for both kidney parameters). Observed trends towards improved survival were not significant. Patients with eGFR <60 (vs. ≥60) ml min–1 1.73 m–2 appeared to have worse survival. Conclusions Sildenafil treatment was associated with improved kidney function in patients with PAH, which was in turn associated with improved exercise capacity and functional class, a reduced risk of clinical worsening, and a trend towards reduced mortality. PMID:25727860
Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations
NASA Technical Reports Server (NTRS)
Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome
2016-01-01
The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.
Yamamoto, Saori; Shiga, Hiroshi
2018-03-13
To clarify the relationship between masticatory performance and oral health-related quality of life (OHRQoL) before and after complete denture treatment. Thirty patients wearing complete dentures were asked to chew a gummy jelly on their habitual chewing side, and the amount of glucose extraction during chewing was measured as the parameter of masticatory performance. Subjects were asked to answer the Oral Health Impact Profile (OHIP-J49) questionnaire, which consists of 49 questions related to oral problems. The total score of 49 question items along with individual domain scores within the seven domains (functional limitation, pain, psychological discomfort, physical disability, psychological disability, social disability and handicap) were calculated and used as the parameters of OHRQoL. These records were obtained before treatment and 3 months after treatment. Each parameter of masticatory performance and OHRQoL was compared before treatment and after treatment. The relationship between masticatory performance and OHRQoL was investigated, and a stepwise multiple linear regression analysis was performed. Both masticatory performance and OHRQoL were significantly improved after treatment. Furthermore, masticatory performance was significantly correlated with some parameters of OHRQoL. The stepwise multiple linear regression analysis showed functional limitation and pain as important factors affecting masticatory performance before treatment and functional limitation as important factors affecting masticatory performance after treatment. These results suggested that masticatory performance and OHRQoL are significantly improved after treatment and that there is a close relationship between the two. Moreover, functional limitation was found to be the most important factor affecting masticatory performance. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.
Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less
On the complexity of Engh and Huber refinement restraints: the angle τ as example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touw, Wouter G.; Vriend, Gert, E-mail: vriend@cmbi.ru.nl
2010-12-01
The angle τ (backbone N—C{sup α}—C) is the most contested Engh and Huber refinement target parameter. It is shown that this parameter is ‘correct’ as a PDB-wide average, but can be improved by taking into account residue types, secondary structures and many other aspects of our knowledge of the biophysical relations between residue type and protein structure. The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N—C{supmore » α}—C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010 ▶), Acta Cryst. D66, 834–842] confirms these ideas. However, the present study of τ shows that improving the Engh and Huber parameters will be considerably more complex than simply making the parameters a function of the backbone ϕ, ψ angles. Many other aspects, such as the cooperativity of hydrogen bonds, the bending of secondary-structure elements and a series of biophysical aspects of the 20 amino-acid types, will also need to be taken into account. Different sets of Engh and Huber parameters will be needed for conceptually different refinement programs.« less
A strategy for improved computational efficiency of the method of anchored distributions
NASA Astrophysics Data System (ADS)
Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram
2013-06-01
This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.
Rejc, Enrico; Angeli, Claudia A.; Bryant, Nicole
2017-01-01
Abstract Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing. PMID:27566051
Youngs, Noah; Penfold-Brown, Duncan; Drew, Kevin; Shasha, Dennis; Bonneau, Richard
2013-05-01
Computational biologists have demonstrated the utility of using machine learning methods to predict protein function from an integration of multiple genome-wide data types. Yet, even the best performing function prediction algorithms rely on heuristics for important components of the algorithm, such as choosing negative examples (proteins without a given function) or determining key parameters. The improper choice of negative examples, in particular, can hamper the accuracy of protein function prediction. We present a novel approach for choosing negative examples, using a parameterizable Bayesian prior computed from all observed annotation data, which also generates priors used during function prediction. We incorporate this new method into the GeneMANIA function prediction algorithm and demonstrate improved accuracy of our algorithm over current top-performing function prediction methods on the yeast and mouse proteomes across all metrics tested. Code and Data are available at: http://bonneaulab.bio.nyu.edu/funcprop.html
Coupling-parameter expansion in thermodynamic perturbation theory.
Ramana, A Sai Venkata; Menon, S V G
2013-02-01
An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.
The shape parameter and its modification for defining coastal profiles
NASA Astrophysics Data System (ADS)
Türker, Umut; Kabdaşli, M. Sedat
2009-03-01
The shape parameter is important for the theoretical description of the sandy coastal profiles. This parameter has previously been defined as a function of the sediment-settling velocity. However, the settling velocity cannot be characterized over a wide range of sediment grains. This, in turn, limits the calculation of the shape parameter over a wide range. This paper provides a simpler and faster analytical equation to describe the shape parameter. The validity of the equation has been tested and compared with the previously estimated values given in both graphical and tabular forms. The results of this study indicate that the analytical solutions of the shape parameter improved the usability of profile better than graphical solutions, predicting better results both at the surf zone and offshore.
Balasubramanian, Vijay Anand; Douraiswami, Balaji; Subramani, Suresh
2018-06-01
Lumbar spondylolisthesis is a common cause of morbidity in middle aged individuals. Spinal fusion with instrumentation has become the gold standard for lumbar segmental instability. Studies which correlate the improvement in radiology postoperatively with functional outcome show contrasting reports. This study is aimed at finding the correlation between clinical and radiological outcomes after surgery with transforaminal lumbar interbody fusion. A retrospective study in 35 patients who underwent transforaminal lumbar interbody fusion in a period of 1 year was done. Preoperative pain (VAS Score), functional ability (ODI), radiological parameters (slip angle, slip grade, disc height, foraminal height, lumbar lordosis) were compared with postoperative recordings at the last followup. Functional improvement (Macnab's criteria) and fusion (Lee's fusion criteria) were assessed. Statistical analysis was done with student's paired t -test and Pearson's correlation coefficient. VAS score, ODI improved from 8 to 2 and 70 to 15 respectively. Slip angle improved from 23°to 5° on an average. 80% patients showed fusion and 85% showed good clinical outcome at 1 year followup. Analyzing with Pearson correlation coefficient showed no significant relation between pain scores and radiological parameters. But there was statistically significant relation between radiological fusion and the final clinical outcome. TLIF produces spinal fusion in most individuals. Strong spinal fusion is essential for good clinical outcome in spondylolisthesis patients who undergo TLIF. Reduction in slip is not necessary for all patients with listhesis.
Van Laethem, Christophe; Goethals, Marc; Verstreken, Sofie; Walravens, Maarten; Wellens, Francis; De Proft, Margot; Bartunek, Jozef; Vanderheyden, Marc
2007-09-01
Recently, a new linear measure of ventilatory response to exercise, the oxygen uptake efficiency slope (OUES), was proposed in the evaluation of heart failure patients. No data are available on the response of the OUES after orthotopic heart transplantation (HTx). Thirty patients who underwent HTx between 1999 and 2003 were included in the study. Data from maximal cardiopulmonary exercise test, resting pulmonary function and hemodynamic assessment were collected before the transplant at time of screening and 1 year after HTx. During the first year after HTx, OUES and normalized OUES for body weight (OUES/kg) increased significantly from 15.6 +/- 4.9 to 19.7 +/- 4.8 (p < 0.05). Changes in OUES/kg were significantly correlated with changes in peak VO2, VAT and peak VE, and inversely to changes in peak VD/VT, but not to changes in VE/VCO2 slope (all p < 0.05). Changes in OUES or OUES/kg did not correlate with any changes in measures of resting lung volumes or capacities and measures of central hemodynamic function after HTx. OUES improved significantly after HTx, but, similar to other exercise parameters, remained considerably impaired. The changes in OUES were highly correlated with the improvements in other exercise variables, but did not correlate with marked improvements in central hemodynamics or resting lung function.
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...
2017-05-23
Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra
Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less
ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.
Earthquake source parameters underpin several aspects of nuclear explosion monitoring. Such aspects are: calibration of moment magnitudes (including coda magnitudes) and magnitude and distance amplitude corrections (MDAC); source depths; discrimination by isotropic moment tensor components; and waveform modeling for structure (including waveform tomography). This project seeks to improve methods for and broaden the applicability of estimating source parameters from broadband waveforms using the Cut-and-Paste (CAP) methodology. The CAP method uses a library of Green’s functions for a one-dimensional (1D, depth-varying) seismic velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radialmore » components), Rayleigh (vertical and radial components) and Love (transverse component). Source parameters are estimated by grid search over strike, dip, rake and depth and seismic moment or equivalently moment magnitude, MW, are adjusted to fit the amplitudes. Key to the CAP method is allowing the synthetic seismograms to shift in time relative to the data in order to account for path-propagation errors (delays) in the 1D seismic velocity model used to compute the Green’s functions. The CAP method has been shown to improve estimates of source parameters, especially when delay and amplitude biases are calibrated using high signal-to-noise data from moderate earthquakes, CAP+.« less
Combined hybrid functional and DFT+U calculations for metal chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr
2014-07-28
In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE)more » hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.« less
NASA Astrophysics Data System (ADS)
Araujo, Adriana V.; Dias, Cristina O.; Bonecker, Sérgio L. C.
2017-07-01
We examined changes in the functioning of copepod assemblages with increasing pollution in estuaries, using sampling standardization of the salinity range to enable comparisons. Copepod assemblages were analyzed in four southeast Brazilian estuaries with different water quality levels and hydrodynamic characteristics over two years. We obtained mesozooplankton samples together with environmental and water quality parameters in the estuaries, every two months under predetermined salinities ranging from 15 to 25. The values of parameters, except species size, associated with the functioning of the copepod assemblages (biomass, productivity, and turnover rate) did not differ among estuaries. However, in the more polluted estuaries, the biomass and productivity of copepod assemblages of mesozooplankton were negatively correlated with concentration of pollution indicator parameters. Conversely, in the less polluted estuaries some degree of enrichment still seems to increase the system biomass and productivity, as these parameters were inversely related to indicators of improved water quality. The pollution level of estuaries distorted the relationship between temperature and the efficiency of converting energy to organic matter. In the less polluted estuaries, the relationship between turnover rate and temperature was over 70%, while in the most polluted estuaries, this relationship was only approximately 50%. Our results demonstrated that the functioning of assemblages in the estuaries was affected differently by increasing pollution depending on the water quality level of the system. Thus, investigating the functioning of assemblages can be a useful tool for the analysis of estuarine conditions.
Rezende Barbosa, Marianne Penachini da Costa de; Oliveira, Vinicius Cunha; Silva, Anne Kastelianne França da; Pérez-Riera, Andrés Ricardo; Vanderlei, Luiz Carlos
2017-07-28
Functional training is a new training vision that was prepared from the gesture imitation of daily activities. Although your use has become popular in clinical practice, the influence of the several cardiorespiratory adjustments performed during the functional training in different populations and conditions is unknown. So, the aim of this systematic review was to gather information in the literature regarding the influence of functional training on cardiorespiratory parameters. We conducted search strategies on MEDLINE, PEDro, EMBASE, SportDiscus and Cochrane to identify randomized controlled trials investigating the effects of functional training on cardiorespiratory parameters. Methodological quality of the included studies was assessed using the PEDro scale. Grading of Recommendations Assessment, Development and Evaluation (GRADE) summarized the evidence. Five original studies were included. Effects favoured functional training on oxygen consumption (VO 2 ) at intermediate-term follow-up: weighted mean difference -1·0 (95% CI: 5·4-3·3), P = 0·642, and a small and not clinically important effect observed on VO 2 favouring control at intermediate-term follow-up (i.e. mean difference of 1·30 (95% CI 1·07-1·53), P<0·001). According to the GRADE system, there is very low quality evidence that functional training is better than other interventions to improve cardiovascular parameters. This result encourages new searches about the theme. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Hennig, Timo; Krkovic, Katarina; Lincoln, Tania M
2017-10-01
Many adolescents sleep insufficiently, which may negatively affect their functioning during the day. To improve sleep interventions, we need a better understanding of the specific sleep-related parameters that predict poor functioning. We investigated to which extent subjective and objective parameters of sleep in the preceding night (state parameters) and the trait variable chronotype predict daytime inattention as an indicator of poor functioning. We conducted an experience-sampling study over one week with 61 adolescents (30 girls, 31 boys; mean age = 15.5 years, standard deviation = 1.1 years). Participants rated their inattention two times each day (morning, afternoon) on a smartphone. Subjective sleep parameters (feeling rested, positive affect upon awakening) were assessed each morning on the smartphone. Objective sleep parameters (total sleep time, sleep efficiency, wake after sleep onset) were assessed with a permanently worn actigraph. Chronotype was assessed with a self-rated questionnaire at baseline. We tested the effect of subjective and objective state parameters of sleep on daytime inattention, using multilevel multiple regressions. Then, we tested whether the putative effect of the trait parameter chronotype on inattention is mediated through state sleep parameters, again using multilevel regressions. We found that short sleep time, but no other state sleep parameter, predicted inattention to a small effect. As expected, the trait parameter chronotype also predicted inattention: morningness was associated with less inattention. However, this association was not mediated by state sleep parameters. Our results indicate that short sleep time causes inattention in adolescents. Extended sleep time might thus alleviate inattention to some extent. However, it cannot alleviate the effect of being an 'owl'. Copyright © 2017 Elsevier B.V. All rights reserved.
Hallböök, Tove; Lundgren, Johan; Stjernqvist, Karin; Blennow, Gösta; Strömblad, Lars-Göran; Rosén, Ingmar
2005-10-01
Vagus nerve stimulation (VNS) is a neurophysiologic treatment for patients with refractory epilepsy. There is growing evidence of additional quality of life (QOL) benefits of VNS. We report the effects of VNS on seizure frequency and severity and how these changes are related to cognitive abilities, QOL, behaviour and mood in 15 children with medically refractory and for surgery not eligible epilepsy. Initially, and after 3 and 9 months of VNS-treatment, 15 children were investigated with Bayley Scales of Infant Development (BSID), Wechsler Preschool and Primary Scale of Intelligence (WPPSI-R), Wechlser Intelligence Scales for Children (WISC-III) depending on the child's level of functioning, a Visual Analogue Scale for validating QOL, Child Behaviour Checklist (CBCL) for quantifying behaviour problems, Dodrill Mood Analogue Scale and Birleson Depression Self-Rating Scale, and the National Hospital Seizure Severity Scale (NHS3). A diary of seizure frequency was collected. Six of 15 children showed a 50% or more reduction in seizure frequency; one of these became seizure-free. Two children had a 25-50% seizure reduction. Two children showed increased seizure frequency. In 13 of 15 children there was an improvement in NHS3. The parents reported shorter duration of seizure and recovery phase. There were no changes in cognitive functioning. Twelve children showed an improvement in QOL. Eleven of these also improved in seizure severity and mood and five also in depressive parameters. This study has shown a good anti-seizure effect of VNS, an improvement in seizure severity and in QOL and a tendency to improvement over time regarding behaviour, mood and depressive parameters. The improvement in seizure severity, QOL, behaviour, mood and depressive parameters was not related to the anti-seizure effect.
SU-E-T-439: An Improved Formula of Scatter-To-Primary Ratio for Photon Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T
2014-06-01
Purpose: Scatter-to-primary ratio (SPR) is an important dosimetric quantity that describes the contribution from the scatter photons in an external photon beam. The purpose of this study is to develop an improved analytical formula to describe SPR as a function of circular field size (r) and depth (d) using Monte Carlo (MC) simulation. Methods: MC simulation was performed for Mohan photon spectra (Co-60, 4, 6, 10, 15, 23 MV) using EGSNRC code. Point-spread scatter dose kernels in water are generated. The scatter-to-primary ratio (SPR) is also calculated using MC simulation as a function of field size for circular field sizemore » with radius r and depth d. The doses from forward scatter and backscatter photons are calculated using a convolution of the point-spread scatter dose kernel and by accounting for scatter photons contributing to dose before (z'd) reaching the depth of interest, d, where z' is the location of scatter photons, respectively. The depth dependence of the ratio of the forward scatter and backscatter doses is determined as a function of depth and field size. Results: We are able to improve the existing 3-parameter (a, w, d0) empirical formula for SPR by introducing depth dependence for one of the parameter d0, which becomes 0 for deeper depths. The depth dependence of d0 can be directly calculated as a ratio of backscatter-to-forward scatter doses for otherwise the same field and depth. With the improved empirical formula, we can fit SPR for all megavoltage photon beams to within 2%. Existing 3-parameter formula cannot fit SPR data for Co-60 to better than 3.1%. Conclusion: An improved empirical formula is developed to fit SPR for all megavoltage photon energies to within 2%.« less
Boer, P H
2018-01-01
Structured exercise has shown to improve parameters of functional fitness in adults with Down syndrome (DS). However, few, if any, continue to exercise after exercise intervention studies. Consequently, the purpose of this study was to determine the effects of detraining on anthropometry, aerobic capacity and functional ability of adults with DS. In a previous study, forty-two participants either performed 12 weeks of interval training, continuous aerobic training or no training (CON). After 3 months of detraining, the same participants were tested again for anthropometry, aerobic capacity, leg strength and functional ability. Significant reductions in maximal aerobic capacity, time to exhaustion and both functional test items were reported for both exercise groups compared to CON (p < .05). No significant differences were reported between the exercise groups concerning aerobic and functional capacity reductions. Detraining occurred significantly in both exercise groups regarding parameters associated with aerobic and functional capacity. © 2017 John Wiley & Sons Ltd.
Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0
Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; ...
2016-08-25
Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less
Apaijai, Nattayaporn; Chinda, Kroekkiat; Palee, Siripong; Chattipakorn, Siriporn; Chattipakorn, Nipon
2014-01-01
Background Obese-insulin resistance caused by long-term high-fat diet (HFD) consumption is associated with left ventricular (LV) dysfunction and increased risk of myocardial infarction. Metformin and vildagliptin have been shown to exert cardioprotective effects. However, the effect of these drugs on the hearts under obese-insulin resistance with ischemia-reperfusion (I/R) injury is unclear. We hypothesized that combined vildagliptin and metformin provide better protective effects against I/R injury than monotherapy in obese-insulin resistant rats. Methodology Male Wistar rats were fed either HFD or normal diet. Rats in each diet group were divided into 4 subgroups to receive vildagliptin, metformin, combined vildagliptin and metformin, or saline for 21 days. Ischemia due to left anterior descending artery ligation was allowed for 30-min, followed by 120-min reperfusion. Metabolic parameters, heart rate variability (HRV), LV function, infarct size, mitochondrial function, calcium transient, Bax and Bcl-2, and Connexin 43 (Cx43) were determined. Rats developed insulin resistance after 12 weeks of HFD consumption. Vildagliptin, metformin, and combined drugs improved metabolic parameters, HRV, and LV function. During I/R, all treatments improved LV function, reduced infarct size and Bax, increased Bcl-2, and improved mitochondrial function in HFD rats. However, only combined drugs delayed the time to the first VT/VF onset, reduced arrhythmia score and mortality rate, and increased p-Cx43 in HFD rats. Conclusion Although both vildagliptin and metformin improved insulin resistance and attenuate myocardial injury caused by I/R, combined drugs provided better outcomes than single therapy by reducing arrhythmia score and mortality rate. PMID:25036861
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping
2018-01-01
An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Results: Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Conclusion: Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality. PMID:26629238
Longoria-García, S; Cruz-Hernández, M A; Flores-Verástegui, M I M; Contreras-Esquivel, J C; Montañez-Sáenz, J C; Belmares-Cerda, R E
2018-03-01
Several health benefits have been associated to probiotics and prebiotics, most of these are involved in the regulation of the host's gut microbiome. Their incorporation to diverse food products has been done to develop potential functional foods. In the case of bakery products, their incorporation has been seen to improve several technological parameters such as volume, specific volume, texture along with sensorial parameters such as flavor and aroma. Scientific literature in this topic has been divided in three main research branches: nutrition, physical quality and sensory analyzes, however, studies rarely cover all of them. Due to the harsh thermal stress during baking, sourdough technology along with microencapsulation of probiotics, has been studied as an alternative to enhance its nutritional values and increase cell viability, though in few occasions. The potential functional baked goods have maintained acceptable physical characteristics and sensorial acceptability, while in some cases an improvement is seen due to the effect of probiotics and prebiotics. The results obtained from several studies done, have shown the viability of developing functional bakery products by applying prebiotics or probiotics. This could be used as an encouragement for more research to be done in this topic.
Rapid performance modeling and parameter regression of geodynamic models
NASA Astrophysics Data System (ADS)
Brown, J.; Duplyakin, D.
2016-12-01
Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.
Flamand, Véronique H; Schneider, Cyril
2014-10-01
Motor deficits in cerebral palsy disturb functional independence. This study tested whether noninvasive and painless repetitive peripheral magnetic stimulation could improve motor function in a 7-year-old boy with spastic hemiparetic cerebral palsy. Stimulation was applied over different nerves of the lower limbs for 5 sessions. We measured the concurrent aftereffects of this intervention on ankle motor control, gait (walking velocity, stride length, cadence, cycle duration), and function of brain motor pathways. We observed a decrease of ankle plantar flexors resistance to stretch, an increase of active dorsiflexion range of movement, and improvements of corticospinal control of ankle dorsiflexors. Joint mobility changes were still present 15 days after the end of stimulation, when all gait parameters were also improved. Resistance to stretch was still lower than prestimulation values 45 days after the end of stimulation. This case illustrates the sustained effects of repetitive peripheral magnetic stimulation on brain plasticity, motor function, and gait. It suggests a potential impact for physical rehabilitation in cerebral palsy. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Improved distorted wave theory with the localized virial conditions
NASA Astrophysics Data System (ADS)
Hahn, Y. K.; Zerrad, E.
2009-12-01
The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.
The conical scanner evaluation system design
NASA Technical Reports Server (NTRS)
Cumella, K. E.; Bilanow, S.; Kulikov, I. B.
1982-01-01
The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.
Cascella, D; Raffi, G B; Caudarella, R; Gennari, P; Caprara, C; Cipolla, C
1979-12-01
A group of 20 chronic bronchopneumopathics was treated for 15 days with fenspiride orally and i.m. The behaviour of a set of functional respiratory and haemogasanalytic parameters was monitored at various times (basic, 5th, 10th and 15th days). Progressive, significant improvements in VC, FEV1, RV and in related parameters were observed. These were attributed to the drug's anti-inflammatory effect in the respiratory ways as well as to its direct antibronchospastic action. Stress is laid on the excellent clinical tolerance of fenspiride following its oral and i.m. administration.
Xu, Xin; Goddard, William A
2004-03-02
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
NASA Astrophysics Data System (ADS)
Xu, Xin; Goddard, William A., III
2004-03-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA.
Xu, Xin; Goddard, William A.
2004-01-01
We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235
Das, Gurudip; Aiyer, Siddharth Narasimhan; Kanna, Rishi Mugesh; Shetty, Ajoy Prasad
2018-01-01
Study Design Retrospective case series. Purpose To correlate functional outcomes with spinopelvic parameters in patients with high-grade spondylolisthesis (HGS) treated with instrumented in-situ surgery or reduction and fusion. Overview of Literature Satisfactory functional outcomes are reported with reduction and in-situ fusion strategies in HGS. However, reasons for this are unclear. We hypothesize that following lumbosacral fusion, the L5 becomes part of the sacrum, which improves spinopelvic parameters, resulting in equivalent functional outcomes in both surgical methods. Methods Twenty-six patients undergoing HGS (reduction group A, 13; in-situ group B, 13) were clinically evaluated using the Oswestry Disability Index (ODI), short form-12 (SF-12), and Visual Analogue Scale (VAS) scores. Spinopelvic parameters, including pelvic incidence, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), lumbosacral kyphosis (LSK) angle, and sacrofemoral distance (SFD) were measured preoperatively from S1 and postoperatively from L5 as the new sacrum at 1 year follow-up. Sagittal alignment was assessed using the sagittal vertical axis. Results Both groups were comparable in terms of age, sex, severity of slip, and preoperative spinopelvic parameters (p>0.05). Postoperative VAS, SF-12, and ODI scores significantly improved in both groups (p<0.05). Compared with preoperative values, the mean postoperative PT, SFD, and LSK significantly changed in both groups. In reduction group, PT changed from 26.98° to 10.78°, SFD from 61.24 to 33.56 mm, and LSK from 74.76° to 109.61° (p<0.05). In in-situ fusion group PT changed from 26.78° to 11.08°, SFD from 62.9 to 36.99 mm, and LSK from 67.23° to 113.38° (p<0.05 for all). In both groups, SS and LL did not change significantly (p>0.05). Conclusions After fusion, the L5 becomes the new sacrum and influences spinopelvic parameters to change favorably. This possibly explains why reduction and in-situ fusion achieve equivalent functional outcomes in HGS. PMID:29503689
Rajasekaran, Shanmuganathan; Das, Gurudip; Aiyer, Siddharth Narasimhan; Kanna, Rishi Mugesh; Shetty, Ajoy Prasad
2018-02-01
Retrospective case series. To correlate functional outcomes with spinopelvic parameters in patients with high-grade spondylolisthesis (HGS) treated with instrumented in-situ surgery or reduction and fusion. Satisfactory functional outcomes are reported with reduction and in-situ fusion strategies in HGS. However, reasons for this are unclear. We hypothesize that following lumbosacral fusion, the L5 becomes part of the sacrum, which improves spinopelvic parameters, resulting in equivalent functional outcomes in both surgical methods. Twenty-six patients undergoing HGS (reduction group A, 13; in-situ group B, 13) were clinically evaluated using the Oswestry Disability Index (ODI), short form-12 (SF-12), and Visual Analogue Scale (VAS) scores. Spinopelvic parameters, including pelvic incidence, pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), lumbosacral kyphosis (LSK) angle, and sacrofemoral distance (SFD) were measured preoperatively from S1 and postoperatively from L5 as the new sacrum at 1 year follow-up. Sagittal alignment was assessed using the sagittal vertical axis. Both groups were comparable in terms of age, sex, severity of slip, and preoperative spinopelvic parameters ( p >0.05). Postoperative VAS, SF-12, and ODI scores significantly improved in both groups ( p <0.05). Compared with preoperative values, the mean postoperative PT, SFD, and LSK significantly changed in both groups. In reduction group, PT changed from 26.98° to 10.78°, SFD from 61.24 to 33.56 mm, and LSK from 74.76° to 109.61° ( p <0.05). In in-situ fusion group PT changed from 26.78° to 11.08°, SFD from 62.9 to 36.99 mm, and LSK from 67.23° to 113.38° ( p <0.05 for all). In both groups, SS and LL did not change significantly ( p >0.05). After fusion, the L5 becomes the new sacrum and influences spinopelvic parameters to change favorably. This possibly explains why reduction and in-situ fusion achieve equivalent functional outcomes in HGS.
Influence of Van der Waals interaction on the thermodynamics properties of NaCl
NASA Astrophysics Data System (ADS)
Marcondes, M. L.; Wentzcovitch, R. M.; Assali, L. V. C.
2016-12-01
Equations of state (EoS) are extremely important in several scientific domains. However, many applications require EoS parameters at high pressures and temperatures. Experimental determination of these parameters is limited in such conditions and ab initio calculations have become important in computing them. Density Functional Theory (DFT) with its various approximations for exchange and correlation energy is the method of choice, but lack of a good description of the exchange-correlation energy results in large errors in EoS parameters. It is well known that the alkali halides have been problematic from the onset and the quest for DFT functionals appropriate for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate the thermal equation of state and thermodynamic properties of the B1 NaCl phase. Our results show a remarkable improvement over the performance of standard the LDA and GGA functionals. This is hardly surprising given that ions in this system have nearly closed shell configurations.
Liu, Rui; Hu, Xiao-Hang; Wang, Shu-Ming; Guo, Si-Jia; Li, Zong-Yu; Bai, Xiao-Dong; Zhou, Fang-Qiang; Hu, Sen
2016-06-01
To investigate whether pyruvate-enriched oral rehydration solution (Pyr-ORS), compared with citrate-enriched ORS (Cit-ORS), improves hemodynamics and organ function by alleviating vasopermeability and plasma volume loss during intra-gastric fluid rehydration in dogs with severe burn. Forty dogs subjected to severe burn were randomly divided into four groups (n=10): two oral rehydrated groups with Pyr-ORS and Cit-ORS (group PR and group CR), respectively, according to the Parkland formula during the first 24h after burns. Other two groups were the intravenous (IV) resuscitation (group VR) with lactated Ringer's solution with the same dosage and no fluid rehydration (group NR). During the next 24h, all groups received the same IV infusion. The hemodynamics, plasma volume, vasopermeability and water contents and function of various organs were determined. Plasma levels of vascular endothelial growth factor (VEGF) and platelet activating factor (PAF) were detected by ELISA. Hemodynamics parameters were significantly improved in group PR superior to group CR after burns. Levels of VEGF and PAF were significantly lower in group PR than in group CR. Organ function parameters were also greatly preserved in group PR, relative to groups CR and NR. Lactic acidosis was fully corrected and survival increased in group PR (50.0%), compared to group CR (20.0%). Pyr-ORS was more effective than Cit-ORS in improving hemodynamics, visceral blood perfusion and organ function by alleviating vasopermeability-induced visceral edema and plasma volume loss in dogs with severe burn. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Slepoy, A; Peters, M D; Thompson, A P
2007-11-30
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.
