Sample records for improved interface model

  1. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  2. Interface tension in the improved Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Hasenbusch, Martin

    2017-09-01

    We study interfaces with periodic boundary conditions in the low-temperature phase of the improved Blume-Capel model on the simple cubic lattice. The interface free energy is defined by the difference of the free energy of a system with antiperiodic boundary conditions in one of the directions and that of a system with periodic boundary conditions in all directions. It is obtained by integration of differences of the corresponding internal energies over the inverse temperature. These differences can be computed efficiently by using a variance reduced estimator that is based on the exchange cluster algorithm. The interface tension is obtained from the interface free energy by using predictions based on effective interface models. By using our numerical results for the interface tension σ and the correlation length ξ obtained in previous work, we determine the universal amplitude ratios R2 nd ,+=σ0f2nd ,+ 2=0.3863 (6 ) , R2 nd ,-=σ0f2nd ,- 2=0.1028 (1 ) , and Rexp ,-=σ0fexp,- 2=0.1077 (3 ) . Our results are consistent with those obtained previously for the three-dimensional Ising model, confirming the universality hypothesis.

  3. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  4. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  5. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  6. The roles of carrier concentration and interface, bulk, and grain-boundary recombination for 25% efficient CdTe solar cells

    DOE PAGES

    Kanevce, A.; Reese, Matthew O.; Barnes, T. M.; ...

    2017-06-06

    CdTe devices have reached efficiencies of 22% due to continuing improvements in bulk material properties, including minority carrier lifetime. Device modeling has helped to guide these device improvements by quantifying the impacts of material properties and different device designs on device performance. One of the barriers to truly predictive device modeling is the interdependence of these material properties. For example, interfaces become more critical as bulk properties, particularly, hole density and carrier lifetime, increase. We present device-modeling analyses that describe the effects of recombination at the interfaces and grain boundaries as lifetime and doping of the CdTe layer change. Themore » doping and lifetime should be priorities for maximizing open-circuit voltage (V oc) and efficiency improvements. However, interface and grain boundary recombination become bottlenecks for device performance at increased lifetime and doping levels. In conclusion, this work quantifies and discusses these emerging challenges for next-generation CdTe device efficiency.« less

  7. Numerical Simulation of Shock/Detonation-Deformable-Particle Interaction with Constrained Interface Reinitialization

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas; Balachandar, Sivaramakrishnan

    2015-06-01

    We will develop a computational model built upon our verified and validated in-house SDT code to provide improved description of the multiphase blast wave dynamics where solid particles are considered deformable and can even undergo phase transitions. Our SDT computational framework includes a reactive compressible flow solver with sophisticated material interface tracking capability and realistic equation of state (EOS) such as Mie-Gruneisen EOS for multiphase flow modeling. The behavior of diffuse interface models by Shukla et al. (2010) and Tiwari et al. (2013) at different shock impedance ratio will be first examined and characterized. The recent constrained interface reinitialization by Shukla (2014) will then be developed to examine if conservation property can be improved. This work was supported in part by the U.S. Department of Energy and by the Defense Threat Reduction Agency.

  8. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  9. An improved interfacial bonding model for material interface modeling

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  10. Protein-Protein Interface Predictions by Data-Driven Methods: A Review

    PubMed Central

    Xue, Li C; Dobbs, Drena; Bonvin, Alexandre M.J.J.; Honavar, Vasant

    2015-01-01

    Reliably pinpointing which specific amino acid residues form the interface(s) between a protein and its binding partner(s) is critical for understanding the structural and physicochemical determinants of protein recognition and binding affinity, and has wide applications in modeling and validating protein interactions predicted by high-throughput methods, in engineering proteins, and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances in computational approaches to the analysis and prediction of protein-protein interfaces. We point out caveats for objectively evaluating interface predictors, and discuss various applications of data-driven interface predictors for improving energy model-driven protein-protein docking. Finally, we stress the importance of exploiting binding partner information in reliably predicting interfaces and highlight recent advances in this emerging direction. PMID:26460190

  11. Review of the socket design and interface pressure measurement for transtibial prosthesis.

    PubMed

    Pirouzi, Gh; Abu Osman, N A; Eshraghi, A; Ali, S; Gholizadeh, H; Wan Abas, W A B

    2014-01-01

    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations.

  12. Review of the Socket Design and Interface Pressure Measurement for Transtibial Prosthesis

    PubMed Central

    Pirouzi, Gh.; Abu Osman, N. A.; Eshraghi, A.; Ali, S.; Gholizadeh, H.; Wan Abas, W. A. B.

    2014-01-01

    Socket is an important part of every prosthetic limb as an interface between the residual limb and prosthetic components. Biomechanics of socket-residual limb interface, especially the pressure and force distribution, have effect on patient satisfaction and function. This paper aimed to review and evaluate studies conducted in the last decades on the design of socket, in-socket interface pressure measurement, and socket biomechanics. Literature was searched to find related keywords with transtibial amputation, socket-residual limb interface, socket measurement, socket design, modeling, computational modeling, and suspension system. In accordance with the selection criteria, 19 articles were selected for further analysis. It was revealed that pressure and stress have been studied in the last decaeds, but quantitative evaluations remain inapplicable in clinical settings. This study also illustrates prevailing systems, which may facilitate improvements in socket design for improved quality of life for individuals ambulating with transtibial prosthesis. It is hoped that the review will better facilitate the understanding and determine the clinical relevance of quantitative evaluations. PMID:25197716

  13. Improving the growth of CZT crystals for radiation detectors: a modeling perspective

    NASA Astrophysics Data System (ADS)

    Derby, Jeffrey J.; Zhang, Nan; Yeckel, Andrew

    2012-10-01

    The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties is key to improving the performance of gamma radiation detectors fabricated from them. Towards this goal, we discuss results obtained by computational models that provide a deeper understanding of crystal growth processes and how the growth of CZT can be improved. In particular, we discuss methods that may be implemented to lessen the deleterious interactions between the ampoule wall and the growing crystal via engineering a convex solidification interface. For vertical Bridgman growth, a novel, bell-curve furnace temperature profile is predicted to achieve macroscopically convex solid-liquid interface shapes during melt growth of CZT in a multiple-zone furnace. This approach represents a significant advance over traditional gradient-freeze profiles, which always yield concave interface shapes, and static heat transfer designs, such as pedestal design, that achieve convex interfaces over only a small portion of the growth run. Importantly, this strategy may be applied to any Bridgman configuration that utilizes multiple, controllable heating zones. Realizing a convex solidification interface via this adaptive bell-curve furnace profile is postulated to result in better crystallinity and higher yields than conventional CZT growth techniques.

  14. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    PubMed

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  15. Interface-based two-way tuning of the in-plane thermal transport in nanofilms

    NASA Astrophysics Data System (ADS)

    Hua, Yu-Chao; Cao, Bing-Yang

    2018-03-01

    Here, the two-way tuning of in-plane thermal transport is obtained in the bi-layer nanofilms with an interfacial effect by using the Boltzmann transport equation (BTE) and the phonon Monte Carlo (MC) technique. A thermal conductivity model was derived from the BTE and verified by the MC simulations. Both the model and the MC simulations indicate that the tuning of the thermal transport can be bidirectional (reduced or enhanced), depending on the interface conditions (i.e., roughness and adhesion energy) and the phonon property dissimilarity at the interface. For the identical-material interface, the emergence of thermal conductivity variation requires two conditions: (a) the interface is not completely specular and (b) the transmission specularity parameter differs from the reflection specularity parameter at the interface. When the transmission specularity parameter is larger than the reflection specularity parameter at the interface, the thermal conductivity improvement effect emerges, whereas the thermal conductivity reduction effect occurs. For the disparate-material interface, the phonon property perturbation near the interface causes the thermal conductivity variation, even when neither the above two conditions are satisfied. The mean free path ratio (γ) between the disparate materials was defined to characterize the phonon property dissimilarity. γ > 1 can lead to the thermal conductivity improvement effect, while γ < 1 corresponds to the thermal conductivity reduction effect. Our work provides a more in-depth understanding of the interfacial effect on the nanoscale thermal transport, with an applicable predictive model, which can be helpful for predicting and manipulating phonon transport in nanofilms.

  16. Interface Design Optimization by an Improved Operating Model for College Students

    ERIC Educational Resources Information Center

    Ko, Ya-Chuan; Lo, Chi-Hung; Hsiao, Shih-Wen

    2017-01-01

    A method was proposed in this study for assessing the interface operating efficiency of a remote control. The operating efficiency of a product interface can be determined by the proposed approach in which the related dimensions of human palms were measured. The reachable range (blue zone) and the most comfortable range (green zone) were…

  17. Hardware interface for isolation of vibrations in flexible manipulators: Development and applications

    NASA Technical Reports Server (NTRS)

    Manouchehri, Davoud; Lindsay, Thomas; Ghosh, David

    1994-01-01

    NASA's Langley Research Center (LaRC) is addressing the problem of isolating the vibrations of the Shuttle remote manipulator system (RMS) from its end-effector and/or payload by modeling an RMS flat-floor simulator with a dynamic payload. Analysis of the model can lead to control techniques that will improve the speed, accuracy, and safety of the RMS in capturing satellites and eventually facilitate berthing with the space station. Rockwell International Corporation, also involved in vibration isolation, has developed a hardware interface unit to isolate the end-effector from the vibrations of an arm on a Shuttle robotic tile processing system (RTPS). To apply the RTPS isolation techniques to long-reach arms like the RMS, engineers have modeled the dynamics of the hardware interface unit with simulation software. By integrating the Rockwell interface model with the NASA LaRC RMS simulator model, investigators can study the use of a hardware interface to isolate dynamic payloads from the RMS. The interface unit uses both active and passive compliance and damping for vibration isolation. Thus equipped, the RMS could be used as a telemanipulator with control characteristics for capture and berthing operations. The hardware interface also has applications in industry.

  18. Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016

    USGS Publications Warehouse

    Prinos, Scott T.

    2017-07-11

    The inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, was mapped in 2011. Since that time, the saltwater interface has continued to move inland. The interface is near several active well fields; therefore, an updated approximation of the inland extent of saltwater and an improved understanding of the rate of movement of the saltwater interface are necessary. A geographic information system was used to create a map using the data collected by the organizations that monitor water salinity in this area. An average rate of saltwater interface movement of 140 meters per year was estimated by dividing the distance between two monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the travel time. The travel time was determined by estimating the dates of arrival of the saltwater interface at the wells and computing the difference. This estimate assumes that the interface is traveling east to west between the two monitoring wells. Although monitoring is spatially limited in this area and some of the wells are not ideally designed for salinity monitoring, the monitoring network in this area is improving in spatial distribution and most of the new wells are well designed for salinity monitoring. The approximation of the inland extent of the saltwater interface and the estimated rate of movement of the interface are dependent on existing data. Improved estimates could be obtained by installing uniformly designed monitoring wells in systematic transects extending landward of the advancing saltwater interface.

  19. Molecular modeling of lipase binding to a substrate-water interface.

    PubMed

    Gruber, Christian C; Pleiss, Jürgen

    2012-01-01

    Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory.

  20. Automatic programming of simulation models

    NASA Technical Reports Server (NTRS)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, Shou X.; Dwan, Wen S.

    1990-01-01

    The concepts of software engineering were used to improve the simulation modeling environment. Emphasis was placed on the application of an element of rapid prototyping, or automatic programming, to assist the modeler define the problem specification. Then, once the problem specification has been defined, an automatic code generator is used to write the simulation code. The following two domains were selected for evaluating the concepts of software engineering for discrete event simulation: manufacturing domain and a spacecraft countdown network sequence. The specific tasks were to: (1) define the software requirements for a graphical user interface to the Automatic Manufacturing Programming System (AMPS) system; (2) develop a graphical user interface for AMPS; and (3) compare the AMPS graphical interface with the AMPS interactive user interface.

  1. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  2. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  3. A method of designing smartphone interface based on the extended user's mental model

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Fengmin; Bian, Jiali; Pan, Juchen; Song, Song

    2017-01-01

    The user's mental model is the core guiding theory of product design, especially practical products. The essence of practical product is a tool which is used by users to meet their needs. Then, the most important feature of a tool is usability. The design method based on the user's mental model provides a series of practical and feasible theoretical guidance for improving the usability of the product according to the user's awareness of things. In this paper, we propose a method of designing smartphone interface based on the extended user's mental model according to further research on user groups. This approach achieves personalized customization of smartphone application interface and enhance application using efficiency.

  4. Effects of interface pressure distribution on human sleep quality.

    PubMed

    Chen, Zongyong; Li, Yuqian; Liu, Rong; Gao, Dong; Chen, Quanhui; Hu, Zhian; Guo, Jiajun

    2014-01-01

    High sleep quality promotes efficient performance in the following day. Sleep quality is influenced by environmental factors, such as temperature, light, sound and smell. Here, we investigated whether differences in the interface pressure distribution on healthy individuals during sleep influenced sleep quality. We defined four types of pressure models by differences in the area distribution and the subjective feelings that occurred when participants slept on the mattresses. One type of model was showed "over-concentrated" distribution of pressure; one was displayed "over-evenly" distributed interface pressure while the other two models were displayed intermediate distribution of pressure. A polysomnography analysis demonstrated an increase in duration and proportion of non-rapid-eye-movement sleep stages 3 and 4, as well as decreased number of micro-arousals, in subjects sleeping on models with pressure intermediately distributed compared to models with over-concentrated or over-even distribution of pressure. Similarly, higher scores of self-reported sleep quality were obtained in subjects sleeping on the two models with intermediate pressure distribution. Thus, pressure distribution, at least to some degree, influences sleep quality and self-reported feelings of sleep-related events, though the underlying mechanisms remain unknown. The regulation of pressure models imposed by external sleep environment may be a new direction for improving sleep quality. Only an appropriate interface pressure distribution is beneficial for improving sleep quality, over-concentrated or -even distribution of pressure do not help for good sleep.

  5. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy formore » the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.« less

  6. Seismic modeling with radial basis function-generated finite differences (RBF-FD) - a simplified treatment of interfaces

    NASA Astrophysics Data System (ADS)

    Martin, Bradley; Fornberg, Bengt

    2017-04-01

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  7. Modelling and simulation of a moving interface problem: freeze drying of black tea extract

    NASA Astrophysics Data System (ADS)

    Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan

    2017-06-01

    The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.

  8. Interface evaluation for soft robotic manipulators

    NASA Astrophysics Data System (ADS)

    Moore, Kristin S.; Rodes, William M.; Csencsits, Matthew A.; Kwoka, Martha J.; Gomer, Joshua A.; Pagano, Christopher C.

    2006-05-01

    The results of two usability experiments evaluating an interface for the operation of OctArm, a biologically inspired robotic arm modeled after an octopus tentacle, are reported. Due to the many degrees-of-freedom (DOF) for the operator to control, such 'continuum' robotic limbs provide unique challenges for human operators because they do not map intuitively. Two modes have been developed to control the arm and reduce the DOF under the explicit direction of the operator. In coupled velocity (CV) mode, a joystick controls changes in arm curvature. In end-effector (EE) mode, a joystick controls the arm by moving the position of an endpoint along a straight line. In Experiment 1, participants used the two modes to grasp objects placed at different locations in a virtual reality modeling language (VRML). Objective measures of performance and subjective preferences were recorded. Results revealed lower grasp times and a subjective preference for the CV mode. Recommendations for improving the interface included providing additional feedback and implementation of an error recovery function. In Experiment 2, only the CV mode was tested with improved training of participants and several changes to the interface. The error recovery function was implemented, allowing participants to reverse through previously attained positions. The mean time to complete the trials in the second usability test was reduced by more than 4 minutes compared with the first usability test, confirming the interface changes improved performance. The results of these tests will be incorporated into future versions of the arm and improve future usability tests.

  9. The effect of interface properties on nickel base alloy composites

    NASA Technical Reports Server (NTRS)

    Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.

    1995-01-01

    This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.

  10. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The land-water interface of coastal marshes may influence the production of estuarine-dependent fisheries more than the area of these marshes. To test this hypothesis, a spatial model was created to explore the dynamic relationship between marshland-water interface and level of disintegration in the decaying coastal marshes of Louisiana's Barataria, Terrebonne, and Timbalier basins. Calibrating the model with Landsat Thematic Mapper satellite imagery, a parabolic relationship was found between land-water interface and marsh disintegration. Aggregated simulation data suggest that interface in the study area will soon reach its maximum and then decline. A statistically significant positive linear relationship was found between brown shrimp catch and total interface length over the past 28 years. This relationship suggests that shrimp yields will decline when interface declines, possibly beginning about 1995.

  11. A modified cementing technique using BoneSource to augment fixation of the acetabulum in a sheep model.

    PubMed

    Timperley, A John; Nusem, Iulian; Wilson, Kathy; Whitehouse, Sarah L; Buma, Pieter; Crawford, Ross W

    2010-08-01

    Our aim was to assess in an animal model whether the use of HA paste at the cement-bone interface in the acetabulum improves fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylmethacrylate (PMMA). We performed a randomized study involving 22 sheep that had BoneSource hydroxyapatite material applied to the surface of the acetabulum before cementing a polyethylene cup at arthroplasty. We studied the gross radiographic appearance of the implant-bone interface and the histological appearance at the interface. There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not give any detrimental effects. In some cases, the material appeared to have been fully resorbed. When the material was evident in histological sections, it was incorporated into an osseointegrated interface. There was no giant cell reaction present. There was no evidence of migration of BoneSource to the articulation. The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in humans, to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.