Berman, J R; Berman, L A; Lin, H; Flaherty, E; Lahey, N; Goldstein, I; Cantey-Kiser, J
2001-01-01
Sexual dysfunction is a complaint of 30-50% of American women. Aside from hormone replacement therapy, there are no current FDA-approved medical treatments for female sexual complaints. The goal of this pilot study was to determine safety and efficacy of sildenafil for use in women with sexual arousal disorder (SAD). Evaluations were completed on 48 women with complaints of SAD. Physiologic measurements, including genital blood flow, vaginal lubrication, intravaginal pressure-volume changes, and genital sensation were recorded pre- and postsexual stimulation at baseline and following 100 mg sildenafil. Subjective sexual function was assessed using a validated sexual function inventory at baseline and following 6 weeks of home use of sildenafil. At termination of the study patients also completed an intervention efficacy index (FIEI). Following sildenafil, poststimulation physiologic measurements improved significantly compared to baseline. Baseline subjective sexual function complaints, including low arousal, low desire, low sexual satisfaction, difficulty achieving orgasm, decreased vaginal lubrication, and dyspareunia also improved significantly following 6 weeks home use of sildenafil. Sildenafil appears to significantly improve both subjective and physiologic parameters of the female sexual response. Double-blind, placebo-controlled studies are currently in progress to further determine efficacy of this medication for treatment of female sexual dysfunction complaints in different populations of women.
Hetzel, Juergen; Boeckeler, Michael; Horger, Marius; Ehab, Ahmed; Kloth, Christopher; Wagner, Robert; Freitag, Lutz; Slebos, Dirk-Jan; Lewis, Richard Alexander; Haentschel, Maik
2017-01-01
Lung volume reduction (LVR) improves breathing mechanics by reducing hyperinflation. Lobar selection usually focuses on choosing the most destroyed emphysematous lobes as seen on an inspiratory CT scan. However, it has never been shown to what extent these densitometric CT parameters predict the least deflation of an individual lobe during expiration. The addition of expiratory CT analysis allows measurement of the extent of lobar air trapping and could therefore provide additional functional information for choice of potential treatment targets. To determine lobar vital capacity/lobar total capacity (LVC/LTC) as a functional parameter for lobar air trapping using on an inspiratory and expiratory CT scan. To compare lobar selection by LVC/LTC with the established morphological CT density parameters. 36 patients referred for endoscopic LVR were studied. LVC/LTC, defined as delta volume over maximum volume of a lobe, was calculated using inspiratory and expiratory CT scans. The CT morphological parameters of mean lung density (MLD), low attenuation volume (LAV), and 15th percentile of Hounsfield units (15%P) were determined on an inspiratory CT scan for each lobe. We compared and correlated LVC/LTC with MLD, LAV, and 15%P. There was a weak correlation between the functional parameter LVC/LTC and all inspiratory densitometric parameters. Target lobe selection using lowest lobar deflation (lowest LVC/LTC) correlated with target lobe selection based on lowest MLD in 18 patients (50.0%), with the highest LAV in 13 patients (36.1%), and with the lowest 15%P in 12 patients (33.3%). CT-based measurement of deflation (LVC/LTC) as a functional parameter correlates weakly with all densitometric CT parameters on a lobar level. Therefore, morphological criteria based on inspiratory CT densitometry partially reflect the deflation of particular lung lobes, and may be of limited value as a sole predictor for target lobe selection in LVR.
Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng
2014-12-30
This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.
An improved Rosetta pedotransfer function and evaluation in earth system models
NASA Astrophysics Data System (ADS)
Zhang, Y.; Schaap, M. G.
2017-12-01
Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.
Prediction of Geomagnetic Activity and Key Parameters in High-latitude Ionosphere
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Lyatsky, Wladislaw; Tan, Arjun; Ridley, Aaron
2007-01-01
Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere are important tasks of US Space Weather Program. Prediction reliability is dependent on the prediction method, and elements included in the prediction scheme. Two of the main elements of such prediction scheme are: an appropriate geomagnetic activity index, and an appropriate coupling function (the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity). We have developed a new index of geomagnetic activity, the Polar Magnetic (PM) index and an improved version of solar wind coupling function. PM index is similar to the existing polar cap PC index but it shows much better correlation with upstream solar wind/IMF data and other events in the magnetosphere and ionosphere. We investigate the correlation of PM index with upstream solar wind/IMF data for 10 years (1995-2004) that include both low and high solar activity. We also have introduced a new prediction function for the predicting of cross-polar-cap voltage and Joule heating based on using both PM index and upstream solar wind/IMF data. As we show such prediction function significantly increase the reliability of prediction of these important parameters. The correlation coefficients between the actual and predicted values of these parameters are approx. 0.9 and higher.
van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette
2016-01-01
Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770
The PROCARE consortium: toward an improved allocation strategy for kidney allografts.
Otten, H G; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M; Spierings, E; Hack, C E; van Reekum, F; van Zuilen, A D; Verhaar, M C; Bots, M L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E; Gelens, M; Christiaans, M; van Ittersum, F; Nurmohamed, A; Lardy, N M; Swelsen, W T; van Donselaar-van der Pant, K A M I; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A J; de Fijter, J W; Betjes, M G H; Roelen, D L; Claas, F H J
2014-10-01
Kidney transplantation is the best treatment option for patients with end-stage renal failure. At present, approximately 800 Dutch patients are registered on the active waiting list of Eurotransplant. The waiting time in the Netherlands for a kidney from a deceased donor is on average between 3 and 4 years. During this period, patients are fully dependent on dialysis, which replaces only partly the renal function, whereas the quality of life is limited. Mortality among patients on the waiting list is high. In order to increase the number of kidney donors, several initiatives have been undertaken by the Dutch Kidney Foundation including national calls for donor registration and providing information on organ donation and kidney transplantation. The aim of the national PROCARE consortium is to develop improved matching algorithms that will lead to a prolonged survival of transplanted donor kidneys and a reduced HLA immunization. The latter will positively affect the waiting time for a retransplantation. The present algorithm for allocation is among others based on matching for HLA antigens, which were originally defined by antibodies using serological typing techniques. However, several studies suggest that this algorithm needs adaptation and that other immune parameters which are currently not included may assist in improving graft survival rates. We will employ a multicenter-based evaluation on 5429 patients transplanted between 1995 and 2005 in the Netherlands. The association between key clinical endpoints and selected laboratory defined parameters will be examined, including Luminex-defined HLA antibody specificities, T and B cell epitopes recognized on the mismatched HLA antigens, non-HLA antibodies, and also polymorphisms in complement and Fc receptors functionally associated with effector functions of anti-graft antibodies. From these data, key parameters determining the success of kidney transplantation will be identified which will lead to the identification of additional parameters to be included in future matching algorithms aiming to extend survival of transplanted kidneys and to diminish HLA immunization. Computer simulation studies will reveal the number of patients having a direct benefit from improved matching, the effect on shortening of the waiting list, and the decrease in waiting time. Copyright © 2014. Published by Elsevier B.V.
Nonparametric Transfer Function Models
Liu, Jun M.; Chen, Rong; Yao, Qiwei
2009-01-01
In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, Maria Isabel
This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
NASA Astrophysics Data System (ADS)
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
Effect of Frequent or Extended Hemodialysis on Cardiovascular Parameters: A Meta-analysis
Susantitaphong, Paweena; Koulouridis, Ioannis; Balk, Ethan M.; Madias, Nicolaos E.; Jaber, Bertrand L.
2012-01-01
Background Increased left ventricular (LV) mass is a risk factor for cardiovascular mortality in patients with chronic kidney failure. More frequent or extended hemodialysis (HD) has been hypothesized to have a beneficial effect on LV mass. Study Design Meta-analysis. Setting & Population MEDLINE literature search (inception-April 2011), Cochrane Central Register of Controlled Trials and ClinicalTrials.gov using the search terms “short daily HD”, “daily HD”, “quotidian HD”, “frequent HD”, “intensive HD”, “nocturnal HD”, and “home HD”. Selection Criteria for Studies Single-arm cohort studies (with pre- and post-study evaluations) and randomized controlled trials examining the effect of frequent or extended HD on cardiac morphology and function, and blood pressure parameters. Studies of hemofiltration, hemodiafiltration and peritoneal dialysis were excluded. Intervention Frequent (2–8 hours,> thrice weekly) or extended (>4 hours, thrice weekly) HD as compared with conventional (≤ 4 hours, thrice weekly) HD. Outcomes Absolute changes in cardiac morphology and function, including LV mass index (LVMI) (primary), and blood pressure parameters (secondary). Results We identified 38 single-arm studies, 5 crossover trials and 3 randomized controlled trials. By meta-analysis of 23 study arms, frequent or extended HD significantly reduced LVMI from baseline (−31.2 g/m2, 95% CI, −39.8 to −22.5; P<0.001).The 3 randomized trials found a less pronounced net reduction in LVMI (−7.0 g/m2; 95% CI, −10.2 to −3.7; P<0.001). LV ejection fraction improved by 6.7% (95% CI, 1.6 to 11.9; P=0.01). Other cardiac morphological parameters displayed similar improvements. There were also significant decreases in systolic, diastolic, and mean blood pressure, and mean number of anti-hypertensive medications. Limitations Paucity of randomized controlled trials. Conclusions Conversion from conventional to frequent or extended HD is associated with an improvement in cardiac morphology and function, including LVMI and LV ejection fraction, respectively, and in several blood pressure parameters, which collectively might confer long-term cardiovascular benefit. Trials with long-term clinical outcomes are needed. PMID:22370022
Effectiveness of a physical activity programme based on the Pilates method in pregnancy and labour.
Rodríguez-Díaz, Luciano; Ruiz-Frutos, Carlos; Vázquez-Lara, Juana María; Ramírez-Rodrigo, Jesús; Villaverde-Gutiérrez, Carmen; Torres-Luque, Gema
To assess the effectiveness and safety of a physical activity programme based on use of the Pilates method, over eight weeks in pregnant women, on functional parameters, such as weight, blood pressure, strength, flexibility and spinal curvature, and on labour parameters, such as, type of delivery, episiotomy, analgesia and newborn weight. A randomized clinical trial was carried out on pregnant women, applying a programme of physical activity using the Pilates method, designed specifically for this population. A sample consisting of a total of 105 pregnant women was divided into two groups: intervention group (n=50) (32.87±4.46 years old) and control group (n=55) (31.52±4.95 years old). The intervention group followed a physical activity programme based on the Pilates method, for 2 weekly sessions, whereas the control group did not follow the program. Significant improvements (p<0.05) in blood pressure, hand grip strength, hamstring flexibility and spinal curvature, in addition to improvements during labour, decreasing the number of Caesareans and obstructed labour, episiotomies, analgesia and the weight of the newborns were found at the end of the intervention. A physical activity programme of 8 weeks based on the Pilates method improves functional parameters in pregnant women and benefits delivery. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Heart rhythm complexity impairment in patients undergoing peritoneal dialysis
NASA Astrophysics Data System (ADS)
Lin, Yen-Hung; Lin, Chen; Ho, Yi-Heng; Wu, Vin-Cent; Lo, Men-Tzung; Hung, Kuan-Yu; Liu, Li-Yu Daisy; Lin, Lian-Yu; Huang, Jenq-Wen; Peng, Chung-Kang
2016-06-01
Cardiovascular disease is one of the leading causes of death in patients with advanced renal disease. The objective of this study was to investigate impairments in heart rhythm complexity in patients with end-stage renal disease. We prospectively analyzed 65 patients undergoing peritoneal dialysis (PD) without prior cardiovascular disease and 72 individuals with normal renal function as the control group. Heart rhythm analysis including complexity analysis by including detrended fractal analysis (DFA) and multiscale entropy (MSE) were performed. In linear analysis, the PD patients had a significantly lower standard deviation of normal RR intervals (SDRR) and percentage of absolute differences in normal RR intervals greater than 20 ms (pNN20). Of the nonlinear analysis indicators, scale 5, area under the MSE curve for scale 1 to 5 (area 1-5) and 6 to 20 (area 6-20) were significantly lower than those in the control group. In DFA anaylsis, both DFA α1 and DFA α2 were comparable in both groups. In receiver operating characteristic curve analysis, scale 5 had the greatest discriminatory power for two groups. In both net reclassification improvement model and integrated discrimination improvement models, MSE parameters significantly improved the discriminatory power of SDRR, pNN20, and pNN50. In conclusion, PD patients had worse cardiac complexity parameters. MSE parameters are useful to discriminate PD patients from patients with normal renal function.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
Use of placental extract for the treatment of myopic and senile chorio-retinal dystrophies.
Girotto, G; Malinverni, W
1982-01-01
After an examination of the literature, the authors evaluate the activity of placenta extract in 34 subjects suffering from chorio-retinal dystrophy of different types (myopic and senile) and of different degrees of anatomo-functional alteration. The parameters used for this study were visual acuity, the luminous sense, the visual field and the electrophysiological activity of the retina. The aqueous solution was administered by intramuscular route at a daily dose of 3 ml (equivalent to 1,80 g of fresh organ) during 20 days; the parameters were tested before and at the end of the treatment. The results obtained during this study show that the parameters were improved, in different degrees, by the administration of the placenta extract. This is clearly demonstrated by the significant improvement in the luminous sense.
The Impact Of Surface Shape Of Chip-Breaker On Machined Surface
NASA Astrophysics Data System (ADS)
Šajgalík, Michal; Czán, Andrej; Martinček, Juraj; Varga, Daniel; Hemžský, Pavel; Pitela, David
2015-12-01
Machined surface is one of the most used indicators of workpiece quality. But machined surface is influenced by several factors such as cutting parameters, cutting material, shape of cutting tool or cutting insert, micro-structure of machined material and other known as technological parameters. By improving of these parameters, we can improve machined surface. In the machining, there is important to identify the characteristics of main product of these processes - workpiece, but also the byproduct - the chip. Size and shape of chip has impact on lifetime of cutting tools and its inappropriate form can influence the machine functionality and lifetime, too. This article deals with elimination of long chip created when machining of shaft in automotive industry and with impact of shape of chip-breaker on shape of chip in various cutting conditions based on production requirements.
Groneberg, David A.
2016-01-01
We integrated recent improvements within the floating catchment area (FCA) method family into an integrated ‘iFCA`method. Within this method we focused on the distance decay function and its parameter. So far only distance decay functions with constant parameters have been applied. Therefore, we developed a variable distance decay function to be used within the FCA method. We were able to replace the impedance coefficient β by readily available distribution parameter (i.e. median and standard deviation (SD)) within a logistic based distance decay function. Hence, the function is shaped individually for every single population location by the median and SD of all population-to-provider distances within a global catchment size. Theoretical application of the variable distance decay function showed conceptually sound results. Furthermore, the existence of effective variable catchment sizes defined by the asymptotic approach to zero of the distance decay function was revealed, satisfying the need for variable catchment sizes. The application of the iFCA method within an urban case study in Berlin (Germany) confirmed the theoretical fit of the suggested method. In summary, we introduced for the first time, a variable distance decay function within an integrated FCA method. This function accounts for individual travel behaviors determined by the distribution of providers. Additionally, the function inherits effective variable catchment sizes and therefore obviates the need for determining variable catchment sizes separately. PMID:27391649
Distributed traffic signal control using fuzzy logic
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
NASA Technical Reports Server (NTRS)
1975-01-01
A system analysis of the shuttle orbiter baseline system management (SM) computer function is performed. This analysis results in an alternative SM design which is also described. The alternative design exhibits several improvements over the baseline, some of which are increased crew usability, improved flexibility, and improved growth potential. The analysis consists of two parts: an application assessment and an implementation assessment. The former is concerned with the SM user needs and design functional aspects. The latter is concerned with design flexibility, reliability, growth potential, and technical risk. The system analysis is supported by several topical investigations. These include: treatment of false alarms, treatment of off-line items, significant interface parameters, and a design evaluation checklist. An in-depth formulation of techniques, concepts, and guidelines for design of automated performance verification is discussed.
Verifying the functional ability of microstructured surfaces by model-based testing
NASA Astrophysics Data System (ADS)
Hartmann, Wito; Weckenmann, Albert
2014-09-01
Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.
Kjell, J; Pernold, K; Olson, L; Abrams, M B
2014-03-01
Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.
Methods for consistent forewarning of critical events across multiple data channels
Hively, Lee M.
2006-11-21
This invention teaches further method improvements to forewarn of critical events via phase-space dissimilarity analysis of data from biomedical equipment, mechanical devices, and other physical processes. One improvement involves conversion of time-serial data into equiprobable symbols. A second improvement is a method to maximize the channel-consistent total-true rate of forewarning from a plurality of data channels over multiple data sets from the same patient or process. This total-true rate requires resolution of the forewarning indications into true positives, true negatives, false positives and false negatives. A third improvement is the use of various objective functions, as derived from the phase-space dissimilarity measures, to give the best forewarning indication. A fourth improvement uses various search strategies over the phase-space analysis parameters to maximize said objective functions. A fifth improvement shows the usefulness of the method for various biomedical and machine applications.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
NASA Astrophysics Data System (ADS)
Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen
2017-12-01
We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
NASA Astrophysics Data System (ADS)
Chockanathan, Udaysankar; DSouza, Adora M.; Abidin, Anas Z.; Schifitto, Giovanni; Wismüller, Axel
2018-02-01
Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV+ and HIV- subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV+/- classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 (p < 0.001, one-tailed paired t-test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.
Durães, André Rodrigues; Borges, Sirlene Mendes; Aras, Roque
2015-01-01
Background Studies have demonstrated that phosphodiesterase 5 (PDE5) inhibition is associated with right ventricle (RV) functional improvement in patients with primary pulmonary hypertension. This study aims to demonstrate the immediate impact of Sildenafil, a PDE5 inhibitor, on RV function, measured by cardiovascular magnetic resonance (CMR), in patients with heart failure (HF). Methods We conducted a randomized double-blind controlled trial. Inclusion criteria: diagnosis of HF functional class I-III; left ventricle ejection fraction < 35%. Patients underwent CMR evaluation and were then equally randomly assigned to either 50 mg of Sildenafil or Placebo groups. One hour following drug administration, they were submitted to a second scan examination. Results 26 patients were recruited from a tertiary reference center in Brazil and 13 were allocated to each study group. The median age was 61.5 years (50–66.5 years). Except for the increase in RV fractional area change following the administration of sildenafil (Sildenafil [before vs. after]: 34.3 [25.2–43.6]% vs. 42.9 [28.5–46.7]%, p = 0.04; Placebo [before vs. after]: 28.1 [9.2–34.8]% vs. 29.2 [22.5–38.8]%, p = 0.86), there was no statistically significant change in parameters. There was no improvement in left ventricular parameters or in the fractional area change of the pulmonary artery. Conclusion This study demonstrated that a single dose of Sildenafil did not significantly improve RV function as measured by the CMR. Trial Registration ClinicalTrials.gov NCT01936350 PMID:25793988
Cokorilo, Nebojsa; Mikalacki, Milena; Satara, Goran; Cvetkovic, Milan; Marinkovic, Dragan; Zvekic-Svorcan, Jelena; Obradovic, Borislav
2018-03-30
Aerobic exercises to music can have a positive effect on functional and motor skills of an exerciser, their health, as well as an aesthetic and socio-psychological component. The objective of this study was to determine the effects of reactive exercising in a group on functional capabilities in physically active and physically inactive women. A prospective study included 64 healthy women aged 40-60 years. The sample was divided into the experimental group (n= 36), i.e. physically active women who have been engaged in recreational group exercises at the Faculty of Sport and Physical Education, University of Novi Sad, Serbia, and the control group (n= 28), which consisted of physically inactive women. All the participants were monitored using the same protocol before and after the implementation of the research. All women had their height, weight, body mass index measured as well as spiroergometric parameters determined according to the Bruce protocol. A univariate analysis of variance has shown that there is a statistically significant difference between the experimental group and the control group in maximum speed, the total duration of the test, relative oxygen consumption, absolute oxygen consumption and ventilation during the final measurement. After the training intervention, the experimental group showed improvements in all the parameters analyzed compared with pretest values. The recreational group exercise model significantly improves aerobic capacity and functioning of the cardiovascular system. Therefore, it is essential for women to be involved more in any form of recreational group exercising in order to improve functional capacity and health.
Quandt, Fanny; Hummel, Friedhelm C
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333
NASA Astrophysics Data System (ADS)
Hart, Vern; Burrow, Damon; Li, X. Allen
2017-08-01
A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases >0.6% from the regression line.
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
Imposition of physical parameters in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Mai-Duy, N.; Phan-Thien, N.; Tran-Cong, T.
2017-12-01
In the mesoscale simulations by the dissipative particle dynamics (DPD), the motion of a fluid is modelled by a set of particles interacting in a pairwise manner, and it has been shown to be governed by the Navier-Stokes equation, with its physical properties, such as viscosity, Schmidt number, isothermal compressibility, relaxation and inertia time scales, in fact its whole rheology resulted from the choice of the DPD model parameters. In this work, we will explore the response of a DPD fluid with respect to its parameter space, where the model input parameters can be chosen in advance so that (i) the ratio between the relaxation and inertia time scales is fixed; (ii) the isothermal compressibility of water at room temperature is enforced; and (iii) the viscosity and Schmidt number can be specified as inputs. These impositions are possible with some extra degrees of freedom in the weighting functions for the conservative and dissipative forces. Numerical experiments show an improvement in the solution quality over conventional DPD parameters/weighting functions, particularly for the number density distribution and computed stresses.
Efficacy of paraffin wax bath for carpal tunnel syndrome: a randomized comparative study
NASA Astrophysics Data System (ADS)
Ordahan, Banu; Karahan, Ali Yavuz
2017-12-01
Carpal tunnel syndrome (CTS) is the most frequently diagnosed neuropathy of upper extremity entrapment neuropathies. We aimed to investigate the effectiveness of paraffin therapy in patients with CTS. Seventy patients diagnosed with mild or moderate CTS were randomly divided into two groups as splint treatment (during the night and day time as much as possible for 3 weeks) alone and splint (during the night and day time as much as possible for 3 weeks) + paraffin treatment (five consecutive days a week for 3 weeks). Clinical and electrophysiological assessments were performed before and 3 weeks after treatment. The patients were assessed by using visual analog scale (VAS) for pain, electroneuromyography (ENMG), and Boston Carpal Tunnel Syndrome Questionnaire (BCTSQ). The significant improvement was found in VAS scores in both groups when compared with pretreatment values ( p < 0.05). There was no significant improvement in functional capacity score ( p > 0.05), whereas a significant improvement was noted in the BCTQ symptom severity scale score in the splint group ( p < 0.05). Significant improvements were demonstrated in both scorers in the combined treatment group. Similarly, significant improvements were found in the combined treatment group in terms of motor and sensory distal latency, sensory amplitude, and median sensory nerve velocity ( p < 0.05). There was no significant change in electrophysiologic parameters in the splint group ( p > 0.05), and the difference in these parameters between the groups was statistically significant ( p < 0.05). In conclusion, using splinting alone in patients with CTS is an effective treatment for reducing symptoms in the early stages. Paraffin treatment with splint increases the recovery in functional and electrophysiological parameters.
Density functional theory and molecular dynamics study of the uranyl ion (UO₂)²⁺.
Rodríguez-Jeangros, Nicolás; Seminario, Jorge M
2014-03-01
The detection of uranium is very important, especially in water and, more importantly, in the form of uranyl ion (UO₂)²⁺, which is one of its most abundant moieties. Here, we report analyses and simulations of uranyl in water using ab initio modified force fields for water with improved parameters and charges of uranyl. We use a TIP4P model, which allows us to obtain accurate water properties such as the boiling point and the second and third shells of water molecules in the radial distribution function thanks to a fictitious charge that corrects the 3-point models by reproducing the exact dipole moment of the water molecule. We also introduced non-bonded interaction parameters for the water-uranyl intermolecular force field. Special care was taken in testing the effect of a range of uranyl charges on the structure of uranyl-water complexes. Atomic charges of the solvated ion in water were obtained using density functional theory (DFT) calculations taking into account the presence of nitrate ions in the solution, forming a neutral ensemble. DFT-based force fields were calculated in such a way that water properties, such as the boiling point or the pair distribution function stand. Finally, molecular dynamics simulations of a water box containing uranyl cations and nitrate anions are performed at room temperature. The three peaks in the oxygen-oxygen radial distribution function for water were found to be kept in the presence of uranyl thanks to the improvement of interaction parameters and charges. Also, we found three shells of water molecules surrounding the uranyl ion instead of two as was previously thought.
Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field.
Robertson, Michael J; Tirado-Rives, Julian; Jorgensen, William L
2015-07-14
The development and validation of new peptide dihedral parameters are reported for the OPLS-AA force field. High accuracy quantum chemical methods were used to scan φ, ψ, χ1, and χ2 potential energy surfaces for blocked dipeptides. New Fourier coefficients for the dihedral angle terms of the OPLS-AA force field were fit to these surfaces, utilizing a Boltzmann-weighted error function and systematically examining the effects of weighting temperature. To prevent overfitting to the available data, a minimal number of new residue-specific and peptide-specific torsion terms were developed. Extensive experimental solution-phase and quantum chemical gas-phase benchmarks were used to assess the quality of the new parameters, named OPLS-AA/M, demonstrating significant improvement over previous OPLS-AA force fields. A Boltzmann weighting temperature of 2000 K was determined to be optimal for fitting the new Fourier coefficients for dihedral angle parameters. Conclusions are drawn from the results for best practices for developing new torsion parameters for protein force fields.
Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.
2015-01-01
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.
Abdel, Matthew P; Parratte, Sébastien; Blanc, Guillaume; Ollivier, Matthieu; Pomero, Vincent; Viehweger, Elke; Argenson, Jean-Noël A
2014-08-01
Although some clinical reports suggest patient-specific instrumentation in TKA may improve alignment, reduce surgical time, and lower hospital costs, it is unknown whether it improves pain- and function-related outcomes and gait. We hypothesized that TKA performed with patient-specific instrumentation would improve patient-reported outcomes measured by validated scoring tools and level gait as ascertained with three-dimensional (3-D) analysis compared with conventional instrumentation 3 months after surgery. We randomized 40 patients into two groups using either patient-specific instrumentation or conventional instrumentation. Patients were evaluated preoperatively and 3 months after surgery. Assessment tools included subjective functional outcome and quality-of-life (QOL) scores using validated questionnaires (New Knee Society Score(©) [KSS], Knee Injury and Osteoarthritis Outcome Score [KOOS], and SF-12). In addition, gait analysis was evaluated with a 3-D system during level walking. The study was powered a priori at 90% to detect a difference in walking speed of 0.1 m/second, which was considered a clinically important difference, and in a post hoc analysis at 80% to detect a difference of 10 points in KSS. There were improvements from preoperatively to 3 months postoperatively in functional scores, QOL, and knee kinematic and kinetic gait parameters during level walking. However, there was no difference between the patient-specific instrumentation and conventional instrumentation groups in KSS, KOOS, SF-12, or 3-D gait parameters. Our observations suggest that patient-specific instrumentation does not confer a substantial advantage in early functional or gait outcomes after TKA. It is possible that differences may emerge, and this study does not allow one to predict any additional variances in the intermediate followup period from 6 months to 1 year postoperatively. However, the goals of the study were to investigate the recovery period as early pain and functional outcomes are becoming increasingly important to patients and surgeons. Level I, therapeutic study. See the Instructions to Authors for a complete description of levels of evidence.
Veeranki, Sudhakar; Givvimani, Srikanth; Kundu, Sourav; Metreveli, Naira; Pushpakumar, Sathnur; Tyagi, Suresh C
2016-03-01
Although the cardiovascular benefits of exercise are well known, exercise induced effects and mechanisms in prevention of cardiomyopathy are less clear during obesity associated type-2 diabetes. The current study assessed the impact of moderate intensity exercise on diabetic cardiomyopathy by examining cardiac function and structure and mitochondrial function. Obese-diabetic (db/db), and lean control (db/+) mice, were subjected to a 5 week, 300 m run on a tread-mill for 5 days/week at the speeds of 10-11 m/min. Various physiological parameters were recorded and the heart function was evaluated with M-mode echocardiography. Contraction parameters and calcium transits were examined on isolated cardiomyocytes. At the molecular level: connexin 43 and 37 (Cx43 and 37) levels, mitochondrial biogenesis regulators: Mfn2 and Drp-1 levels, mitochondrial trans-membrane potential and cytochrome c leakage were assessed through western blotting immunohistochemistry and flow cytometry. Ability of exercise to reverse oxygen consumption rate (OCR), tissue ATP levels, and cardiac fibrosis were also determined. The exercise regimen was able to prevent diabetic cardiac functional deficiencies: ejection fraction (EF) and fractional shortening (FS). Improvements in contraction velocity and contraction maximum were noted with the isolated cardiomyocytes. Restoration of interstitial and micro-vessels associated Cx43 levels and improved gap junction intercellular communication (GJIC) were observed. The decline in the Mfn2/Drp-1 ratio in the db/db mice hearts was prevented after exercise. The exercise regimen further attenuated transmembrane potential decline and cytochrome c leakage. These corrections further led to improvements in OCR and tissue ATP levels and reduction in cardiac fibrosis. Moderate intensity exercise produced significant cardiovascular benefits by improving mitochondrial function through restoration of Cx43 networks and mitochondrial trans-membrane potential and prevention of excessive mitochondrial fission. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2016-04-01
Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in spring. In order to obtain a more comprehensive estimate of the model uncertainty, a second CLM ensemble was set up, where initial conditions and atmospheric forcings were perturbed in addition to the parameter estimates. This resulted in very high standard deviations (STD) of the modeled annual NEE sums for C3-grass and C3-crop PFTs, ranging between 24.1 and 225.9 gC m-2 y-1, compared to STD = 0.1 - 3.4 gC m-2 y-1 (effect of parameter uncertainty only, without additional perturbation of initial states and atmospheric forcings). The higher spread of modeled NEE for the C3-crop and C3-grass indicated that the model uncertainty was notably higher for those PFTs compared to the forest-PFTs. Our findings highlight the potential of parameter and uncertainty estimation to support the understanding and further development of land surface models such as CLM.
Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen
NASA Astrophysics Data System (ADS)
Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.
2008-03-01
The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.
Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng
2012-12-01
This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.
Rassaf, Tienush; Balzer, Jan; Rammos, Christos; Zeus, Tobias; Hellhammer, Katharina; v Hall, Silke; Wagstaff, Rabea; Kelm, Malte
2015-04-01
In patients with mitral regurgitation (MR), changes in cardiac stroke volume, and thus renal preload and afterload may affect kidney function. Percutaneous mitral valve repair (PMVR) with the MitraClip® system can be a therapeutic alternative to surgical valve repair. The influence of MitraClip® therapy on renal function and clinical outcome parameters is unknown. Sixty patients with severe MR underwent PMVR using the MitraClip® system in an open-label observational study. Patients were stratified according to their renal function. All clips have been implanted successfully. Effective reduction of MR by 2-3 grades acutely improved KDOQI class. Lesser MR reduction (MR reduction of 0-1 grades) led to worsening of renal function in patients with pre-existing normal or mild (KDOQI 1-2) compared to severe (KDOQI 3-4) renal dysfunction. Reduction of MR was associated with improvement in Minnesota Living with Heart Failure Questionnaire (MLHFQ), NYHA-stadium, and 6-minute walk test. Successful PMVR was associated with an improvement in renal function. The improvement in renal function was associated with the extent of MR reduction and pre-existing kidney dysfunction. Our data emphasize the relevance of PVMR to stabilize the cardiorenal axis in patients with severe MR. © 2014 Wiley Periodicals, Inc.
Improvement in hardness of soda-lime-silica glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Riya; De, Moumita; Roy, Sudakshina
2012-06-05
Hardness is a key design parameter for structural application of brittle solids like glass. Here we report for the first time the significant improvement of about 10% in Vicker's hardness of a soda-lime-silica glass with loading rate in the range of 0.1-10 N.s{sup -1}. Corroborative dark field optical and scanning electron microscopy provided clue to this improvement through evidence of variations in spatial density of shear deformation band formation as a function of loading rate.
Gyurcsik, Z; Bodnár, N; Szekanecz, Z; Szántó, S
2013-12-01
Biologics are highly effective in ankylosing spondylitis (AS). In this self-controlled study, we assessed the additive value of complex physiotherapy in decreasing chest pain and tenderness and improving respiratory function in AS patients treated with tumor necrosis factor α (TNF-α) inhibitors. The trial consisted of 2 parts. In study I, clinical data of AS patients with (n=55) or without biological therapy (n=20) were retrospectively analyzed and compared. Anthropometrical data, duration since diagnosis and patient assessment of disease activity, pain intensity, tender points, sacroiliac joint involvement determined by X-ray, functional condition, and physical activity level were recorded. Subjective, functional, and physical tests were performed. In study II, 10 voluntary patients (6 men and 4 women, age 52.4 ± 13.6 years) with definite AS and receiving anti-TNF therapy were recruited. It was a prospective, non-randomized physiotherapeutic trial. BASFI (Bath Ankylosing Spondylitis Functional Index), BASDAI (Bath Ankylosing Spondylitis Disease Activity Index), modified Schober Index, occiput-to-wall distance, and fingertip-to-floor distance were evaluated. Forced vital capacity, forced 1-s expiratory volume, peak expiratory flow, and maximum voluntary ventilation were recorded. Furthermore, typical tender points were recorded. A targeted physiotherapy program was conducted twice a week for 12 weeks and all above parameters were recorded at baseline and after 12 weeks. Differences in patient assessment of disease activity (p=0.019) and pain intensity (p=0.017) were found in study I. Pain and tenderness of the thoracic spine were observed in both groups. Back pain without biologic therapy was slightly higher than other group. In study II, we found that patient assessment of disease activity and pain intensity significantly improved after the physical therapy program (p=0.002 and p<0.001). BASFI and BASDAI increased after treatment (p=0.004 and p<0.001). The finger-to-floor distance, chest expansion, and modified Schober index increased (p=0.008, p<0.001, and p=0.031, respectively). The respiratory functional parameters showed a tendency towards improvement. AS patients already receiving biological therapy may benefit from additional targeted physiotherapy. Physical therapy may be of important additive value in AS patients being treated with biological. The exercise program presented here showed an improvement in functional parameters as well as spine and chest mobility, thereby enhancing the favorable effects of biological therapy.
NASA Technical Reports Server (NTRS)
Aryan, Homayon; Sibeck, David; Balikhin, Michael; Agapitov, Oleksiy; Kletzing, Craig
2016-01-01
Highly energetic electrons in the Earths Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not only as functions of single geomagnetic index and solar wind parameters but also as functions of combined parameters. Also the current study takes advantage of the unique equatorial orbit of the Van Allen Probes to estimate the average scale size of chorus wave packets, during close separations between the two spacecraft, as a function of radial distance, magnetic latitude, and geomagnetic activity, respectively. Results show that the average scale size of chorus wave packets is approximately 13002300 km. The results also show that the inclusion of combined parameters can provide better representation of the chorus wave distributions in the inner magnetosphere and therefore can further improve our knowledge of the acceleration and loss of radiation belt electrons.
Li, Joanna W; O'Connor, Helen; O'Dwyer, Nicholas; Orr, Rhonda
2017-09-01
To investigate whether exercise, proposed to enhance neuroplasticity and potentially cognitive function (CF) and academic performance (AP), may be beneficial during adolescence when important developmental changes occur. Systematic review evaluating the impact of acute or chronic exercise on CF and AP in adolescents (13-18 years). Nine databases (AMED, AusportMed, CINAHL, COCHRANE, Embase, Medline, Scopus, SPORTdiscus, Web of Science) were searched from earliest records to 31st October 2016, using keywords related to exercise, CF, AP and adolescents. Eligible studies included controlled trials examining the effect of any exercise intervention on CF, AP or both. Effect size (ES) (Hedges g) were calculated where possible. Ten papers (11 studies) were reviewed. Cognitive domains included: executive function (n=4), memory (n=4), attention/concentration (n=2), visuo-motor speed (n=1), logical sequencing (n=1) and psychometric aptitude (n=1). All papers, nine of 10 being acute studies, reported at least one parameter showing a significant effect of exercise in improving CF and AP. However, the CF parameters displayed substantial heterogeneity, with only 37% favouring acute and chronic exercise. Where ES could be calculated, 52% of the acute CF parameters favoured rest. Memory was the domain most consistently improved by exercise. Academic performance demonstrated a significant improvement with exercise in one of two acute studies and the only chronic study (p≤0.001). The evidence for the effect of exercise on CF and AP in adolescents is equivocal and limited in quantity and quality. Well-designed research is therefore warranted to determine the benefits of exercise in enhancing CF and AP and reducing sedentary behaviour. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Markham, Bruce E; Kernodle, Stace; Nemzek, Jean; Wilkinson, John E; Sigler, Robert
2015-01-01
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone's effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.
Markham, Bruce E.; Kernodle, Stace; Nemzek, Jean; Wilkinson, John E.; Sigler, Robert
2015-01-01
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone’s effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients. PMID:26248188
Jaspers, Mariëlle E H; Brouwer, Katrien M; van Trier, Antoine J M; Groot, Marloes L; Middelkoop, Esther; van Zuijlen, Paul P M
2017-01-01
Nowadays, patients normally survive severe traumas such as burn injuries and necrotizing fasciitis. Large skin defects can be closed but the scars remain. Scars may become adherent to underlying structures when the subcutical fat layer is damaged. Autologous fat grafting provides the possibility of reconstructing a functional sliding layer underneath the scar. Autologous fat grafting is becoming increasingly popular for scar treatment, although large studies using validated evaluation tools are lacking. The authors therefore objectified the effectiveness of single-treatment autologous fat grafting on scar pliability using validated scar measurement tools. Forty patients with adherent scars receiving single-treatment autologous fat grafting were measured preoperatively and at 3-month follow-up. The primary outcome parameter was scar pliability, measured using the Cutometer. Scar quality was also evaluated by the Patient and Observer Scar Assessment Scale and the DSM II ColorMeter. To prevent selection bias, measurements were performed following a standardized algorithm. The Cutometer parameters elasticity and maximal extension improved 22.5 percent (p < 0.001) and 15.6 percent (p = 0.001), respectively. Total Patient and Observer Scar Assessment Scale scores improved from 3.6 to 2.9 on the observer scale, and from 5.1 to 3.8 on the patient scale (both p < 0.001). Color differences between the scar and normal skin remained unaltered. For the first time, the effect of autologous fat grafting on functional scar parameters was ascertained using a comprehensive scar evaluation protocol. The improved scar pliability supports the authors' hypothesis that the function of the subcutis can be restored to a certain extent by single-treatment autologous fat grafting. Therapeutic, IV.
NASA Technical Reports Server (NTRS)
Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.
1971-01-01
High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huey-Wen Lin; Robert G. Edwards; Balint Joo
In this work, we perform parameter tuning with dynamical anisotropic clover lattices using the Schr\\"odinger functional and stout-smearing in the fermion field. We find thatmore » $$\\xi_R/\\xi_0$$ is relatively close to 1 in our parameter search, which allows us to fix $$\\xi_0$$ in our runs. We proposed to determine the gauge and fermion anisotropy in a Schr\\"odinger-background small box using Wilson loop ratios and PCAC masses. We demonstrate that these ideas are equivalent to but more efficient than the conventional meson dispersion approach. The spatial and temporal clover coefficients are fixed to the tree-level tadpole-improved clover values, and we demonstrate that they satisfy the nonperturbative condition determined by Schr\\"odinger functional method.« less
Investigation of statistical iterative reconstruction for dedicated breast CT
Makeev, Andrey; Glick, Stephen J.
2013-01-01
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue. Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters. Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose. Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose. PMID:23927318
Tirabassi, Giacomo; Delli Muti, Nicola; Corona, Giovanni; Maggi, Mario; Balercia, Giancarlo
2014-05-01
Few and contradictory studies have evaluated the possible influence of androgen receptor (AR) gene CAG repeat polymorphism on male sexual function. In this study we evaluated the role of AR gene CAG repeat polymorphism in the recovery of sexual function after testosterone replacement therapy (TRT) in men affected by postsurgical hypogonadotropic hypogonadism, a condition which is often associated with hypopituitarism and in which the sexual benefits of TRT must be distinguished from those of pituitary-function replacement therapies. Fifteen men affected by postsurgical hypogonadotropic hypogonadism were retrospectively assessed before and after TRT. Main outcome measures included sexual parameters as assessed by the International Index of Erectile Function questionnaire, levels of pituitary dependent hormones (total testosterone, free T3, free T4, cortisol, insulin-like growth factor-1 [IGF-1], prolactin), and results of genetic analysis (AR gene CAG repeat number). Plasma concentrations of free T3, free T4, cortisol, and prolactin did not vary significantly between the two phases, while testosterone and IGF-1 increased significantly after TRT. A significant improvement in all sexual parameters studied was found. The number of CAG triplets was negatively and significantly correlated with changes in all the sexual parameters, while opposite correlations were found between changes in sexual parameters and changes in testosterone levels; no correlation of change in IGF1 with change in sexual parameters was reported. On multiple linear regression analysis, after correction for changes in testosterone, nearly all the associations between the number of CAG triplets and changes in sexual parameters were confirmed. Shorter length AR gene CAG repeat number is associated with the recovery of sexual function after TRT in postsurgical male hypogonadotropic hypogonadism, independently of the effects of concomitant pituitary-replacement therapies. © 2014 International Society for Sexual Medicine.
Iwalokun, B A; Bamiro, S B; Ogunledun, A
2006-12-01
Elevated plasma levels of xanthine oxidase and liver function parameters have been associated with inflammatory events in several human diseases. While xanthine oxidase provides in vitro protection against malaria, its pathophysiological functions in vivo and interactions with liver function parameters remain unclear. This study examined the interactions and plasma levels of xanthine oxidase (XO) and uric acid (UA), catalase (CAT) and liver function parameters GOT, GPT and bilirubin in asymptomatic (n=20), uncomplicated (n=32), and severe (n=18) falciparum malaria children aged 3-13 years. Compared to age-matched control (n=16), significant (p<0.05) elevation in xanthine oxidase by 100-550%, uric acid by 15.4-153.8%, GOT and GPT by 22.1-102.2%, and total bilirubin by 2.3-86% according to parasitaemia (geometric mean parasite density (GMPD)=850-87100 parasites/microL) was observed in the malarial children. Further comparison with control revealed higher CAT level (16.2+/-0.5 vs 14.6+/-0.4 U/L; p<0.05) lacking significant (p>0.05) correlation with XO, but lower CAT level (13.4-5.4 U/L) with improved correlations (r=-0.53 to -0.91; p<0.05) with XO among the asymptomatic and symptomatic malaria children studied. 75% of control, 45% of asymptomatic, 21.9% of uncomplicated, and none of severe malaria children had Hb level>11.0 g/dL. Multivariate analyses further revealed significant (p<0.05) correlations between liver function parameters and xanthine oxidase (r=0.57-0.64) only in the severe malaria group. We conclude that elevated levels of XO and liver enzymes are biochemical features of Plasmodium falciparum parasitaemia in Nigerian children, with both parameters interacting differently to modulate the catalase response in asymptomatic and symptomatic falciparum malaria.
NASA Astrophysics Data System (ADS)
Post, Anouk L.; Zhang, Xu; Bosschaart, Nienke; Van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.
2016-03-01
Both Optical Coherence Tomography (OCT) and Single Fiber Reflectance Spectroscopy (SFR) are used to determine various optical properties of tissue. We developed a method combining these two techniques to measure the scattering anisotropy (g1) and γ (=1-g2/1-g1), related to the 1st and 2nd order moments of the phase function. The phase function is intimately associated with the cellular organization and ultrastructure of tissue, physical parameters that may change during disease onset and progression. Quantification of these parameters may therefore allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. With SFR the reduced scattering coefficient and γ can be extracted from the reflectance spectrum (Kanick et al., Biomedical Optics Express 2(6), 2011). With OCT the scattering coefficient can be extracted from the signal as a function of depth (Faber et al., Optics Express 12(19), 2004). Consequently, by combining SFR and OCT measurements at the same wavelengths, the scattering anisotropy (g) can be resolved using µs'= µs*(1-g). We performed measurements on a suspension of silica spheres as a proof of principle. The SFR model for the reflectance as a function of the reduced scattering coefficient and γ is based on semi-empirical modelling. These models feature Monte-Carlo (MC) based model constants. The validity of these constants - and thus the accuracy of the estimated parameters - depends on the phase function employed in the MC simulations. Since the phase function is not known when measuring in tissue, we will investigate the influence of assuming an incorrect phase function on the accuracy of the derived parameters.
Sharif, Dawod; Matanis, Wisam; Sharif-Rasslan, Amal; Rosenschein, Uri
2016-10-01
Myocardial stunning is responsible for partially reversible left ventricular (LV) systolic dysfunction after successful primary percutaneous coronary intervention (PPCI) in patients with acute ST-elevation myocardial infarction (STEMI). To test the hypothesis that early coronary blood flow (CBF) to LV systolic function ratios, as an equivalent to LV stunning index (SI), predict recovery of LV systolic function after PPCI in patients with acute STEMI. Twenty-four patients with acute anterior STEMI who had successful PPCI were evaluated and compared to 96 control subjects. Transthoracic echocardiography with measurement of LV ejection fraction (EF), LV, and left anterior descending (LAD) coronary artery area wall-motion score index (WMSI) as well as Doppler sampling of LAD blood velocities, early after PPCI and 5 days later, were performed. SI was evaluated as the early ratio of CBF parameters in the LAD to LV systolic function parameters. Early SI-LVEF well predicted late LVEF (r=.51, P<.01) and the change in LVEF (r=.48, P<.017). Early SI-LVMSI predicted well late LVEF (r=.56, P<.006) and the change in LVEF (r=.46, P<.028). Early SI-LADWMSI predicted late LVEF (r=.44, P<.028). Other SI indices measured as other LAD-CBF to LV systolic function parameters were not predictive of late LV systolic function. LV stunning indices measured as early LAD flow to LVEF, LVWMSI, and LADWMSI ratios well predicted late LVEF and the change in LVEF. Thus, greater early coronary artery flow to LV systolic function parameter ratios predict a better improvement in late LV systolic function after PPCI. © 2016, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Firmansyah, F.; Fernando, A.; Allo, I. P. R.
2018-01-01
The housing assessment is a part of the pre-feasibility study inThe Shore Housing Improvement Program in Weriagar District, West Papua. The housing assessment was conducted to identify the physical condition of existing houses. The parameters of assessment formulated from local references, practices and also national building regulation that covers each building system components, such as building structure/frame, building floor, building cover, and building roof. This study aims to explains lessons from local practices and references, used as the formula to generate assessment parameter, elaborate with Indonesia building regulation. The result of housing assessment were used as a basis to develop the house improvement strategy, the design alternative for housing improvement and further planning recommendations. The local knowledges involved in housing improvement program expected that the local-based approach could respect to the local build culture, respect the local environment, and the most important can offer best suitable solutions for functional utility and livability.
NASA Astrophysics Data System (ADS)
Leemann, S. C.; Wurtz, W. A.
2018-03-01
The MAX IV 3 GeV storage ring is presently being commissioned and crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications. Once the baseline performance has been achieved, a campaign will be launched to further improve the brightness and coherence of this storage ring for typical X-ray users. During recent years, several such improvements have been designed. Common to these approaches is that they attempt to improve the storage ring performance using existing hardware provided for the baseline design. Such improvements therefore present more short-term upgrades. In this paper, however, we investigate medium-term improvements assuming power supplies can be exchanged in an attempt to push the brightness and coherence of the storage ring to the limit of what can be achieved without exchanging the magnetic lattice itself. We outline optics requirements, the optics optimization process, and summarize achievable parameters and expected performance.
Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.
Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2017-02-01
Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.
Functional outcome of vocal fold medialization thyroplasty with a hydroxyapatite implant.
Storck, Claudio; Brockmann, Meike; Schnellmann, Elvira; Stoeckli, Sandro J; Schmid, Stephan
2007-06-01
Unilateral vocal fold paralysis can cause a persistent incomplete glottal closure during phonation, resulting in impaired voice function. The aim of this study was to evaluate functional results of medialization thyroplasty using a hydroxyapatite implant (VoCoM). Prospective observational cohort study. Between 1999 and 2003, a total of 26 patients (19 men, 7 women) undergoing medialization thyroplasty using a hydroxyapatite implant because of unilateral vocal fold paralysis were enrolled in the study. To evaluate voice function, the following parameters were measured preoperatively and postoperatively: mean fundamental frequency, mean sound pressure level, frequency and amplitude range (voice range profile), and maximum phonation time. A perceptual assessment of hoarseness was conducted using the Roughness, Breathiness, Hoarseness scale. Furthermore, the magnitude of voice related impairment of the patient's communication skills was rated on a 7-point scale. A combined parameter called the Voice Dysfunction Index (VDI) was used to rate vocal performance. All patients showed a statistically significant improvement in the VDI, in perceptual voice analysis, in maximum phonation time, and in the dynamic range of voice. One patient experienced a postoperative wound hemorrhage as a minor complication. No further complications or implant extrusions were observed. Medialization thyroplasty using a hydroxyapatite implant is a secure and efficient phonosurgical procedure. Voice quality and patient satisfaction improve significantly after treatment.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; de Melo, Rubens Fernando; Fazan, Rubens; Salgado, Helio C
2013-01-01
Sympathetic hyperactivity and its outcome in heart failure have been thoroughly investigated to determine the focus of pharmacologic approaches targeting the sympathetic nervous system in the treatment of this pathophysiological condition. On the other hand, therapeutic approaches aiming to protect the reduced cardiac parasympathetic function have not received much attention. The present study evaluated rats with chronic heart failure (six to seven weeks after coronary artery ligation) and the effects of an increased parasympathetic function by pyridostigmine (an acetylcholinesterase inhibitor) on the following aspects: arterial pressure (AP), heart rate (HR), baroreceptor and Bezold-Jarisch reflex, pulse interval (PI) and AP variability, cardiac sympathetic and parasympathetic tonus, intrinsic heart rate (i-HR) and cardiac function. Conscious rats with heart failure exhibited no change in HR, Bezold-Jarisch reflex, PI variability and cardiac sympathetic tonus. On the other hand, these animals presented hypotension and reduced baroreflex sensitivity, power in the low frequency (LF) band of the systolic AP spectrum, cardiac parasympathetic tonus and i-HR, while anesthetized rats exhibited reduced cardiac performance. Pyridostigmine prevented the attenuation of all the parameters examined, except basal AP and cardiac performance. In conclusion, the blockade of acetylcholinesterase with pyridostigmine was revealed to be an important pharmacological approach, which could be used to increase parasympathetic function and to improve a number of cardiocirculatory parameters in rats with heart failure. Copyright © 2012 Elsevier B.V. All rights reserved.
Rose, M; Bjorner, J B; Becker, J; Fries, J F; Ware, J E
2008-01-01
The Patient-Reported Outcomes Measurement Information System (PROMIS) was initiated to improve precision, reduce respondent burden, and enhance the comparability of health outcomes measures. We used item response theory (IRT) to construct and evaluate a preliminary item bank for physical function assuming four subdomains. Data from seven samples (N=17,726) using 136 items from nine questionnaires were evaluated. A generalized partial credit model was used to estimate item parameters, which were normed to a mean of 50 (SD=10) in the US population. Item bank properties were evaluated through Computerized Adaptive Test (CAT) simulations. IRT requirements were fulfilled by 70 items covering activities of daily living, lower extremity, and central body functions. The original item context partly affected parameter stability. Items on upper body function, and need for aid or devices did not fit the IRT model. In simulations, a 10-item CAT eliminated floor and decreased ceiling effects, achieving a small standard error (< 2.2) across scores from 20 to 50 (reliability >0.95 for a representative US sample). This precision was not achieved over a similar range by any comparable fixed length item sets. The methods of the PROMIS project are likely to substantially improve measures of physical function and to increase the efficiency of their administration using CAT.
Palamarchuk, V A
2013-08-01
The effectiveness of laryngeal reinnervation by anza cervicalis abduction in the treatment of unilateral vocal fold paralysis in thyroid surgery was study. The prospectively examined 11 patients with abduction paralysis of the larynx, which were treated by ipsilateral anastomosis of anza cervicalis main branch to the distal stump of the recurrent laryngeal nerve were performed. The survey was conducted on the pre- and postoperative stages and included videolaryngoscopy, acoustic analysis, and patient self-assessment of voice. Average follow-up was (2.98 +/- 1.04) years. The use of videolaryngoscopy showed significant improvement of the spatial positioning of the vocal folds in the postoperative period and acoustical parameters. Laryngeal reinnervation by anza cervicalis is an effective treatment for laryngeal paralysis related to operations on the thyroid gland and laryngeal function can be improve to almost normal of the spoken voice parameters and the basic functions of the larynx.
Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian
In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less
Modeling the atmospheric chemistry of TICs
NASA Astrophysics Data System (ADS)
Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John
2009-05-01
An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.
Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules
Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian; ...
2017-12-12
In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less
Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder.
Eggleston, Jeffrey D; Harry, John R; Hickman, Robbin A; Dufek, Janet S
2017-06-01
Gait symmetry is utilized as an indicator of neurologic function. Healthy gait often exhibits minimal asymmetries, while pathological gait exhibits exaggerated asymmetries. The purpose of this study was to examine symmetry of mechanical gait parameters during over-ground walking in children with Autism Spectrum Disorder (ASD). Kinematic and kinetic data were obtained from 10 children (aged 5-12 years) with ASD. The Model Statistic procedure (α=0.05) was used to compare gait related parameters between limbs. Analysis revealed children with ASD exhibit significant lower extremity joint position and ground reaction force asymmetries throughout the gait cycle. The observed asymmetries were unique for each subject. These data do not support previous research relative to gait symmetry in children with ASD. Many individuals with ASD do not receive physical therapy interventions, however, precision medicine based interventions emphasizing lower extremity asymmetries may improve gait function and improve performance during activities of daily living. Copyright © 2017 Elsevier B.V. All rights reserved.
Roff, E J; Hosking, S L; Barnes, D A
2001-05-01
The recommended contour line (CL) location with the Heidelberg Retina Tomograph (HRT) is on the inner edge of Elschnig's scleral ring. This study investigated HRT parameter reproducibility when: (i) the CL size is altered relative to Elschnig's ring; (ii) the CL is either redrawn or imported between images. Using the HRT, seven 10 degrees images were acquired for 10 normal volunteers and 10 primary open angle glaucoma (POAG) subjects. A CL was drawn on one image for each subject using Elschnig's scleral ring for reference and imported into subsequent images. The CL diameter was then (a) increased by 50 microns; (b) increased by 100 microns; and (c) decreased by 50 microns. To investigate the effect of the method of contour line transfer between images a CL was: (1) defined for one image and imported to 6 subsequent images; (2) drawn separately for each image. Parameter variability improved as the size of the CL increased for the normal group relative to Elschnig's ring but was unchanged in the POAG group. The export/import function (method 1) resulted in better parameter reproducibility than the redrawing method for both groups. The exporting and importing function resulted in better parameter variability for both subject groups and should be used for transferring CLs across images for the same subject. Increasing the overall CL size relative to Elschnig's scleral ring improved the reproducibility of the measured parameters in the normal group. No significant difference in parameter variability was observed for the POAG group. This suggests that the reproducibility of HRT images are affected more by the variation in topography between images than change in CL definition.
Functional activity in patients after total hip replacement.
Pogorzała, Adam M; Stryła, Wanda; Nowakowski, Andrzej
2012-11-08
Osteoarthritis of hip joints is one of the most common diseases limiting social functioning of patients. Pain and mobility disorders are major problems associated with the disease. The goal of the study was to compare the efficacy of surgical treatment in a selected group of patients using a modified Harris Hip Score questionnaire including questions regarding the pain, the type of gait disorders and the functional activity. Surgical treatment helped to reduce the pain and improve the gait quality and parameters as well as functional activities associated with putting on socks and shoes, climbing stairs, sitting and using public transportation. Following conclusions were drawn after the study: Surgical treatment leads to significant reduction in hip pain. Mobility improvement was observed in most analyzed patients in early post-operative period as a consequence of hip contracture and pain being eliminated. The walking speed and distance improved significantly during the first 3 months after the surgery. All patients were satisfied with the treatment.