  12. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  13. CBP TOOLBOX VERSION 2.0: CODE INTEGRATION ENHANCEMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Flach, G.; BROWN, K.

    2013-06-01

    This report describes enhancements made to code integration aspects of the Cementitious Barriers Project (CBP) Toolbox as a result of development work performed at the Savannah River National Laboratory (SRNL) in collaboration with Vanderbilt University (VU) in the first half of fiscal year 2013. Code integration refers to the interfacing to standalone CBP partner codes, used to analyze the performance of cementitious materials, with the CBP Software Toolbox. The most significant enhancements are: 1) Improved graphical display of model results. 2) Improved error analysis and reporting. 3) Increase in the default maximum model mesh size from 301 to 501 nodes.more » 4) The ability to set the LeachXS/Orchestra simulation times through the GoldSim interface. These code interface enhancements have been included in a new release (Version 2.0) of the CBP Toolbox.« less

  14. A new model for fluid velocity slip on a solid surface.

    PubMed

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-10-12

    A general adsorption model is developed to describe the interactions between near-wall fluid molecules and solid surfaces. This model serves as a framework for the theoretical modelling of boundary slip phenomena. Based on this adsorption model, a new general model for the slip velocity of fluids on solid surfaces is introduced. The slip boundary condition at a fluid-solid interface has hitherto been considered separately for gases and liquids. In this paper, we show that the slip velocity in both gases and liquids may originate from dynamical adsorption processes at the interface. A unified analytical model that is valid for both gas-solid and liquid-solid slip boundary conditions is proposed based on surface science theory. The corroboration with the experimental data extracted from the literature shows that the proposed model provides an improved prediction compared to existing analytical models for gases at higher shear rates and close agreement for liquid-solid interfaces in general.

  15. Mechanical evaluation of a tissue-engineered zone of calcification in a bone–hydrogel osteochondral construct

    PubMed Central

    Hollenstein, Jérôme; Terrier, Alexandre; Cory, Esther; Chen, Albert C.; Sah, Robert L.; Pioletti, Dominique P.

    2016-01-01

    The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone–hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone–hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone–hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone–hydrogel interface and second, it reduces the stress at this interface. PMID:23706035

  16. The connection characteristics of flux pinned docking interface

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue

    2017-03-01

    This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.

  17. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button.

    PubMed

    Swertz, Morris A; Dijkstra, Martijn; Adamusiak, Tomasz; van der Velde, Joeri K; Kanterakis, Alexandros; Roos, Erik T; Lops, Joris; Thorisson, Gudmundur A; Arends, Danny; Byelas, George; Muilu, Juha; Brookes, Anthony J; de Brock, Engbert O; Jansen, Ritsert C; Parkinson, Helen

    2010-12-21

    There is a huge demand on bioinformaticians to provide their biologists with user friendly and scalable software infrastructures to capture, exchange, and exploit the unprecedented amounts of new *omics data. We here present MOLGENIS, a generic, open source, software toolkit to quickly produce the bespoke MOLecular GENetics Information Systems needed. The MOLGENIS toolkit provides bioinformaticians with a simple language to model biological data structures and user interfaces. At the push of a button, MOLGENIS' generator suite automatically translates these models into a feature-rich, ready-to-use web application including database, user interfaces, exchange formats, and scriptable interfaces. Each generator is a template of SQL, JAVA, R, or HTML code that would require much effort to write by hand. This 'model-driven' method ensures reuse of best practices and improves quality because the modeling language and generators are shared between all MOLGENIS applications, so that errors are found quickly and improvements are shared easily by a re-generation. A plug-in mechanism ensures that both the generator suite and generated product can be customized just as much as hand-written software. In recent years we have successfully evaluated the MOLGENIS toolkit for the rapid prototyping of many types of biomedical applications, including next-generation sequencing, GWAS, QTL, proteomics and biobanking. Writing 500 lines of model XML typically replaces 15,000 lines of hand-written programming code, which allows for quick adaptation if the information system is not yet to the biologist's satisfaction. Each application generated with MOLGENIS comes with an optimized database back-end, user interfaces for biologists to manage and exploit their data, programming interfaces for bioinformaticians to script analysis tools in R, Java, SOAP, REST/JSON and RDF, a tab-delimited file format to ease upload and exchange of data, and detailed technical documentation. Existing databases can be quickly enhanced with MOLGENIS generated interfaces using the 'ExtractModel' procedure. The MOLGENIS toolkit provides bioinformaticians with a simple model to quickly generate flexible web platforms for all possible genomic, molecular and phenotypic experiments with a richness of interfaces not provided by other tools. All the software and manuals are available free as LGPLv3 open source at http://www.molgenis.org.

  18. Does PEEK/HA Enhance Bone Formation Compared With PEEK in a Sheep Cervical Fusion Model?

    PubMed

    Walsh, William R; Pelletier, Matthew H; Bertollo, Nicky; Christou, Chris; Tan, Chris

    2016-11-01

    Polyetheretherketone (PEEK) has a wide range of clinical applications but does not directly bond to bone. Bulk incorporation of osteoconductive materials including hydroxyapatite (HA) into the PEEK matrix is a potential solution to address the formation of a fibrous tissue layer between PEEK and bone and has not been tested. Using in vivo ovine animal models, we asked: (1) Does PEEK-HA improve cortical and cancellous bone ongrowth compared with PEEK? (2) Does PEEK-HA improve bone ongrowth and fusion outcome in a more challenging functional ovine cervical fusion model? The in vivo responses of PEEK-HA Enhanced and PEEK-OPTIMA ® Natural were evaluated for bone ongrowth in the form of dowels implanted in the cancellous and cortical bone of adult sheep and examined at 4 and 12 weeks as well as interbody cervical fusion at 6, 12, and 26 weeks. The bone-implant interface was evaluated with radiographic and histologic endpoints for a qualitative assessment of direct bone contact of an intervening fibrous tissue later. Gamma-irradiated cortical allograft cages were evaluated as well. Incorporating HA into the PEEK matrix resulted in more direct bone apposition as opposed to the fibrous tissue interface with PEEK alone in the bone ongrowth as well as interbody cervical fusions. No adverse reactions were found at the implant-bone interface for either material. Radiography and histology revealed resorption and fracture of the allograft devices in vivo. Incorporating HA into PEEK provides a more favorable environment than PEEK alone for bone ongrowth. Cervical fusion was improved with PEEK-HA compared with PEEK alone as well as allograft bone interbody devices. Improving the bone-implant interface with a PEEK device by incorporating HA may improve interbody fusion results and requires further clinical studies.

  19. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    PubMed

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  20. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    NASA Astrophysics Data System (ADS)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  1. Micro-mechanical damage of trabecular bone-cement interface under selected loading conditions: a finite element study.

    PubMed

    Zhang, Qing-Hang; Tozzi, Gianluca; Tong, Jie

    2014-01-01

    In this study, two micro finite element models of trabecular bone-cement interface developed from high resolution computed tomography (CT) images were loaded under compression and validated using the in situ experimental data. The models were then used under tension and shear to examine the load transfer between the bone and cement and the micro damage development at the bone-cement interface. In addition, one models was further modified to investigate the effect of cement penetration on the bone-cement interfacial behaviour. The simulated results show that the load transfer at the bone-cement interface occurred mainly in the bone cement partially interdigitated region, while the fully interdigitated region seemed to contribute little to the mechanical response. Consequently, cement penetration beyond a certain value would seem to be ineffective in improving the mechanical strength of trabecular bone-cement interface. Under tension and shear loading conditions, more cement failures were found in denser bones, while the cement damage is generally low under compression.

  2. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    NASA Astrophysics Data System (ADS)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  3. Interfacing the Generalized Fluid System Simulation Program with the SINDA/G Thermal Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Palmiter, Christopher; Farmer, Jeffery; Lycans, Randall; Tiller, Bruce

    2000-01-01

    A general purpose, one dimensional fluid flow code has been interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development was conducted in two phases. This paper describes the first (which allows for steady and quasi-steady - unsteady solid, steady fluid - conjugate heat transfer modeling). The second (full transient conjugate heat transfer modeling) phase of the interface development will be addressed in a later paper. Phase 1 development has been benchmarked to an analytical solution with excellent agreement. Additional test cases for each development phase demonstrate desired features of the interface. The results of the benchmark case, three additional test cases and a practical application are presented herein.

  4. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    PubMed

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  5. Density gradients at hydrogel interfaces for enhanced cell penetration.

    PubMed

    Simona, B R; Hirt, L; Demkó, L; Zambelli, T; Vörös, J; Ehrbar, M; Milleret, V

    2015-04-01

    We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.

  6. Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes

    PubMed Central

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-01-01

    Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures. PMID:26311309

  7. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    PubMed

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation concentration of a metastable drug from solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reduced-order modeling approach for frictional stick-slip behaviors of joint interface

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Xu, Chao; Fan, Xuanhua; Wan, Qiang

    2018-03-01

    The complex frictional stick-slip behaviors of mechanical joint interface have a great effect on the dynamic properties of assembled structures. In this paper, a reduced-order modeling approach based on the constitutive Iwan model is proposed to describe the stick-slip behaviors of joint interface. An improved Iwan model is developed to describe the non-zero residual stiffness at macro-slip regime and smooth transition of joint stiffness from micro-slip to macro-slip regime, and the power-law relationship of energy dissipation during the micro-slip regime. In allusion to these nonlinear behaviors, the finite element method is used to calculate the recycle force under monolithic loading and the energy dissipation per cycle under oscillatory loading. The proposed model is then used to predict the nonlinear stick-slip behaviors of joint interface by curve-fitting to the results of finite element analysis, and the results show good agreements with the finite element analysis. A comparison with the experiment results in literature is also made. The proposed model agrees very well with the experiment results.

  9. Use of natural user interfaces in water simulations

    NASA Astrophysics Data System (ADS)

    Donchyts, G.; Baart, F.; van Dam, A.; Jagers, B.

    2013-12-01

    Conventional graphical user interfaces, used to edit input and present results of earth science models, have seen little innovation for the past two decades. In most cases model data is presented and edited using 2D projections even when working with 3D data. The emergence of 3D motion sensing technologies, such as Microsoft Kinect and LEAP Motion, opens new possibilities for user interaction by adding more degrees of freedom compared to a classical way using mouse and keyboard. Here we investigate how interaction with hydrodynamic numerical models can be improved using these new technologies. Our research hypothesis (H1) states that properly designed 3D graphical user interface paired with the 3D motion sensor can significantly reduce the time required to setup and use numerical models. In this work we have used a LEAP motion controller combined with a shallow water flow model engine D-Flow Flexible Mesh. Interacting with numerical model using hands

  10. Binding free energy analysis of protein-protein docking model structures by evERdock.

    PubMed

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  11. Binding free energy analysis of protein-protein docking model structures by evERdock

    NASA Astrophysics Data System (ADS)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-01

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  12. A reduced order, test verified component mode synthesis approach for system modeling applications

    NASA Astrophysics Data System (ADS)

    Butland, Adam; Avitabile, Peter

    2010-05-01

    Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.

  13. Save medical personnel's time by improved user interfaces.

    PubMed

    Kindler, H

    1997-01-01

    Common objectives in the industrial countries are the improvement of quality of care, clinical effectiveness, and cost control. Cost control, in particular, has been addressed through the introduction of case mix systems for reimbursement by social-security institutions. More data is required to enable quality improvement, increases in clinical effectiveness and for juridical reasons. At first glance, this documentation effort is contradictory to cost reduction. However, integrated services for resource management based on better documentation should help to reduce costs. The clerical effort for documentation should be decreased by providing a co-operative working environment for healthcare professionals applying sophisticated human-computer interface technology. Additional services, e.g., automatic report generation, increase the efficiency of healthcare personnel. Modelling the medical work flow forms an essential prerequisite for integrated resource management services and for co-operative user interfaces. A user interface aware of the work flow provides intelligent assistance by offering the appropriate tools at the right moment. Nowadays there is a trend to client/server systems with relational databases or object-oriented databases as repository. The work flows used for controlling purposes and to steer the user interfaces must be represented in the repository.

  14. Development and Implementation of the X.25 Protocol for the Universal Network Interface Device (UNID) II. Volume 1.

    DTIC Science & Technology

    1985-12-01

    development of an improved Universal Network Interface Device (UNID II). The UNID II’s architecture was based on a preliminary design project at...interface device, performing all functions required ,: the multi-ring LAN. The device depicted by RADC’s studies would connect a highly variable group of host...used the ISO Open Systems Ilterconnection (OSI) seven layer model as the basic structure for data flow and program development . In 1982 Cuomo

  15. Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT

    NASA Technical Reports Server (NTRS)

    Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.

    1988-01-01

    A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.

  16. Combining Thermal And Structural Analyses

    NASA Technical Reports Server (NTRS)

    Winegar, Steven R.

    1990-01-01

    Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.

  17. Implementation of DSC model and application for analysis of field pile tests under cyclic loading

    NASA Astrophysics Data System (ADS)

    Shao, Changming; Desai, Chandra S.

    2000-05-01

    The disturbed state concept (DSC) model, and a new and simplified procedure for unloading and reloading behavior are implemented in a nonlinear finite element procedure for dynamic analysis for coupled response of saturated porous materials. The DSC model is used to characterize the cyclic behavior of saturated clays and clay-steel interfaces. In the DSC, the relative intact (RI) behavior is characterized by using the hierarchical single surface (HISS) plasticity model; and the fully adjusted (FA) behavior is modeled by using the critical state concept. The DSC model is validated with respect to laboratory triaxial tests for clay and shear tests for clay-steel interfaces. The computer procedure is used to predict field behavior of an instrumented pile subjected to cyclic loading. The predictions provide very good correlation with the field data. They also yield improved results compared to those from a HISS model with anisotropic hardening, partly because the DSC model allows for degradation or softening and interface response.

  18. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  19. Modelling Safe Interface Interactions in Web Applications

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  20. Interfaces - Weak Links, Yet Great Opportunities

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Dimofte, Florin; Chupp, Raymond E.; Steinetz, Bruce M.

    2011-01-01

    Inadequate turbomachine interface design can rapidly degrade system performance, yet provide great opportunity for improvements. Engineered coatings of seals and bearing interfaces are major issues in the operational life of power systems. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining component life. Interface coatings, like lubricants, are sacrificial for the benefit of the component. Bearing and sealing surfaces are routinely protected by tribologically paired coatings such as silicon diamond like coatings (SiDLC) in combination with an oil lubricated wave bearing that prolongs bearing operational life. Likewise, of several methods used or researched for detecting interface failures, dopants within coatings show failures in functionally graded ceramic coatings. The Bozzolo-Ferrante-Smith (BFS) materials models and quantum mechanical tools, employed in interface design, are discussed.

  1. Aiding planning in air traffic control: an experimental investigation of the effects of perceptual information integration.

    PubMed

    Moertl, Peter M; Canning, John M; Gronlund, Scott D; Dougherty, Michael R P; Johansson, Joakim; Mills, Scott H

    2002-01-01

    Prior research examined how controllers plan in their traditional environment and identified various information uncertainties as detriments to planning. A planning aid was designed to reduce this uncertainty by perceptually representing important constraints. This included integrating spatial information on the radar screen with discrete information (planned sequences of air traffic). Previous research reported improved planning performance and decreased workload in the planning aid condition. The purpose of this paper was to determine the source of these performance improvements. Analysis of computer interactions using log-linear modeling showed that the planning interface led to less repetitive--but more integrated--information retrieval compared with the traditional planning environment. Ecological interface design principles helped explain how the integrated information retrieval gave rise to the performance improvements. Actual or potential applications of this research include the design and evaluation of interface automation that keeps users in active control by modification of perceptual task characteristics.

  2. Cellular therapy in bone-tendon interface regeneration

    PubMed Central

    Rothrauff, Benjamin B; Tuan, Rocky S

    2014-01-01

    The intrasynovial bone-tendon interface is a gradual transition from soft tissue to bone, with two intervening zones of uncalcified and calcified fibrocartilage. Following injury, the native anatomy is not restored, resulting in inferior mechanical properties and an increased risk of re-injury. Recent in vivo studies provide evidence of improved healing when surgical repair of the bone-tendon interface is augmented with cells capable of undergoing chondrogenesis. In particular, cellular therapy in bone-tendon healing can promote fibrocartilage formation and associated improvements in mechanical properties. Despite these promising results in animal models, cellular therapy in human patients remains largely unexplored. This review highlights the development and structure-function relationship of normal bone-tendon insertions. The natural healing response to injury is discussed, with subsequent review of recent research on cellular approaches for improved healing. Finally, opportunities for translating in vivo findings into clinical practice are identified. PMID:24326955

  3. Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration

    NASA Astrophysics Data System (ADS)

    Lee, Hyeong-Gi; Lowengrub, J. S.; Goodman, J.

    2002-02-01

    This is the first paper in a two-part series in which we analyze two model systems to study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity contrast between the components. The systems stem from a simplification of a general system of equations governing the motion of a binary fluid (NSCH model [Lowengrub and Truskinovsky, Proc. R. Soc. London, Ser. A 454, 2617 (1998)]) to flow in a Hele-Shaw cell. The system takes into account the chemical diffusivity between different components of a fluid mixture and the reactive stresses induced by inhomogeneity. In one of the systems we consider (HSCH), the binary fluid may be compressible due to diffusion. In the other system (BHSCH), a Boussinesq approximation is used and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH equations so as to yield the classical sharp interface model as a limiting case. We then analyze their equilibria, one dimensional evolution and linear stability. In the second paper [paper II, Phys. Fluids 14, 514 (2002)], we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH system, the equilibrium concentration profile is obtained using the classical Maxwell construction [Rowlinson and Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1979)] and does not depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model are somewhat surprising as the gravitational field actually affects the internal structure of an isolated interface by driving additional stratification of light and heavy fluids over that predicted in the Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then show how this analysis may be used to suggest a set of modified parameters which, when used in the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite interface thickness. Evidence of this improved agreement may be found in paper II.