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
NASA Astrophysics Data System (ADS)
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-04-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
NASA Astrophysics Data System (ADS)
Bharatish, A.; Soundarapandian, S.
2018-06-01
Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.
Improved digital filters for evaluating Fourier and Hankel transform integrals
Anderson, Walter L.
1975-01-01
New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms
[Functional-aesthetic rhinosurgery patients: psychometric parameters].
Keck, T; Kühnemann, S; Ehrat, J; Meder, G; Dahlbender, R W
2012-01-01
The aim of this study was to acquire psychometric parameters in patients desiring functional-aesthetic nasal surgery. Over a 1-year period, 101 patients were consecutively examined at the ENT department of the University of Ulm. Septoplasty or septorhinoplasty was indicated in all cases. The acquisition of psychometric data was performed by means of standardised and validated questionnaires. Data relating to anxiety, depression, private and public self-awareness as well as general satisfaction with oneself and in particular with one's nose was collected. Patients demonstrated greater levels of fear, self-awareness in public and dissatisfaction with their nose. The greatest expectation concerning the outcome of the operation was the improvement of nasal obstruction. Altering the outward appearance of the nose was a secondary consideration. The screening presented here enables ENT surgeons to identify possible "problem" patients before functional-aesthetic nasal surgery.
Kubsik, Anna; Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Katarzyna; Jankowska, Agnieszka; Woldańska-Okońska, Marta
2014-07-01
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, which is characterized by diverse symptomatology. Most often affects people at a young age gradually leading to their disability. Looking for new therapies to alleviate neurological deficits caused by the disease. One of the alternative methods of therapy is high - tone power therapy. The article is a comparison of high-tone power therapy and kinesis in improving patients with multiple sclerosis. The aim of this study was to evaluate the effectiveness of high-tone power therapy and exercises in kinesis on the functional status of patients with multiple sclerosis. The study involved 20 patients with multiple sclerosis, both sexes, treated at the Department of Rehabilitation and Physical Medicine in Lodz. Patients were randomly divided into two groups studied. In group high-tone power therapy applied for 60 minutes, while in group II were used exercises for kinesis. Treatment time for both groups of patients was 15 days. To assess the functional status scale was used: Expanded Disability Status Scale of Kurtzke (EDSS), as well as by Barthel ADL Index. Assessment of quality of life were made using MSQOL Questionnaire-54. For the evaluation of gait and balance using Tinetti scale, and pain VAS rated, and Laitinen. Changes in muscle tone was assessed on the basis of the Ashworth scale. Both group I and II improved on scales conducted before and after therapy. In group I, in which the applied high-tone power therapy, reported statistically significant results in 9 out of 10 tested parameters, while in group II, which was used in the exercises in kinesis an improvement in 6 out of 10 tested parameters. Correlating the results of both the test groups in relation to each other did not show statistically significant differences. High-Tone Power Therapy beneficial effect on the functional status of patients with multiple sclerosis. Obtaining results in terms of number of tested parameters allows for the use of this therapy in the comprehensive improvement of patients with multiple sclerosis. Exercises from the scheme kinesis favorable impact on the functional status of patients with MS and are essential in the rehabilitation of these patients. In any group, no adverse effects were observed.
Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro
2013-03-27
The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
NASA Astrophysics Data System (ADS)
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
Comment on ``Symmetry and structure of quantized vortices in superfluid 3'
NASA Astrophysics Data System (ADS)
Sauls, J. A.; Serene, J. W.
1985-10-01
Recent theoretical attempts to explain the observed vortex-core phase transition in superfluid 3B yield conflicting results. Variational calculations by Fetter and Theodrakis, based on realistic strong-coupling parameters, yield a phase transition in the Ginzburg-Landau region that is in qualitative agreement with the phase diagram. Numerically precise calculations by Salomaa and Volivil (SV), based on the Brinkman-Serene-Anderson (BSA) parameters, do not yield a phase transition between axially symmetric vortices. The ambiguity of these results is in part due to the large differences between the β parameters, which are inputs to the vortex free-energy functional. We comment on the relative merits of the β parameters based on recent improvements in the quasiparticle scattering amplitude and the BSA parameters used by SV.
Gallinat, Anja; Efferz, Patrik; Paul, Andreas; Minor, Thomas
2014-11-01
In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work. © 2014 Steunstichting ESOT.
Modeling multivariate time series on manifolds with skew radial basis functions.
Jamshidi, Arta A; Kirby, Michael J
2011-01-01
We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.
Fast online generalized multiscale finite element method using constraint energy minimization
NASA Astrophysics Data System (ADS)
Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat
2018-02-01
Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.
Reetz, Stephanie; Bohlender, Joerg E; Brockmann-Bauser, Meike
2018-01-29
The validity and sensitivity to change of instrumental acoustic measurements in patients with functional dysphonia have been controversially discussed. This work examines combined voice therapy effects on standard acoustic measurements, and if these agree with perceptual and subjective voice outcomes. Retrospective study. Thirty-nine patients (26 women, 13 men) aged 20-70 years (mean: 46.3, standard deviation 12.8) with functional dysphonia were investigated before and after combined voice therapy. Instrumental parameters included mean and range of speaking fundamental frequency (f o ) and intensity (SPL (dBA)); maximum SPL and mean f o of calling voice; minimum, maximum, range of singing voice f o and SPL, jitter (%), and the Dysphonia Severity Index. Voice Handicap Index-9 international was used for subjective and Grading-Roughness-Breathiness-Asthenia-Strain scale for perceptual assessment. Differences were investigated by Wilcoxon signed ranks test and coherences by Spearman rank correlation coefficient. After treatment, the speaking voice f o range (7-8.13 semitones) and SPL range (12.9-14.85 dB(A)) were significantly larger (P < 0.05). Both parameters were highly correlated (P < 0.001). Subjective symptoms were significantly reduced from a mean Voice Handicap Index-9 international of 15.6-8.6, and all perceptual Grading-Roughness-Breathiness-Asthenia-Strain scale parameters were significantly improved (G: 1.05-0.51) after therapy (P < 0.05). These findings were not associated with any acoustic parameter (P > 0.05). Significantly improved subjective and perceptual findings verify positive combined voice therapy effects in patients with functional dysphonia. The larger f o and SPL speaking voice range after treatment indicate an altered voice technique. These instrumental measures may be clinical indicators of therapy success and transfer effects. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung
2017-03-01
Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
Study on the effect of Jia-Wei-Xiao-Yao-San decoction on patients with functional dyspepsia.
Qu, Yang; Gan, Hong Quan; Mei, Qi Bing; Liu, Li
2010-02-01
The effect of Jia-Wei-Xiao-Yao-San (JWXYS) decoction on patients with functional dyspepsia was studied by means of electrogastrography (EGG) and symptoms of dyspepsia were assessed. Twenty patients with functional dyspepsia were selected; before and after internal treatment with JWXYS, the integrated symptoms of the patients were down-regulated from 18.55 +/- 3.24 (before treatment) to 11.65 +/- 2.37 (after treatment) (p < 0.01); electrogastrography showed that all the EGG parameters of the patients were outside the normal range. After treatment with JWXYS, all these indices improved before and after dinner. The results showed that the JWXYS decoction could not only improve the symptoms, but also adjust the abnormal gastric motility and gastric myoelectrical activity of patients with functional dyspepsia. (c) 2009 John Wiley & Sons, Ltd.
Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C.; Taguchi, Osamu
2017-01-01
Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease. PMID:29104624
Hataji, Osamu; Nishii, Yoichi; Ito, Kentaro; Sakaguchi, Tadashi; Saiki, Haruko; Suzuki, Yuta; D'Alessandro-Gabazza, Corina; Fujimoto, Hajime; Kobayashi, Tetsu; Gabazza, Esteban C; Taguchi, Osamu
2017-11-01
Combined therapy with tiotropium and olodaterol notably improves parameters of lung function and quality of life in patients with chronic obstructive pulmonary disease (COPD) compared to mono-components; however, its effect on physical activity is unknown. The present study evaluated whether combination therapy affects daily physical performance in patients with COPD under a smart watch-based encouragement program. This was a non-blinded clinical trial with no randomization or placebo control. A total of 20 patients with COPD were enrolled in the present study. The patients carried an accelerometer for 4 weeks; they received no therapy during the first 2 weeks but they were treated with combined tiotropium and olodaterol under a smart watch-based encouragement program for the last 2 weeks. The pulmonary function test, COPD assessment test, 6-min walk distance and parameters of physical activity were significantly improved (P<0.05) by combination therapy under smart watch-based coaching compared with values prior to treatment. To the best of our knowledge, the present study for the first time provides evidence that smart watch-based coaching in combination with tiotropium and olodaterol may improve daily physical activity in chronic obstructive pulmonary disease.
2012-01-01
Background Rheumatoid arthritis (RA) is associated with increased morbidity and mortality from cardiovascular disease (CVD). This can be only partially attributed to traditional CVD risk factors such as dyslipidaemia and their downstream effects on endothelial function. The most common lipid abnormality in RA is reduced levels of high-density lipoprotein (HDL) cholesterol, probably due to active inflammation. In this longitudinal study we hypothesised that anti-tumor necrosis factor-α (anti-TNFα) therapy in patients with active RA improves HDL cholesterol, microvascular and macrovascular endothelial function. Methods Twenty-three RA patients starting on anti-TNFα treatment were assessed for HDL cholesterol level, and endothelial-dependent and -independent function of microvessels and macrovessels at baseline, 2-weeks and 3 months of treatment. Results Disease activity (CRP, fibrinogen, DAS28) significantly decreased during the follow-up period. There was an increase in HDL cholesterol levels at 2 weeks (p < 0.05) which was paralleled by a significant increase in microvascular endothelial-dependent function (p < 0.05). However, both parameters returned towards baseline at 12 weeks. Conclusion Anti-TNFα therapy in RA patients appears to be accompanied by transient but significant improvements in HDL cholesterol levels, which coexists with an improvement in microvascular endothelial-dependent function. PMID:22824166
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Selden, Clare; Spearman, Catherine Wendy; Kahn, Delawir; Miller, Malcolm; Figaji, Anthony; Erro, Eloy; Bundy, James; Massie, Isobel; Chalmers, Sherri-Ann; Arendse, Hiram; Gautier, Aude; Sharratt, Peter; Fuller, Barry; Hodgson, Humphrey
2013-01-01
Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-principle. HepG2cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4–6×1010cells, were transported from preparation-laboratory to point-of-use operating theatre (6000miles) under perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to animals connected to the circuit without cells. In the +cell group, human proteins accumulated in pigs' plasma. Delivery of biomass using a short-term cold-chain enabled transport and use without loss of function over 3days. Thus, a fluidised-bed bioreactor containing alginate-encapsulated HepG2cell-spheroids improved important parameters of acute liver failure in pigs. The system can readily be up-scaled and transported to point-of-use justifying development at clinical scale. PMID:24367515
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI
NASA Astrophysics Data System (ADS)
Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.
2016-10-01
Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7 ± 1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n = 9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p = 0.0085) and HA fraction (p < 0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.
NASA Astrophysics Data System (ADS)
Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang
2018-03-01
This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.
NASA Astrophysics Data System (ADS)
Hendricks Franssen, H. J.; Post, H.; Vrugt, J. A.; Fox, A. M.; Baatz, R.; Kumbhar, P.; Vereecken, H.
2015-12-01
Estimation of net ecosystem exchange (NEE) by land surface models is strongly affected by uncertain ecosystem parameters and initial conditions. A possible approach is the estimation of plant functional type (PFT) specific parameters for sites with measurement data like NEE and application of the parameters at other sites with the same PFT and no measurements. This upscaling strategy was evaluated in this work for sites in Germany and France. Ecosystem parameters and initial conditions were estimated with NEE-time series of one year length, or a time series of only one season. The DREAM(zs) algorithm was used for the estimation of parameters and initial conditions. DREAM(zs) is not limited to Gaussian distributions and can condition to large time series of measurement data simultaneously. DREAM(zs) was used in combination with the Community Land Model (CLM) v4.5. Parameter estimates were evaluated by model predictions at the same site for an independent verification period. In addition, the parameter estimates were evaluated at other, independent sites situated >500km away with the same PFT. The main conclusions are: i) simulations with estimated parameters reproduced better the NEE measurement data in the verification periods, including the annual NEE-sum (23% improvement), annual NEE-cycle and average diurnal NEE course (error reduction by factor 1,6); ii) estimated parameters based on seasonal NEE-data outperformed estimated parameters based on yearly data; iii) in addition, those seasonal parameters were often also significantly different from their yearly equivalents; iv) estimated parameters were significantly different if initial conditions were estimated together with the parameters. We conclude that estimated PFT-specific parameters improve land surface model predictions significantly at independent verification sites and for independent verification periods so that their potential for upscaling is demonstrated. However, simulation results also indicate that possibly the estimated parameters mask other model errors. This would imply that their application at climatic time scales would not improve model predictions. A central question is whether the integration of many different data streams (e.g., biomass, remotely sensed LAI) could solve the problems indicated here.
A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan
2016-05-01
Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements
NASA Astrophysics Data System (ADS)
Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.
2008-11-01
We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.
Karamitsos, Theodoros D; Hudsmith, Lucy E; Selvanayagam, Joseph B; Neubauer, Stefan; Francis, Jane M
2007-01-01
Accurate and reproducible measurement of left ventricular (LV) mass and function is a significant strength of Cardiovascular Magnetic Resonance (CMR). Reproducibility and accuracy of these measurements is usually reported between experienced operators. However, an increasing number of inexperienced operators are now training in CMR and are involved in post-processing analysis. The aim of the study was to assess the interobserver variability of the manual planimetry of LV contours amongst two experienced and six inexperienced operators before and after a two months training period. Ten healthy normal volunteers (5 men, mean age 34+/-14 years) comprised the study population. LV volumes, mass, and ejection fraction were manually evaluated using Argus software (Siemens Medical Solutions, Erlangen, Germany) for each subject, once by the two experienced and twice by the six inexperienced operators. The mean values of experienced operators were considered the reference values. The agreement between operators was evaluated by means of Bland-Altman analysis. Training involved standardized data acquisition, simulated off-line analysis and mentoring. The trainee operators demonstrated improvement in the measurement of all the parameters compared to the experienced operators. The mean ejection fraction variability improved from 7.2% before training to 3.7% after training (p=0.03). The parameter in which the trainees showed the least improvement was LV mass (from 7.7% to 6.7% after training). The basal slice selection and contour definition were the main sources of errors. An intensive two month training period significantly improved the accuracy of LV functional measurements. Adequate training of new CMR operators is of paramount importance in our aim to maintain the accuracy and high reproducibility of CMR in LV function analysis.
Performance on a functional motor task is enhanced by sleep in middle-aged and older adults.
Al-Sharman, Alham; Siengsukon, Catherine F
2014-07-01
Although sleep has been shown to enhance motor skill learning, it remains unclear whether sleep enhances learning of a functional motor task in middle-aged and older individuals. The purpose of this study was to examine whether sleep enhances motor learning of a functional motor task in middle-aged and older adults. Twenty middle-aged and 20 older individuals were randomly assigned to either the sleep condition or the no-sleep condition. Participants in the sleep condition practiced a novel walking task in the evening, and returned the following morning for retesting. Participants in the no-sleep condition practiced the walking task in the morning and returned the same day in the evening for a retest. Outcome measures included time around the walking path and spatiotemporal gait parameters. Only the middle-aged and older adults in the sleep condition demonstrated significant off-line improvement in performance, measured as a decline in time to walk around the novel path and improvement in spatiotemporal gait parameters. The middle-aged and older adults in the no-sleep condition failed to demonstrate off-line improvements in performance of this functional task. This is the first study to provide evidence that sleep facilitates learning a clinically relevant functional motor task in middle-aged and older adults. Because many neurologic conditions occur in the middle-aged and older adults and sleep issues are very prevalent in many neurologic conditions, it is imperative that physical therapists consider sleep as a factor that may impact motor learning and recovery in these individuals. (See Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A73) for more insights from the authors.
NASA Astrophysics Data System (ADS)
Baker, Ben; Stachnik, Joshua; Rozhkov, Mikhail
2017-04-01
International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event according to the protocol to the Protocol to the Comprehensive Nuclear Test Ban Treaty. Determination of seismic event source mechanism and its depth is closely related to these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. In this presentation we demonstrate preliminary results obtained with the latter approach from an improved software design. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Posterior distributions of moment tensor parameters show narrow peaks where a significant number of reliable surface wave observations are available. For earthquake examples, fault orientation (strike, dip, and rake) posterior distributions also provide results consistent with published catalogues. Inclusion of observations on horizontal components will provide further constraints. In addition, the calculation of teleseismic P wave Green's Functions are improved through prior analysis to determine an appropriate attenuation parameter for each source-receiver path. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK events and shallow earthquakes using a new implementation of teleseismic P waves waveform fitting. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Simon, J; Longis, P-M; Passuti, N
2017-04-01
Adult scoliosis is a condition in which the spinal deformity occurs because of degeneration. Although various studies have agreed on the importance of restoring the sagittal balance, few have evaluated the relationship between functional scores and radiological parameters. The primary objective of this retrospective study was to demonstrate the correlation between radiographic parameters and functional outcomes in adult patients with lumbar or thoracolumbar degenerative scoliosis. The secondary objective was to assess the long-term effects of posterolateral fusion for treating this deformity. This single-centre retrospective study included 47 patients over 50years of age who had degenerative lumbar scoliosis treated with an instrumented posterolateral fusion; the mean follow-up was 6.4years (range 2 to 20). Radiographic analysis of A/P and lateral full spine standing radiographs was carried out with the KEOPS software. Three pelvic parameters (pelvic tilt, pelvic incidence, sacral slope), two spinal parameters (lumbar lordosis and thoracic kyphosis) and three sagittal balance parameters (C7 sagittal tilt, C7 Barrey's ratio and spinosacral angle) were calculated. The functional outcomes were evaluated through three self-assessment questionnaires: Oswestry Disability Index, SRS-30 and SF-36. The correlation between clinical and radiographic parameters was calculated with Spearman's correlation test. There was a significant correlation between the SF-36 (PCS) and the following three sagittal parameters: sacral slope (r=-0.31453; P=0.04), lumbar lordosis (r=-0.30198; P=0.0491) and spinosacral angle (r=-0.311967; P=0.0366). The mean ODI score was 33.61, which corresponds to minimal to moderate disability. The mean physical (PCS) and mental (MCS) component summary scores of the SF-36 were 37.70 and 38.40, respectively. The mean SRS-30 score was 3.07. It is essential that the sagittal balance be restored when treating degenerative lumbar scoliosis to generate better functional outcomes and better quality of life. To achieve this correction, instrumented posterolateral fusion appears to be a very reliable technique that leads to lasting improvement. IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Amorim, Robson Luis; de Andrade, Almir Ferreira; Gattás, Gabriel S; Paiva, Wellingson Silva; Menezes, Marcos; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson
2014-05-01
Decompressive craniectomy (DC) reduces mortality and improves functional outcome in patients with malignant middle cerebral artery infarction. However, little is known regarding the impact of DC on cerebral hemodynamics. Therefore, our goal was to study the hemodynamic changes that may occur in patients with malignant middle cerebral artery infarction after DC and to assess their relationship with outcomes. Twenty-seven patients with malignant middle cerebral artery infarction who were treated with DC were studied. The perfusion CT hemodynamic parameters, mean transit time, cerebral blood flow, and cerebral blood volume were evaluated preoperatively and within the first 24 hours after DC. There was a global trend toward improved cerebral hemodynamics after DC. Preoperative and postoperative absolute mean transit times were associated with mortality at 6 months, and the ratio of post- and preoperative cerebral blood flow was significantly higher in patients with favorable outcomes than those with unfavorable outcomes. Patients who underwent surgery 48 hours after stroke, those with midline brain shift>10 mm, and those who were >55 years showed no significant improvement in any perfusion CT parameters. DC improves cerebral hemodynamics in patients with malignant middle cerebral artery infarction, and the level of improvement is related to outcome. However, some patients did not seem to experience any additional hemodynamic benefit, suggesting that perfusion CT may play a role as a prognostic tool in patients undergoing DC after ischemic stroke.
Sakabe, Koichi; Fukuda, Nobuo; Nada, Teru; Onose, Yukiko; Soeki, Takeshi; Shinohara, Hisanori; Tamura, Yoshiyuki
2002-12-01
Administration of 0.4 to 0.8 mg of cerivastatin per day for 2 weeks has been reported to have pleiotropic effects and improve endothelial function. Whether low-dose cerivastatin would produce these rapid pleiotropic effects in the clinical setting remains uncertain, however. We investigated the effect of short-term therapy with relatively low-dose cerivastatin (0.15 mg/day) on endothelial function, thrombostatic parameters, and C-reactive protein (CRP) levels in hypercholesterolemic patients. Thirteen patients with LDL-cholesterol>160 mg/dl were treated with daily doses of 0.15 mg of cerivastatin for 2 weeks. Endothelial function, thrombostatic parameters (tissue-type plasminogen activator [t-PA], plasminogen activator inhibitor type 1 [PAI-1], and CRP were estimated at baseline and again after 2 weeks of treatment. Endothelial function was measured as flow-mediated vasodilation. Flow-mediated vasodilatation was assessed by measuring the percent change in the diameter of the brachial artery in response to reactive hyperemia using high-resolution ultrasound. Endothelium-independent vasodilatation was also measured using sublingual nitroglycerin. No major complications developed after the treatment. Total cholesterol decreased significantly, from 258±32 to 211±21 mg/dl, and LDL-cholesterol also decreased from 171±15 to 133±16 mg/dl after the treatment. Flow-mediated vasodilatation increased significantly, from 4.6±1.3 percent to 8.7±3.5 percent after 2 weeks of therapy, although endothelium-independent vasodilatation was not affected (9.5±2.4% vs 8.8±3.1%). No relation was found between percent change in flow-mediated vasodilatation and improvement in levels of LDL-cholesterol after therapy (r=0.07). PAI-1, t-PA, and CRP were not significantly changed by 2 weeks of therapy. (1) Evaluating vasodilation of the brachial artery with B-mode ultrasound imaging was useful in investigating the effect of statin on endothelial function. (2) Although no effect was detected in PAI-1, t-PA, or CRP, relatively low-dose cerivastatin therapy for 2 weeks improved endothelial function and lipid level independently and safely in hypercholesterolemic patients.
Noniterative estimation of a nonlinear parameter
NASA Technical Reports Server (NTRS)
Bergstroem, A.
1973-01-01
An algorithm is described which solves the parameters X = (x1,x2,...,xm) and p in an approximation problem Ax nearly equal to y(p), where the parameter p occurs nonlinearly in y. Instead of linearization methods, which require an approximate value of p to be supplied as a priori information, and which may lead to the finding of local minima, the proposed algorithm finds the global minimum by permitting the use of series expansions of arbitrary order, exploiting an a priori knowledge that the addition of a particular function, corresponding to a new column in A, will not improve the goodness of the approximation.
Kütscher, Christian; Lampert, Florian M; Kunze, Mirjam; Markfeld-Erol, Filiz; Stark, G Björn; Finkenzeller, Günter
2016-05-01
Postnatal vasculogenesis is mediated by mobilization of endothelial progenitor cells (EPCs) from bone marrow and homing to ischemic tissues. This feature emphasizes this cell type for cell-based therapies aiming at the improvement of neovascularization in tissue engineering applications and regenerative medicine. In animal models, it was demonstrated that implantation of EPCs from cord blood (cbEPCs) led to the formation of a complex functional neovasculature, whereas EPCs isolated from adult peripheral blood (pbEPCs) showed a limited vasculogenic potential, which may be attributed to age-related dysfunction. Recently, it was demonstrated that activation of hypoxia-inducible factor-1α (Hif-1α) improves cell functions of progenitor cells of mesenchymal and endothelial origin. Thus, we hypothesized that overexpression of Hif-1α may improve the vasculogenesis-related phenotype of pbEPCs. In the present study, we overexpressed Hif-1α in pbEPCs and cbEPCs by using recombinant adenoviruses and investigated effects on stem cell- and vasculogenesis-related cell parameters. Overexpression of Hif-1α enhanced proliferation, invasion, cell survival and in vitro capillary sprout formation of both EPC populations. Migration was increased in cbEPCs upon Hif-1α overexpression, but not in pbEPCs. Cellular senescence was decreased in pbEPCs, while remained in cbEPCs, which showed, as expected, intrinsically a dramatically lower senescent phenotype in relation to pbEPCs. Similarly, the colony-formation capacity was much higher in cbEPCs in comparison to pbEPCs and was further increased by Hif-1α overexpression, whereas Hif-1α transduction exerted no significant influence on colony formation of pbEPCs. In summary, our experiments illustrated multifarious effects of Hif-1α overexpression on stem cell and vasculogenic parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of adult as well as postnatal EPCs. Copyright © 2016. Published by Elsevier Inc.
Guerrero Orriach, Jose L; Galán Ortega, M; Ramírez Fernandez, A; Ariza Villanueva, D; Florez Vela, A; Moreno Cortés, I; Rubio Navarro, M; Cruz Mañas, J
2017-02-01
The Acute Kidney Injury Network (AKIN) classification considers SCr values, urea and urine output in order to improve timely diagnose ARF and improve patient prognosis by early treatment. Preoperative levosimendan is a new way for cardiac and kidney protection, we try to evaluate this drug in fifteen patients comparing values of AKIN scale parameters pre and post cardiac surgery in patients with right ventricle dysfunction.
Functional differentiation of human pluripotent stem cells on a chip.
Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola
2015-07-01
Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.
Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon
2016-04-01
Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.
Dragon Boat training exerts a positive effect on myocardial function in breast cancer survivors.
Stefani, Laura; Galanti, Giorgio; Di Tante, Valentina; Klika, Riggs J; Maffulli, Nicola
2015-07-01
Dragon Boat training is often suggested to control upper limb edema in breast cancer (BC) survivors, but little information is available regarding the cardiac impact of such activity. The present study evaluates this aspect during a 4-year follow-up of BC survivors. From 2006 to 2010, 55 women diagnosed with BC in 2005, treated with adjuvant therapy without evidence of metastases, were enrolled for competitive Dragon Boat training. They underwent ergometric tests yearly, and 2D echocardiography to evaluate hemodynamic, morphological and functional cardiac parameters. The data were compared with those from a group of 36 healthy women (HW). Both groups maintained normal systolic function throughout the period, with Cardiac Mass index, Body Mass Index and Ejection Fraction values being higher in HW. At the onset of the study, the diastolic function of BC survivors was normal though compatible with initial diastolic dysfunction when compared to the diastolic function of HW. After 4 years of competitive activity, the diastolic parameters improved in both groups and particularly in BC survivors (A peak: from 68.5 ± 15.1 cm/s to 50 ± 14.1 cm/s, p < 0.05; Ea: from 9.3 ± 2 cm/s to 11.89 ± 1.7 cm/s, p < 0.001). BC survivors experienced a significant improvement in diastolic function after 4 years of Dragon Boat training. Dragon Boat training impacts favorably on the myocardial performance in patients previously treated with chemotherapy. These results support the positive role of sport activity in myocardial function of BC survivors.
Assessing Respiratory System Mechanical Function.
Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo
2016-12-01
The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pack, R.T
1977-02-15
The effect of identification of the partial wave parameter of the J/sub z/ CCS and IOS approximations as an orbital angular momentum rather than the total angular momentum is studied. Comparison with accurate close coupling calculations for Ar--N/sub 2/ and He--CO/sub 2/ collisions is made, and it is found that this identification results in a marked improvement, both quantitative and qualitative, in calculated IOS opacity functions and integral cross sections for both elastic and inelastic collisions. Use of the correct energy in the cross section formula also makes a marked improvement even though T matrices are computed with an averagemore » energy. (AIP)« less
Pressure dependence of the Peierls transition in the quasi two-dimensional purple bronze KMo 6O 17
NASA Astrophysics Data System (ADS)
Rötger, A.; Beille, J.; Laurant, J. M.; Schlenker, C.
1993-09-01
The electrical resistivity and the lattice parameters have been studied as a function of pressure on the quasi-twodimensional purple bronze KMo 6O 17 which shows a Peierls transition towards a commensurate charge density wave state. The Peierls temperature is found to be first slightly decreased for pressures smaller than 6 kbar, then strongly increased above. This increase is associated to an anomalous contraction of the lattice parameters in the plane of the layers. The corresponding large increase of the compressibility above 16 kbar at 300 K is associated to the pretransitional regime of the Peierls transition as a function of pressure. These results are attributed mainly to an improved nesting of the Fermi surface under pressure.