  4. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  5. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  6. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed model has been found to perform better than the improved Z-S-C model in this aspect.

  7. iATTRACT: simultaneous global and local interface optimization for protein-protein docking refinement.

    PubMed

    Schindler, Christina E M; de Vries, Sjoerd J; Zacharias, Martin

    2015-02-01

    Protein-protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure-based force field for intramolecular contributions. The approach was systematically evaluated on a large protein-protein docking benchmark, starting from an enriched decoy set of rigidly docked protein-protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. © 2014 Wiley Periodicals, Inc.

  8. Interaction of ordinary Portland cement and Opalinus Clay: Dual porosity modelling compared to experimental data

    NASA Astrophysics Data System (ADS)

    Jenni, A.; Gimmi, T.; Alt-Epping, P.; Mäder, U.; Cloet, V.

    2017-06-01

    Interactions between concrete and clays are driven by the strong chemical gradients in pore water and involve mineral reactions in both materials. In the context of a radioactive waste repository, these reactions may influence safety-relevant clay properties such as swelling pressure, permeability or radionuclide retention. Interfaces between ordinary Portland cement and Opalinus Clay show weaker, but more extensive chemical disturbance compared to a contact between low-pH cement and Opalinus Clay. As a consequence of chemical reactions porosity changes occur at cement-clay interfaces. These changes are stronger and may lead to complete pore clogging in the case of low-pH cements. The prediction of pore clogging by reactive transport simulations is very sensitive to the magnitude of diffusive solute fluxes, cement clinker chemistry, and phase reaction kinetics. For instance, the consideration of anion-depleted porosity in clays substantially influences overall diffusion and pore clogging at interfaces. A new concept of dual porosity modelling approximating Donnan equilibrium is developed and applied to an ordinary Portland cement - Opalinus Clay interface. The model predictions are compared with data from the cement-clay interaction (CI) field experiment in the Mt Terri underground rock laboratory (Switzerland), which represent 5 y of interaction. The main observations such as the decalcification of the cement at the interface, the Mg enrichment in the clay detached from the interface, and the S enrichment in the cement detached from the interface, are qualitatively predicted by the new model approach. The model results reveal multiple coupled processes that create the observed features. The quantitative agreement of modelled and measured data can be improved if uncertainties of key input parameters (tortuosities, reaction kinetics, especially of clay minerals) can be reduced.

  9. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button

    PubMed Central

    2010-01-01

    Background There is a huge demand on bioinformaticians to provide their biologists with user friendly and scalable software infrastructures to capture, exchange, and exploit the unprecedented amounts of new *omics data. We here present MOLGENIS, a generic, open source, software toolkit to quickly produce the bespoke MOLecular GENetics Information Systems needed. Methods The MOLGENIS toolkit provides bioinformaticians with a simple language to model biological data structures and user interfaces. At the push of a button, MOLGENIS’ generator suite automatically translates these models into a feature-rich, ready-to-use web application including database, user interfaces, exchange formats, and scriptable interfaces. Each generator is a template of SQL, JAVA, R, or HTML code that would require much effort to write by hand. This ‘model-driven’ method ensures reuse of best practices and improves quality because the modeling language and generators are shared between all MOLGENIS applications, so that errors are found quickly and improvements are shared easily by a re-generation. A plug-in mechanism ensures that both the generator suite and generated product can be customized just as much as hand-written software. Results In recent years we have successfully evaluated the MOLGENIS toolkit for the rapid prototyping of many types of biomedical applications, including next-generation sequencing, GWAS, QTL, proteomics and biobanking. Writing 500 lines of model XML typically replaces 15,000 lines of hand-written programming code, which allows for quick adaptation if the information system is not yet to the biologist’s satisfaction. Each application generated with MOLGENIS comes with an optimized database back-end, user interfaces for biologists to manage and exploit their data, programming interfaces for bioinformaticians to script analysis tools in R, Java, SOAP, REST/JSON and RDF, a tab-delimited file format to ease upload and exchange of data, and detailed technical documentation. Existing databases can be quickly enhanced with MOLGENIS generated interfaces using the ‘ExtractModel’ procedure. Conclusions The MOLGENIS toolkit provides bioinformaticians with a simple model to quickly generate flexible web platforms for all possible genomic, molecular and phenotypic experiments with a richness of interfaces not provided by other tools. All the software and manuals are available free as LGPLv3 open source at http://www.molgenis.org. PMID:21210979

  10. Moon Trek: NASA's New Online Portal for Lunar Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E. S.

    2016-11-01

    This presentation introduces Moon Trek, a new name for a major new release of NASA's Lunar Mapping and Modeling Portal (LMMP). The new Trek interface provides greatly improved navigation, 3D visualization, performance, and reliability.

  11. Assessment of the Orion-SLS Interface Management Process in Achieving the EIA 731.1 Systems Engineering Capability Model Generic Practices Level 3 Criteria

    NASA Technical Reports Server (NTRS)

    Jellicorse, John J.; Rahman, Shamin A.

    2016-01-01

    NASA is currently developing the next generation crewed spacecraft and launch vehicle for exploration beyond earth orbit including returning to the Moon and making the transit to Mars. Managing the design integration of major hardware elements of a space transportation system is critical for overcoming both the technical and programmatic challenges in taking a complex system from concept to space operations. An established method of accomplishing this is formal interface management. In this paper we set forth an argument that the interface management process implemented by NASA between the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) achieves the Level 3 tier of the EIA 731.1 System Engineering Capability Model (SECM) for Generic Practices. We describe the relevant NASA systems and associated organizations, and define the EIA SECM Level 3 Generic Practices. We then provide evidence for our compliance with those practices. This evidence includes discussions of: NASA Systems Engineering Interface (SE) Management standard process and best practices; the tailoring of that process for implementation on the Orion to SLS interface; changes made over time to improve the tailored process, and; the opportunities to take the resulting lessons learned and propose improvements to our institutional processes and best practices. We compare this evidence against the practices to form the rationale for the declared SECM maturity level.

  12. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  13. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    NASA Astrophysics Data System (ADS)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  14. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  15. A level set method for determining critical curvatures for drainage and imbibition.

    PubMed

    Prodanović, Masa; Bryant, Steven L

    2006-12-15

    An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.

  16. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  17. Animal and Human Tissue Models of Vertical Listeria monocytogenes Transmission and Implications for Other Pregnancy-Associated Infections.

    PubMed

    Lowe, David E; Robbins, Jennifer R; Bakardjiev, Anna I

    2018-06-01

    Intrauterine infections lead to serious complications for mother and fetus, including preterm birth, maternal and fetal death, and neurological sequelae in the surviving offspring. Improving maternal and child heath is a global priority. Yet, the development of strategies to prevent and treat pregnancy-related diseases has lagged behind progress made in other medical fields. One of the challenges is finding tractable model systems that replicate the human maternal-fetal interface. Animal models offer the ability to study pathogenesis and host defenses in vivo However, the anatomy of the maternal-fetal interface is highly divergent across species. While many tools are available to study host responses in the pregnant mouse model, other animals have placentas that are more similar to that of humans. Here we describe new developments in animal and human tissue models to investigate the pathogenesis of listeriosis at the maternal-fetal interface. We highlight gaps in existing knowledge and make recommendations on how they can be filled. Copyright © 2018 American Society for Microbiology.

  18. Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.

    PubMed

    Yang, Tao; Martin, Ralph R; Lin, Ming C; Chang, Jian; Hu, Shi-Min

    2017-10-01

    In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach.

  19. Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng

    2018-05-01

    This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.

  20. Nanobio interfaces: charge control of enzyme/inorganic interfaces for advanced biocatalysis.

    PubMed

    Deshapriya, Inoka K; Kumar, Challa V

    2013-11-19

    Specific approaches to the rational design of nanobio interfaces for enzyme and protein binding to nanomaterials are vital for engineering advanced, functional nanobiomaterials for biocatalysis, sensing, and biomedical applications. This feature article presents an overview of our recent discoveries on structural, functional, and mechanistic details of how enzymes interact with inorganic nanomaterials and how they can be controlled in a systematic manner using α-Zr(IV)phosphate (α-ZrP) as a model system. The interactions of a number of enzymes having a wide array of surface charges, sizes, and functional groups are investigated. Interactions are carefully controlled to screen unfavorable repulsions and enhance favorable interactions for high affinity, structure retention, and activity preservation. In specific cases, catalytic activities and substrate selectivities are improved over those of the pristine enzymes, and two examples of high activity near the boiling point of water have been demonstrated. Isothermal titration calorimetric studies indicated that enzyme binding is coupled to ion sequestration or release to or from the nanobio interface, and binding is controlled in a rational manner. We learned that (1) bound enzyme stabilities are improved by lowering the entropy of the denatured state; (2) maximal loadings are obtained by matching charge footprints of the enzyme and the nanomaterial surface; (3) binding affinities are improved by ion sequestration at the nanobio interface; and (4) maximal enzyme structure retention is obtained by biophilizing the nanobio interface with protein glues. The chemical and physical manipulations of the nanobio interface are significant not only for understanding the complex behaviors of enzymes at biological interfaces but also for desiging better functional nanobiomaterials for a wide variety of practical applications.

  1. Recent Advances in Neural Electrode-Tissue Interfaces.

    PubMed

    Woeppel, Kevin; Yang, Qianru; Cui, Xinyan Tracy

    2017-12-01

    Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.

  2. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    NASA Astrophysics Data System (ADS)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.

  3. Improvement of design of a surgical interface using an eye tracking device

    PubMed Central

    2014-01-01

    Background Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Methods Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Results Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. Conclusions This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability. PMID:25080176

  4. Improvement of design of a surgical interface using an eye tracking device.

    PubMed

    Erol Barkana, Duygun; Açık, Alper; Duru, Dilek Goksel; Duru, Adil Deniz

    2014-05-07

    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability.

  5. Artificial intelligence techniques for modeling database user behavior

    NASA Technical Reports Server (NTRS)

    Tanner, Steve; Graves, Sara J.

    1990-01-01

    The design and development of the adaptive modeling system is described. This system models how a user accesses a relational database management system in order to improve its performance by discovering use access patterns. In the current system, these patterns are used to improve the user interface and may be used to speed data retrieval, support query optimization and support a more flexible data representation. The system models both syntactic and semantic information about the user's access and employs both procedural and rule-based logic to manipulate the model.

  6. Tailoring Heterovalent Interface Formation with Light

    DOE PAGES

    Park, Kwangwook; Alberi, Kirstin

    2017-08-17

    Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less

  7. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    PubMed

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  8. Micro-mechanics modelling of smart materials

    NASA Astrophysics Data System (ADS)

    Shah, Syed Asim Ali

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.

  9. Efficient generation of connectivity in neuronal networks from simulator-independent descriptions

    PubMed Central

    Djurfeldt, Mikael; Davison, Andrew P.; Eppler, Jochen M.

    2014-01-01

    Simulator-independent descriptions of connectivity in neuronal networks promise greater ease of model sharing, improved reproducibility of simulation results, and reduced programming effort for computational neuroscientists. However, until now, enabling the use of such descriptions in a given simulator in a computationally efficient way has entailed considerable work for simulator developers, which must be repeated for each new connectivity-generating library that is developed. We have developed a generic connection generator interface that provides a standard way to connect a connectivity-generating library to a simulator, such that one library can easily be replaced by another, according to the modeler's needs. We have used the connection generator interface to connect C++ and Python implementations of the previously described connection-set algebra to the NEST simulator. We also demonstrate how the simulator-independent modeling framework PyNN can transparently take advantage of this, passing a connection description through to the simulator layer for rapid processing in C++ where a simulator supports the connection generator interface and falling-back to slower iteration in Python otherwise. A set of benchmarks demonstrates the good performance of the interface. PMID:24795620

  10. Generic worklist handler for workflow-enabled products

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim; Meetz, Kirsten; Wendler, Thomas

    1999-07-01

    Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.

  11. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE PAGES

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  12. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  13. GIS-MODFLOW: Ein kleines OpenSource-Werkzeug zur Anbindung von GIS-Daten an MODFLOW

    NASA Astrophysics Data System (ADS)

    Gossel, Wolfgang

    2013-06-01

    The numerical model MODFLOW (Harbaugh 2005) is an efficient and up-to-date tool for groundwater flow modelling. On the other hand, Geo-Information-Systems (GIS) provide useful tools for data preparation and visualization that can also be incorporated in numerical groundwater modelling. An interface between both would therefore be useful for many hydrogeological investigations. To date, several integrated stand-alone tools have been developed that rely on MODFLOW, MODPATH and transport modelling tools. Simultaneously, several open source-GIS codes were developed to improve functionality and ease of use. These GIS tools can be used as pre- and post-processors of the numerical model MODFLOW via a suitable interface. Here we present GIS-MODFLOW as an open-source tool that provides a new universal interface by using the ESRI ASCII GRID data format that can be converted into MODFLOW input data. This tool can also treat MODFLOW results. Such a combination of MODFLOW and open-source GIS opens new possibilities to render groundwater flow modelling, and simulation results, available to larger circles of hydrogeologists.

  14. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  16. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  17. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    PubMed

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics.

  18. The IRIS Federator: Accessing Seismological Data Across Data Centers

    NASA Astrophysics Data System (ADS)

    Trabant, C. M.; Van Fossen, M.; Ahern, T. K.; Weekly, R. T.

    2015-12-01

    In 2013 the International Federation of Digital Seismograph Networks (FDSN) approved a specification for web service interfaces for accessing seismological station metadata, time series and event parameters. Since then, a number of seismological data centers have implemented FDSN service interfaces, with more implementations in development. We have developed a new system called the IRIS Federator which leverages this standardization and provides the scientific community with a service for easy discovery and access of seismological data across FDSN data centers. These centers are located throughout the world and this work represents one model of a system for data collection across geographic and political boundaries.The main components of the IRIS Federator are a catalog of time series metadata holdings at each data center and a web service interface for searching the catalog. The service interface is designed to support client­-side federated data access, a model in which the client (software run by the user) queries the catalog and then collects the data from each identified center. By default the results are returned in a format suitable for direct submission to those web services, but could also be formatted in a simple text format for general data discovery purposes. The interface will remove any duplication of time series channels between data centers according to a set of business rules by default, however a user may request results with all duplicate time series entries included. We will demonstrate how client­-side federation is being incorporated into some of the DMC's data access tools. We anticipate further enhancement of the IRIS Federator to improve data discovery in various scenarios and to improve usefulness to communities beyond seismology.Data centers with FDSN web services: http://www.fdsn.org/webservices/The IRIS Federator query interface: http://service.iris.edu/irisws/fedcatalog/1/

  19. Stress Intensity of Delamination in a Sintered-Silver Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, D. J.; Paret, P. P.; Wereszczak, A. A.

    2014-08-01

    In automotive power electronics packages, conventional thermal interface materials such as greases, gels, and phase-change materials pose bottlenecks to heat removal and are also associated with reliability concerns. The industry trend is toward high thermal performance bonded interfaces for large-area attachments. However, because of coefficient of thermal expansion mismatches between materials/layers and resultant thermomechanical stresses, adhesive and cohesive fractures could occur, posing a reliability problem. These defects manifest themselves in increased thermal resistance. This research aims to investigate and improve the thermal performance and reliability of sintered-silver for power electronics packaging applications. This has been experimentally accomplished by the synthesismore » of large-area bonded interfaces between metalized substrates and copper base plates that have subsequently been subjected to thermal cycles. A finite element model of crack initiation and propagation in these bonded interfaces will allow for the interpretation of degradation rates by a crack-velocity (V)-stress intensity factor (K) analysis. A description of the experiment and the modeling approach are discussed.« less

  20. Recent advances in chemical synthesis methodology of inorganic materials and theoretical computations of metal nanoparticles/carbon interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Andrew G.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  1. CEASAW: A User-Friendly Computer Environment Analysis for the Sawmill Owner

    Treesearch

    Guillermo Mendoza; William Sprouse; Philip A. Araman; William G. Luppold

    1991-01-01

    Improved spreadsheet software capabilities have brought optimization to users with little or no background in mathematical programming. Better interface capabilities of spreadsheet models now make it possible to combine optimization models with a spreadsheet system. Sawmill production and inventory systems possess many features that make them suitable application...

  2. Managing wildland fires: integrating weather models into fire projections

    Treesearch

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  3. Utility of Horioka’s and Marra’s models for adhesive failure

    Treesearch

    Charles R. Frihart

    2005-01-01

    Bond formation primarily involves adhesive rheology and interface chemistry. Bonded assembly strength, however, primarily involves the viscoelastic dissipation of stress over the entire assembly. Models can aid in the understanding of where and why failure occurs and how to improve the strength of the assembly. Horioka and Marra have both proposed models which define...

  4. Template-based modeling and ab initio refinement of protein oligomer structures using GALAXY in CAPRI round 30.

    PubMed

    Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok

    2017-03-01

    Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    NASA Astrophysics Data System (ADS)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  6. Experimental and numerical analysis of stress wave propagation in polymers and the role of interfaces in armour systems

    NASA Astrophysics Data System (ADS)

    Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.

    2012-12-01

    Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.