Minami, Jun-Ichi; Kondo, Shizuki; Yanagisawa, Naotake; Odamaki, Toshitaka; Xiao, Jin-Zhong; Abe, Fumiaki; Nakajima, Shigeru; Hamamoto, Yukie; Saitoh, Sanae; Shimoda, Taeko
2015-01-01
Accumulating evidence suggests an association between gut microbiota and the development of obesity, raising the possibility of probiotic administration as a therapeutic approach. Bifidobacterium breve B-3 was found to exhibit an anti-obesity effect on high-fat diet-induced obesity mice. In the present study, a randomised, double-blind, placebo-controlled trial was conducted to evaluate the effect of the consumption of B. breve B-3 on body compositions and blood parameters in adults with a tendency for obesity. After a 4-week run-in period, the participants were randomised to receive either placebo or a B-3 capsule (approximately 5 × 10(10) colony-forming units of B-3/d) daily for 12 weeks. A significantly lowered fat mass was observed in the B-3 group compared with the placebo group at week 12. Improvements were observed for some blood parameters related to liver functions and inflammation, such as γ-glutamyltranspeptidase and high-sensitivity C-reactive protein. Significant correlations were found between the changed values of some blood parameters and the changed fat mass in the B-3 group. These results suggest the beneficial potential of B. breve B-3 in improving metabolic disorders.
Direct and accelerated parameter mapping using the unscented Kalman filter.
Zhao, Li; Feng, Xue; Meyer, Craig H
2016-05-01
To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Heijerman, Harry G. M.; And Others
1992-01-01
This study, with 10 adult patients with cystic fibrosis, found that the improvement in lung function and ergometry parameters obtained by a short in-patient training program could be maintained on an out-patient basis through a voluntary self-treatment program. (DB)
Yoshiya, Shinichi
2016-02-01
Anatomic all-inside anterior cruciate ligament reconstruction using the autogenous semitendinosus tendon graft can afford satisfactory outcomes, achieving significant postoperative improvement in all clinical parameters. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Tefner, Ildikó Katalin; Kovács, Csaba; Gaál, Ramóna; Koroknai, András; Horváth, Remény; Badruddin, Rakib Mohammed; Borbély, Ildikó; Nagy, Katalin; Bender, Tamás
2015-06-01
The effects of balneotherapy on chronic shoulder pain were studied. In this single-blind, randomized, follow-up study involving 46 patients with chronic shoulder pain, one group of patients received physiotherapy--exercise and transcutaneous electrical nerve stimulation--and the other group received balneotherapy in addition to physiotherapy for 4 weeks on 15 occasions. The following parameters were recorded before treatment (at week 0) and after treatment (at weeks 4, 7, and 13): Shoulder Pain and Disability Index (SPADI), the Short Form (36) Health Survey (SF-36) and EuroQuol-5D (EQ-5D) quality of life questionnaires, pain at rest and on movement on the visual analog scale (VAS), and active and passive range of motion. The SPADI pain, function, and total scores and the VAS scores at rest and on movement significantly improved in both groups after treatments. A greater improvement was observed in the balneotherapy group compared to the control group; regarding some parameters (VAS score on movement and SPADI function score at visit 2; VAS score at rest at visits 3 and 4), the difference between the groups was significant. The improvement of SF-36 and EQ-5D quality of life scores and the active range of motion was more pronounced in the balneotherapy group, the difference between the groups was not significant, except for EQ-5D at visit 2. Improvement of passive range of motion was not significant. Balneotherapy may have a beneficial effect on the clinical parameters and quality of life of patients with chronic shoulder pain. The number of patients should be increased.
Preparation of lactic acid bacteria fermented wheat-yoghurt mixtures.
Magala, Michal; Kohajdová, Zlatica; Karovičová, Jolana
2013-01-01
Tarhana, a wheat-yoghurt fermented mixture, is considered as a good source of saccharides, proteins, some vitamins and minerals. Moreover, their preparation is inexpensive and lactic acid fermentation offers benefits like product preservation, enhancement of nutritive value and sensory properties improvement. The aim of this work was to evaluate changes of some chemical parameters during fermentation of tarhana, when the level of salt and amount of yoghurt used were varied. Some functional and sensory characteristics of the fi nal product were also determined. Chemical analysis included determination of pH, titrable acidity, content of reducing saccharides, lactic, acetic and citric acid. Measured functional properties of tarhana powder were foaming capacity, foam stability, water absorption capacity, oil absorption capacity and emulsifying activity. Tarhana soups samples were evaluated for their sensory characteristics (colour, odor, taste, consistency and overall acceptability). Fermentation of tarhana by lactic acid bacteria and yeasts led to decrease in pH, content of reducing saccharides and citric acid, while titrable acidity and concentration of lactic and acetic acid increased. Determination of functional properties of tarhana powder showed, that salt absence and increased amount of yoghurt in tarhana recipe reduced foaming capacity and oil absorption capacity, whereas foam stability and water absorption capacity were improved. Sensory evaluation of tarhana soups showed that variations in tarhana recipe adversly affected sensory parameters of fi nal products. Variations in tarhana recipe (salt absence, increased proportion of yoghurt) led to changes in some chemical parameters (pH, titrable acidity, reducing saccharides, content of lactic, acetic and citric acid). Functional properties were also affected with changed tarhana recipe. Sensory characteristics determination showed, that standard tarhana fermented for 144 h had the highest overall acceptability.
A knowledge-based approach to improving optimization techniques in system planning
NASA Technical Reports Server (NTRS)
Momoh, J. A.; Zhang, Z. Z.
1990-01-01
A knowledge-based (KB) approach to improve mathematical programming techniques used in the system planning environment is presented. The KB system assists in selecting appropriate optimization algorithms, objective functions, constraints and parameters. The scheme is implemented by integrating symbolic computation of rules derived from operator and planner's experience and is used for generalized optimization packages. The KB optimization software package is capable of improving the overall planning process which includes correction of given violations. The method was demonstrated on a large scale power system discussed in the paper.
Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements
NASA Technical Reports Server (NTRS)
Lyatsky, W.; Khazanov, G. V.
2007-01-01
Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue
2017-08-01
On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.
Joshi, Subodh B; Roswell, Robert O; Salah, Ali K; Zeman, Peter R; Corso, Paul J; Lindsay, Joseph; Fuisz, Anthon R
2010-01-01
A reduction in right ventricular function commonly occurs in the early postoperative period after coronary artery bypass graft surgery (CABG). We sought to determine the longer-term effect of CABG on right ventricular function. Cardiac magnetic resonance imaging was performed before and approximately 3 months after surgery in 28 patients undergoing elective CABG. Right ventricular (RV) ejection fraction was assessed by planimetry of electrocardiographically gated cine images. There was a statistically significant increase in left ventricular ejection fraction from 50% to 58% (P=.003) after CABG. RV ejection fraction also increased from 54% to 60% (P=.002). In patients with lower baseline RV ejection fraction (below the median, < 53%), this parameter improved from 47% to 57% (P<.001). Both on-pump (47% vs. 62%, P=.003) as well as off-pump CABG (47% vs. 55%, P=.009) lead to an improvement in RV function in patients in the initial low RV ejection fraction group. Long-term right ventricular function was not adversely affected by CABG. An improvement in RV function occurred after surgery in patients with low baseline RV ejection fraction and was similar in patients who underwent surgery with or without cardiopulmonary bypass.
The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands
NASA Astrophysics Data System (ADS)
Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.
2017-11-01
In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.
An algorithm for automatic parameter adjustment for brain extraction in BrainSuite
NASA Astrophysics Data System (ADS)
Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.
2017-02-01
Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.
Hankey, Alex
2006-01-01
This article is the first of two comparing findings of studies of advanced practitioners of Tibetan Buddhist meditation in remote regions of the Himalayas, with established results on long-term practitioners of the Transcendental Meditation programs. Many parallel levels of improvement were found, in sensory acuity, perceptual style and cognitive function, indicating stabilization of aspects of attentional awareness. Together with observed increases in EEG coherence and aspects of brain function, such changes are consistent with growth towards a state of total brain functioning, i.e. development of full mental potential. They are usually accompanied by improved health parameters. How they may be seen to be consistent with growth of enlightenment will be the subject of a second article. PMID:17173116
Hankey, Alex
2006-12-01
This article is the first of two comparing findings of studies of advanced practitioners of Tibetan Buddhist meditation in remote regions of the Himalayas, with established results on long-term practitioners of the Transcendental Meditation programs. Many parallel levels of improvement were found, in sensory acuity, perceptual style and cognitive function, indicating stabilization of aspects of attentional awareness. Together with observed increases in EEG coherence and aspects of brain function, such changes are consistent with growth towards a state of total brain functioning, i.e. development of full mental potential. They are usually accompanied by improved health parameters. How they may be seen to be consistent with growth of enlightenment will be the subject of a second article.
An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.
Yang, Yifei; Tan, Minjia; Dai, Yuewei
2017-01-01
A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.
NASA Astrophysics Data System (ADS)
Touil, B.; Bendib, A.; Bendib-Kalache, K.
2017-02-01
The longitudinal dielectric function is derived analytically from the relativistic Vlasov equation for arbitrary values of the relevant parameters z = m c 2 / T , where m is the rest electron mass, c is the speed of light, and T is the electron temperature in energy units. A new analytical approach based on the Legendre polynomial expansion and continued fractions was used. Analytical expression of the electron distribution function was derived. The real part of the dispersion relation and the damping rate of electron plasma waves are calculated both analytically and numerically in the whole range of the parameter z . The results obtained improve significantly the previous results reported in the literature. For practical purposes, explicit expressions of the real part of the dispersion relation and the damping rate in the range z > 30 and strongly relativistic regime are also proposed.
Information filtering via a scaling-based function.
Qiu, Tian; Zhang, Zi-Ke; Chen, Guang
2013-01-01
Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.
NASA Astrophysics Data System (ADS)
García, Isaac A.; Llibre, Jaume; Maza, Susanna
2018-06-01
In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.
Improving the performance of extreme learning machine for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Li, Jiaojiao; Du, Qian; Li, Wei; Li, Yunsong
2015-05-01
Extreme learning machine (ELM) and kernel ELM (KELM) can offer comparable performance as the standard powerful classifier―support vector machine (SVM), but with much lower computational cost due to extremely simple training step. However, their performance may be sensitive to several parameters, such as the number of hidden neurons. An empirical linear relationship between the number of training samples and the number of hidden neurons is proposed. Such a relationship can be easily estimated with two small training sets and extended to large training sets so as to greatly reduce computational cost. Other parameters, such as the steepness parameter in the sigmodal activation function and regularization parameter in the KELM, are also investigated. The experimental results show that classification performance is sensitive to these parameters; fortunately, simple selections will result in suboptimal performance.
Yu, Jue; Zhuang, Jian; Yu, Dehong
2015-01-01
This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Roca, Patricia; Mulas, Fernando; Gandia, Rubén; Ortiz-Sánchez, Pedro; Abad, Luis
2013-02-22
Evoked potentials P300 and the analysis of executive functions have shown their utility in the monitoring of patients with symptoms of attention deficit hyperactivity disorder (ADHD). Neuropsychological profiles and evoked potentials P300 have been analysed for two groups of children with an ADHD treatment with atomoxetine and methylphenidate respectively. Correlations between P300 and the selected neuropsychological parameters are studied, and the differences between basal values and 1 year follow-up are analysed. Two groups were performed: a group of 22 children ADHD in the atomoxetine condition, and a group of 24 children ADHD in the methylphenidate condition. The results show a global improvement of all the parameters, in terms of executive function and P300 values in both, the atomoxetine and the methylphenidate group. Executive functions and evoked potentials P300 reflect an underlying processing and they are very useful in the clinical practice. This exploratory study shows the importance of designing personalized objective variables-based treatments.
Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.
Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz
2017-08-31
The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.
Tethered Satellites as Enabling Platforms for an Operational Space Weather Monitoring System
NASA Technical Reports Server (NTRS)
Krause, L. Habash; Gilchrist, B. E.; Bilen, S.; Owens, J.; Voronka, N.; Furhop, K.
2013-01-01
Space weather nowcasting and forecasting models require assimilation of near-real time (NRT) space environment data to improve the precision and accuracy of operational products. Typically, these models begin with a climatological model to provide "most probable distributions" of environmental parameters as a function of time and space. The process of NRT data assimilation gently pulls the climate model closer toward the observed state (e.g. via Kalman smoothing) for nowcasting, and forecasting is achieved through a set of iterative physics-based forward-prediction calculations. The issue of required space weather observatories to meet the spatial and temporal requirements of these models is a complex one, and we do not address that with this poster. Instead, we present some examples of how tethered satellites can be used to address the shortfalls in our ability to measure critical environmental parameters necessary to drive these space weather models. Examples include very long baseline electric field measurements, magnetized ionospheric conductivity measurements, and the ability to separate temporal from spatial irregularities in environmental parameters. Tethered satellite functional requirements will be presented for each space weather parameter considered in this study.
Ryu, Hyeuk; Luco, Nicolas; Baker, Jack W.; Karaca, Erdem
2008-01-01
A methodology was recently proposed for the development of hazard-compatible building fragility models using parameters of capacity curves and damage state thresholds from HAZUS (Karaca and Luco, 2008). In the methodology, HAZUS curvilinear capacity curves were used to define nonlinear dynamic SDOF models that were subjected to the nonlinear time history analysis instead of the capacity spectrum method. In this study, we construct a multilinear capacity curve with negative stiffness after an ultimate (capping) point for the nonlinear time history analysis, as an alternative to the curvilinear model provided in HAZUS. As an illustration, here we propose parameter values of the multilinear capacity curve for a moderate-code low-rise steel moment resisting frame building (labeled S1L in HAZUS). To determine the final parameter values, we perform nonlinear time history analyses of SDOF systems with various parameter values and investigate their effects on resulting fragility functions through sensitivity analysis. The findings improve capacity curves and thereby fragility and/or vulnerability models for generic types of structures.
Batinti, Alberto
2015-12-01
I propose an application of the pure-consumption version of the Grossman model of health care demand, where utility depends on consumption and health status and health status on medical care and health technology. I derive the conditions under which an improvement in health care technology leads to an increase/decrease in health care consumption. In particular, I show how the direction of the effect depends on the relationship between the constant elasticity of substitution parameters of the utility and health production functions. I find that, under the constancy assumption, the ratio of the two elasticity of substitution parameters determines the direction of a technological change on health care demand. On the other hand, the technology share parameter in the health production function contributes to the size but not to the direction of the technological effect. I finally explore how the ratio of the elasticity of substitution parameters work in measurement and practice and discuss how future research may use the theoretical insight provided here. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
Recent developments in biofeedback for neuromotor rehabilitation
Huang, He; Wolf, Steven L; He, Jiping
2006-01-01
The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation. PMID:16790060
Investigation of statistical iterative reconstruction for dedicated breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeev, Andrey; Glick, Stephen J.
2013-08-15
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images weremore » compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.« less
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj
2016-12-01
In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.
Zhang, Q; Chen, Y; Liu, Q; Shan, Q
2016-02-01
The purpose of this meta-analysis was to evaluate the effects of renin-angiotensin-aldosterone system (RAAS) inhibitors on mortality, hospitalization, diastolic function, and exercise capacity in heart failure with preserved ejection fraction (HFpEF). Thirteen randomized controlled trials (RCTs), totaling 12,532 patients with HFpEF, were selected. All-cause and cardiovascular mortality, all-cause and heart failure-related hospitalization, diastolic function, and the 6-min walk distance were assessed. The risk ratios (RR) of the dichotomous data, weighted mean difference (WMD) of continuous data, and 95 % confidence intervals (CI) were calculated to assess the effects of RAAS inhibitors. RAAS inhibitors significantly decreased heart failure-related hospitalization (RR 0.89; 95 % CI 0.82-0.97; p = 0.01) and improved the diastolic function, as reflected in a reduced E/e' index (MD -1.38; 95 % CI -2.01 to -0.74; p < 0.0001). However, there were no beneficial effects on all-cause cardiovascular mortality and all-cause hospitalization. Other diastolic parameters had few changes compared with the controls. The 6-min walk distance was not improved by the use of RAAS inhibitors. In patients with HFpEF, RAAS inhibitors decreased heart-failure hospitalization and the E/e' index without affecting mortality, all-cause hospitalization, other diastolic function parameters, and the 6-min walk distance.
[The influence of antipsychotic therapy on the cognitive functions of schizophrenic patients].
Tybura, Piotr; Mak, Monika; Samochowiec, Agnieszka; Pełka-Wysiecka, Justyna; Grzywacz, Anna; Grochans, Elzbieta; Zaremba-Pechmann, Liliana; Samochowiec, Jerzy
2013-01-01
The aim of the present study was twofold: 1. to compare the efficacy of three antipsychotics (ziprasidone, olanzapine and perazine) in schizophrenia 2. to compare the improvement in cognitive functioning between groups treated with the three different neuroleptics. A total of 58 Caucasian patients diagnosed with paranoid schizophrenia were recruited into the study group. We used the Polish version of the CIDI (Composite International Diagnostic Interview) to obtain ICD-10 diagnoses. The intensity of psychopathological symptoms was examined using the PANSS. The patients were randomly assigned to treatment with perazine, olanzapine or ziprasidone administered as monotherapy for 3 months. The treatment efficacy was measured as a change in the PANSS (Positive and Negative Syndrome Scale) total score from baseline (T0) to 3 months (T1). The WCST (The Wisconsin Card Sorting Test) was used to measure working memory and executive functions in the evaluated patients. Wilcoxon's and Kruskal-Wallis tests were applied to compare changes in the PANSS scores between the treatment groups. To analyze the cognitive functions, Kruskal-Wallis test for the WCST parameters was used. The three antipsychotics similarly reduced the total PANSS score. The WCST parameters in the 3 groups of examined patients using the Kruskal-Wallis test revealed some differences between the three administered antipsychotics. Results suggest that the short-term efficacy of the atypical (olanzapine, ziprasidone) and typical (perazine) antipsychotic drugs did not differ. Based on the analysis, a conclusion can be drawn that the three neuroleptics provided similar improvements in cognitive functioning.
De Deken, J; Rex, S; Lerut, E; Martinet, W; Monbaliu, D; Pirenne, J; Jochmans, I
2018-07-01
Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Preconditioning, reconditioning and postconditioning with argon and xenon protects against renal ischaemia-reperfusion injury in rodent models. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function in a porcine renal autotransplant model was tested. Pigs (n = 6 per group) underwent left nephrectomy after 60 min of warm ischaemia (renal artery and vein clamping). The procured kidney was autotransplanted in a separate procedure after 18 h of cold storage, immediately after a right nephrectomy. Upon reperfusion, pigs were randomized to inhalation of control gas (70 per cent nitrogen and 30 per cent oxygen), argon (70 per cent and 30 per cent oxygen) or xenon (70 per cent and 30 per cent oxygen) for 2 h. The primary outcome parameter was peak plasma creatinine; secondary outcome parameters included further markers of graft function (creatinine course, urine output), graft injury (aspartate aminotransferase, heart-type fatty acid-binding protein, histology), apoptosis and autophagy (western blot, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining), inflammatory mediators and markers of cell survival/growth (mRNA and tissue protein quantification), and animal survival. Results are presented as median (i.q.r.). ANOVA and Kruskal-Wallis tests were used where indicated. Peak plasma creatinine levels were similar between the groups: control 20·8 (16·4-23·1) mg/dl, argon 21·4 (17·1-24·9) mg/dl and xenon 19·4 (17·5-21·0) mg/dl (P = 0·607). Xenon was associated with an increase in autophagy and proapoptotic markers. Creatinine course, urine output, injury markers, histology, survival and inflammatory mediators were not affected by the intervention. Postconditioning with argon or xenon did not improve kidney graft function in this experimental model. Surgical relevance Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Based on mainly small animal experiments, noble gases (argon and xenon) have been proposed to minimize this ischaemia-reperfusion injury and improve outcomes after transplantation. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function was tested in a porcine kidney autotransplantation model. The peak plasma creatinine concentration was similar in the control, argon and xenon groups. No other secondary outcome parameters, including animal survival, were affected by the intervention. Xenon was associated with an increase in autophagy and proapoptotic markers. Despite promising results in small animal models, postconditioning with argon or xenon in a translational model of kidney autotransplantation was not beneficial. Clinical trials would require better results. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
2008-03-01
multiplicative corrections as well as space mapping transformations for models defined over a lower dimensional space. A corrected surrogate model for the...correction functions used in [72]. If the low fidelity model g(x̃) is defined over a lower dimensional space then a space mapping transformation is...required. As defined in [21, 72], space mapping is a method of mapping between models of different dimensionality or fidelity. Let P denote the space
Optimal startup control of a jacketed tubular reactor.
NASA Technical Reports Server (NTRS)
Hahn, D. R.; Fan, L. T.; Hwang, C. L.
1971-01-01
The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.
Spirometry: predicting risk and outcome.
Brunelli, Alessandro; Rocco, Gaetano
2008-02-01
Predicted postoperative FEV1 is certainly the most widely used parameter in preoperative risk stratification [54] and the measure recommend by BTS and ACCP functional guidelines as a first step in the screening of patients for lung resection surgery. Nevertheless, recent evidences have demonstrated that ppoFEV1 is not a reliable predictor of postoperative cardiopulmonary complications in patients with preoperative impaired pulmonary function. This may be because of the fact that the resection of a portion of lung in patients with obstructive disease determines only a minimal loss, or even an improvement, in overall respiratory function and exercise tolerance. This lung volume reduction effect takes place very early, since the first postoperative days, balancing what ever negative physiologic effects a thoracotomy and lung resection may entail. In addition to its poor predictive role in COPD patients, ppoFEV1 largely underestimate the actual loss in the very first days after operation, when most of the complications develop. The rationale to use a parameter which is poorly correlated with the pulmonary function at the moment the complications occur seems unwarranted. At the very best, ppoFEV1 appears a weak surrogate of the immediate postoperative FEV1. The FEV1 measured on the first postoperative day may be 30% less than predicted. Corrective equations have been published to correct this discrepancy with the aim to improve risk stratification.
NASA Astrophysics Data System (ADS)
Patnaik, S.; Biswal, B.; Sharma, V. C.
2017-12-01
River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.
Mashru, Mayur; Galib, R.; Shukla, Vinay J.; Ravishankar, B.; Prajapati, Pradeep Kumar
2013-01-01
Asthma represents a profound world-wide public health problem. The most effective anti-asthmatic drugs currently available include β2-agonists and glucocorticoids which can controls asthma in about 90-95% of patients. In Ayurveda, this miserable condition is comparable with Tamaka Shwasa type of Shwasa Roga. In the present study, 52 patients were treated with Sameera Pannaga Rasa at a dose of 30 mg twice a day for 4 weeks along with Nagavallidala (leaf of Piper betel Linn.) The results were assessed in terms of clinical recovery, symptomatic relief, pulmonary function improvement and on subjective and objective parameters. A significant improvement in subjective parameters, control on asthma, recurrence of asthma, increase in peak expiratory flow rate, considerable decrease in total and absolute, acute eosinophil count and erythrocyte sedimentation rate were observed. Overall marked improvement was found in 33.33%, moderate improvement in 44.44% and mild improvement in 20.00% was observed. The study reveals that Sameera Pannaga Rasa can be used as an effective drug in bronchial asthma. PMID:24696570
Mashru, Mayur; Galib, R; Shukla, Vinay J; Ravishankar, B; Prajapati, Pradeep Kumar
2013-10-01
Asthma represents a profound world-wide public health problem. The most effective anti-asthmatic drugs currently available include β2-agonists and glucocorticoids which can controls asthma in about 90-95% of patients. In Ayurveda, this miserable condition is comparable with Tamaka Shwasa type of Shwasa Roga. In the present study, 52 patients were treated with Sameera Pannaga Rasa at a dose of 30 mg twice a day for 4 weeks along with Nagavallidala (leaf of Piper betel Linn.) The results were assessed in terms of clinical recovery, symptomatic relief, pulmonary function improvement and on subjective and objective parameters. A significant improvement in subjective parameters, control on asthma, recurrence of asthma, increase in peak expiratory flow rate, considerable decrease in total and absolute, acute eosinophil count and erythrocyte sedimentation rate were observed. Overall marked improvement was found in 33.33%, moderate improvement in 44.44% and mild improvement in 20.00% was observed. The study reveals that Sameera Pannaga Rasa can be used as an effective drug in bronchial asthma.
NASA Astrophysics Data System (ADS)
Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.
2018-05-01
Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.
[Investigation of the effect of vinpocetine on cerebral blood flow and cognitive functions].
Valikovics, Attila
2007-07-30
Vinpocetine has been widely used in the treatment of ischaemic cerebrovascular diseases and dementias of vascular type. Chronic cerebral hypoperfusion plays an important role in the development of certain types of dementia. In consequence of complex mode of action vinpocetine plays a significant role in the improvement of cerebral hypoperfusion. The symptoms of mild cognitive impairment considered as "predementia" are similar to those of dementia, although milder. The authors investigated the characteristics of the blood flow parameters of patients with ischemic stroke and mild cognitive impairment both in resting conditions or following chemical stimulus as well as they investigated the severity of mental deterioration in the two patient groups. In a pilot study the authors examined the influence of 12-week long oral vinpocetine therapy on the blood flow parameters and cognitive functions in the two patient groups. The authors studied the blood flow velocity of a. cerebri media in resting conditions and after 30 sec of breath holding with transcranial Doppler before treatment and after a 12-week long oral vinpocetine treatment. At the same time psychometric tests (MMSE, ADAS-Cog) were used in order to examine cognitive functions, while the general condition of the patients were scored by Clinical Global Impression (CGI) scale. After a 12-week long oral vinpocetine treatment the increase of blood flow velocity in resting conditions compared to the baseline values was significant in the vascular group. The percent increase of mean velocity after the breath holding TCD test showed a significant increase compared to the baseline in both patient groups. The authors found a significant improvement of cognitive functions after a 12-week long oral vinpocetine therapy using psychometric tests. The improvement was identical in both groups. The general condition of patients improved significantly according to both the investigator's and the patients' opinion; patients with mild cognitive impairment judged the improvement higher. Vinpocetine improved the cerebrovascular reserve capacity in both patient groups and favourably influenced the cognitive status and general condition of patients with chronic hypoperfusion. The authors recommend the use of vinpocetine for the treatment of patients with mild cognitive impairment.
Quantitative phase imaging of platelet: assessment of cell morphology and function
NASA Astrophysics Data System (ADS)
Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.
2017-02-01
It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.
Ballester, Pedro J; Mitchell, John B O
2010-05-01
Accurately predicting the binding affinities of large sets of diverse protein-ligand complexes is an extremely challenging task. The scoring functions that attempt such computational prediction are essential for analysing the outputs of molecular docking, which in turn is an important technique for drug discovery, chemical biology and structural biology. Each scoring function assumes a predetermined theory-inspired functional form for the relationship between the variables that characterize the complex, which also include parameters fitted to experimental or simulation data and its predicted binding affinity. The inherent problem of this rigid approach is that it leads to poor predictivity for those complexes that do not conform to the modelling assumptions. Moreover, resampling strategies, such as cross-validation or bootstrapping, are still not systematically used to guard against the overfitting of calibration data in parameter estimation for scoring functions. We propose a novel scoring function (RF-Score) that circumvents the need for problematic modelling assumptions via non-parametric machine learning. In particular, Random Forest was used to implicitly capture binding effects that are hard to model explicitly. RF-Score is compared with the state of the art on the demanding PDBbind benchmark. Results show that RF-Score is a very competitive scoring function. Importantly, RF-Score's performance was shown to improve dramatically with training set size and hence the future availability of more high-quality structural and interaction data is expected to lead to improved versions of RF-Score. pedro.ballester@ebi.ac.uk; jbom@st-andrews.ac.uk Supplementary data are available at Bioinformatics online.
Yang, Guang; Zhao, Lifen; Liu, Bing; Shan, Yujia; Li, Yang; Zhou, Huimin; Jia, Li
2018-02-01
Acquired aplastic anemia (AA) is a hematopoietic stem cell disease that leads to hematopoietic disorder and peripheral blood pancytopenia. We investigated whether nutritional support is helpful to AA recovery. We established a rat model with AA. A nutrient mixture was administered to rats with AA through different dose gavage once per day for 55 d. Animals in this study were assigned to one of five groups: normal control (NC; group includes normal rats); AA (rats with AA); high dose (AA + nutritional mixture, 2266.95 mg/kg/d); medium dose (1511.3 mg/kg/d); and low dose (1057.91 mg/kg/d). The effects of nutrition administration on general status and mitochondrial function of rats with AA were evaluated. The nutrient mixture with which the rats were supplemented significantly improved weight, peripheral blood parameters, and histologic parameters of rats with AA in a dose-dependent manner. Furthermore, we observed that the number of mitochondria in the liver, spleen, kidney, and brain was increased after supplementation by transmission electron microscopy analysis. Nutrient administration also improved mitochondrial DNA content, adenosine triphosphate content, and membrane potential but inhibited oxidative stress, thus, repairing the mitochondrial dysfunction of the rats with AA. Taken together, nutrition supplements may contribute to the improvement of mitochondrial function and play an important role in the recuperation of rats with AA. Copyright © 2017 Elsevier Inc. All rights reserved.
Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun
2018-05-01
To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Goodwill, Alicia M; Lum, Jarrad A G; Hendy, Ashlee M; Muthalib, Makii; Johnson, Liam; Albein-Urios, Natalia; Teo, Wei-Peng
2017-11-01
Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and cognitive abilities. There is no cure for PD, therefore identifying safe therapies to alleviate symptoms remains a priority. This meta-analysis quantified the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (TES) to improve motor and cognitive dysfunction in PD. PubMed, EMBASE, Web of Science, Google Scholar, Scopus, Library of Congress and Cochrane library were searched. 24 rTMS and 9 TES studies (n = 33) with a sham control group were included for analyses. The Physiotherapy Evidence Database and Cochrane Risk of Bias showed high quality (7.5/10) and low bias with included studies respectively. Our results showed an overall positive effect in favour of rTMS (SMD = 0.394, CI [0.106-0.683], p = 0.007) and TES (SMD = 0.611, CI [0.188-1.035], p = 0.005) compared with sham stimulation on motor function, with no significant differences detected between rTMS and TES (Q [1] = 0.69, p = 0.406). Neither rTMS nor TES improved cognition. No effects for stimulation parameters on motor or cognitive function were observed. To enhance the clinical utility of non-invasive brain stimulation (NBS), individual prescription of stimulation parameters based upon symptomology and resting excitability state should be a priority of future research.
New insights into time series analysis. II - Non-correlated observations
NASA Astrophysics Data System (ADS)
Ferreira Lopes, C. E.; Cross, N. J. G.
2017-08-01
Context. Statistical parameters are used to draw conclusions in a vast number of fields such as finance, weather, industrial, and science. These parameters are also used to identify variability patterns on photometric data to select non-stochastic variations that are indicative of astrophysical effects. New, more efficient, selection methods are mandatory to analyze the huge amount of astronomical data. Aims: We seek to improve the current methods used to select non-stochastic variations on non-correlated data. Methods: We used standard and new data-mining parameters to analyze non-correlated data to find the best way to discriminate between stochastic and non-stochastic variations. A new approach that includes a modified Strateva function was performed to select non-stochastic variations. Monte Carlo simulations and public time-domain data were used to estimate its accuracy and performance. Results: We introduce 16 modified statistical parameters covering different features of statistical distribution such as average, dispersion, and shape parameters. Many dispersion and shape parameters are unbound parameters, I.e. equations that do not require the calculation of average. Unbound parameters are computed with single loop and hence decreasing running time. Moreover, the majority of these parameters have lower errors than previous parameters, which is mainly observed for distributions with few measurements. A set of non-correlated variability indices, sample size corrections, and a new noise model along with tests of different apertures and cut-offs on the data (BAS approach) are introduced. The number of mis-selections are reduced by about 520% using a single waveband and 1200% combining all wavebands. On the other hand, the even-mean also improves the correlated indices introduced in Paper I. The mis-selection rate is reduced by about 18% if the even-mean is used instead of the mean to compute the correlated indices in the WFCAM database. Even-statistics allows us to improve the effectiveness of both correlated and non-correlated indices. Conclusions: The selection of non-stochastic variations is improved by non-correlated indices. The even-averages provide a better estimation of mean and median for almost all statistical distributions analyzed. The correlated variability indices, which are proposed in the first paper of this series, are also improved if the even-mean is used. The even-parameters will also be useful for classifying light curves in the last step of this project. We consider that the first step of this project, where we set new techniques and methods that provide a huge improvement on the efficiency of selection of variable stars, is now complete. Many of these techniques may be useful for a large number of fields. Next, we will commence a new step of this project regarding the analysis of period search methods.
The effect of the dynamic wet troposphere on radio interferometric measurements
NASA Technical Reports Server (NTRS)
Treuhaft, R. N.; Lanyi, G. E.
1987-01-01
A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin
Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.
An improved computational approach for multilevel optimum design
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1984-01-01
A penalty-function algorithm employing Newton's method with approximate second derivatives (Haftka and Starnes, 1980) is developed for two-level hierarchical design optimization problems. The difficulties posed by discontinuous behavior in typical multilevel problems are explained and illustrated for the case of a three-bar truss; the algorithm is formulated; and its advantages are demonstrated in the problem of a portal framework having three beams (described by six cross-section parameters), subjected to two loading conditions, and to be constructed in six different materials for comparison. The final design parameters are listed in a table.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strober, S.; Farinas, M.C.; Field, E.H.
1988-07-01
Seventeen patients with intractable lupus nephritis and nephrotic syndrome were treated with total lymphoid irradiation. Statistically significant improvement in mean renal disease and serologic activity parameters occurred within 3 months and persisted for at least 3 years. Although there was a marked reduction of T helper cell numbers and function after total lymphoid irradiation, recovery of these parameters was not associated with a return of disease activity. Risks of sterility, severe infections, and hematologic malignancy appeared to be lower than with alkylating agents.
DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution.
Xia, Xuhua
2018-06-01
DAMBE is a comprehensive software package for genomic and phylogenetic data analysis on Windows, Linux, and Macintosh computers. New functions include imputing missing distances and phylogeny simultaneously (paving the way to build large phage and transposon trees), new bootstrapping/jackknifing methods for PhyPA (phylogenetics from pairwise alignments), and an improved function for fast and accurate estimation of the shape parameter of the gamma distribution for fitting rate heterogeneity over sites. Previous method corrects multiple hits for each site independently. DAMBE's new method uses all sites simultaneously for correction. DAMBE, featuring a user-friendly graphic interface, is freely available from http://dambe.bio.uottawa.ca (last accessed, April 17, 2018).
Improvement of a Pneumatic Control Valve with Self-Holding Function
NASA Astrophysics Data System (ADS)
Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke
2017-10-01
The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.
NASA Astrophysics Data System (ADS)
Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul
The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.
DC and analog/RF performance optimisation of source pocket dual work function TFET
NASA Astrophysics Data System (ADS)
Raad, Bhagwan Ram; Sharma, Dheeraj; Kondekar, Pravin; Nigam, Kaushal; Baronia, Sagar
2017-12-01
We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated.
Maagaard, Marie; Heiberg, Johan
2016-09-01
Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3-168 patients, mean age-ranges of 5-33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22-34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O 2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac function should be integrated in the clinical assessment of patients with PE.
Heiberg, Johan
2016-01-01
Patients with pectus excavatum (PE) often describe improvements in exercise stamina following corrective surgery. Studies have investigated the surgical effect on physiological parameters; still, no consensus has yet been reached. Therefore, the aim of this literature review was to describe the cardiac outcome after surgical correction, both at rest and during exercise. In February 2016, a detailed search of the databases PubMed, Medline, and EMBASE was performed. We assessed clinical studies that described cardiac outcomes both before and after surgical correction of PE. We only included studies reporting either pre-defined echocardiographic or exercise test parameters. No exclusion criteria or statistical analyses were applied. Twenty-one full-text articles, published between 1972 and 2016, were selected, with cohort-ranges of 3–168 patients, mean age-ranges of 5–33 years, and mean follow-up-ranges from immediately to 4 years after surgery. Twelve studies described resting cardiac parameters. Four studies measured cardiac output, where one described 36% immediate increase after surgery, one reported 15% increase after Nuss-bar removal and two found no difference. Three studies demonstrated improvement in mean stroke volume ranges of 22–34% and two studies found no difference. Fifteen studies investigated exercise capacity, with 11 considering peak O2 pr. kg, where five studies demonstrated improvements with the mean ranging from 8% to 15% after surgery, five studies demonstrated no difference, and one saw a decrease of 19% 3 months after Nuss-bar implantation. A measurable increase in exercise capacity exists following surgery, which may be caused by multiple factors. This may be owed to the relief of compressed cardiac chambers with the increased anterior-posterior thoracic dimensions, which could facilitate an improved filling of the heart. With these results, the positive physiological impact of the surgery is emphasized and the potential gain in cardiac function should be integrated in the clinical assessment of patients with PE. PMID:27747182
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Attitude error response of structures to actuator/sensor noise
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
Explicit closed-form formulas are presented for the RMS attitude-error response to sensor and actuator noise for co-located actuators/sensors as a function of both control-gain parameters and structure parameters. The main point of departure is the use of continuum models. In particular the anisotropic Timoshenko model is used for lattice trusses typified by the NASA EPS Structure Model and the Evolutionary Model. One conclusion is that the maximum attainable improvement in the attitude error varying either structure parameters or control gains is 3 dB for the axial and torsion modes, the bending being essentially insensitive. The results are similar whether the Bernoulli model or the anisotropic Timoshenko model is used.
2013-01-01
Introduction Administration of mesenchymal stem cells (MSCs) has been shown to improve renal function in rodent models of chronic kidney disease (CKD), in part by reducing intrarenal inflammation and suppressing fibrosis. CKD in cats is characterized by tubulointerstitial inflammation and fibrosis, and thus treatment with MSCs might improve renal function and urinary markers of inflammation in this disease. Therefore, a series of pilot studies was conducted to assess the safety and efficacy of intravenous administration of allogeneic adipose-derived MSCs (aMSCs) in cats with naturally occurring CKD. Methods Cats enrolled in these studies received an intravenous infusion of allogeneic aMSCs every 2 weeks collected from healthy, young, specific pathogen-free cats. Cats in pilot study 1 (six cats) received 2 × 106 cryopreserved aMSCs per infusion, cats in pilot study 2 (five cats) received 4 × 106 cryopreserved aMSCs per infusion, and cats in pilot study 3 (five cats) received 4 × 106 aMSCs cultured from cryopreserved adipose. Serum biochemistry, complete blood count, urinalysis, urine protein, glomerular filtration rate, and urinary cytokine concentrations were monitored during the treatment period. Changes in clinical parameters were compared statistically by means of repeated measures analysis of variance (ANOVA) followed by Bonferroni’s correction. Results Cats in pilot study 1 had few adverse effects from the aMSC infusions and there was a statistically significant decrease in serum creatinine concentrations during the study period, however the degree of decrease seems unlikely to be clinically relevant. Adverse effects of the aMSC infusion in cats in pilot study 2 included vomiting (2/5 cats) during infusion and increased respiratory rate and effort (4/5 cats). Cats in pilot study 3 did not experience any adverse side effects. Serum creatinine concentrations and glomerular filtration rates did not change significantly in cats in pilot studies 2 and 3. Conclusions Administration of cryopreserved aMSCs was associated with significant adverse effects and no discernible clinically relevant improvement in renal functional parameters. Administration of aMSCs cultured from cryopreserved adipose was not associated with adverse effects, but was also not associated with improvement in renal functional parameters. PMID:23632128
ERIC Educational Resources Information Center
Kastner, Theodore A.; Walsh, Kevin K.; Criscione, Teri
1997-01-01
Presents a general model of the structure and functioning of managed care and describes elements (provider networks, fiscal elements, risk estimation, case-mix, management information systems, practice parameters, and quality improvement) critical to people with developmental disabilities. Managed care demonstration projects and a hypothetical…
Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer
2012-01-01
Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Cameron, K.W.
1998-11-24
Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less
Chang, Qin; Brodsky, Stanley J.; Li, Xin-Qiang
2017-05-30
In this article the dynamical spin effects of the light-front holographic wave functions for light pseudoscalar mesons are studied. These improved wave functions are then confronted with a number of hadronic observables: the decay constants of π and K mesons, their ξ -moments, the pion-to-photon transition form factor, and the pure annihilationmore » $$\\bar{B}_s$$ → π + π - and $$\\bar{B}_d$$ → K + K - decays. Taking f π , fK , and their ratio fK / f π as constraints, we perform a χ 2 analysis for the holographic parameters, including the mass scale parameter $$\\sqrtλ$$ and the effective quark masses, and find that the fitted results are quite consistent with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we also show that the end point divergence appearing in the pure annihilation $$\\bar{B}_s$$ → π + π - and $$\\bar{B}_d$$ → K + K - decays can be controlled well by using these improved light-front holographic distribution amplitudes.« less
Who or What? Self-Replication and Function-Reproduction in the Origin of Life
NASA Technical Reports Server (NTRS)
New, Michael H.; Stassinopoulos, Dimitris; Monaco, Regina; Pohorille, Andrew; DeVincenzi, Donald (Technical Monitor)
2002-01-01
In this presentation, we will present results on the fundamental properties of two classes of replicating systems: autocatalytic replicators that reproduce exact copies of a template molecule, and function reproducers that maintain a set of essential functions without replicating the identities of the functional moieties. We will describe the stability and behavior in-the-large of autocatalytic replicators. Most importantly, we have found no sharp distinction between an autocatalytic and a non-autocatalytic domain. We will also present a new derivation of von Kiedrowski's square-root rate law. Function - reproducers are proposed as an important component of protocells and we will present theoretical results on a simple model system that incorporates known peptide biophysics. For a wide range of parameters, we have shown that this type of system can improve its overall performance, even in the absence of any method for information storage. This type of system improvement is defined to be non-genomic evolution.
Hernandez, Melissa J.; Christman, Karen L.
2017-01-01
Summary As the number of global deaths attributed to cardiovascular disease continues to rise, viable treatments for cardiovascular events such as myocardial infarction (MI) or conditions like peripheral artery disease (PAD) are critical. Recent studies investigating injectable biomaterials have shown promise in promoting tissue regeneration and functional improvement, and in some cases, incorporating other therapeutics further augments the beneficial effects of these biomaterials. In this review, we aim to emphasize the advantages of acellular injectable biomaterial-based therapies, specifically material-alone approaches or delivery of acellular biologics, in regards to manufacturability and the capacity of these biomaterials to regenerate or repair diseased tissue. We will focus on design parameters and mechanisms that maximize therapeutic efficacy, particularly, improved functional perfusion and neovascularization regarding PAD and improved cardiac function and reduced negative left ventricular (LV) remodeling post-MI. We will then discuss the rationale and challenges of designing new injectable biomaterial-based therapies for the clinic. PMID:29057375
What must be the accuracy and target of optical sensor systems for patient monitoring?
NASA Astrophysics Data System (ADS)
Frank, Klaus H.; Kessler, Manfred D.
2002-06-01
Although the treatment in the intensive care unit has improved in recent years enabling greater surgical engagements and improving patients survival rate, no adequate monitoring is available in imminent severe pathological cases. Otherwise such kind of monitoring is necessary for early or prophylactic treatment in order to avoid or reduce the severity of the disease and protect the patient from sepsis or multiple organ failure. In these cases the common monitoring is limited, because clinical physiological and laboratory parameters indicate either the situation of macro-circulation or late disturbances of microcirculation, which arise previously on sub-cellular level. Optical sensor systems enable to reveal early variations in local capillary flow. The correlation between clinical parameters and changes in condition of oxygenation as a function of capillary flow disturbances is meaningful for the further treatment. The target should be to develop a predictive parameter, which is useful for detection and follow-up of changes in circulation.
Upper bounds on superpartner masses from upper bounds on the Higgs boson mass.
Cabrera, M E; Casas, J A; Delgado, A
2012-01-13
The LHC is putting bounds on the Higgs boson mass. In this Letter we use those bounds to constrain the minimal supersymmetric standard model (MSSM) parameter space using the fact that, in supersymmetry, the Higgs mass is a function of the masses of sparticles, and therefore an upper bound on the Higgs mass translates into an upper bound for the masses for superpartners. We show that, although current bounds do not constrain the MSSM parameter space from above, once the Higgs mass bound improves big regions of this parameter space will be excluded, putting upper bounds on supersymmetry (SUSY) masses. On the other hand, for the case of split-SUSY we show that, for moderate or large tanβ, the present bounds on the Higgs mass imply that the common mass for scalars cannot be greater than 10(11) GeV. We show how these bounds will evolve as LHC continues to improve the limits on the Higgs mass.
High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method
NASA Astrophysics Data System (ADS)
Bowden, Mike; Neal, William
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.
2014-01-01
Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trampedach, Regner; Asplund, Martin; Collet, Remo
2013-05-20
Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less
Generalized image contrast enhancement technique based on Heinemann contrast discrimination model
NASA Astrophysics Data System (ADS)
Liu, Hong; Nodine, Calvin F.
1994-03-01
This paper presents a generalized image contrast enhancement technique which equalizes perceived brightness based on the Heinemann contrast discrimination model. This is a modified algorithm which presents an improvement over the previous study by Mokrane in its mathematically proven existence of a unique solution and in its easily tunable parameterization. The model uses a log-log representation of contrast luminosity between targets and the surround in a fixed luminosity background setting. The algorithm consists of two nonlinear gray-scale mapping functions which have seven parameters, two of which are adjustable Heinemann constants. Another parameter is the background gray level. The remaining four parameters are nonlinear functions of gray scale distribution of the image, and can be uniquely determined once the previous three are given. Tests have been carried out to examine the effectiveness of the algorithm for increasing the overall contrast of images. It can be demonstrated that the generalized algorithm provides better contrast enhancement than histogram equalization. In fact, the histogram equalization technique is a special case of the proposed mapping.
NASA Technical Reports Server (NTRS)
Slater, P. N. (Principal Investigator)
1980-01-01
The feasibility of using a pointable imager to determine atmospheric parameters was studied. In particular the determination of the atmospheric extinction coefficient and the path radiance, the two quantities that have to be known in order to correct spectral signatures for atmospheric effects, was simulated. The study included the consideration of the geometry of ground irradiance and observation conditions for a pointable imager in a LANDSAT orbit as a function of time of year. A simulation study was conducted on the sensitivity of scene classification accuracy to changes in atmospheric condition. A two wavelength and a nonlinear regression method for determining the required atmospheric parameters were investigated. The results indicate the feasibility of using a pointable imaging system (1) for the determination of the atmospheric parameters required to improve classification accuracies in urban-rural transition zones and to apply in studies of bi-directional reflectance distribution function data and polarization effects; and (2) for the determination of the spectral reflectances of ground features.
Colombo, R; Sterpi, I; Mazzone, A; Delconte, C; Pisano, F
2016-01-01
The purpose of this study was to determine whether a conventional robot-assisted therapy of the upper limb was able to improve proprioception and motor recovery of an individual after stroke who exhibited proprioceptive deficits. After robotic sensorimotor training, significant changes were observed in kinematic performance variables. Two quantitative parameters evaluating position sense improved after training. Range of motion during shoulder and wrist flexion improved, but only wrist flexion remained improved at 3-month follow-up. These preliminary results suggest that intensive robot-aided rehabilitation may play an important role in the recovery of sensory function. However, further studies are required to confirm these data.
Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan
2015-01-01
[Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke. PMID:26157272
Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Noh, Ji-Woong; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Kim, Junghwan
2015-05-01
[Purpose] The purpose of this study was to confirm the effects of both conventional overground gait training (CGT) and a gait trainer with partial body weight support (GTBWS) on spatiotemporal gait parameters of patients with hemiparesis following chronic stroke. [Subjects and Methods] Thirty stroke patients were alternately assigned to one of two treatment groups, and both groups underwent CGT and GTBWS. [Results] The functional ambulation classification on the affected side improved significantly in the CGT and GTBWS groups. Walking speed also improved significantly in both groups. [Conclusion] These results suggest that the GTBWS in company with CGT may be, in part, an effective method of gait training for restoring gait ability in patients after a stroke.
NASA Technical Reports Server (NTRS)
Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.
1992-01-01
An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.
Method and system for monitoring and displaying engine performance parameters
NASA Technical Reports Server (NTRS)
Abbott, Terence S. (Inventor); Person, Lee H., Jr. (Inventor)
1988-01-01
The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel.
Huerta, M; Urzúa, Z; Trujillo, X; González-Sánchez, R; Trujillo-Hernández, B
2010-01-01
This single-blind study compared the efficacy of oral forskolin versus inhaled beclomethasone for mild or moderately persistent adult asthma. Patients were randomly assigned to receive forskolin (one 10-mg capsule orally per day; n = 30) or beclomethasone (two 50 microg inhalations every 12 h; n = 30) for 2 months. No statistically significant improvement occurred in any lung function parameter in the forskolin-treated patients. Subjects in the beclomethasone-treated group presented a slight but statistically significant improvement in percentage forced expiratory volume in 1 s (FEV(1)), percentage forced expiratory flow in the middle (25 - 75%) expiratory phase (FEF(25 - 75%)) and percentage forced vital capacity (FVC) after 2 months of treatment, though the improvement in absolute values for FEV(1), FEF(25 - 75%), FVC and FEV(1):FVC did not reach statistical significance. There was no statistically significant difference between the forskolin and beclomethasone treatment groups for any lung function parameter at baseline or after treatment. None of the beclomethasone-treated patients had an asthma attack and one forskolin-treated patient had a mild asthma attack during the 2-month study period. More studies are needed in adult asthma patients to confirm whether forskolin may be a useful preventive treatment for mild or moderately persistent adult asthma.
An improved numerical method for the kernel density functional estimation of disperse flow
NASA Astrophysics Data System (ADS)
Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos
2014-11-01
We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.
Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung
2010-07-01
An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.
A LiDAR data-based camera self-calibration method
NASA Astrophysics Data System (ADS)
Xu, Lijun; Feng, Jing; Li, Xiaolu; Chen, Jianjun
2018-07-01
To find the intrinsic parameters of a camera, a LiDAR data-based camera self-calibration method is presented here. Parameters have been estimated using particle swarm optimization (PSO), enhancing the optimal solution of a multivariate cost function. The main procedure of camera intrinsic parameter estimation has three parts, which include extraction and fine matching of interest points in the images, establishment of cost function, based on Kruppa equations and optimization of PSO using LiDAR data as the initialization input. To improve the precision of matching pairs, a new method of maximal information coefficient (MIC) and maximum asymmetry score (MAS) was used to remove false matching pairs based on the RANSAC algorithm. Highly precise matching pairs were used to calculate the fundamental matrix so that the new cost function (deduced from Kruppa equations in terms of the fundamental matrix) was more accurate. The cost function involving four intrinsic parameters was minimized by PSO for the optimal solution. To overcome the issue of optimization pushed to a local optimum, LiDAR data was used to determine the scope of initialization, based on the solution to the P4P problem for camera focal length. To verify the accuracy and robustness of the proposed method, simulations and experiments were implemented and compared with two typical methods. Simulation results indicated that the intrinsic parameters estimated by the proposed method had absolute errors less than 1.0 pixel and relative errors smaller than 0.01%. Based on ground truth obtained from a meter ruler, the distance inversion accuracy in the experiments was smaller than 1.0 cm. Experimental and simulated results demonstrated that the proposed method was highly accurate and robust.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
NASA Astrophysics Data System (ADS)
Hsieh, Feng-Ju; Wang, Wei-Chih
2012-09-01
This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
An improved harmony search algorithm with dynamically varying bandwidth
NASA Astrophysics Data System (ADS)
Kalivarapu, J.; Jain, S.; Bag, S.
2016-07-01
The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.
Using a pseudo-dynamic source inversion approach to improve earthquake source imaging
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.
2014-12-01
Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.
Quality of chronic kidney disease management in primary care: a retrospective study.
Van Gelder, Vincent A; Scherpbier-De Haan, Nynke D; De Grauw, Wim J C; Vervoort, Gerald M M; Van Weel, Chris; Biermans, Marion C J; Braspenning, Jozé C C; Wetzels, Jack F M
2016-01-01
Early detection and appropriate management of chronic kidney disease (CKD) in primary care are essential to reduce morbidity and mortality. To assess the quality of care (QoC) of CKD in primary healthcare in relation to patient and practice characteristics in order to tailor improvement strategies. Retrospective study using data between 2008 and 2011 from 47 general practices (207 469 patients of whom 162 562 were adults). CKD management of patients under the care of their general practitioner (GP) was qualified using indicators derived from the Dutch interdisciplinary CKD guideline for primary care and nephrology and included (1) monitoring of renal function, albuminuria, blood pressure, and glucose, (2) monitoring of metabolic parameters, and alongside the guideline: (3) recognition of CKD. The outcome indicator was (4) achieving blood pressure targets. Multilevel logistic regression analysis was applied to identify associated patient and practice characteristics. Kidney function or albuminuria data were available for 59 728 adult patients; 9288 patients had CKD, of whom 8794 were under GP care. Monitoring of disease progression was complete in 42% of CKD patients, monitoring of metabolic parameters in 2%, and blood pressure target was reached in 43.1%. GPs documented CKD in 31.4% of CKD patients. High QoC was strongly associated with diabetes, and to a lesser extent with hypertension and male sex. Room for improvement was found in all aspects of CKD management. As QoC was higher in patients who received structured diabetes care, future CKD care may profit from more structured primary care management, e.g. according to the chronic care model. Quality of care for chronic kidney disease patients in primary care can be improved. In comparison with guideline advice, adequate monitoring of disease progression was observed in 42%, of metabolic parameters in 2%, correct recognition of impaired renal function in 31%, and reaching blood pressure targets in 43% of chronic kidney disease patients. Quality of care was higher in patients with diabetes. Chronic kidney disease management may be improved by developing strategies similar to diabetes care.
Traverso, Carlo Enrico; Cutolo, Carlo Alberto
2017-08-01
To investigate the clinical, anatomical, and patient-reported outcomes of phacoemulsification (PE) with intraocular lens implantation performed to treat primary angle closure (PAC) and primary angle-closure glaucoma (PACG). Patients were evaluated at baseline and at 6 months after PE. The examination included visual acuity, intraocular pressure (IOP), visual field, optic nerve head, endothelial cell count (ECC), aqueous depth, and ocular biometric parameters. Patient-reported visual function and health status were assessed. Coprimary outcome measures were IOP changes, angle widening, and patient-reported visual function; secondary outcome measures were visual acuity changes, use of IOP-lowering medications, and complications. Univariate and multivariate analyses were performed to determine the predictors of IOP change. Thirty-nine cases were identified, and postoperative data were analyzed for 59 eyes, 39 with PACG and 20 with PAC. Globally, PE resulted in a mean reduction in IOP of -6.33 mm Hg (95% CI, -8.64 to -4.01, P <.001). Aqueous depth and angle measurements improved ( P <.01), whereas ECC significantly decreased ( P <.001). Both corrected and uncorrected visual acuity improved ( P <.01). The EQ visual analog scale did not change ( P =.16), but VFQ-25 improved ( P <.01). The IOP-lowering effect of PE was greater in the PACG compared to the PAC group ( P =.04). In both groups, preoperative IOP was the most significant predictor of IOP change ( P <.01). No sight-threatening complications were recorded. Our data support the usefulness of PE in lowering the IOP in patients with PAC and PACG. Although PE resulted in several anatomical and patient-reported visual improvements, we observe that a marked decrease in ECC should be carefully weighed before surgery.
Sildenafil therapy in thalassemia patients with Doppler-defined risk of pulmonary hypertension
Morris, Claudia R.; Kim, Hae-Young; Wood, John; Porter, John B.; Klings, Elizabeth S.; Trachtenberg, Felicia L.; Sweeters, Nancy; Olivieri, Nancy F.; Kwiatkowski, Janet L.; Virzi, Lisa; Singer, Sylvia T.; Taher, Ali; Neufeld, Ellis J.; Thompson, Alexis A.; Sachdev, Vandana; Larkin, Sandra; Suh, Jung H.; Kuypers, Frans A.; Vichinsky, Elliott P.
2013-01-01
Pulmonary hypertension is a common but often overlooked complication associated with thalassemia syndromes. There are limited data on the safety and efficacy of selective pulmonary vasodilators in this at-risk population. We, therefore, designed a 12-week, open-label, phase 1/2, pilot-scale, proof-of-principle trial of sildenafil therapy in 10 patients with β-thalassemia and at increased risk of pulmonary hypertension based on an elevated tricuspid regurgitant jet velocity >2.5 m/s on Doppler-echocardiography. Variables compared at baseline and after 12 weeks of sildenafil treatment included Doppler-echocardiographic parameters, 6-minute walked distance, Borg Dyspnea Score, New York Heart Association functional class, pulmonary function, and laboratory parameters. Treatment with sildenafil resulted in a significant decrease in tricuspid regurgitant jet velocity by 13.3% (3.0±0.7 versus 2.6±0.5 m/s, P=0.04), improved left ventricular end systolic/diastolic volume, and a trend towards a improved New York Heart Association functional class. No significant change in 6-minute walked distance was noted. Sildenafil was well tolerated, although minor expected adverse events were commonly reported. The total dose of sildenafil (mg) was strongly correlated with percent change in nitric oxide metabolite concentration in the plasma (ρ=0.80, P=0.01). There were also significant increases in plasma and erythrocyte arginine concentrations. Our study suggests that sildenafil is safe and may improve pulmonary hemodynamics in patients at risk of pulmonary hypertension; however, it was not demonstrated to improve the distance walked in 6 minutes. Clinical trials are needed to identify the best treatment strategy for pulmonary hypertension in patients with β-thalassemia. (clinicaltrials.gov identifier: NCT00872170) PMID:23585527
Improved nine-node shell element MITC9i with reduced distortion sensitivity
NASA Astrophysics Data System (ADS)
Wisniewski, K.; Turska, E.