  7. Language Model Applications to Spelling with Brain-Computer Interfaces

    PubMed Central

    Mora-Cortes, Anderson; Manyakov, Nikolay V.; Chumerin, Nikolay; Van Hulle, Marc M.

    2014-01-01

    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models applied to them. These language models are classified according to their functionality in the context of BCI-based spelling: the static/dynamic nature of the user interface, the use of error correction and predictive spelling, and the potential to improve their classification performance by using language models. To conclude, the review offers an overview of the advantages and challenges when implementing language models in BCI-based communication systems when implemented in conjunction with other AAL technologies. PMID:24675760

  8. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    PubMed Central

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  9. A simulation evaluation of a pilot interface with an automatic terminal approach system

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1987-01-01

    The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.

  10. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  11. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  12. Molecular Modeling of Water Interfaces: From Molecular Spectroscopy to Thermodynamics.

    PubMed

    Nagata, Yuki; Ohto, Tatsuhiko; Backus, Ellen H G; Bonn, Mischa

    2016-04-28

    Understanding aqueous interfaces at the molecular level is not only fundamentally important, but also highly relevant for a variety of disciplines. For instance, electrode-water interfaces are relevant for electrochemistry, as are mineral-water interfaces for geochemistry and air-water interfaces for environmental chemistry; water-lipid interfaces constitute the boundaries of the cell membrane, and are thus relevant for biochemistry. One of the major challenges in these fields is to link macroscopic properties such as interfacial reactivity, solubility, and permeability as well as macroscopic thermodynamic and spectroscopic observables to the structure, structural changes, and dynamics of molecules at these interfaces. Simulations, by themselves, or in conjunction with appropriate experiments, can provide such molecular-level insights into aqueous interfaces. In this contribution, we review the current state-of-the-art of three levels of molecular dynamics (MD) simulation: ab initio, force field, and coarse-grained. We discuss the advantages, the potential, and the limitations of each approach for studying aqueous interfaces, by assessing computations of the sum-frequency generation spectra and surface tension. The comparison of experimental and simulation data provides information on the challenges of future MD simulations, such as improving the force field models and the van der Waals corrections in ab initio MD simulations. Once good agreement between experimental observables and simulation can be established, the simulation can be used to provide insights into the processes at a level of detail that is generally inaccessible to experiments. As an example we discuss the mechanism of the evaporation of water. We finish by presenting an outlook outlining four future challenges for molecular dynamics simulations of aqueous interfacial systems.

  13. Bicylindrical model of Herschel-Quincke tube-duct system: theory and comparison with experiment and finite element method.

    PubMed

    Poirier, B; Ville, J M; Maury, C; Kateb, D

    2009-09-01

    An analytical three dimensional bicylindrical model is developed in order to take into account the effects of the saddle-shaped area for the interface of a n-Herschel-Quincke tube system with the main duct. Results for the scattering matrix of this system deduced from this model are compared, in the plane wave frequency domain, versus experimental and numerical data and a one dimensional model with and without tube length correction. The results are performed with a two-Herschel-Quincke tube configuration having the same diameter as the main duct. In spite of strong assumptions on the acoustic continuity conditions at the interfaces, this model is shown to improve the nonperiodic amplitude variations and the frequency localization of the minima of the transmission and reflection coefficients with respect to one dimensional model with length correction and a three dimensional model.

  14. Improved Discretization of Grounding Lines and Calving Fronts using an Embedded-Boundary Approach in BISICLES

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Cornford, S. L.; Schwartz, P.; Bhalla, A.; Johansen, H.; Ng, E.

    2017-12-01

    Correctly representing grounding line and calving-front dynamics is of fundamental importance in modeling marine ice sheets, since the configuration of these interfaces exerts a controlling influence on the dynamics of the ice sheet. Traditional ice sheet models have struggled to correctly represent these regions without very high spatial resolution. We have developed a front-tracking discretization for grounding lines and calving fronts based on the Chombo embedded-boundary cut-cell framework. This promises better representation of these interfaces vs. a traditional stair-step discretization on Cartesian meshes like those currently used in the block-structured AMR BISICLES code. The dynamic adaptivity of the BISICLES model complements the subgrid-scale discretizations of this scheme, producing a robust approach for tracking the evolution of these interfaces. Also, the fundamental discontinuous nature of flow across grounding lines is respected by mathematically treating it as a material phase change. We present examples of this approach to demonstrate its effectiveness.

  15. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    NASA Astrophysics Data System (ADS)

    Dalgicdir, Cahit; Sensoy, Ozge; Peter, Christine; Sayar, Mehmet

    2013-12-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  16. Improved Modeling of Side-Chain–Base Interactions and Plasticity in Protein–DNA Interface Design

    PubMed Central

    Thyme, Summer B.; Baker, David; Bradley, Philip

    2012-01-01

    Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed “motifs”) was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein–DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. PMID:22426128

  17. Improved modeling of side-chain--base interactions and plasticity in protein--DNA interface design.

    PubMed

    Thyme, Summer B; Baker, David; Bradley, Philip

    2012-06-08

    Combinatorial sequence optimization for protein design requires libraries of discrete side-chain conformations. The discreteness of these libraries is problematic, particularly for long, polar side chains, since favorable interactions can be missed. Previously, an approach to loop remodeling where protein backbone movement is directed by side-chain rotamers predicted to form interactions previously observed in native complexes (termed "motifs") was described. Here, we show how such motif libraries can be incorporated into combinatorial sequence optimization protocols and improve native complex recapitulation. Guided by the motif rotamer searches, we made improvements to the underlying energy function, increasing recapitulation of native interactions. To further test the methods, we carried out a comprehensive experimental scan of amino acid preferences in the I-AniI protein-DNA interface and found that many positions tolerated multiple amino acids. This sequence plasticity is not observed in the computational results because of the fixed-backbone approximation of the model. We improved modeling of this diversity by introducing DNA flexibility and reducing the convergence of the simulated annealing algorithm that drives the design process. In addition to serving as a benchmark, this extensive experimental data set provides insight into the types of interactions essential to maintain the function of this potential gene therapy reagent. Published by Elsevier Ltd.

  18. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  19. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    NASA Technical Reports Server (NTRS)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  20. Improvements to NASA's Debris Assessment Software

    NASA Technical Reports Server (NTRS)

    Opiela, J.; Johnson, Nicholas L.

    2007-01-01

    NASA's Debris Assessment Software (DAS) has been substantially revised and expanded. DAS is designed to assist NASA programs in performing orbital debris assessments, as described in NASA s Guidelines and Assessment Procedures for Limiting Orbital Debris. The extensive upgrade of DAS was undertaken to reflect changes in the debris mitigation guidelines, to incorporate recommendations from DAS users, and to take advantage of recent software capabilities for greater user utility. DAS 2.0 includes an updated environment model and enhanced orbital propagators and reentry-survivability models. The ORDEM96 debris environment model has been replaced by ORDEM2000 in DAS 2.0, which is also designed to accept anticipated revisions to the environment definition. Numerous upgrades have also been applied to the assessment of human casualty potential due to reentering debris. Routines derived from the Object Reentry Survival Analysis Tool, Version 6 (ORSAT 6), determine which objects are assessed to survive reentry, and the resulting risk of human casualty is calculated directly based upon the orbital inclination and a future world population database. When evaluating reentry risks, the user may enter up to 200 unique hardware components for each launched object, in up to four nested levels. This last feature allows the software to more accurately model components that are exposed below the initial breakup altitude. The new DAS 2.0 provides an updated set of tools for users to assess their mission s compliance with the NASA Safety Standard and does so with a clear and easy-to-understand interface. The new native Microsoft Windows graphical user interface (GUI) is a vast improvement over the previous DOS-based interface. In the new version, functions are more-clearly laid out, and the GUI includes the standard Windows-style Help functions. The underlying routines within the DAS code are also improved.

  1. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  2. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  3. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  4. Section-constrained local geological interface dynamic updating method based on the HRBF surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan

    2018-02-01

    Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are consistent with expert explanations and help improve the quality of the models.

  5. Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity

    NASA Astrophysics Data System (ADS)

    Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho

    2018-03-01

    The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.

  6. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    PubMed

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    PubMed Central

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2015-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and software platforms, so that the different components can communicate in real-time. We present the first steps in an ongoing effort to integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring trial-and-error convergence on a single target. We utilized the output of this model in real time to drive mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP) interface. The robotic arm sent back information on its joint positions, which was then used by a visualization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomimetic learning algorithms for controlling real-time devices. PMID:26709323

  8. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The continuing disintegration of the coastal marshes of Louisiana is one of the major environmental problems of the nation. The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana leads the nation in landings of fishery products, and most of the landed species are dependent upon estuaries and their associated tidal marshes. In evaluating the potential effect of marshland loss on fisheries, the first two critical factors to consider are: whether land-water interface in actual disintegrating marshes is currently increasing or decreasing, and the magnitude of the change. In the present study, LANDSAT Thematic Mapper (TM) data covering specific marshes in coastal Louisiana were used to test conclusions from the Browder et al (1984) model with regard to the stage in disintegration at which maximum interface occurs; to further explore the relationship between maximum interface and the pattern of distribution of land and water suggested by the model; and to determine the direction and degree of change in land-water interface in relation to land loss in actual marshes.

  9. An automated decision-tree approach to predicting protein interaction hot spots.

    PubMed

    Darnell, Steven J; Page, David; Mitchell, Julie C

    2007-09-01

    Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.

  10. A Python Interface for the Dakota Iterative Systems Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Piper, M.; Hutton, E.; Syvitski, J. P.

    2016-12-01

    Uncertainty quantification is required to improve the accuracy, reliability, and accountability of Earth science models. Dakota is a software toolkit, developed at Sandia National Laboratories, that provides an interface between models and a library of analysis methods, including support for sensitivity analysis, uncertainty quantification, optimization, and calibration techniques. Dakota is a powerful tool, but its learning curve is steep: the user not only must understand the structure and syntax of the Dakota input file, but also must develop intermediate code, called an analysis driver, that allows Dakota to run a model. The CSDMS Dakota interface (CDI) is a Python package that wraps and extends Dakota's user interface. It simplifies the process of configuring and running a Dakota experiment. A user can program to the CDI, allowing a Dakota experiment to be scripted. The CDI creates Dakota input files and provides a generic analysis driver. Any model written in Python that exposes a Basic Model Interface (BMI), as well as any model componentized in the CSDMS modeling framework, automatically works with the CDI. The CDI has a plugin architecture, so models written in other languages, or those that don't expose a BMI, can be accessed by the CDI by programmatically extending a template; an example is provided in the CDI distribution. Currently, six Dakota analysis methods have been implemented for examples from the much larger Dakota library. To demonstrate the CDI, we performed an uncertainty quantification experiment with the HydroTrend hydrological water balance and transport model. In the experiment, we evaluated the response of long-term suspended sediment load at the river mouth (Qs) to uncertainty in two input parameters, annual mean temperature (T) and precipitation (P), over a series of 100-year runs, using the polynomial chaos method. Through Dakota, we calculated moments, local and global (Sobol') sensitivity indices, and probability density and cumulative distribution functions for the response.

  11. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  12. Federating Cyber and Physical Models for Event-Driven Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Eric G.; Pawlowski, Ronald A.; Sridhar, Siddharth

    The purpose of this paper is to describe a novel method to improve electric power system monitoring and control software application interoperability. This method employs the concept of federation, which is defined as the use of existing models that represent aspects of a system in specific domains (such as physical and cyber security domains) and building interface to link all of domain models.

  13. Representing spatial and temporal complexity in ecohydrological models: a meta-analysis focusing on groundwater - surface water interactions

    NASA Astrophysics Data System (ADS)

    McDonald, Karlie; Mika, Sarah; Kolbe, Tamara; Abbott, Ben; Ciocca, Francesco; Marruedo, Amaia; Hannah, David; Schmidt, Christian; Fleckenstein, Jan; Karuse, Stefan

    2016-04-01

    Sub-surface hydrologic processes are highly dynamic, varying spatially and temporally with strong links to the geomorphology and hydrogeologic properties of an area. This spatial and temporal complexity is a critical regulator of biogeochemical and ecological processes within the interface groundwater - surface water (GW-SW) ecohydrological interface and adjacent ecosystems. Many GW-SW models have attempted to capture this spatial and temporal complexity with varying degrees of success. The incorporation of spatial and temporal complexity within GW-SW model configuration is important to investigate interactions with transient storage and subsurface geology, infiltration and recharge, and mass balance of exchange fluxes at the GW-SW ecohydrological interface. Additionally, characterising spatial and temporal complexity in GW-SW models is essential to derive predictions using realistic environmental conditions. In this paper we conduct a systematic Web of Science meta-analysis of conceptual, hydrodynamic, and reactive and heat transport models of the GW-SW ecohydrological interface since 2004 to explore how these models handled spatial and temporal complexity. The freshwater - groundwater ecohydrological interface was the most commonly represented in publications between 2004 and 2014 with 91% of papers followed by marine 6% and estuarine systems with 3% of papers. Of the GW-SW models published since 2004, the 52% have focused on hydrodynamic processes and <15% covered more than one process (e.g. heat and reactive transport). Within the hydrodynamic subset, 25% of models focused on a vertical depth of <5m. The primary scientific and technological limitations of incorporating spatial and temporal variability into GW-SW models are identified as the inclusion of woody debris, carbon sources, subsurface geological structures and bioclogging into model parameterization. The technological limitations influence the types of models applied, such as hydrostatic coupled models and fully intrinsic saturated and unsaturated models, and the assumptions or simplifications scientists apply to investigate the GW-SW ecohydrological interface. We investigated the type of modelling approaches applied across different scales (site, reach, catchment, nested catchments) and assessed the simplifications in environmental conditions and complexity that are commonly made in model configuration. Understanding the theoretical concepts that underpin these current modelling approaches is critical for scientists to develop measures to derive predictions from realistic environmental conditions at management relevant scales and establish best-practice modelling approaches for improving the scientific understanding and management of the GW-SW interface. Additionally, the assessment of current modelling approaches informs our proposed framework for the progress of GW-SW models in the future. The framework presented aims to increase future scientific, technological and management integration and the identification of research priorities to allow spatial and temporal complexity to be better incorporated into GW-SW models.

  14. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations

    DOE PAGES

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...

    2014-07-12

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less

  15. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  16. A numerical model for explaining the role of the interface morphology in composite solar cells

    NASA Astrophysics Data System (ADS)

    Martin, C. M.; Burlakov, V. M.; Assender, H. E.; Barkhouse, D. A. R.

    2007-11-01

    We have developed a numerical model that simulates the operation of organic/inorganic photovoltaic devices. Using this model, we have investigated the effect of the interface morphology and have shown that for a given system, there is both a most efficient device thickness and the interfacial feature size for overall power conversion. The variation of current-voltage (I-V) curves with differing recombination rates, anode barrier height, and light intensity has been simulated with reducing the recombination rate and lowering the anode barrier height shown to lead to improved open circuit voltages and fill factors. Through this model, we show that the increase in fill factor observed when the lithium salt Li[CF3SO2]2N is added to devices can be explained by an increase in the polymer hole mobility.

  17. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND #: SAND2015-6523 A

  18. Matrix Synthesis and Characterization

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of NASA in the area of composite material synthesis; evaluation techniques; prediction analysis techniques; solvent-resistant tough composite matrix; resistance to paint strippers; acceptable processing temperature and pressure for thermoplastics; and the role of computer modeling and fiber interface improvement were discussed.

  19. Model verification of large structural systems. [space shuttle model response

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1978-01-01

    A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.

  20. Effects of surface hydroxylation on adhesion at zinc/silica interfaces.

    PubMed

    Le, Ha-Linh Thi; Goniakowski, Jacek; Noguera, Claudine; Koltsov, Alexey; Mataigne, Jean-Michel

    2018-06-06

    The weak interaction between zinc and silica is responsible for the poor performance of anti-corrosive galvanic zinc coatings on modern advanced high-strength steels, which are fundamental in the automotive industry, and important for rail transport, shipbuilding, and aerospace. With the goal of identifying possible methods for its improvement, we report an ab initio study of the effect of surface hydroxylation on the adhesion characteristics of model zinc/β-cristobalite interfaces, representative of various surface hydroxylation/hydrogenation conditions. We show that surface silanols resulting from dissociative water adsorption at the most stable stoichiometric (001) and (111) surfaces prevent strong zinc-silica interactions. However, dehydrogenation of such interfaces produces oxygen-rich zinc/silica contacts with excellent adhesion characteristics. These are due to partial zinc oxidation and the formation of strong iono-covalent Zn-O bonds between zinc atoms and the under-coordinated excess anions, remnant of the hydroxylation layer. Interestingly, these interfaces appear as the most thermodynamically stable in a wide range of realistic oxygen-rich and hydrogen-lean environments. We also point out that the partial oxidation of zinc atoms in direct contact with the oxide substrate may somewhat weaken the cohesion in the zinc deposit itself. This fundamental analysis of the microscopic mechanisms responsible for the improved zinc wetting on pre-hydroxylated silica substrates provides useful guidelines towards practical attempts to improve adhesion.

  1. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  2. The Reactome pathway Knowledgebase

    PubMed Central

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  3. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm

    PubMed Central

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of limb prosthetics. PMID:26635598

  4. Radiative Transport Modelling of Thermal Barrier Coatings

    DTIC Science & Technology

    2017-03-24

    of being able to extract useful data. To account for this deficiency, the purpose of this project is to improve models for use in OCT measurements ...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Lumium optical precision measurement solutions...coefficients. Further, the model will need to take into account the effects of interface reflections and a multilayer structure. Such a model is of

  5. Improved detection sensitivity of γ-aminobutyric acid based on graphene oxide interface on an optical microfiber.

    PubMed

    Zhou, Jun; Huang, Yunyun; Chen, Chaoyan; Xiao, Aoxiang; Guo, Tuan; Guan, Bai-Ou

    2018-05-11

    Interfacing bio-recognition elements to optical materials is a longstanding challenge to manufacture sensitive biosensors and inexpensive diagnostic devices. In this work, a graphene oxide (GO) interface has been constructed between silica microfiber and bio-recognition elements to develop an improved γ-aminobutyric acid (GABA) sensing approach. The GO interface, which was located at the site with the strongest evanescent field on the microfiber surface, improved the detection sensitivity by providing a larger platform for more bio-recognition element immobilization, and amplifying surface refractive index change caused by combination between bio-recognition elements and target molecules. Owing to the interface improvement, the microfiber has a three times improved sensitivity of 1.03 nm/log M for GABA detection, and hence a lowest limit of detection of 2.91 × 10-18 M, which is 7 orders of magnitude higher than that without the GO interface. Moreover, the micrometer-sized footprint and non-radioactive nature enable easy implantation in human brains for in vivo applications.

  6. Introduction of knowledge bases in patient's data management system: role of the user interface.

    PubMed

    Chambrin, M C; Ravaux, P; Jaborska, A; Beugnet, C; Lestavel, P; Chopin, C; Boniface, M

    1995-02-01

    As the number of signals and data to be handled grows in intensive care unit, it is necessary to design more powerful computing systems that integrate and summarize all this information. The manual input of data as e.g. clinical signs and drug prescription and the synthetic representation of these data requires an ever more sophisticated user interface. The introduction of knowledge bases in the data management allows to conceive contextual interfaces. The objective of this paper is to show the importance of the design of the user interface, in the daily use of clinical information system. Then we describe a methodology that uses the man-machine interaction to capture the clinician knowledge during the clinical practice. The different steps are the audit of the user's actions, the elaboration of statistic models allowing the definition of new knowledge, and the validation that is performed before complete integration. A part of this knowledge can be used to improve the user interface. Finally, we describe the implementation of these concepts on a UNIX platform using OSF/MOTIF graphical interface.

  7. Interface traps and quantum size effects on the retention time in nanoscale memory devices

    PubMed Central

    2013-01-01

    Based on the analysis of Poisson equation, an analytical surface potential model including interface charge density for nanocrystalline (NC) germanium (Ge) memory devices with p-type silicon substrate has been proposed. Thus, the effects of Pb defects at Si(110)/SiO2, Si(111)/SiO2, and Si(100)/SiO2 interfaces on the retention time have been calculated after quantum size effects have been considered. The results show that the interface trap density has a large effect on the electric field across the tunneling oxide layer and leakage current. This letter demonstrates that the retention time firstly increases with the decrease in diameter of NC Ge and then rapidly decreases with the diameter when it is a few nanometers. This implies that the interface defects, its energy distribution, and the NC size should be seriously considered in the aim to improve the retention time from different technological processes. The experimental data reported in the literature support the theoretical expectation. PMID:23984827

  8. 3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei

    2015-04-01

    Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.

  9. Studies on dispersive stabilization of porous media flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daripa, Prabir, E-mail: prabir.daripa@math.tamu.edu; Gin, Craig

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types ofmore » interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.« less

  10. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes--an improved model for nanocrystalline thin films and a review of experimental data.

    PubMed

    Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J

    2014-11-28

    A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.

  11. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  12. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  13. Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective.

    PubMed

    Poplawski, Alicia; Marini, Federico; Hess, Moritz; Zeller, Tanja; Mazur, Johanna; Binder, Harald

    2016-03-01

    RNA-sequencing (RNA-seq) has become an established way for measuring gene expression in model organisms and humans. While methods development for refining the corresponding data processing and analysis pipeline is ongoing, protocols for typical steps have been proposed and are widely used. Several user interfaces have been developed for making such analysis steps accessible to life scientists without extensive knowledge of command line tools. We performed a systematic search and evaluation of such interfaces to investigate to what extent these can indeed facilitate RNA-seq data analysis. We found a total of 29 open source interfaces, and six of the more widely used interfaces were evaluated in detail. Central criteria for evaluation were ease of configuration, documentation, usability, computational demand and reporting. No interface scored best in all of these criteria, indicating that the final choice will depend on the specific perspective of users and the corresponding weighting of criteria. Considerable technical hurdles had to be overcome in our evaluation. For many users, this will diminish potential benefits compared with command line tools, leaving room for future improvement of interfaces. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    NASA Astrophysics Data System (ADS)

    Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.

    2015-12-01

    Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.

  15. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    DTIC Science & Technology

    2015-02-20

    being integrated within MAT, including Granger causality. Granger causality tests whether a data series helps when predicting future values of another...relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438. Granger, C. W. (1980). Testing ... testing dataset. This effort is described in Section 3.2. 3.1. Improvements in Granger Causality User Interface Various metrics of causality are

  16. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2005-09-30

    the magnitude and phase of the reflection coefficient from a smooth water/sand interface with elastic and poroelastic models ”, J. Acoust . Soc. Am...physical model of high-frequency acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water...and additional laboratory measurements in the ARL:UT sand tank, an improved model of sediment acoustics will be developed that is consistent with

  17. Regularized inversion of controlled source audio-frequency magnetotelluric data in horizontally layered transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun

    2014-04-01

    We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.

  18. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.

    PubMed

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-08-18

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.

  19. Head-disk interface nanotribology for Tbit/inch2 recording densities: near-contact and contact recording

    NASA Astrophysics Data System (ADS)

    Vakis, Antonis I.; Polycarpou, Andreas A.

    2010-06-01

    In the effort to achieve Tbit/inch2 recording densities, thermal fly-height control (TFC) nanotechnology was developed to effectively reduce the clearance (which is of the order of a few nanometres) at the head-disk interface (HDI) of hard-disk drives. In this work, we present a model of the HDI that can predict the dynamic flying and nanotribological contacting behaviour, allowing for accurate predictions and characterization of the operating regime as a function of TFC actuation. A geometric model for TFC is presented and an improved definition of contact at the interface is developed in the presence of nanoscale topographical roughness and dynamic microwaviness. A new methodology is proposed for the calculation of the nominal area of contact, which affects both near- and at-contact behaviour, while the stiffening of the air bearing force with TFC actuation is also accounted for. Slider behaviour is analysed by quantifying the approach, jump-to-contact, lubricant and solid contact regimes of operation and identifying the critical and optimum TFC actuations. The feasibility of near-contact, light molecularly thin lubricant contact versus solid contact recording is explored under the effect of the interfacial forces and stresses present at the HDI. The clearance and the state of vibrations are analysed and design guidelines are proposed for improved performance.

  20. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  1. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  2. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  3. A Proposal of Monitoring and Forecasting Method for Crustal Activity in and around Japan with 3-dimensional Heterogeneous Medium Using a Large-scale High-fidelity Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.

    2017-12-01

    Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.

  4. High-Frequency Sound Interaction with Ocean Sediments and with Objects in the Vicinity of the Water/Sediment Interface and Mid-Frequency Shallow Water Propagation and Scattering

    DTIC Science & Technology

    2007-09-30

    combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot) model . Addressing...TERM GOALS 1. Development of accurate models for acoustic scattering from, penetration into, and propagation within shallow water ocean sediments...2. Development of reliable methods for modeling acoustic detection of buried objects at subcritical grazing angles. 3. Improving our

  5. The Kinematic Learning Model using Video and Interfaces Analysis

    NASA Astrophysics Data System (ADS)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  6. Using Stan for Item Response Theory Models

    ERIC Educational Resources Information Center

    Ames, Allison J.; Au, Chi Hang

    2018-01-01

    Stan is a flexible probabilistic programming language providing full Bayesian inference through Hamiltonian Monte Carlo algorithms. The benefits of Hamiltonian Monte Carlo include improved efficiency and faster inference, when compared to other MCMC software implementations. Users can interface with Stan through a variety of computing…

  7. Monitoring the integrity of the cement-metal interface of total joint components in vitro using acoustic emission and ultrasound.

    PubMed

    Davies, J P; Tse, M K; Harris, W H

    1996-08-01

    Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.

  8. Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.

    PubMed

    McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin

    2011-05-01

    Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models. Published by Elsevier Ltd.

  9. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    NASA Astrophysics Data System (ADS)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an iterative modelling methodology, which ensures the consistency of stream-aquifer exchanges between the intermediate and regional scales. Finally, practical recommendations are provided for the study of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling in space the three pools of methods needed to fully understand stream-aquifer interfaces at various scales. In the MIM space, stream-aquifer interfaces that can be studied by a given approach are localised. The efficiency of the method is demonstrated with two examples. The first one proposes an upscaling framework, structured around river reaches of ~10-100 m, from the local to the watershed scale. The second example highlights the usefulness of space borne data to improve the assessment of stream-aquifer exchanges at the regional and continental scales. We conclude that further developments in modelling and field measurements have to be undertaken at the regional scale to enable a proper modelling of stream-aquifer exchanges from the local to the continental scale.

  10. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep

    The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less

  11. Radiation Tolerant Interfaces: Influence of Local Stoichiometry at the Misfit Dislocation on Radiation Damage Resistance of Metal/Oxide Interfaces

    DOE PAGES

    Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...

    2017-04-24

    The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less

  12. Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis

    PubMed Central

    Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William

    2014-01-01

    This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries. PMID:24848992

  13. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    PubMed

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  14. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.

  15. Comparison of intra-ocular pressure changes with liquid or flat applanation interfaces in a femtosecond laser platform.

    PubMed

    Williams, G P; Ang, H P; George, B L; Liu, Y C; Peh, G; Izquierdo, L; Tan, D T; Mehta, J S

    2015-10-06

    Cataract surgery is the most common surgical procedure and femtosecond laser assisted cataract surgery (FLACS) has gained increased popularity. FLACS requires the application of a suction device to stabilize the laser head and focus the laser beam accurately. This may cause a significant escalation in intra-ocular pressure (IOP), which poses potential risks for patients undergoing cataract surgery. In this study we aimed to assess the effect of the Ziemer LDV Z8 femtosecond cataract machine on IOP. We demonstrated through a porcine model that IOP was significantly higher with a flat interface but could be abrogated by reducing surgical compression and vacuum. Pressure was lower with a liquid interface, and further altering angulation of the laser arm could reduce the IOP to 36 mmHg. A pilot series in patients showed comparable pressure rises with the porcine model (30 mmHg). These strategies may improve the safety profile in patients vulnerable to high pressure when employing FLACS with the Ziemer LDV Z8.

  16. MAPA: Implementation of the Standard Interchange Format and use for analyzing lattices

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana G.; Cary, John R.

    1997-05-01

    MAPA (Modular Accelerator Physics Analysis) is an object oriented application for accelerator design and analysis with a Motif based graphical user interface. MAPA has been ported to AIX, Linux, HPUX, Solaris, and IRIX. MAPA provides an intuitive environment for accelerator study and design. The user can bring up windows for fully nonlinear analysis of accelerator lattices in any number of dimensions. The current graphical analysis methods of Lifetime plots and Surfaces of Section have been used to analyze the improved lattice designs of Wan, Cary, and Shasharina (this conference). MAPA can now read and write Standard Interchange Format (MAD) accelerator description files and it has a general graphical user interface for adding, changing, and deleting elements. MAPA's consistency checks prevent deletion of used elements and prevent creation of recursive beam lines. Plans include development of a richer set of modeling tools and the ability to invoke existing modeling codes through the MAPA interface. MAPA will be demonstrated on a Pentium 150 laptop running Linux.

  17. A comparison of optimal MIMO linear and nonlinear models for brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Kim, S.-P.; Sanchez, J. C.; Rao, Y. N.; Erdogmus, D.; Carmena, J. M.; Lebedev, M. A.; Nicolelis, M. A. L.; Principe, J. C.

    2006-06-01

    The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.

  18. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces.

    PubMed

    Kim, S-P; Sanchez, J C; Rao, Y N; Erdogmus, D; Carmena, J M; Lebedev, M A; Nicolelis, M A L; Principe, J C

    2006-06-01

    The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.

  19. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  20. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  1. Building energy simulation in real time through an open standard interface

    DOE PAGES

    Pang, Xiufeng; Nouidui, Thierry S.; Wetter, Michael; ...

    2015-10-20

    Building energy models (BEMs) are typically used for design and code compliance for new buildings and in the renovation of existing buildings to predict energy use. We present the increasing adoption of BEM as standard practice in the building industry presents an opportunity to extend the use of BEMs into construction, commissioning and operation. In 2009, the authors developed a real-time simulation framework to execute an EnergyPlus model in real time to improve building operation. This paper reports an enhancement of that real-time energy simulation framework. The previous version only works with software tools that implement the custom co-simulation interfacemore » of the Building Controls Virtual Test Bed (BCVTB), such as EnergyPlus, Dymola and TRNSYS. The new version uses an open standard interface, the Functional Mockup Interface (FMI), to provide a generic interface to any application that supports the FMI protocol. In addition, the new version utilizes the Simple Measurement and Actuation Profile (sMAP) tool as the data acquisition system to acquire, store and present data. Lastly, this paper introduces the updated architecture of the real-time simulation framework using FMI and presents proof-of-concept demonstration results which validate the new framework.« less

  2. Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth. Part 1: Analytical treatment of the axial temperature distribution

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.; Rohsenow, W. M.; Witt, A. F.

    1982-01-01

    All first order effects on the axial temperature distribution in a solidifying charge in a Bridgman-Stockbarger configuration for crystal growth are analyzed on the basis of a one dimensional model whose validity can be verified through comparison with published finite difference ana;uses of two dimensional models. The model presented includes an insulated region between axially aligned heat pipes and considers the effects of charge diameter, charge motion, thickness, and thermal conductivity of a confining crucible, thermal conductivity change at the crystal-melt interface, generation of latent heat at the interface, and finite charge length. Results are primarily given in analytical form and can be used without recourse to computer work for both improve furnace design and optimization of growth conditions in a given thermal configuration.

  3. Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.H., E-mail: Luhui.Han@tum.de; Hu, X.Y., E-mail: Xiangyu.Hu@tum.de; Adams, N.A., E-mail: Nikolaus.Adams@tum.de

    In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separationmore » approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.« less

  4. Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows

    NASA Astrophysics Data System (ADS)

    He, Zhiwei; Tian, Baolin; Zhang, Yousheng; Gao, Fujie

    2017-03-01

    The present work focuses on the simulation of immiscible compressible multi-material flows with the Mie-Grüneisen-type equation of state governed by the non-conservative five-equation model [1]. Although low-order single fluid schemes have already been adopted to provide some feasible results, the application of high-order schemes (introducing relatively small numerical dissipation) to these flows may lead to results with severe numerical oscillations. Consequently, attempts to apply any interface-sharpening techniques to stop the progressively more severe smearing interfaces for a longer simulation time may result in an overshoot increase and in some cases convergence to a non-physical solution occurs. This study proposes a characteristic-based interface-sharpening algorithm for performing high-order simulations of such flows by deriving a pressure-equilibrium-consistent intermediate state (augmented with approximations of pressure derivatives) for local characteristic variable reconstruction and constructing a general framework for interface sharpening. First, by imposing a weak form of the jump condition for the non-conservative five-equation model, we analytically derive an intermediate state with pressure derivatives treated as additional parameters of the linearization procedure. Based on this intermediate state, any well-established high-order reconstruction technique can be employed to provide the state at each cell edge. Second, by designing another state with only different reconstructed values of the interface function at each cell edge, the advection term in the equation of the interface function is discretized twice using any common algorithm. The difference between the two discretizations is employed consistently for interface compression, yielding a general framework for interface sharpening. Coupled with the fifth-order improved accurate monotonicity-preserving scheme [2] for local characteristic variable reconstruction and the tangent of hyperbola for the interface capturing scheme [3] for designing other reconstructed values of the interface function, the present algorithm is examined using some typical tests, with the Mie-Grüneisen-type equation of state used for characterizing the materials of interest in both one- and two-dimensional spaces. The results of these tests verify the effectiveness of the present algorithm: essentially non-oscillatory and interface-sharpened results are obtained.

  5. Fusion with Language Models Improves Spelling Accuracy for ERP-based Brain Computer Interface Spellers

    PubMed Central

    Orhan, Umut; Erdogmus, Deniz; Roark, Brian; Purwar, Shalini; Hild, Kenneth E.; Oken, Barry; Nezamfar, Hooman; Fried-Oken, Melanie

    2013-01-01

    Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system. PMID:22255652

  6. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Mitchell, Travis; Leonardi, Christopher; Bolster, Diogo

    2017-11-01

    Based on phase-field theory, we introduce a robust lattice-Boltzmann equation for modeling immiscible multiphase flows at large density and viscosity contrasts. Our approach is built by modifying the method proposed by Zu and He [Phys. Rev. E 87, 043301 (2013), 10.1103/PhysRevE.87.043301] in such a way as to improve efficiency and numerical stability. In particular, we employ a different interface-tracking equation based on the so-called conservative phase-field model, a simplified equilibrium distribution that decouples pressure and velocity calculations, and a local scheme based on the hydrodynamic distribution functions for calculation of the stress tensor. In addition to two distribution functions for interface tracking and recovery of hydrodynamic properties, the only nonlocal variable in the proposed model is the phase field. Moreover, within our framework there is no need to use biased or mixed difference stencils for numerical stability and accuracy at high density ratios. This not only simplifies the implementation and efficiency of the model, but also leads to a model that is better suited to parallel implementation on distributed-memory machines. Several benchmark cases are considered to assess the efficacy of the proposed model, including the layered Poiseuille flow in a rectangular channel, Rayleigh-Taylor instability, and the rise of a Taylor bubble in a duct. The numerical results are in good agreement with available numerical and experimental data.