2017-11-01
The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.
Hunger, Matthias; Kirchberger, Inge; Holle, Rolf; Seidl, Hildegard; Kuch, Bernhard; Wende, Rupert; Meisinger, Christine
2015-04-01
Older patients with acute myocardial infarction (MI) are often lacking optimal support to continue rehabilitation after discharge from hospital. The objective of the study was to examine whether a home-based case management programme led by nurses can improve atherogenic risk factors, physical functioning, and mental health in the first year following discharge. The KORINNA study is a randomized two-armed parallel group trial including 329 patients (aged 65-92 years) from the Augsburg Hospital in southern Germany. The intervention consisted of an individualized follow-up programme with a duration of 1 year, including home visits and telephone calls. The control group received usual care. Secondary outcome measures included clinical parameters (blood pressure, lipid parameters), functional status measures, cognitive status, depressive symptoms, and nutrition risk. At 1-year follow up, patients in the intervention group (n = 116) had significantly better low-density lipoprotein cholesterol levels (-8.4 mg/dl, 95% CI -16.4 to -0.4), hand grip strength (+2.53 kg, 95% CI 0.56 to 4.50), and SCREEN-II nutrition risk scores (+2.03, 95% CI 0.58 to 3.48) than patients in the control group (n = 136). The intervention group also had better mean scores with regard to self-reported disability, activities in daily living, and mental health, but differences were not always significant and meaningful. The results of the KORINNA study indicate that nurse-based case management can improve blood lipid levels, functional status, and nutrition risk of aged patients with MI. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne
2016-01-01
Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.
Gifford, A H; Nymon, A B; Ashare, A
2014-04-01
Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.
Lafoux, Aude; Baudry, Charlotte; Bonhomme, Cécile; Le Ruyet, Pascale; Huchet, Corinne
2016-01-01
Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17–19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents. PMID:27973615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan
2016-07-04
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...
2016-06-01
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less
NASA Astrophysics Data System (ADS)
Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura
2016-07-01
The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.
Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-04-13
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.
Marquis-Gravel, Guillaume; Hayami, Douglas; Juneau, Martin; Nigam, Anil; Guilbeault, Valérie; Latour, Élise; Gayda, Mathieu
2015-01-01
To analyze the effects of a long-term intensive lifestyle intervention including high-intensity interval training (HIIT) and Mediterranean diet (MedD) counseling on glycemic control parameters, insulin resistance and β-cell function in obese subjects. The glycemic control parameters (fasting plasma glucose, glycated hemoglobin), insulin resistance, and β-cell function of 72 obese subjects (54 women; mean age = 53 ± 9 years) were assessed at baseline and upon completion of a 9-month intensive lifestyle intervention program conducted at the cardiovascular prevention and rehabilitation center of the Montreal Heart Institute, from 2009 to 2012. The program included 2-3 weekly supervised exercise training sessions (HIIT and resistance exercise), combined to MedD counseling. Fasting plasma glucose (FPG) (mmol/L) (before: 5.5 ± 0.9; after: 5.2 ± 0.6; P < 0.0001), fasting insulin (pmol/L) (before: 98 ± 57; after: 82 ± 43; P = 0.003), and insulin resistance, as assessed by the HOMA-IR score (before: 3.6 ± 2.5; after: 2.8 ± 1.6; P = 0.0008) significantly improved, but not HbA1c (%) (before: 5.72 ± 0.55; after: 5.69 ± 0.39; P = 0.448), nor β-cell function (HOMA-β, %) (before: 149 ± 78; after: 144 ± 75; P = 0.58). Following a 9-month intensive lifestyle intervention combining HIIT and MedD counseling, obese subjects experienced significant improvements of FPG and insulin resistance. This is the first study to expose the effects of a long-term program combining HIIT and MedD on glycemic control parameters among obese subjects.
Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-01-01
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.
2015-06-01
The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.
Lord, Dominique; Park, Peter Young-Jin
2008-07-01
Traditionally, transportation safety analysts have used the empirical Bayes (EB) method to improve the estimate of the long-term mean of individual sites; to correct for the regression-to-the-mean (RTM) bias in before-after studies; and to identify hotspots or high risk locations. The EB method combines two different sources of information: (1) the expected number of crashes estimated via crash prediction models, and (2) the observed number of crashes at individual sites. Crash prediction models have traditionally been estimated using a negative binomial (NB) (or Poisson-gamma) modeling framework due to the over-dispersion commonly found in crash data. A weight factor is used to assign the relative influence of each source of information on the EB estimate. This factor is estimated using the mean and variance functions of the NB model. With recent trends that illustrated the dispersion parameter to be dependent upon the covariates of NB models, especially for traffic flow-only models, as well as varying as a function of different time-periods, there is a need to determine how these models may affect EB estimates. The objectives of this study are to examine how commonly used functional forms as well as fixed and time-varying dispersion parameters affect the EB estimates. To accomplish the study objectives, several traffic flow-only crash prediction models were estimated using a sample of rural three-legged intersections located in California. Two types of aggregated and time-specific models were produced: (1) the traditional NB model with a fixed dispersion parameter and (2) the generalized NB model (GNB) with a time-varying dispersion parameter, which is also dependent upon the covariates of the model. Several statistical methods were used to compare the fitting performance of the various functional forms. The results of the study show that the selection of the functional form of NB models has an important effect on EB estimates both in terms of estimated values, weight factors, and dispersion parameters. Time-specific models with a varying dispersion parameter provide better statistical performance in terms of goodness-of-fit (GOF) than aggregated multi-year models. Furthermore, the identification of hazardous sites, using the EB method, can be significantly affected when a GNB model with a time-varying dispersion parameter is used. Thus, erroneously selecting a functional form may lead to select the wrong sites for treatment. The study concludes that transportation safety analysts should not automatically use an existing functional form for modeling motor vehicle crashes without conducting rigorous analyses to estimate the most appropriate functional form linking crashes with traffic flow.
NASA Astrophysics Data System (ADS)
Post, Hanna; Vrugt, Jasper A.; Fox, Andrew; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2017-03-01
The Community Land Model (CLM) contains many parameters whose values are uncertain and thus require careful estimation for model application at individual sites. Here we used Bayesian inference with the DiffeRential Evolution Adaptive Metropolis (DREAM(zs)) algorithm to estimate eight CLM v.4.5 ecosystem parameters using 1 year records of half-hourly net ecosystem CO2 exchange (NEE) observations of four central European sites with different plant functional types (PFTs). The posterior CLM parameter distributions of each site were estimated per individual season and on a yearly basis. These estimates were then evaluated using NEE data from an independent evaluation period and data from "nearby" FLUXNET sites at 600 km distance to the original sites. Latent variables (multipliers) were used to treat explicitly uncertainty in the initial carbon-nitrogen pools. The posterior parameter estimates were superior to their default values in their ability to track and explain the measured NEE data of each site. The seasonal parameter values reduced with more than 50% (averaged over all sites) the bias in the simulated NEE values. The most consistent performance of CLM during the evaluation period was found for the posterior parameter values of the forest PFTs, and contrary to the C3-grass and C3-crop sites, the latent variables of the initial pools further enhanced the quality-of-fit. The carbon sink function of the forest PFTs significantly increased with the posterior parameter estimates. We thus conclude that land surface model predictions of carbon stocks and fluxes require careful consideration of uncertain ecological parameters and initial states.
Experimental investigation of dynamic impact of firearm with suppressor
NASA Astrophysics Data System (ADS)
Kilikevicius, Arturas; Skeivalas, Jonas; Jurevicius, Mindaugas; Turla, Vytautas; Kilikeviciene, Kristina; Bureika, Gintautas; Jakstas, Arunas
2017-09-01
The internal ballistics processes occur in the tube during firearm firing. They cause tremendous vibratory shock forces and robust sounds. The determination of these dynamic parameters is relevant in order to reasonably estimate the firearm ergonomic and noise reduction features. The objective of this study is to improve the reliability of the results of measuring a firearm suppressor's dynamic parameters. The analysis of indicator stability is based on an assessment of dynamic parameters and setting the correlation during experimental research. An examination of the spread of intensity of firearm with suppressor dynamic vibration and an analysis of its signals upon applying the theory of covariance functions are carried out in this paper. The results of measuring the intensity of vibrations in fixed points of a firearm and a shooter have been recorded on a time scale in the form of data arrays (matrices). The estimates of covariance functions between the arrays of digital results in measuring the intensity of firearm vibrations and the estimates of covariance functions of single arrays have been calculated upon changing the quantization interval on the time scale. Software Matlab 7 has been applied in the calculation. Finally, basic conclusions are given.
Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes.
Matsutani, Daisuke; Sakamoto, Masaya; Kayama, Yosuke; Takeda, Norihiko; Horiuchi, Ryuzo; Utsunomiya, Kazunori
2018-05-22
Type 2 diabetes mellitus (T2DM) greatly increases the risks of cardiovascular disease and heart failure. In particular, left ventricular diastolic dysfunction that develops from the early stages of T2DM is an important factor in the onset and exacerbation of heart failure. The effect of sodium-glucose cotransporter 2 inhibitors on left ventricular diastolic function has not been elucidated. We have performed the first prospective study on the effects of canagliflozin on left ventricular diastolic function in T2DM. This study was performed to evaluate the effects of additional treatment with canagliflozin for 3 months on left ventricular diastolic function in patients with T2DM. A total of 38 patients with T2DM were consecutively recruited for this study. Left ventricular diastolic function was assessed by echocardiography. The primary study outcome was a change in the septal E/e' as a parameter of left ventricular diastolic function. A total of 37 patients (25 males and 12 females) were included in the analysis. Mean age of participants was 64.2 ± 8.1 years (mean ± SD), mean duration of diabetes was 13.5 ± 8.1 years, and mean HbA1c was 7.9 ± 0.7%. Of the participants, 86.5% had hypertension, 100% had dyslipidemia, and 32.4% had cardiovascular disease. Canagliflozin significantly improved left ventricular diastolic function (septal E/e' ratio 13.7 ± 3.5-12.1 ± 2.8, p = 0.001). Furthermore, among the various parameters that changed through the administration of canagliflozin, only changes in hemoglobin significantly correlated with changes in the septal E/e' ratio (p = 0.002). In multiple regression analysis, changes in hemoglobin were also revealed to be an independent predictive factor for changes in the septal E/e' ratio. This study showed for the first time that canagliflozin could improve left ventricular diastolic function within 3 months in patients with T2DM. The benefit was especially apparent in patients with substantially improved hemoglobin values. Trial registration UMIN Clinical Trials Registry UMIN000028141.
The efficacy of balneotherapy and mud-pack therapy in patients with knee osteoarthritis.
Evcik, Deniz; Kavuncu, Vural; Yeter, Abdurrahman; Yigit, Ilknur
2007-01-01
Knee osteoarthritis (OA) is a common chronic degenerative disorder. There are various treatment modalities. This study was planned to investigate the efficacy of balneotherapy, mud-pack therapy in patients with knee OA. A total of 80 patients with knee OA were included. Their ages ranged between 39-78. The patients were separated in to three groups. Group I (n=25) received balneotherapy, group II (n=29) received mud-pack therapy and group III (n=26) was hot-pack therapy group. The therapies were applied for 20 min duration, once a day, five times per week and a total of 10 session. Patients were assessed according to pain, functional capacity and quality of life parameters. Pain was assessed by using Visual Analogue Scale (VAS) and Western Ontario McMaster Osteoarthritis Index (WOMAC) pain scale (0-4 likert scale). Functional capacity was assessed by using WOMAC functional capacity and WOMAC global index. Quality of life was evaluated by Nottingham Health Profile (NHP) self-administered questionnaire. Also physician's global assessment and the maximum distance that patient can walk without pain, were evaluated. The assessment parameters were evaluated before and after three months. There were statistically significant improvement in VAS and WOMAC pain scores in group I (p<0.001), group II and III (p<0.05). The WOMAC functional and global index also decreased in group I (p<0.05), group II (p<0.001) and hot-pack group (p<0.05). Quality of life results were significantly improved in balneotherapy and mud-pack therapy groups (p<0.05). No difference was observed in hot-pack therapy group (p>0.05). The maximum distance was improved both in group I and II (p<0.05) but not in group III. Also physician's global assessment was found to be improved in all groups (p<0.05). Balneotherapy and mud-pack therapy were effective in treating patients with knee OA.
On the parametrization of lateral dose profiles in proton radiation therapy.
Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K
2015-07-01
The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2015-11-10
Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.
Estimation of cardiac conductivities in ventricular tissue by a variational approach
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Veneziani, Alessandro
2015-11-01
The bidomain model is the current standard model to simulate cardiac potential propagation. The numerical solution of this system of partial differential equations strongly depends on the model parameters and in particular on the cardiac conductivities. Unfortunately, it is quite problematic to measure these parameters in vivo and even more so in clinical practice, resulting in no common agreement in the literature. In this paper we consider a variational data assimilation approach to estimating those parameters. We consider the parameters as control variables to minimize the mismatch between the computed and the measured potentials under the constraint of the bidomain system. The existence of a minimizer of the misfit function is proved with the phenomenological Rogers-McCulloch ionic model, that completes the bidomain system. We significantly improve the numerical approaches in the literature by resorting to a derivative-based optimization method with settlement of some challenges due to discontinuity. The improvement in computational efficiency is confirmed by a 2D test as a direct comparison with approaches in the literature. The core of our numerical results is in 3D, on both idealized and real geometries, with the minimal ionic model. We demonstrate the reliability and the stability of the conductivity estimation approach in the presence of noise and with an imperfect knowledge of other model parameters.
Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach
NASA Astrophysics Data System (ADS)
Bano, Amreen; Khare, Preeti; Gaur, N. K.
2017-05-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.
Sacco, Rosaria; Bussman, Rita; Oesch, Peter; Kesselring, Jürg; Beer, Serafin
2011-05-01
Gait impairment and fatigue are common and disabling problems in multiple sclerosis (MS). Characterisation of abnormal gait in MS patients has been done mainly using observational studies and simple walking tests providing only limited quantitative and no qualitative data, or using intricate and time-consuming assessment procedures. In addition, the correlation of gait impairments with fatigue is largely unknown. The aim of this study was to characterise spatio-temporal gait parameters by a simple and easy-to-use gait analysis system (GAITRite®) in MS patients compared with healthy controls, and to analyse changes and correlation with fatigue during inpatient rehabilitation. Twenty-four MS patients (EDSS <6.5) admitted for inpatient rehabilitation and 19 healthy subjects were evaluated using the GAITRite® Functional Ambulation System. Between-group differences and changes of gait parameters during inpatient rehabilitation were analysed, and correlation with fatigue, using the Wurzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS), was determined. Compared to healthy controls MS patients showed significant impairments in different spatio-temporal gait parameters, which showed a significant improvement during inpatient rehabilitation. Different gait parameters were correlated with fatigue physical score, and change of gait parameters was correlated with improvement of fatigue. Spatio-temporal gait analysis is helpful to assess specific walking impairments in MS patients and subtle changes during rehabilitation. Correlation with fatigue may indicate a possible negative impact of fatigue on rehabilitation outcome.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-01-01
Simulations using IPCC-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We apply support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicts model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures are determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations are the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Failure analysis of parameter-induced simulation crashes in climate models
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Klein, R.; Tannahill, J.; Ivanova, D.; Brandon, S.; Domyancic, D.; Zhang, Y.
2013-08-01
Simulations using IPCC (Intergovernmental Panel on Climate Change)-class climate models are subject to fail or crash for a variety of reasons. Quantitative analysis of the failures can yield useful insights to better understand and improve the models. During the course of uncertainty quantification (UQ) ensemble simulations to assess the effects of ocean model parameter uncertainties on climate simulations, we experienced a series of simulation crashes within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). About 8.5% of our CCSM4 simulations failed for numerical reasons at combinations of POP2 parameter values. We applied support vector machine (SVM) classification from machine learning to quantify and predict the probability of failure as a function of the values of 18 POP2 parameters. A committee of SVM classifiers readily predicted model failures in an independent validation ensemble, as assessed by the area under the receiver operating characteristic (ROC) curve metric (AUC > 0.96). The causes of the simulation failures were determined through a global sensitivity analysis. Combinations of 8 parameters related to ocean mixing and viscosity from three different POP2 parameterizations were the major sources of the failures. This information can be used to improve POP2 and CCSM4 by incorporating correlations across the relevant parameters. Our method can also be used to quantify, predict, and understand simulation crashes in other complex geoscientific models.
Sellamuthu, Periyar Selvam; Arulselvan, Palanisamy; Fakurazi, Sharida; Kandasamy, Murugesan
2014-01-01
Salacia chinensis L. is a traditional Southeast Asian herbal medicine and used in the treatment of diabetes. To investigate the antidiabetic properties of mangiferin from Salacia chinensis and its beneficial effect on toxicological and hematological parameters in streptozotocin induced diabetic rats. Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats. Biochemical (blood glucose, uric acid, urea and creatinine), toxicological (AST, ALT and ALP) and hematological parameters (red and white blood cells) and their functional indices were evaluated in diabetic treated groups with mangiferin and glibenclamide. Mangiferin treated diabetic rats significantly (p<0.05) lowered the level of blood glucose, in addition, altered the levels of biochemical parameters including urea, uric acid, and creatinine. Toxicological parameters including AST, ALT and ALP were also significantly reduced after treatment with mangiferin in diabetic rats. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved through the administration of mangiferin. Thus, our results indicate that mangiferin present in S. chinensis possesses antidiabetic properties and nontoxic nature against chemically induced diabetic rats. Further experimental investigations are warrant to make use of its relevant therapeutic effect to substantiate its ethno-medicinal usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
X Liu; E Garboczi; m Grigoriu
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found tomore » be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.« less
NASA Astrophysics Data System (ADS)
Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott
2017-09-01
We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.
Saadeh, Constantine; Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa
2015-01-01
This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3-18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients.
NASA Astrophysics Data System (ADS)
Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L. J.; George, B.
2016-04-01
Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground observations. Remotely sensed (RS) hydrologic information provides an alternative source of observations to inform models and extend modelling capability beyond the limits of ground observations. This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource Assessment - Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments in eastern Australia. A subset of parameters for calibration is selected based on the variance-based Sobol' sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic experiments were conducted to examine the effect of bias in RS ET observations on calibration. The objective function containing the root mean square deviation (RMSD) of ET result in best streamflow predictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic experiments revealed that accurate ET product can improve the streamflow predictions in catchments with low average runoff.
Improvement in gait following combined ankle and subtalar arthrodesis.
Tenenbaum, Shay; Coleman, Scott C; Brodsky, James W
2014-11-19
This study assessed the hypothesis that arthrodesis of both the ankle and the hindfoot joints produces an objective improvement of function as measured by gait analysis of patients with severe ankle and hindfoot arthritis. Twenty-one patients with severe ankle and hindfoot arthritis who underwent unilateral tibiotalocalcaneal arthrodesis with an intramedullary nail were prospectively studied with three-dimensional (3D) gait analysis at a minimum of one year postoperatively. The mean age at the time of the operation was fifty-nine years, and the mean duration of follow-up was seventeen months (range, twelve to thirty-one months). Temporospatial measurements included cadence, step length, walking velocity, and total support time. The kinematic parameters were sagittal plane motion of the ankle, knee, and hip. The kinetic parameters were sagittal plane ankle power and moment and hip power. Symmetry of gait was analyzed by comparing the step lengths on the affected and unaffected sides. There was significant improvement in multiple parameters of postoperative gait as compared with the patients' own preoperative function. Temporospatial data showed significant increases in cadence (p = 0.03) and walking speed (p = 0.001) and decreased total support time (p = 0.02). Kinematic results showed that sagittal plane ankle motion had decreased, from 13.2° preoperatively to 10.2° postoperatively, in the operatively treated limb (p = 0.02), and increased from 22.2° to 24.1° (p = 0.01) in the contralateral limb. Hip motion on the affected side increased from 39° to 43° (p = 0.007), and knee motion increased from 56° to 60° (p = 0.054). Kinetic results showed significant increases in ankle moment (p < 0.0001) of the operatively treated limb, ankle power of the contralateral limb (p = 0.009), and hip power on the affected side (p = 0.005) postoperatively. There was a significant improvement in gait symmetry (p = 0.01). There was a small loss of sagittal plane motion in the affected limb postoperatively. There were marked increases in gait velocity, ankle moment, and hip motion and power, documenting objective improvements in ambulatory function. The data showed that preoperative ankle motion was greatly diminished. This may suggest that pain is more important than stiffness in asymmetric gait. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Pau, Massimiliano; Corona, Federica; Coghe, Giancarlo; Marongiu, Elisabetta; Loi, Andrea; Crisafulli, Antonio; Concu, Alberto; Galli, Manuela; Marrosu, Maria Giovanna; Cocco, Eleonora
2018-01-01
The purpose of this study is to quantitatively assess the effect of 6 months of supervised adapted physical activity (APA i.e. physical activity designed for people with special needs) on spatio-temporal and kinematic parameters of gait in persons with Multiple Sclerosis (pwMS). Twenty-two pwMS with Expanded Disability Status Scale scores ranging from 1.5 to 5.5 were randomly assigned either to the intervention group (APA, n = 11) or the control group (CG, n = 11). The former underwent 6 months of APA consisting of 3 weekly 60-min sessions of aerobic and strength training, while CG participants were engaged in no structured PA program. Gait patterns were analyzed before and after the training using three-dimensional gait analysis by calculating spatio-temporal parameters and concise indexes of gait kinematics (Gait Profile Score - GPS and Gait Variable Score - GVS) as well as dynamic Range of Motion (ROM) of hip, knee, and ankle joints. The training originated significant improvements in stride length, gait speed and cadence in the APA group, while GPS and GVS scores remained practically unchanged. A trend of improvement was also observed as regard the dynamic ROM of hip, knee, and ankle joints. No significant changes were observed in the CG for any of the parameters considered. The quantitative analysis of gait supplied mixed evidence about the actual impact of 6 months of APA on pwMS. Although some improvements have been observed, the substantial constancy of kinematic patterns of gait suggests that the full transferability of the administered training on the ambulation function may require more specific exercises. Implications for rehabilitation Adapted Physical Activity (APA) is effective in improving spatio-temporal parameters of gait, but not kinematics, in people with multiple sclerosis. Dynamic range of motion during gait is increased after APA. The full transferability of APA on the ambulation function may require specific exercises rather than generic lower limbs strength/flexibility training.
Improving Bedload Transport Predictions by Incorporating Hysteresis
NASA Astrophysics Data System (ADS)
Crowe Curran, J.; Gaeuman, D.
2015-12-01
The importance of unsteady flow on sediment transport rates has long been recognized. However, the majority of sediment transport models were developed under steady flow conditions that did not account for changing bed morphologies and sediment transport during flood events. More recent research has used laboratory data and field data to quantify the influence of hysteresis on bedload transport and adjust transport models. In this research, these new methods are combined to improve further the accuracy of bedload transport rate quantification and prediction. The first approach defined reference shear stresses for hydrograph rising and falling limbs, and used these values to predict total and fractional transport rates during a hydrograph. From this research, a parameter for improving transport predictions during unsteady flows was developed. The second approach applied a maximum likelihood procedure to fit a bedload rating curve to measurements from a number of different coarse bed rivers. Parameters defining the rating curve were optimized for values that maximized the conditional probability of producing the measured bedload transport rate. Bedload sample magnitude was fit to a gamma distribution, and the probability of collecting N particles in a sampler during a given time step was described with a Poisson probability density function. Both approaches improved estimates of total transport during large flow events when compared to existing methods and transport models. Recognizing and accounting for the changes in transport parameters over time frames on the order of a flood or flood sequence influences the choice of method for parameter calculation in sediment transport calculations. Those methods that more tightly link the changing flow rate and bed mobility have the potential to improve bedload transport rates.
Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios
NASA Astrophysics Data System (ADS)
Penuela Fernandez, A.; Javaux, M.; Bielders, C.
2013-12-01
Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.
Better assessment of physical function: item improvement is neglected but essential
2009-01-01
Introduction Physical function is a key component of patient-reported outcome (PRO) assessment in rheumatology. Modern psychometric methods, such as Item Response Theory (IRT) and Computerized Adaptive Testing, can materially improve measurement precision at the item level. We present the qualitative and quantitative item-evaluation process for developing the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank. Methods The process was stepwise: we searched extensively to identify extant Physical Function items and then classified and selectively reduced the item pool. We evaluated retained items for content, clarity, relevance and comprehension, reading level, and translation ease by experts and patient surveys, focus groups, and cognitive interviews. We then assessed items by using classic test theory and IRT, used confirmatory factor analyses to estimate item parameters, and graded response modeling for parameter estimation. We retained the 20 Legacy (original) Health Assessment Questionnaire Disability Index (HAQ-DI) and the 10 SF-36's PF-10 items for comparison. Subjects were from rheumatoid arthritis, osteoarthritis, and healthy aging cohorts (n = 1,100) and a national Internet sample of 21,133 subjects. Results We identified 1,860 items. After qualitative and quantitative evaluation, 124 newly developed PROMIS items composed the PROMIS item bank, which included revised Legacy items with good fit that met IRT model assumptions. Results showed that the clearest and best-understood items were simple, in the present tense, and straightforward. Basic tasks (like dressing) were more relevant and important versus complex ones (like dancing). Revised HAQ-DI and PF-10 items with five response options had higher item-information content than did comparable original Legacy items with fewer response options. IRT analyses showed that the Physical Function domain satisfied general criteria for unidimensionality with one-, two-, three-, and four-factor models having comparable model fits. Correlations between factors in the test data sets were > 0.90. Conclusions Item improvement must underlie attempts to improve outcome assessment. The clear, personally important and relevant, ability-framed items in the PROMIS Physical Function item bank perform well in PRO assessment. They will benefit from further study and application in a wider variety of rheumatic diseases in diverse clinical groups, including those at the extremes of physical functioning, and in different administration modes. PMID:20015354
Better assessment of physical function: item improvement is neglected but essential.
Bruce, Bonnie; Fries, James F; Ambrosini, Debbie; Lingala, Bharathi; Gandek, Barbara; Rose, Matthias; Ware, John E
2009-01-01
Physical function is a key component of patient-reported outcome (PRO) assessment in rheumatology. Modern psychometric methods, such as Item Response Theory (IRT) and Computerized Adaptive Testing, can materially improve measurement precision at the item level. We present the qualitative and quantitative item-evaluation process for developing the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank. The process was stepwise: we searched extensively to identify extant Physical Function items and then classified and selectively reduced the item pool. We evaluated retained items for content, clarity, relevance and comprehension, reading level, and translation ease by experts and patient surveys, focus groups, and cognitive interviews. We then assessed items by using classic test theory and IRT, used confirmatory factor analyses to estimate item parameters, and graded response modeling for parameter estimation. We retained the 20 Legacy (original) Health Assessment Questionnaire Disability Index (HAQ-DI) and the 10 SF-36's PF-10 items for comparison. Subjects were from rheumatoid arthritis, osteoarthritis, and healthy aging cohorts (n = 1,100) and a national Internet sample of 21,133 subjects. We identified 1,860 items. After qualitative and quantitative evaluation, 124 newly developed PROMIS items composed the PROMIS item bank, which included revised Legacy items with good fit that met IRT model assumptions. Results showed that the clearest and best-understood items were simple, in the present tense, and straightforward. Basic tasks (like dressing) were more relevant and important versus complex ones (like dancing). Revised HAQ-DI and PF-10 items with five response options had higher item-information content than did comparable original Legacy items with fewer response options. IRT analyses showed that the Physical Function domain satisfied general criteria for unidimensionality with one-, two-, three-, and four-factor models having comparable model fits. Correlations between factors in the test data sets were > 0.90. Item improvement must underlie attempts to improve outcome assessment. The clear, personally important and relevant, ability-framed items in the PROMIS Physical Function item bank perform well in PRO assessment. They will benefit from further study and application in a wider variety of rheumatic diseases in diverse clinical groups, including those at the extremes of physical functioning, and in different administration modes.
Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J
2010-02-01
Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.
Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2015-06-01
Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. Copyright © 2015 Elsevier B.V. All rights reserved.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.
Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H
2015-01-01
Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
NASA Astrophysics Data System (ADS)
Shan, Y.; Eric, W.; Gao, L.; Zhao, T.; Yin, Y.
2015-12-01
In this study, we have evaluated the performance of size distribution functions (SDF) with 2- and 3-moments in fitting the observed size distribution of rain droplets at three different heights. The goal is to improve the microphysics schemes in meso-scale models, such as Weather Research and Forecast (WRF). Rain droplets were observed during eight periods of different rain types at three stations on the Yellow Mountain in East China. The SDF in this study were M-P distribution with a fixed shape parameter in Gamma SDF(FSP). Where the Gamma SDFs were obtained with three diagnosis methods with the shape parameters based on Milbrandt (2010; denoted DSPM10), Milbrandt (2005; denoted DSPM05) and Seifert (2008; denoted DSPS08) for solving the shape parameter(SSP) and Lognormal SDF. Based on the preliminary experiments, three ensemble methods deciding Gamma SDF was also developed and assessed. The magnitude of average relative error caused by applying a FSP was 10-2 for fitting 0-order moment of the observed rain droplet distribution, and the magnitude of average relative error changed to 10-1 and 100 respectively for 1-4 order moments and 5-6 order moments. To different extent, DSPM10, DSPM05, DSPS08, SSP and ensemble methods could improve fitting accuracies for 0-6 order moments, especially the one coupling SSP and DSPS08 methods, which provided a average relative error 6.46% for 1-4 order moments and 11.90% for 5-6 order moments, respectively. The relative error of fitting three moments using the Lognormal SDF was much larger than that of Gamma SDF. The threshold value of shape parameter ranged from 0 to 8, because values beyond this range could cause overflow in the calculation. When average diameter of rain droplets was less than 2mm, the possibility of unavailable shape parameter value(USPV) increased with a decreasing droplet size. There was strong sensitivity of moment group in fitting accuracy. When ensemble method coupling SSP and DSPS08 was used, a better fit to 1-3-5 moments of the SDF was possible compared to fitting the 0-3-6 moment group.
Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle
Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen
2015-01-01
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates. PMID:26445451
NASA Astrophysics Data System (ADS)
Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.
2012-07-01
Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the estimation of water flow parameters. Overall, the results are encouraging for the use of this modelling set-up to estimate pesticide leaching risks at the regional-scale, especially where the objective is to identify vulnerable soils and "source" areas of contamination.
Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.
Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen
2015-01-01
Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate genes emerging from this GWAS may inform the search for causative mutations that could underpin genomic breeding for improved growth rates.
Tannenbaum, Dana P; Hoffman, Douglas; Lemij, Hans G; Garway-Heath, David F; Greenfield, David S; Caprioli, Joseph
2004-02-01
The presently available scanning laser polarimeter (SLP) has a fixed corneal compensator (FCC) that neutralizes corneal birefringence only in eyes with birefringence that matches the population mode. A prototype variable corneal compensator (VCC) provides neutralization of individual corneal birefringence based on individual macular retardation patterns. The aim of this study was to evaluate the relative ability of the SLP with the FCC and with the VCC to discriminate between normal and glaucomatous eyes. Prospective, nonrandomized, comparative case series. Algorithm-generating set consisting of 56 normal eyes and 55 glaucomatous eyes and an independent data set consisting of 83 normal eyes and 56 glaucomatous eyes. Sixteen retardation measurements were obtained with the SLP with the FCC and the VCC from all subjects. Dependency of parameters on age, gender, ethnic origin, and eye side was sought. Logistic regression was used to evaluate how well the various parameters could detect glaucoma. Discriminant functions were generated, and the area under the receiver operating characteristic (ROC) curve was determined. Discrimination between normal and glaucomatous eyes on the basis of single parameters was significantly better with the VCC than with the FCC for 6 retardation parameters: nasal average (P = 0.0003), superior maximum (P = 0.0003), ellipse average (P = 0.002), average thickness (P = 0.003), superior average (P = 0.010), and inferior average (P = 0.010). Discriminant analysis identified the optimal combination of parameters for the FCC and for the VCC. When the discriminant functions were applied to the independent data set, areas under the ROC curve were 0.84 for the FCC and 0.90 for the VCC (P<0.021). When the discriminant functions were applied to a subset of patients with early visual field loss, areas under the ROC curve were 0.82 for the FCC and 0.90 for the VCC (P<0.016). Individual correction for corneal birefringence with the VCC significantly improved the ability of the SLP to distinguish between normal and glaucomatous eyes and enabled detection of patients with early glaucoma.
Nikendei, Christoph; Schäfer, Hannah; Weisbrod, Matthias; Huber, Julia; Geis, Nicolas; Katus, Hugo A; Bekeredjian, Raffi; Herzog, Wolfgang; Pleger, Sven T; Schultz, Jobst-Hendrik
2016-05-01
Heart failure (HF) is a prevalent disease that remains costly and associated with a high mortality rate. HF is also associated with poor neurocognitive functioning. For the treatment for HF patients with severe mitral regurgitation, the MitraClip device has emerged as a promising interventional tool that reduces the mitral valve leakage and thus increases cardiac output. Currently, there is only limited knowledge on changes in cognitive and psychosocial functioning before and after the MitraClip intervention. Cognitive function (memory and executive function) and psychosocial measures (depression, anxiety, and quality of life) were assessed before and after the MitraClip intervention in 24 HF patients and 23 healthy participants (comparison group). MitraClip intervention in HF patients was followed by improvements in figural long-term memory (p = .003) and executive function (planning ability, p < .001) relative to the comparison group. In addition, the intervention resulted in a significant improvement in depression (p = .002), anxiety (p = .003) and quality of life scores (physical p = .017, mental p = .013) as well as improved 6-minute walk test results over time (p = .002). The presented data provide evidence of a significant improvement in memory and executive function as well as in depression, anxiety, and quality of life scores in patients with chronic HF after MitraClip intervention. Further research is needed to shed light on the long-term development of cognitive function, psychosocial well-being, and clinical parameters after MitraClip intervention and how these factors depend on one another.
Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.
Bürger, Vincent; Briesen, Heiko
2016-10-05
For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer
2017-01-01
The effects of circuit-like functional high-intensity training (Circuit HIIT ) alone or in combination with high-volume low-intensity exercise (Circuit combined ) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk -1 ) of either Circuit HIIT ( n = 11), or Circuit combined ( n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent ( p < 0.05) by Circuit HIIT , whereas Circuit combined improved perception of general health more ( p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, Circuit HIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuit combined results in better perception of general health.
Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer
2017-01-01
The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk−1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p < 0.05) by CircuitHIIT, whereas Circuitcombined improved perception of general health more (p < 0.05). Both interventions lowered body mass, body-mass-index, waist-to-hip ratio, fat mass, and enhanced fat-free mass; decreased ratings of perceived exertion during submaximal treadmill running; improved the numbers of push-ups, burpees, one-legged squats, and 30-s skipping performed, as well as the height of counter-movement jumps; and improved physical and social functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p < 0.05). Either forms of these multi-stimulating, circuit-like, multiple-joint training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health. PMID:28420999
Phillips, Jordan J; Peralta, Juan E
2012-09-11
Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.
Investigation of parameters affecting treatment time in MRI-guided transurethral ultrasound therapy
NASA Astrophysics Data System (ADS)
N'Djin, W. A.; Burtnyk, M.; Chopra, R.; Bronskill, M. J.
2010-03-01
MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Real-time MR temperature feedback enables the 3D control of thermal therapy to define an accurate region within the prostate. Previous in-vivo canine studies showed the feasibility of this method using transurethral planar transducers. The aim of this simulation study was to reduce the procedure time, while maintaining treatment accuracy by investigating new combinations of treatment parameters. A numerical model was used to simulate a multi-element heating applicator rotating inside the urethra in 10 human prostates. Acoustic power and rotation rate were varied based on the feedback of the temperature in the prostate. Several parameters were investigated for improving the treatment time. Maximum acoustic power and rotation rate were optimized interdependently as a function of prostate radius and transducer operating frequency, while avoiding temperatures >90° C in the prostate. Other trials were performed on each parameter separately, with the other parameter fixed. The concept of using dual-frequency transducers was studied, using the fundamental frequency or the 3rd harmonic component depending on the prostate radius. The maximum acoustic power which could be used decreased as a function of the prostate radius and the frequency. Decreasing the frequency (9.7-3.0 MHz) or increasing the power (10-20 W.cm-2) led to treatment times shorter by up to 50% under appropriate conditions. Dual-frequency configurations, while helpful, tended to have less impact on treatment times. Treatment accuracy was maintained and critical adjacent tissues like the rectal wall remained protected. The interdependence between power and frequency may require integrating multi-parametric functions inside the controller for future optimizations. As a first approach, however, even slight modifications of key parameters can be sufficient to reduce treatment time.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
NASA Astrophysics Data System (ADS)
Al-Shenqiti, A.; Oldham, J.
2003-12-01
The purpose of this study was to investigate the efficacy of LLLT in the treatment of trigger points (TrPs) that are associated with rotator cuff tendonitis. A double-blind randomized controlled trail was conducted. Sixty patients were randomly allocated to one of two groups: sham or laser therapy. The laser (Excel, Omega Universal Technologies Ltd, London, UK) parameters used were a wavelength of 820 nm, a power output of 100 mW, a frequency of 5000 Hz (modulated) and energy density of 32 J/cm2. The two groups received a course of 12 treatment sessions for four weeks (3 sessions per week). Pain, functional activities (as measured using the Shoulder Pain and Disability Index, SPADI), pressure pain threshold (PPT) and range of motion (ROM) were assessed pre and post treatment, with a three month follow-up assessment. Significant improvements in pain (p < 0.001) were observed for the laser group (6 cm median improvement on a 10 cm VAS) compared to the sham group (2 cm median improvement) immediately post treatment. The improvements in the laser group continued post treatment with a 7 cm median improvement observed at three month follow-up. Similar between group differences were observed for ROM (p < 0.01), functional activities (p <= 0.001) and PPT (p <= 0.05). The findings of the current study suggested that LLLT is effective in treating patients with TrPs associated with rotator cuff tendonitis, when using the parameters described. However, the mechanism of its action is not yet clear, and will require further investigation.
Assessment of Process Capability: the case of Soft Drinks Processing Unit
NASA Astrophysics Data System (ADS)
Sri Yogi, Kottala
2018-03-01
The process capability studies have significant impact in investigating process variation which is important in achieving product quality characteristics. Its indices are to measure the inherent variability of a process and thus to improve the process performance radically. The main objective of this paper is to understand capability of the process being produced within specification of the soft drinks processing unit, a premier brands being marketed in India. A few selected critical parameters in soft drinks processing: concentration of gas volume, concentration of brix, torque of crock has been considered for this study. Assessed some relevant statistical parameters: short term capability, long term capability as a process capability indices perspective. For assessment we have used real time data of soft drinks bottling company which is located in state of Chhattisgarh, India. As our research output suggested reasons for variations in the process which is validated using ANOVA and also predicted Taguchi cost function, assessed also predicted waste monetarily this shall be used by organization for improving process parameters. This research work has substantially benefitted the organization in understanding the various variations of selected critical parameters for achieving zero rejection.
Jalalian, Rozita; Moghadamnia, Ali Akbar; Tamaddoni, Ahmad; Khafri, Soraya; Iranian, Mohammadreza
2017-07-01
Conventional oral therapies in the management of pulmonary hypertension in people without haemoglobinopathies are of limited value in thalassaemia patients because of toxicity and poor effectiveness. This study was conducted to assess the effect of tadalafil on pulmonary artery pressure and right ventricular systolic function in patients with beta-thalassaemia intermedia. Forty-four patients with beta-thalassaemia intermedia with pulmonary hypertension based on transthoracic echocardiography (TTE) were entered in the study. Patients with hepatic or renal insufficiency and also patients who were treated with organic nitrates or alpha-blockers were excluded. The patients were randomly divided into two groups (n=22) and they were treated for six weeks with tadalafil (40mg daily) or placebo. The pulmonary artery systolic pressure (PASP), tricuspid regurgitation velocity (TRV) and parameters related to systolic function of the right ventricle were measured by the TTE before and after treatment. Significant improvement in TRV (3.02±0.02 m/s-2.52±0.06 m/s), PASP (45.31±0.66 mmHg-34.26±1.15mmHg) and parameters related to systolic function of the right ventricle were observed in the group who received tadalafil compared to placebo (p< 0.05). Tadalafil significantly decreased PASP and TRV in patients with beta-thalassaemia intermedia. Likewise, tadalafil improved right ventricular systolic function in the patients. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafafi, S.A.
1998-12-10
A novel general purpose density functional methodology for the computation of accurate electronic and thermodynamic properties of molecules and improved long-range behavior is reported. Assuming the separability of the exchange (E{sub x}) and correlation (E{sub c}) contributions to the total exchange-correlation energy functional (E{sub xc}), the E{sub x} term consists of a hybrid mixture of 37.5% Hartree-Fock exchange and the appropriate local spin density exchange using the adiabatic connection formula. He demonstrated that E{sub x} and its corresponding potential V{sub x} [=dE{sub x}/d{rho}(r)] have the proper asymptotic limits at r = 0 and r {r_arrow} {infinity}, E{sub c} consists ofmore » the Vosko, Wilk, and Nusair formula for the free-electron gas correlation energy and a generalized gradient approximation term with one adjustable parameter. V{sub c} [=dE{sub c}/d{rho}(r)] was shown to obey the r {r_arrow} {infinity} limit of the corresponding potential derived from exact atomic exchange-correlation computations; namely, V{sub c} is proportional to r{sup {minus}4}. Most importantly, he demonstrated that, at r values where dispersion forces are operating, V{sub c} is proportional to 1/r{sup n} (n = 4, 6, 8, {hor_ellipsis}). The reported method was denoted by K2-BVWN because it used two adjustable parameters in its formulation. The K2-BVWN scheme scales as N{sup 3}, where N is the number of basis functions, compared to {approximately}N{sup 7} for Gaussian-2 (G2) ab initio theory and related methods, {approximately}N{sup 5} for Barone`s mPW1,3PW, and {approximately}N{sup 4} for Becke`s three-parameter density functional approaches. The G2 data set complemented by the reported molecular systems investigated in this work was recommended as a critical test for evaluating novel ab initio and density functional methodologies. The K2-BVWN method has been implemented in the Gaussian series of programs.« less
Hypertrophied tonsils impair velopharyngeal function after palatoplasty.
Abdel-Aziz, Mosaad
2012-03-01
When tonsillar hypertrophy obstructing the airway is encountered in a child with a repaired cleft palate and velopharyngeal insufficiency, the surgeon may opt for tonsillectomy to relieve the airway obstruction, with possible effects on velopharyngeal closure. The aim of this study was to assess the impact of hypertrophied tonsils on velopharyngeal function in children with repaired cleft palate and to measure the effect of tonsillectomy on velopharyngeal closure and speech resonance. Case series. Twelve children with repaired cleft palate and tonsillar hypertrophy underwent tonsillectomy to relieve airway obstruction. Preoperative and postoperative evaluation of velopharyngeal function was performed. Auditory perceptual assessment of speech and nasalance scores were measured, and velopharyngeal closure was evaluated by flexible nasopharyngoscopy. Preoperative impairment of velopharyngeal function was detected. However, significant postoperative improvement of speech parameters (hypernasality, nasal emission of air, and weak pressure consonants measured with auditory perceptual assessment) was achieved, and the overall postoperative nasalance score was improved significantly for nasal and oral sentences. Reduction of velopharyngeal gap size was detected after removal of hypertrophied tonsils. Although the improvement of velopharyngeal closure was not significant, three cases demonstrated complete postoperative closure with no gap. Hypertrophied tonsils may impair velopharyngeal function in children with repaired cleft palate, and tonsillectomy is beneficial for such patients as it can improve the velopharyngeal closure and speech resonance. Secondary corrective surgery may be avoided in some cases after tonsillectomy. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Slavic, Svetlana; Lauer, Dilyara; Sommerfeld, Manuela; Kemnitz, Ulrich Rudolf; Grzesiak, Aleksandra; Trappiel, Manuela; Thöne-Reineke, Christa; Baulmann, Johannes; Paulis, Ludovit; Kappert, Kai; Kintscher, Ulrich; Unger, Thomas; Kaschina, Elena
2013-07-01
The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.
Rodrigues, Bruno; Jorge, Luciana; Mostarda, Cristiano T; Rosa, Kaleizu T; Medeiros, Alessandra; Malfitano, Christiane; de Souza, Alcione L; Viegas, Katia Aparecida da Silva; Lacchini, Silvia; Curi, Rui; Brum, Patricia C; De Angelis, Kátia; Irigoyen, Maria Cláudia
2012-09-01
Exercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI. Male Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO(2)max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-α mRNA, and Ca(2+) handling proteins were measured. MI area was reduced in TDI (21 ± 4%) compared with SDI (38 ± 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca(2+) handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals. ET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO(2)max and survival after MI. Copyright © 2012 Elsevier Inc. All rights reserved.
Jadczak, Agathe D; Makwana, Naresh; Luscombe-Marsh, Natalie; Visvanathan, Renuka; Schultz, Timothy J
2018-03-01
This umbrella review aimed to determine the effectiveness of exercise interventions, alone or in combination with other interventions, in improving physical function in community-dwelling older people identified as pre-frail or frail. Exercise is said to have a positive impact on muscle mass and strength which improves physical function and hence is beneficial for the treatment of frailty. Several systematic reviews discuss the effects of exercise interventions on physical function parameters, such as strength, mobility, gait, balance and physical performance, and indicate that multi-component exercise, including resistance, aerobic, balance and flexibility training, appears to be the best way in which to improve physical function parameters in frail older people. However, there is still uncertainty as to which exercise characteristics (type, frequency, intensity, duration and combinations) are the most effective and sustainable over the long-term. Participants were adults, 60 years or over, living in the community and identified as pre-frail or frail. Quantitative systematic reviews, with or without meta-analysis that examined the effectiveness of exercise interventions of any form, duration, frequency and intensity, alone or in combination with other interventions designed to alter physical function parameters in frail older people, were considered. The quantitative outcome measures were physical function, including muscular strength, gait, balance, mobility and physical performance. An iterative search strategy for ten bibliometric databases and gray literature was developed. Critical appraisal of seven systematic reviews was conducted independently by two reviewers using a standard Joanna Briggs Institute tool. Data was extracted independently by two reviewers using a standard Joanna Briggs Institute data extraction tool and summarized using a narrative synthesis approach. Seven systematic reviews were included in this umbrella review, with a total of 58 relevant randomized controlled trials and 6927 participants. Five systematic reviews examined the effects of exercise only, while two systematic reviews reported on exercise in combination with a nutritional approach, including protein supplementations, as well as fruit and dairy products. The average exercise frequency was 2-3 times per week (mean 3.0 ± 1.5 times per week; range 1-7 weekly) for 10-90 minutes per session (mean of 52.0 ± 16.5 mins) and a total duration of 5-72 weeks with the majority lasting a minimum of 2.5 months (mean 22.7 ± 17.7 weeks). Multi-component exercise interventions can currently be recommended for pre-frail and frail older adults to improve muscular strength, gait speed, balance and physical performance, including resistance, aerobic, balance and flexibility tasks. Resistance training alone also appeared to be beneficial, in particular for improving muscular strength, gait speed and physical performance. Other types of exercise were not sufficiently studied and their effectiveness is yet to be established. Interventions for pre-frail and frail older adults should include multi-component exercises, including in particular resistance training, as well as aerobic, balance and flexibility tasks. Future research should adopt a consistent definition of frailty and investigate the effects of other types of exercise alone or in combination with nutritional interventions so that more specific recommendations can be made.
Xu, Yan; Yan, Hua; Yao, Min J; Ma, Jie; Jia, Jun M; Ruan, Fen X; Yao, Zeng C; Huang, Hua M; Zheng, Jing; Chen, Ting; Lv, Hua; Endler, Alexander M
2013-05-01
Qian Yang He Ji (QYHJ) is a traditional Chinese medicine composed of Digitalis purpurea, Uncaria gambir, Fructus tribuli terrestris, and Ligustrum lucidum. Here, we explored whether combining an antihypertensive angiotensin II receptor blocker (ARB) therapy with QYHJ can improve the arterial functionality of hypertensive patients. One hundred and eight hypertensive patients were randomized into 2 groups; 1 group (n = 53) was treated with ARB and the other group (n = 55) was treated with ARB combined with QYHJ. Each of the 2 groups included 3 subgroups (pure hypertension, hypertension with diabetes, and hypertension with coronary heart disease) and was further divided into patients with and without complications. The cardioankle vascular index and intima-media thickness and pulse pressure were the outcome evaluation parameter. Combined QYHJ and ARB treatment reduced the values of cardioankle vascular index, systolic blood pressure, diastolic blood pressure, and pulse pressure to significantly lower levels than ARB treatment alone did in hypertension patients after 6 months of treatment. ARB improves hypertension, but a combined QYHJ treatment can additionally ameliorate the arterial functionality not only in solely hypertensive patients but also in hypertensive patients with diabetes and coronary heart disease complications. QYHJ coapplication might be a choice to further improve the arterial functionality during an ARB hypertension treatment.
Yoshihisa, Akiomi; Shimizu, Takeshi; Owada, Takashi; Nakamura, Yuichi; Iwaya, Shoji; Yamauchi, Hiroyuki; Miyata, Makiko; Hoshino, Yasuto; Sato, Takamasa; Suzuki, Satoshi; Sugimoto, Koichi; Yamaki, Takayoshi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika
2011-01-01
Cheyne-Stokes respiration (CSR) is often observed in patients with chronic heart failure (CHF). Although adaptive servo ventilation (ASV) is effective for CSR, it remains unclear whether ASV improves the cardiac function and prognosis of patients with CHF and CSR.Sixty patients with CHF and CSR (mean left ventricular ejection fraction 38.7%, mean apnea hypopnea index 36.8 times/hour, mean central apnea index 19.1 times/hour) were enrolled in this study. Patients were divided into two groups: 23 patients treated with ASV (ASV group) and 37 patients treated without ASV (Non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels and echocardiography were performed before, 3 and 6 months after treatments in each group. Patients were followed-up for cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, NYHA functional class, BNP levels, cardiac systolic and diastolic function were significantly improved with ASV treatment for 6 months. In contrast, none of these parameters changed in the Non-ASV group. Importantly, Kaplan-Meier analysis clearly demonstrated that the event-free rate was significantly higher in the ASV group than in the Non-ASV group.Adaptive servo ventilation improves cardiac function and prognosis in patients with chronic heart failure and Cheyne-Stokes respiration.
Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.
2014-01-01
This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.
Empirical scoring functions for advanced protein-ligand docking with PLANTS.
Korb, Oliver; Stützle, Thomas; Exner, Thomas E
2009-01-01
In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.
Ferreira, Cristiane Batisti; Teixeira, Pâmela dos Santos; Alves dos Santos, Geiane; Dantas Maya, Athila Teles; Americano do Brasil, Paula; Souza, Vinícius Carolino; Córdova, Cláudio; Lima, Ricardo Moreno; Nóbrega, Otávio de Toledo
2018-01-01
With the increase in life expectancy, the Brazilian elderly population has risen considerably. However, longevity is usually accompanied by problems such as the loss of functional capacity, cognitive decline, frailty syndrome, and deterioration in anthropometric parameters, particularly among those living in long-term care facilities. This randomized controlled trial aimed to verify the effects of exercise training on biochemical, inflammatory, and anthropometric indices and functional performance in institutionalized frail elderly. The sample consisted of 37 elderly people of both genders, aged 76.1 ± 7.7 years, who were randomly allocated into 2 groups: 13 individuals in the exercise group (EG) and 24 in the control group (CG). Anthropometrics, clinical history, functional tests, and biochemical evaluation were measured before and after the completion of a physical exercise program, which lasted for 12 weeks. The 12-week exercise program for frail elderly residents in a long-term care facility was efficient in improving muscle strength, speed, agility, and biochemical variables, with reversal of the frailty condition in a considerable number. However, no effects in anthropometric and inflammatory parameters were noted. PMID:29593907
Lenke, L G; Engsberg, J R; Ross, S A; Reitenbach, A; Blanke, K; Bridwell, K H
2001-07-15
Prospective evaluation of gait and spinal-pelvic balance parameters in patients with adolescent idiopathic scoliosis undergoing a spinal fusion. To evaluate changes in gait and three-dimensional alignment and balance of the spine relative to the pelvis as a consequence of spinal fusion. Preoperative and postoperative spinal radiographs have been the major forms of outcome analysis of adolescent idiopathic scoliosis fusions. The use of optoelectronic analysis for posture and gait has gained acceptance recently. However, there is a paucity of data quantifying, comparing, and correlating structural and functional changes in patients undergoing scoliosis fusion surgery including upright posture and gait. Thirty patients with adolescent idiopathic scoliosis undergoing an instrumented spinal fusion were prospectively evaluated. Coronal and sagittal vertical alignment was evaluated on radiographs (CVA-R, SVA-R), during upright posture (CVA-P and SVA-P), and during gait (CVA-G, SVA-G). Transverse plane alignment was evaluated by the acromion-pelvis angle during gait. Gait speed was significantly decreased (P < 0.05) between preoperative (129 +/- 16 cm/sec) and 2-year postoperative (119 +/- 16 cm/sec) testing sessions. Decreasing gait speed was the result of significantly reduced cadence and decreased stride length. There were no significant differences for lower extremity kinematics over the entire gait cycle. Spinal-pelvic balance parameters showed significant improvement in mean CVA-R, CVA-G (P < 0.05), then unchanged CVA-P at 2 years postoperation. CVA-P was relatively unchanged while the mean CVA-G also showed significant improvement from preoperation (2.2 +/- 2.4 cm) to 2 years postoperation (1.3 +/- 1.3 cm)(P < 0.05). The mean SVA-R, SVA-P, and SVA-G were unchanged at 2 years postoperation (P > 0.05). The acromion-pelvis angle during gait at maximum shoulder rotation was statistically improved at 1 year (P = 0.002) and 2 years (P = 0.001) after surgery. Importantly, CVA-P correlated with CVA-G, and SVA-P correlated with SVA-G to the P < 0.05 level. Patients with adolescent idiopathic scoliosis undergoing spinal fusion show slightly decreased gait speed at 2 years postoperation without any change in lower extremity kinematics. Spinal-pelvic balance parameters are improved in the coronal plane and unchanged in the sagittal plane radiographically and during standing posture and gait. Transverse plane parameters also are improved at maximum shoulder rotation during gait.
He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.
Silk amino acids improve physical stamina and male reproductive function of mice.
Shin, Sunhee; Yeon, Seongho; Park, Dongsun; Oh, Jiyoung; Kang, Hyomin; Kim, Sunghyun; Joo, Seong Soo; Lim, Woo-Taek; Lee, Jeong-Yong; Choi, Kyung-Chul; Kim, Ki Yon; Kim, Seung Up; Kim, Jong-Choon; Kim, Yun-Bae
2010-01-01
The effects of a silk amino acid (SAA) preparation on the physical stamina and male reproductive function of mice were investigated. Eight-week-old male ICR mice (29-31 g) were orally administered SAA (50, 160 or 500 mg/kg) for 44 d during 30-min daily swimming exercise. The mice were subjected to a weight-loaded (5% of body weight) forced swimming on the 14th, 28th and 42nd day to determine maximum swimming time, and after a 2-d recovery period (treated with SAA without swimming exercise), parameters related to fatigue and reproductive function were analyzed from blood, muscles and reproductive organs. Repeated swimming exercise increased the maximum swimming time to some extent, in spite of a marked reduction in body weight gain, and SAA further enhanced the stamina in a dose-dependent manner. Forced swimming exercises increased blood parameters of tissue injury, but depleted blood glucose and tissue glycogen, which were substantially prevented by SAA treatment. In addition, SAA significantly reduced the muscular thiobarbituric acid-reactive substances and blood corticosterone content increased by forced swimming. Swimming exercise decreased the blood testosterone level, which was recovered by SAA, leading to enhanced sperm counts. These combined results indicate that SAA not only enhances physical stamina by minimizing damage to tissues, including muscles, as well as preventing energy depletion caused by swimming stress, but also improves male reproductive function by increasing testosterone and sperm counts.