  7. Application of advanced remote sensing techniques to improve modeling estuary water quality

    USDA-ARS?s Scientific Manuscript database

    Estuaries, the interface between terrestrial and coastal waters are an important component of complex and dynamic coastal watersheds. They are usually characterized by abrupt chemical gradients and complex dynamics, which can result in major transformations in the amount, chemical nature and timing ...

  8. Assessing performance of an Electronic Health Record (EHR) using Cognitive Task Analysis.

    PubMed

    Saitwal, Himali; Feng, Xuan; Walji, Muhammad; Patel, Vimla; Zhang, Jiajie

    2010-07-01

    Many Electronic Health Record (EHR) systems fail to provide user-friendly interfaces due to the lack of systematic consideration of human-centered computing issues. Such interfaces can be improved to provide easy to use, easy to learn, and error-resistant EHR systems to the users. To evaluate the usability of an EHR system and suggest areas of improvement in the user interface. The user interface of the AHLTA (Armed Forces Health Longitudinal Technology Application) was analyzed using the Cognitive Task Analysis (CTA) method called GOMS (Goals, Operators, Methods, and Selection rules) and an associated technique called KLM (Keystroke Level Model). The GOMS method was used to evaluate the AHLTA user interface by classifying each step of a given task into Mental (Internal) or Physical (External) operators. This analysis was performed by two analysts independently and the inter-rater reliability was computed to verify the reliability of the GOMS method. Further evaluation was performed using KLM to estimate the execution time required to perform the given task through application of its standard set of operators. The results are based on the analysis of 14 prototypical tasks performed by AHLTA users. The results show that on average a user needs to go through 106 steps to complete a task. To perform all 14 tasks, they would spend about 22 min (independent of system response time) for data entry, of which 11 min are spent on more effortful mental operators. The inter-rater reliability analysis performed for all 14 tasks was 0.8 (kappa), indicating good reliability of the method. This paper empirically reveals and identifies the following finding related to the performance of AHLTA: (1) large number of average total steps to complete common tasks, (2) high average execution time and (3) large percentage of mental operators. The user interface can be improved by reducing (a) the total number of steps and (b) the percentage of mental effort, required for the tasks. 2010 Elsevier Ireland Ltd. All rights reserved.

  9. The importance of fluctuations in fluid mixing.

    PubMed

    Kadau, Kai; Rosenblatt, Charles; Barber, John L; Germann, Timothy C; Huang, Zhibin; Carlès, Pierre; Alder, Berni J

    2007-05-08

    A ubiquitous example of fluid mixing is the Rayleigh-Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations.

  10. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch

    2010-12-01

    Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

  11. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    PubMed

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  12. Numerical study of metal oxide hetero-junction solar cells with defects and interface states

    NASA Astrophysics Data System (ADS)

    Zhu, Le; Shao, Guosheng; Luo, J. K.

    2013-05-01

    Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.

  13. The wave-based substructuring approach for the efficient description of interface dynamics in substructuring

    NASA Astrophysics Data System (ADS)

    Donders, S.; Pluymers, B.; Ragnarsson, P.; Hadjit, R.; Desmet, W.

    2010-04-01

    In the vehicle design process, design decisions are more and more based on virtual prototypes. Due to competitive and regulatory pressure, vehicle manufacturers are forced to improve product quality, to reduce time-to-market and to launch an increasing number of design variants on the global market. To speed up the design iteration process, substructuring and component mode synthesis (CMS) methods are commonly used, involving the analysis of substructure models and the synthesis of the substructure analysis results. Substructuring and CMS enable efficient decentralized collaboration across departments and allow to benefit from the availability of parallel computing environments. However, traditional CMS methods become prohibitively inefficient when substructures are coupled along large interfaces, i.e. with a large number of degrees of freedom (DOFs) at the interface between substructures. The reason is that the analysis of substructures involves the calculation of a number of enrichment vectors, one for each interface degree of freedom (DOF). Since large interfaces are common in vehicles (e.g. the continuous line connections to connect the body with the windshield, roof or floor), this interface bottleneck poses a clear limitation in the vehicle noise, vibration and harshness (NVH) design process. Therefore there is a need to describe the interface dynamics more efficiently. This paper presents a wave-based substructuring (WBS) approach, which allows reducing the interface representation between substructures in an assembly by expressing the interface DOFs in terms of a limited set of basis functions ("waves"). As the number of basis functions can be much lower than the number of interface DOFs, this greatly facilitates the substructure analysis procedure and results in faster design predictions. The waves are calculated once from a full nominal assembly analysis, but these nominal waves can be re-used for the assembly of modified components. The WBS approach thus enables efficient structural modification predictions of the global modes, so that efficient vibro-acoustic design modification, optimization and robust design become possible. The results show that wave-based substructuring offers a clear benefit for vehicle design modifications, by improving both the speed of component reduction processes and the efficiency and accuracy of design iteration predictions, as compared to conventional substructuring approaches.

  14. Improved 3-D turbomachinery CFD algorithm

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1988-01-01

    The building blocks of a computer algorithm developed for the time-accurate flow analysis of rotating machines are described. The flow model is a finite volume method utilizing a high resolution approximate Riemann solver for interface flux definitions. This block LU implicit numerical scheme possesses apparent unconditional stability. Multi-block composite gridding is used to orderly partition the field into a specified arrangement. Block interfaces, including dynamic interfaces, are treated such as to mimic interior block communication. Special attention is given to the reduction of in-core memory requirements by placing the burden on secondary storage media. Broad applicability is implied, although the results presented are restricted to that of an even blade count configuration. Several other configurations are presently under investigation, the results of which will appear in subsequent publications.

  15. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface

    PubMed Central

    Lee, A J; Cunningham, A P; Kuchenbaecker, K B; Mavaddat, N; Easton, D F; Antoniou, A C

    2014-01-01

    Background: The Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) is a risk prediction model that is used to compute probabilities of carrying mutations in the high-risk breast and ovarian cancer susceptibility genes BRCA1 and BRCA2, and to estimate the future risks of developing breast or ovarian cancer. In this paper, we describe updates to the BOADICEA model that extend its capabilities, make it easier to use in a clinical setting and yield more accurate predictions. Methods: We describe: (1) updates to the statistical model to include cancer incidences from multiple populations; (2) updates to the distributions of tumour pathology characteristics using new data on BRCA1 and BRCA2 mutation carriers and women with breast cancer from the general population; (3) improvements to the computational efficiency of the algorithm so that risk calculations now run substantially faster; and (4) updates to the model's web interface to accommodate these new features and to make it easier to use in a clinical setting. Results: We present results derived using the updated model, and demonstrate that the changes have a significant impact on risk predictions. Conclusion: All updates have been implemented in a new version of the BOADICEA web interface that is now available for general use: http://ccge.medschl.cam.ac.uk/boadicea/. PMID:24346285

  16. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE PAGES

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    2015-09-26

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  17. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  18. RESULTS OF QA/QC TESTING OF EPA BENCHMARK DOSE SOFTWARE VERSION 1.2

    EPA Science Inventory

    EPA is developing benchmark dose software (BMDS) to support cancer and non-cancer dose-response assessments. Following the recent public review of BMDS version 1.1b, EPA developed a Hill model for evaluating continuous data, and improved the user interface and Multistage, Polyno...

  19. Driving Innovation in Health Systems through an Apps-Based Information Economy

    PubMed Central

    Mandel, Joshua C.; Kohane, Isaac S.

    2015-01-01

    Healthcare data will soon be accessible using standard, open software interfaces. Here, we describe how these interfaces could lead to improved healthcare by facilitating the development of software applications (apps) that can be shared across physicians, health care organizations, translational researchers, and patients. We provide recommendations for next steps and resources for the myriad stakeholders. If challenges related to efficacy, accuracy, utility, safety, privacy, and security can be met, this emerging apps model for health information technology will open up the point of care for innovation and connect patients at home to their healthcare data. PMID:26339683

  20. A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package.

    PubMed

    Lan, Hongzhi; Updegrove, Adam; Wilson, Nathan M; Maher, Gabriel D; Shadden, Shawn C; Marsden, Alison L

    2018-02-01

    Patient-specific simulation plays an important role in cardiovascular disease research, diagnosis, surgical planning and medical device design, as well as education in cardiovascular biomechanics. simvascular is an open-source software package encompassing an entire cardiovascular modeling and simulation pipeline from image segmentation, three-dimensional (3D) solid modeling, and mesh generation, to patient-specific simulation and analysis. SimVascular is widely used for cardiovascular basic science and clinical research as well as education, following increased adoption by users and development of a GATEWAY web portal to facilitate educational access. Initial efforts of the project focused on replacing commercial packages with open-source alternatives and adding increased functionality for multiscale modeling, fluid-structure interaction (FSI), and solid modeling operations. In this paper, we introduce a major SimVascular (SV) release that includes a new graphical user interface (GUI) designed to improve user experience. Additional improvements include enhanced data/project management, interactive tools to facilitate user interaction, new boundary condition (BC) functionality, plug-in mechanism to increase modularity, a new 3D segmentation tool, and new computer-aided design (CAD)-based solid modeling capabilities. Here, we focus on major changes to the software platform and outline features added in this new release. We also briefly describe our recent experiences using SimVascular in the classroom for bioengineering education.

  1. Evolution in the design of a low sheath-flow interface for CE-MS and application to biological samples.

    PubMed

    González-Ruiz, Víctor; Codesido, Santiago; Rudaz, Serge; Schappler, Julie

    2018-03-01

    Although several interfaces for CE-MS hyphenation are commercially available, the development of new versatile, simple and yet efficient and sensitive alternatives remains an important field of research. In a previous work, a simple low sheath-flow interface was developed from inexpensive parts. This interface features a design easy to build, maintain, and adapt to particular needs. The present work introduces an improved design of the previous interface. By reducing the diameter of the separation capillary and the emitter, a smaller Taylor cone is spontaneously formed, minimizing the zone dispersion while the analytes go through the interface and leading to less peak broadening associated to the ESI process. Numerical modeling allowed studying the mixing and diffusion processes taking place in the Taylor cone. The analytical performance of this new interface was tested with pharmaceutically relevant molecules and endogenous metabolites. The interface was eventually applied to the analysis of neural cell culture samples, allowing the identification of a panel of neurotransmission-related molecules. An excellent migration time repeatability was obtained (intra-day RSD <0.5% for most compounds, and <3.0% for inter-day precision). Most metabolites showed S/N ratios >10 with an injected volume of 6.7 nL of biological extract. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    USGS Publications Warehouse

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  3. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  4. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi

    2017-04-01

    Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.

  5. On the origin of the electrostatic potential difference at a liquid-vacuum interface.

    PubMed

    Harder, Edward; Roux, Benoît

    2008-12-21

    The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.

  6. PyCoTools: A Python Toolbox for COPASI.

    PubMed

    Welsh, Ciaran M; Fullard, Nicola; Proctor, Carole J; Martinez-Guimera, Alvaro; Isfort, Robert J; Bascom, Charles C; Tasseff, Ryan; Przyborski, Stefan A; Shanley, Daryl P

    2018-05-22

    COPASI is an open source software package for constructing, simulating and analysing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional 'composite' tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyse the parameter estimations and propose strategies for model improvement. PyCoTools can be downloaded from the Python Package Index (PyPI) using the command 'pip install pycotools' or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. Supplementary data are available at Bioinformatics.

  7. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  8. Improved dielectric functions in metallic films obtained via template stripping

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  9. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    PubMed

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  10. Simulations and experiments of ejecta generation in twice-shocked metals

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm

    2016-11-01

    Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  11. Ultrasound power deposition model for the chest wall.

    PubMed

    Moros, E G; Fan, X; Straube, W L

    1999-10-01

    An ultrasound power deposition model for the chest wall was developed based on secondary-source and plane-wave theories. The anatomic model consisted of a muscle-ribs-lung volume, accounted for wave reflection and refraction at muscle-rib and muscle-lung interfaces, and computed power deposition due to the propagation of both reflected and transmitted waves. Lung tissue was assumed to be air-equivalent. The parts of the theory and numerical program dealing with reflection were experimentally evaluated by comparing simulations with acoustic field measurements using several pertinent reflecting materials. Satisfactory agreement was found. A series of simulations were performed to study the influence of angle of incidence of the beam, frequency, and thickness of muscle tissue overlying the ribs on power deposition distributions that may be expected during superficial ultrasound (US) hyperthermia of chest wall recurrences. Both reflection at major interfaces and attenuation in bone were the determining factors affecting power deposition, the dominance of one vs. the other depending on the angle of incidence of the beam. Sufficient energy is reflected by these interfaces to suggest that improvements in thermal doses to overlying tissues are possible with adequate manipulation of the sound field (advances in ultrasonic heating devices) and prospective treatment planning.

  12. Impact of negative capacitance effect on Germanium Double Gate pFET for enhanced immunity to interface trap charges

    NASA Astrophysics Data System (ADS)

    Bansal, Monika; Kaur, Harsupreet

    2018-05-01

    In this work, a comprehensive drain current model has been developed for long channel Negative Capacitance Germanium Double Gate p-type Field Effect Transistor (NCGe-DG-pFET) by using 1-D Poisson's equation and Landau-Khalatnikov equation. The model takes into account interface trap charges and by using the derived model various parameters such as surface potential, gain, gate capacitance, subthreshold swing, drain current, transconductance, output conductance and Ion/Ioff ratio have been obtained and it is demonstrated that by incorporating ferroelectric material as gate insulator with Ge-channel, subthreshold swing values less than 60 mV/dec can be achieved along with improved gate controllability and current drivability. Further, to critically analyze the advantages offered by NCGe-DG-pFET, a detailed comparison has been done with Germanium Double Gate p-type Field Effect Transistor (Ge-DG-pFET) and it is shown that NCGe-DG-pFET exhibits high gain, enhanced transport efficiency in channel, very less or negligible degradation in device characteristics due to interface trap charges as compared to Ge-DG-pFET. The analytical results so obtained show good agreement with simulated results obtained from Silvaco ATLAS TCAD tool.

  13. Modeling of single film bubble and numerical study of the plateau structure in foam system

    NASA Astrophysics Data System (ADS)

    Sun, Zhong-guo; Ni, Ni; Sun, Yi-jie; Xi, Guang

    2018-02-01

    The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit (MPS) method, a single-film double-gas-liquid-interface surface tension (SDST) model is established for the single-film bubble, which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film. In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.

  14. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks

    PubMed Central

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments. PMID:28293163

  15. Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    PubMed Central

    Nowak, Karl; Mix, Eilhard; Gimsa, Jan; Strauss, Ulf; Sriperumbudur, Kiran Kumar; Benecke, Reiner; Gimsa, Ulrike

    2011-01-01

    Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation. PMID:21603182

  16. Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Xiang, Enming; Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dong, Hao; Ren, Zhengyong

    2018-06-01

    This paper develops an efficient hierarchical trans-dimensional (trans-D) Bayesian algorithm to invert magnetotelluric (MT) data for subsurface geoelectrical structure, with unknown geophysical model parameterization (the number of conductivity-layer interfaces) and data-error models parameterized by an auto-regressive (AR) process to account for potential error correlations. The reversible-jump Markov-chain Monte Carlo algorithm, which adds/removes interfaces and AR parameters in birth/death steps, is applied to sample the trans-D posterior probability density for model parameterization, model parameters, error variance and AR parameters, accounting for the uncertainties of model dimension and data-error statistics in the uncertainty estimates of the conductivity profile. To provide efficient sampling over the multiple subspaces of different dimensions, advanced proposal schemes are applied. Parameter perturbations are carried out in principal-component space, defined by eigen-decomposition of the unit-lag model covariance matrix, to minimize the effect of inter-parameter correlations and provide effective perturbation directions and length scales. Parameters of new layers in birth steps are proposed from the prior, instead of focused distributions centred at existing values, to improve birth acceptance rates. Parallel tempering, based on a series of parallel interacting Markov chains with successively relaxed likelihoods, is applied to improve chain mixing over model dimensions. The trans-D inversion is applied in a simulation study to examine the resolution of model structure according to the data information content. The inversion is also applied to a measured MT data set from south-central Australia.

  17. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  18. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    PubMed

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  19. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  20. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  1. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  2. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect.

    PubMed

    Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang

    2016-01-01

    Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.

  3. Cinfony – combining Open Source cheminformatics toolkits behind a common interface

    PubMed Central

    O'Boyle, Noel M; Hutchison, Geoffrey R

    2008-01-01

    Background Open Source cheminformatics toolkits such as OpenBabel, the CDK and the RDKit share the same core functionality but support different sets of file formats and forcefields, and calculate different fingerprints and descriptors. Despite their complementary features, using these toolkits in the same program is difficult as they are implemented in different languages (C++ versus Java), have different underlying chemical models and have different application programming interfaces (APIs). Results We describe Cinfony, a Python module that presents a common interface to all three of these toolkits, allowing the user to easily combine methods and results from any of the toolkits. In general, the run time of the Cinfony modules is almost as fast as accessing the underlying toolkits directly from C++ or Java, but Cinfony makes it much easier to carry out common tasks in cheminformatics such as reading file formats and calculating descriptors. Conclusion By providing a simplified interface and improving interoperability, Cinfony makes it easy to combine complementary features of OpenBabel, the CDK and the RDKit. PMID:19055766

  4. Electrical in-situ characterisation of interface stabilised organic thin-film transistors

    PubMed Central

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-01-01

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. PMID:26457122

  5. Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.

    PubMed

    Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas

    2016-03-08

    Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.

  6. Rapid Prototyping of Hydrologic Model Interfaces with IPython

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.

    2014-12-01

    A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.

  7. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    PubMed

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  8. Interface for the documentation and compilation of a library of computer models in physiology.

    PubMed Central

    Summers, R. L.; Montani, J. P.

    1994-01-01

    A software interface for the documentation and compilation of a library of computer models in physiology was developed. The interface is an interactive program built within a word processing template in order to provide ease and flexibility of documentation. A model editor within the interface directs the model builder as to standardized requirements for incorporating models into the library and provides the user with an index to the levels of documentation. The interface and accompanying library are intended to facilitate model development, preservation and distribution and will be available for public use. PMID:7950046

  9. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    PubMed

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  10. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

    PubMed Central

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170

  11. Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.

    2012-06-06

    We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less

  12. Digital model for X-ray diffraction with application to composition and strain determination in strained InAs/GaSb superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min

    2014-07-07

    We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less

  13. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction.

    PubMed

    Han, Fei; Zhang, Peng; Sun, Yaying; Lin, Chao; Zhao, Peng; Chen, Jiwu

    2015-01-01

    Hamstring tendon autograft is a routine graft for anterior cruciate ligament (ACL) reconstruction. However, ways of improving the healing between the tendon and bone is often overlooked in clinical practice. This issue can be addressed by using a biomimetic scaffold. Herein, a biomimetic nanofiber membrane of polycaprolactone/nanohydroxyapatite/collagen (PCL/nHAp/Col) is fabricated that mimics the composition of native bone tissue for promoting tendon-bone healing. This membrane has good cytocompatibility, allowing for osteoblast cell adhesion and growth and bone formation. As a result, MC3T3 cells reveal a higher mineralization level in PCL/nHAp/Col membrane compared with PCL membrane alone. Further in vivo studies in ACL reconstruction in a rabbit model shows that PCL/nHAp/Col-wrapped tendon may afford superior tissue integration to nonwrapped tendon in the interface between the tendon and host bone as well as improved mechanical strength. This study shows that PCL/nHAp/Col nanofiber membrane wrapping of autologous tendon is effective for improving tendon healing with host bone in ACL reconstruction.

  14. Organic molecules on metal and oxide semiconductor substrates: Adsorption behavior and electronic energy level alignment

    NASA Astrophysics Data System (ADS)

    Ruggieri, Charles M.

    Modern devices such as organic light emitting diodes use organic/oxide and organic/metal interfaces for crucial processes such as charge injection and charge transfer. Understanding fundamental physical processes occurring at these interfaces is essential to improving device performance. The ultimate goal of studying such interfaces is to form a predictive model of interfacial interactions, which has not yet been established. To this end, this thesis focuses on obtaining a better understanding of fundamental physical interactions governing molecular self-assembly and electronic energy level alignment at organic/metal and organic/oxide interfaces. This is accomplished by investigating both the molecular adsorption geometry using scanning tunneling microscopy, as well as the electronic structure at the interface using direct and inverse photoemission spectroscopy, and analyzing the results in the context of first principles electronic structure calculations. First, we study the adsorption geometry of zinc tetraphenylporphyrin (ZnTPP) molecules on three noble metal surfaces: Au(111), Ag(111), and Ag(100). These surfaces were chosen to systematically compare the molecular self-assembly and adsorption behavior on two metals of the same surface symmetry and two surface symmetries of one metal. From this investigation, we improve the understanding of self-assembly at organic/metal interfaces and the relative strengths of competing intermolecular and molecule-substrate interactions that influence molecular adsorption geometry. We then investigate the electronic structure of the ZnTPP/Au(111), Ag(111), and Ag(100) interfaces as examples of weakly-interacting systems. We compare these cases to ZnTPP on TiO2(110), a wide-bandgap oxide semiconductor, and explain the intermolecular and molecule-substrate interactions that determine the electronic energy level alignment at the interface. Finally we study tetracyanoquinodimethane (TCNQ), a strong electron acceptor, on TiO2(110), which exhibits chemical hybridization accompanied by molecular distortion, as well as extreme charge transfer resulting in the development of a space charge layer in the oxide. Thus, we present a broad experimental and theoretical perspective on the study of organic/metal and organic/oxide interfaces, elucidating fundamental physical interactions that govern molecular organization and energy level alignment.

  15. The application of reduced-processing decision support systems to facilitate the acquisition of decision-making skills.

    PubMed

    Perry, Nathan C; Wiggins, Mark W; Childs, Merilyn; Fogarty, Gerard

    2013-06-01

    The study was designed to examine whether the availability of reduced-processing decision support system interfaces could improve the decision making of inexperienced personnel in the context of Although research into reduced-processing decision support systems has demonstrated benefits in minimizing cognitive load, these benefits have not typically translated into direct improvements in decision accuracy because of the tendency for inexperienced personnel to focus on less-critical information. The authors investigated whether reduced-processing interfaces that direct users' attention toward the most critical cues for decision making can produce improvements in decision-making performance. Novice participants made incident command-related decisions in experimental conditions that differed according to the amount of information that was available within the interface, the level of control that they could exert over the presentation of information, and whether they had received decision training. The results revealed that despite receiving training, participants improved in decision accuracy only when they were provided with an interface that restricted information access to the most critical cues. It was concluded that an interface that restricts information access to only the most critical cues in the scenario can facilitate improvements in decision performance. Decision support system interfaces that encourage the processing of the most critical cues have the potential to improve the accuracy and timeliness of decisions made by inexperienced personnel.

  16. Fractal modeling of fluidic leakage through metal sealing surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  17. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.

    PubMed

    Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L

    2017-08-23

    Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.

  18. Towards Real-Time Pilot-in-the-Loop Simulation of Rotorcraft With Fully-Coupled CFD Solutions of Rotor / Terrain Interactions

    NASA Astrophysics Data System (ADS)

    Oruc, Ilker

    This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).

  19. Ci4SeR--curation interface for semantic resources--evaluation with adverse drug reactions.

    PubMed

    Souvignet, Julien; Asfari, Hadyl; Declerck, Gunnar; Lardon, Jérémy; Trombert-Paviot, Béatrice; Jaulent, Marie-Christine; Bousquet, Cédric

    2014-01-01

    Evaluation and validation have become a crucial problem for the development of semantic resources. We developed Ci4SeR, a Graphical User Interface to optimize the curation work (not taking into account structural aspects), suitable for any type of resource with lightweight description logic. We tested it on OntoADR, an ontology of adverse drug reactions. A single curator has reviewed 326 terms (1020 axioms) in an estimated time of 120 hours (2.71 concepts and 8.5 axioms reviewed per hour) and added 1874 new axioms (15.6 axioms per hour). Compared with previous manual endeavours, the interface allows increasing the speed-rate of reviewed concepts by 68% and axiom addition by 486%. A wider use of Ci4SeR would help semantic resources curation and improve completeness of knowledge modelling.

  20. Improving the Simulation of Sea Ice Lead Conditions and Turbulent Fluxes Using RGPS Products and Merged RADARSAT, AVHRR and MODIS Data

    NASA Technical Reports Server (NTRS)

    Maslanik, James A.

    2004-01-01

    The importance of sea ice leads in the ice-ocean-atmosphere system lies in the fact that each of the boxes in the 'surface processes' interface in this diagram is closely linked to lead conditions. For example, heat, moisture and salt exchange between the Ocean and atmosphere within the ice pack occur nearly entirely through leads. The shear, divergence and convergence associated with lead formation and closure alter surface and basal roughness and topography, which in turn affects momentum transfer in the atmosphere and ocean boundary layers, and modifies the accumulation of snow on the ice surface, which then affects heat conduction and summertime albedo. In addition to providing openings for loss of heat and moisture fluxes to the atmosphere, leads absorb solar energy, which is used to melt ice and is transmitting to the underlying ocean. Given that leads dominate the ice-ocean interface in this manner, then it stands to reason that focusing on lead treatments within models can identify performance limitations of models and yield routes for significant improvements.

  1. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  2. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  3. Systems engineering interfaces: A model based approach

    NASA Astrophysics Data System (ADS)

    Fosse, E.; Delp, C. L.

    The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.

  4. Simulation of patch and slot antennas using FEM with prismatic elements and investigations of artificial absorber mesh termination schemes

    NASA Technical Reports Server (NTRS)

    Gong, J.; Ozdemir, T.; Volakis, J; Nurnberger, M.

    1995-01-01

    Year 1 progress can be characterized with four major achievements which are crucial toward the development of robust, easy to use antenna analysis code on doubly conformal platforms. (1) A new FEM code was developed using prismatic meshes. This code is based on a new edge based distorted prism and is particularly attractive for growing meshes associated with printed slot and patch antennas on doubly conformal platforms. It is anticipated that this technology will lead to interactive, simple to use codes for a large class of antenna geometries. Moreover, the codes can be expanded to include modeling of the circuit characteristics. An attached report describes the theory and validation of the new prismatic code using reference calculations and measured data collected at the NASA Langley facilities. The agreement between the measured and calculated data is impressive even for the coated patch configuration. (2) A scheme was developed for improved feed modeling in the context of FEM. A new approach based on the voltage continuity condition was devised and successfully tested in modeling coax cables and aperture fed antennas. An important aspect of this new feed modeling approach is the ability to completely separate the feed and antenna mesh regions. In this manner, different elements can be used in each of the regions leading to substantially improved accuracy and meshing simplicity. (3) A most important development this year has been the introduction of the perfectly matched interface (PMI) layer for truncating finite element meshes. So far the robust boundary integral method has been used for truncating the finite element meshes. However, this approach is not suitable for antennas on nonplanar platforms. The PMI layer is a lossy anisotropic absorber with zero reflection at its interface. (4) We were able to interface our antenna code FEMA_CYL (for antennas on cylindrical platforms) with a standard high frequency code. This interface was achieved by first generating equivalent magnetic currents across the antenna aperture using the FEM code. These currents were employed as the sources in the high frequency code.

  5. Speech-generating devices: effectiveness of interface design-a comparative study of autism spectrum disorders.

    PubMed

    Chen, Chien-Hsu; Wang, Chuan-Po; Lee, I-Jui; Su, Chris Chun-Chin

    2016-01-01

    We analyzed the efficacy of the interface design of speech generating devices on three non-verbal adolescents with autism spectrum disorder (ASD), in hopes of improving their on-campus communication and cognitive disability. The intervention program was created based on their social and communication needs in school. Two operating interfaces were designed and compared: the Hierarchical Relating Menu and the Pie Abbreviation-Expansion Menu. The experiment used the ABCACB multiple-treatment reversal design. The test items included: (1) accuracy of operating identification; (2) interface operation in response to questions; (3) degree of independent completion. Each of these three items improved with both intervention interfaces. The children were able to operate the interfaces skillfully and respond to questions accurately, which evidenced the effectiveness of the interfaces. We conclude that both interfaces are efficacious enough to help nonverbal children with ASD at different levels.

  6. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  7. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A user-friendly mathematical modelling web interface to assist local decision making in the fight against drug-resistant tuberculosis.

    PubMed

    Ragonnet, Romain; Trauer, James M; Denholm, Justin T; Marais, Ben J; McBryde, Emma S

    2017-05-30

    Multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB) represent an important challenge for global tuberculosis (TB) control. The high rates of MDR/RR-TB observed among re-treatment cases can arise from diverse pathways: de novo amplification during initial treatment, inappropriate treatment of undiagnosed MDR/RR-TB, relapse despite appropriate treatment, or reinfection with MDR/RR-TB. Mathematical modelling allows quantification of the contribution made by these pathways in different settings. This information provides valuable insights for TB policy-makers, allowing better contextualised solutions. However, mathematical modelling outputs need to consider local data and be easily accessible to decision makers in order to improve their usefulness. We present a user-friendly web-based modelling interface, which can be used by people without technical knowledge. Users can input their own parameter values and produce estimates for their specific setting. This innovative tool provides easy access to mathematical modelling outputs that are highly relevant to national TB control programs. In future, the same approach could be applied to a variety of modelling applications, enhancing local decision making.

  9. Water molecules in the antibody-antigen interface of the structure of the Fab HyHEL-5-lysozyme complex at 1.7 A resolution: comparison with results from isothermal titration calorimetry.

    PubMed

    Cohen, Gerson H; Silverton, Enid W; Padlan, Eduardo A; Dyda, Fred; Wibbenmeyer, Jamie A; Willson, Richard C; Davies, David R

    2005-05-01

    The structure of the complex between hen egg-white lysozyme and the Fab HyHEL-5 at 2.7 A resolution has previously been reported [Cohen et al. (1996), Acta Cryst. D52, 315-326]. With the availability of recombinant Fab, the X-ray structure of the complex has been re-evaluated at 1.7 A resolution. The refined structure has yielded a detailed picture of the Fab-lysozyme interface, showing the high complementarity of the protein surfaces as well as several water molecules within the interface that complete the good fit. The model of the full complex has improved significantly, yielding an R(work) of 19.5%. With this model, the structural results can be compared with the results of isothermal titration calorimetry. An attempt has been made to estimate the changes in bound waters that accompany complex formation and the difficulties inherent in using the crystal structures to provide the information necessary to make this calculation are discussed.

  10. Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, J. A. (Principal Investigator); Rosenthal, A.; May, L. N., Jr.; Bauman, R. H.; Gosselink, J. G.

    1985-01-01

    The purpose of the project is to refine and validate a probabilistic spatial computer model through the analyses of thematic mapper imagery. The model is designed to determine how the interface between marshland and water changes as marshland is converted to water in a disintegrating marsh. Coastal marshland in Louisiana is disintegrating at the rate of approximately 40 sq mi a year, and an evaluation of the potential impact of this loss on the landings of estuarine-dependent fisheries is needed by fisheries managers. Understanding how marshland-water interface changes as coastal marshland is lost is essential to the process of evaluating fisheries effects, because several studies suggest that the production of estuarine-dependent fish and shellfish may be more closely related to the interface between marshland and water than to acreage of marshland. The need to address this practical problem has provided an opportunity to apply some scientifically interesting new techniques to the analyses of satellite imagery. Progress with the development of these techniques is the subject of this report.

  11. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Vincent

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. Themore » chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.« less

  12. Spiral interface: A reinforcing mechanism for laminated composite materials learned from nature

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Guo, Zhenbin; Song, Zhaoqiang; Yao, Haimin

    2017-12-01

    Helical structures are ubiquitous in nature at length scales of a wide range. In this paper, we studied a helical architecture called microscopic screw dislocation (μ-SD), which is prevalently present in biological laminated composites such as shells of mollusks P. placenta and nacre of abalone. Mechanical characterization indicated that μ-SDs can greatly enhance resistance to scratching. To shed light on the underlying reinforcing mechanisms, we systematically investigated the mechanical behaviors of μ-SD using theoretical modeling in combination with finite element simulation. Our analysis on an individual μ-SD showed that the failure of a μ-SD under tension involves the delamination of the prolonged spiral interface, giving rise to much higher toughness compared to those of the planar counterpart. The corporation of multiple μ-SDs was further investigated by analyzing the effect of μ-SD density on the mechanical reinforcement. It was found that higher areal density of μ-SD would lead to more improvement in toughness. However, the operation of such reinforcing mechanism of μ-SD requires proclivity of cracking along the spiral interface, which is not spontaneous but conditional. Fracture mechanics-based modeling indicated that the proclivity of crack propagation along the spiral interface can be ensured if the fracture toughness of the interface is less than 60% of that of the lamina material. These findings not only uncover the reinforcing mechanisms of μ-SDs in biological materials but imply a great promise of applying μ-SDs in reinforcing synthetic laminated composites.

  13. The importance of fluctuations in fluid mixing

    PubMed Central

    Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.

    2007-01-01

    A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811

  14. Ultrasonic transmission at solid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Wadley, Haydn N. G.; Queheillalt, Douglas T.; Lu, Yichi

    1996-11-01

    New non-invasive solid-liquid interface sensing technologies are a key element in the development of improved Bridman growth techniques for synthesizing single crystal semiconductor materials. Laser generated and optically detect ultrasonic techniques have the potential to satisfy this need. Using an anisotropic 3D ray tracing methodology combined with elastic constant data measured near the melting point, ultrasonic propagation in cylindrical single crystal bodies containing either a convex, flat, or concave solid-liquid interface has been simulated. Ray paths, wavefronts and the time-of-flight (TOF) of rays that travel from a source to an arbitrarily positioned receiver have all been calculated. Experimentally measured TOF data have been collected using laser generated, optically detected ultrasound on model systems with independently known interface shapes. Both numerically simulated and experimental data have shown that the solidification region can be easily identified from transmission TOF measurements because the velocity of the liquid is much smaller than that of the solid. Since convex and concave solid-liquid interfaces result in distinctively different TOF data profiles, the interface shape can also be readily determined from the TOF data. When TOF data collected in the diametral plane is used in conjunction with a nonlinear least squares algorithm, the interface geometry has been successfully reconstructed and ultrasonic velocities of both the solid and liquid obtained with reconstruction errors less than 5 percent.

  15. A data colocation grid framework for big data medical image processing: backend design

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.

    2018-03-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop and HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.

  16. A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design.

    PubMed

    Bao, Shunxing; Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A

    2018-03-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework's performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available.

  17. A Data Colocation Grid Framework for Big Data Medical Image Processing: Backend Design

    PubMed Central

    Huo, Yuankai; Parvathaneni, Prasanna; Plassard, Andrew J.; Bermudez, Camilo; Yao, Yuang; Lyu, Ilwoo; Gokhale, Aniruddha; Landman, Bennett A.

    2018-01-01

    When processing large medical imaging studies, adopting high performance grid computing resources rapidly becomes important. We recently presented a "medical image processing-as-a-service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase for data colocation by moving computation close to medical image storage. However, the framework has not yet proven to be easy to use in a heterogeneous hardware environment. Furthermore, the system has not yet validated when considering variety of multi-level analysis in medical imaging. Our target design criteria are (1) improving the framework’s performance in a heterogeneous cluster, (2) performing population based summary statistics on large datasets, and (3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic backend interface application program interface (API) design for Hadoop & HBase for Medical Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved from a university secure, shared web database and used to empirically access an in-house grid with 224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed: (1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces 8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme improves MapReduce computation with 7 fold reduction of wall time compare with a naïve scheme when datasets are relative small. The source code and interfaces have been made publicly available. PMID:29887668

  18. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations

    NASA Astrophysics Data System (ADS)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.

    2015-03-01

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.

  19. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode.

    PubMed

    Kung, Theodore A; Langhals, Nicholas B; Martin, David C; Johnson, Philip J; Cederna, Paul S; Urbanchek, Melanie G

    2014-06-01

    The regenerative peripheral nerve interface is an internal interface for signal transduction with external electronics of prosthetic limbs; it consists of an electrode and a unit of free muscle that is neurotized by a transected residual peripheral nerve. Adding a conductive polymer coating on electrodes improves electrode conductivity. This study examines regenerative peripheral nerve interface tissue viability and signal fidelity in the presence of an implanted electrode coated or uncoated with a conductive polymer. In a rat model, the extensor digitorum longus muscle was moved as a nonvascularized free tissue transfer and neurotized by the divided peroneal nerve. Either a stainless steel pad electrode (n = 8) or a pad electrode coated with poly(3,4-ethylenedioxythiophene) conductive polymer (PEDOT) (n = 8) was implanted on the muscle transfer and secured with an encircling acellular extracellular matrix. The contralateral muscle served as the control. The free muscle transfers were successfully revascularized and over time reinnervated as evidenced by serial insertional needle electromyography. Compound muscle action potentials were successfully transduced through the regenerative peripheral nerve interface. The conductive polymer coating on the implanted electrode resulted in increased recorded signal amplitude that was observed throughout the course of the study. Histologic examination confirmed axonal sprouting, elongation, and synaptogenesis within regenerative peripheral nerve interface regardless of electrode type. The regenerative peripheral nerve interface remains viable over seven months in the presence of an implanted electrode. Electrodes with and without conductive polymer reliably transduced signals from the regenerative peripheral nerve interface. Electrodes with a conductive polymer coating resulted in recording more of the regenerative peripheral nerve interface signal.

  20. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.

    PubMed

    Besio, Walter G; Cao, Hongbao; Zhou, Peng

    2008-04-01

    For persons with severe disabilities, a brain-computer interface (BCI) may be a viable means of communication. Lapalacian electroencephalogram (EEG) has been shown to improve classification in EEG recognition. In this work, the effectiveness of signals from tripolar concentric electrodes and disc electrodes were compared for use as a BCI. Two sets of left/right hand motor imagery EEG signals were acquired. An autoregressive (AR) model was developed for feature extraction with a Mahalanobis distance based linear classifier for classification. An exhaust selection algorithm was employed to analyze three factors before feature extraction. The factors analyzed were 1) length of data in each trial to be used, 2) start position of data, and 3) the order of the AR model. The results showed that tripolar concentric electrodes generated significantly higher classification accuracy than disc electrodes.

  1. Directly deposited graphene nanowalls on carbon fiber for improving the interface strength in composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Yao; Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714; Chu, Jin

    2016-05-23

    Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electronmore » microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.« less

  2. Subcritical crack growth along polymer interfaces

    NASA Astrophysics Data System (ADS)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v*) decreasing.

  3. Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.

  4. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1991-01-01

    Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.

  5. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun

    2018-04-01

    Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

  6. A nonlinear interface model applied to masonry structures

    NASA Astrophysics Data System (ADS)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  7. A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities

    NASA Astrophysics Data System (ADS)

    Dedè, Luca; Garcke, Harald; Lam, Kei Fong

    2017-07-01

    Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.

  8. Enabling Data Fusion via a Common Data Model and Programming Interface

    NASA Astrophysics Data System (ADS)

    Lindholm, D. M.; Wilson, A.

    2011-12-01

    Much progress has been made in scientific data interoperability, especially in the areas of metadata and discovery. However, while a data user may have improved techniques for finding data, there is often a large chasm to span when it comes to acquiring the desired subsets of various datasets and integrating them into a data processing environment. Some tools such as OPeNDAP servers and the Unidata Common Data Model (CDM) have introduced improved abstractions for accessing data via a common interface, but they alone do not go far enough to enable fusion of data from multidisciplinary sources. Although data from various scientific disciplines may represent semantically similar concepts (e.g. time series), the user may face widely varying structural representations of the data (e.g. row versus column oriented), not to mention radically different storage formats. It is not enough to convert data to a common format. The key to fusing scientific data is to represent each dataset with consistent sampling. This can best be done by using a data model that expresses the functional relationship that each dataset represents. The domain of those functions determines how the data can be combined. The Visualization for Algorithm Development (VisAD) Java API has provided a sophisticated data model for representing the functional nature of scientific datasets for well over a decade. Because VisAD is largely designed for its visualization capabilities, the data model can be cumbersome to use for numerical computation, especially for those not comfortable with Java. Although both VisAD and the implementation of the CDM are written in Java, neither defines a pure Java interface that others could implement and program to, further limiting potential for interoperability. In this talk, we will present a solution for data integration based on a simple discipline-agnostic scientific data model and programming interface that enables a dataset to be defined in terms of three variable types: Scalar (a), Tuple (a,b), and Function (a -> b). These basic building blocks can be combined and nested to represent any arbitrarily complex dataset. For example, a time series of surface temperature and pressure could be represented as: time -> ((lon,lat) -> (T,P)). Our data model is expressed in UML and can be implemented in numerous programming languages. We will demonstrate an implementation of our data model and interface using the Scala programming language. Given its functional programming constructs, sophisticated type system, and other language features, Scala enables us to construct complex data structures that can be manipulated using natural mathematical expressions while taking advantage of the language's ability to operate on collections in parallel. This API will be applied to the problem of assimilating various measurements of the solar spectrum and other proxies from multiple sources to construct a composite Lyman-alpha irradiance dataset.

  9. Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON.

    PubMed

    Mattioni, Michele; Cohen, Uri; Le Novère, Nicolas

    2012-01-01

    The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

  10. Comparison of three humidifiers during high-frequency percussive ventilation using the VDR-4® Fail-safe Breathing Circuit Hub.

    PubMed

    Tiffin, Norman H; Short, Kathy A; Jones, Samuel W; Cairns, Bruce A

    2011-01-01

    The VDR-4® high-frequency percussive ventilator (HFPV) has been shown to be beneficial in the management of inhalation injury by improving secretion clearance while maintaining oxygenation and ventilation. Delivery of gas flow during HFPV could lack adequate humidification delivered to the patient because a major portion of the delivered gas flow would bypass the humidifier when using the original VDR-4® ventilator circuit. The authors tested a novel inline vaporizing humidifier and two gas-water interface humidifiers during HFPV using the new VDR-4® Fail-safe Breathing Circuit Hub® to determine whether delivered humidification could be improved. This new humidification system, the Hydrate Omni™, delivers water vapor into the gas flow of the ventilator circuit rather than water droplets as delivered by the gas-water interface humidifiers. Measurements of absolute humidity and gas temperature were made on the three different humidification systems using a test lung model under standard ambient conditions. The authors found that when using the novel inline vaporizer, it provided better humidification when compared with the standard gas-water interface humidifier during HFPV using the new VDR-4® breathing circuit.

  11. Growth of concentrated GaInSb alloys with improved chemical homogeneity at low and variable pulling rates

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.; Mitric, A.; Corregidor, V.; Alves, L. C.; Barradas, N. P.

    2005-09-01

    Crystal growth of concentrated GaInSb alloys during vertical Bridgman method has been numerically and experimentally investigated. The numerical and experimental results show a strong solutal damping effect on the melt convection in the case of concentrated (x=0.1 and 0.2) alloys grown at 1 μm/s pulling rate of the crucible. This leads to a huge increase of chemical heterogeneities and solid-liquid interface curvature. Analytical relations, which describe the solutal effect on the melt convection, show that the damping effect can be avoided by using low growth rates. The experimental results for Bridgman solidification of Ga0.85In0.15Sb at V=0.4 μm/s pulling rate, show that the axial and radial variations of indium concentration in the sample are reduced as compared with crystals grown at high pulling rates. The interface deflection is maintained at lower values during the growth process and the morphological destabilization of the interface occurs only at the end of the solidification. The growth at variable pulling rates is also investigated and from the numerical modeling it is found that the axial chemical homogeneity of the sample can be improved.

  12. First-Principles Study of the Band Diagrams and Schottky-Type Barrier Heights of Aqueous Ta3N5 Interfaces.

    PubMed

    Watanabe, Eriko; Ushiyama, Hiroshi; Yamashita, Koichi

    2017-03-22

    The photo(electro)chemical production of hydrogen by water splitting is an efficient and sustainable method for the utilization of solar energy. To improve photo(electro)catalytic activity, a Schottky-type barrier is typically useful to separate excited charge carriers in semiconductor electrodes. Here, we focused on studying the band diagrams and the Schottky-type barrier heights of Ta 3 N 5 , which is one of the most promising materials as a photoanode for water splitting. The band alignments of the undoped and n-type Ta 3 N 5 with adsorbents in a vacuum were examined to determine how impurities and adsorbents affect the band positions and Fermi energies. The band edge positions as well as the density of surface states clearly depended on the density of O N impurities in the bulk and surface regions. Finally, the band diagrams of the n-type Ta 3 N 5 /water interfaces were calculated with an improved interfacial model to include the effect of electrode potential with explicit water molecules. We observed partial Fermi level pinning in our calculations at the Ta 3 N 5 /water interface, which affects the driving force for charge separation.

  13. An Update on Improvements to NiCE Support for PROTEUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay

    2015-09-01

    The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less

  14. Supporting anticipation in driving through attentional and interpretational in-vehicle displays.

    PubMed

    Stahl, Patrick; Donmez, Birsen; Jamieson, Greg A

    2016-06-01

    This paper evaluates two different types of in-vehicle interfaces to support anticipation in driving: one aids attention allocation and the other aids interpretation of traffic in addition to attention allocation. Anticipation is a competency that has been shown to facilitate safety and eco-driving through the efficient positioning of a vehicle for probable, upcoming changes in traffic. This competency has been shown to improve with driving experience. In an earlier simulator study, we showed that compared to novice drivers, experienced drivers exhibited a greater number of timely actions to avoid upcoming traffic conflicts. In this study, we seek to facilitate anticipation in general and for novice drivers in particular, who appear to lack the competency. We hypothesize that anticipation depends on two major steps and that it can be supported by aiding each: (1) conscious perception of relevant cues, and (2) effective processing of these cues to create a situational assessment as a basis for anticipation of future developments. We conducted a simulator experiment with 24 experienced and 24 novice drivers to evaluate two interfaces that were designed to aid the two hypothesized steps of anticipation. The attentional interface was designed to direct attention toward the most relevant cue. The interpretational interface represented several cues, and in addition to directing attention also aimed to aid sense-making of these cues. The results confirmed our hypothesis that novice drivers' anticipation performance, as measured through timely actions to avoid upcoming traffic conflicts, would be improved with either interface type. However, results contradicted our expectation that novice drivers would obtain larger improvements with the interpretational interface. Experienced drivers performed better than novice drivers to begin with and did not show any statistically significant improvements with either interface. Both interfaces improved anticipation performance for novice drivers. Future research should evaluate the effectiveness of these interfaces in a wider variety of driving conditions, such as when the driver is multitasking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.

  16. High-resolution method for evolving complex interface networks

    NASA Astrophysics Data System (ADS)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  17. Hiding the system from the user: Moving from complex mental models to elegant metaphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis W. Nielsen; David J. Bruemmer

    2007-08-01

    In previous work, increased complexity of robot behaviors and the accompanying interface design often led to operator confusion and/or a fight for control between the robot and operator. We believe the reason for the conflict was that the design of the interface and interactions presented too much of the underlying robot design model to the operator. Since the design model includes the implementation of sensors, behaviors, and sophisticated algorithms, the result was that the operator’s cognitive efforts were focused on understanding the design of the robot system as opposed to focusing on the task at hand. This paper illustrates howmore » this very problem emerged at the INL and how the implementation of new metaphors for interaction has allowed us to hide the design model from the user and allow the user to focus more on the task at hand. Supporting the user’s focus on the task rather than on the design model allows increased use of the system and significant performance improvement in a search task with novice users.« less

  18. Model-driven approach to data collection and reporting for quality improvement

    PubMed Central

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J.; Majeed, Azeem; Bell, Derek

    2014-01-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed. PMID:24874182

  19. A Rigorous Sharp Interface Limit of a Diffuse Interface Model Related to Tumor Growth

    NASA Astrophysics Data System (ADS)

    Rocca, Elisabetta; Scala, Riccardo

    2017-06-01

    In this paper, we study the rigorous sharp interface limit of a diffuse interface model related to the dynamics of tumor growth, when a parameter ɛ, representing the interface thickness between the tumorous and non-tumorous cells, tends to zero. More in particular, we analyze here a gradient-flow-type model arising from a modification of the recently introduced model for tumor growth dynamics in Hawkins-Daruud et al. (Int J Numer Math Biomed Eng 28:3-24, 2011) (cf. also Hilhorst et al. Math Models Methods Appl Sci 25:1011-1043, 2015). Exploiting the techniques related to both gradient flows and gamma convergence, we recover a condition on the interface Γ relating the chemical and double-well potentials, the mean curvature, and the normal velocity.

  20. SCEC UCVM - Unified California Velocity Model

    NASA Astrophysics Data System (ADS)

    Small, P.; Maechling, P. J.; Jordan, T. H.; Ely, G. P.; Taborda, R.

    2011-12-01

    The SCEC Unified California Velocity Model (UCVM) is a software framework for a state-wide California velocity model. UCVM provides researchers with two new capabilities: (1) the ability to query Vp, Vs, and density from any standard regional California velocity model through a uniform interface, and (2) the ability to combine multiple velocity models into a single state-wide model. These features are crucial in order to support large-scale ground motion simulations and to facilitate improvements in the underlying velocity models. UCVM provides integrated support for the following standard velocity models: SCEC CVM-H, SCEC CVM-S and the CVM-SI variant, USGS Bay Area (cencalvm), Lin-Thurber Statewide, and other smaller regional models. New models may be easily incorporated as they become available. Two query interfaces are provided: a Linux command line program, and a C application programming interface (API). The C API query interface is simple, fully independent of any specific model, and MPI-friendly. Input coordinates are geographic longitude/latitude and the vertical coordinate may be either depth or elevation. Output parameters include Vp, Vs, and density along with the identity of the model from which these material properties were obtained. In addition to access to the standard models, UCVM also includes a high resolution statewide digital elevation model, Vs30 map, and an optional near-surface geo-technical layer (GTL) based on Ely's Vs30-derived GTL. The elevation and Vs30 information is bundled along with the returned Vp,Vs velocities and density, so that all relevant information is retrieved with a single query. When the GTL is enabled, it is blended with the underlying crustal velocity models along a configurable transition depth range with an interpolation function. Multiple, possibly overlapping, regional velocity models may be combined together into a single state-wide model. This is accomplished by tiling the regional models on top of one another in three dimensions in a researcher-specified order. No reconciliation is performed within overlapping model regions, although a post-processing tool is provided to perform a simple numerical smoothing. Lastly, a 3D region from a combined model may be extracted and exported into a CVM-Etree. This etree may then be queried by UCVM much like a standard velocity model but with less overhead and generally better performance due to the efficiency of the etree data structure.

  1. Development of an interface-focused educational complex intervention.

    PubMed

    Sampson, Rod; MacVicar, Ronald; Wilson, Philip

    2017-09-01

    In many countries, the medical primary-secondary care interface is central to the delivery of quality patient care. There is prevailing interest in developing initiatives to improve interface working for the benefit of health care professionals and their patients. To describe the development of an educational intervention designed to improve working at the primary-secondary care interface in NHS Scotland (United Kingdom) within the context of the Medical Research Council framework for the development and evaluation of complex interventions. A primary-secondary care interface focused Practice-based Small Group Learning (PBSGL) module was developed building upon qualitative synthesis and original research. A 'meeting of experts' shaped the module, which was subsequently piloted with a group of interface clinicians. Reflections on the module were sought from clinicians across NHS Scotland to provide contextual information from other areas. The PBSGL approach can be usefully applied to the development of a primary-secondary care interface-focused medical educational intervention.

  2. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  3. Health care reform and care at the behavioral health--primary care interface.

    PubMed

    Druss, Benjamin G; Mauer, Barbara J

    2010-11-01

    The historic passage of the Patient Protection and Affordable Care Act in March 2010 offers the potential to address long-standing deficits in quality and integration of services at the interface between behavioral health and primary care. Many of the efforts to reform the care delivery system will come in the form of demonstration projects, which, if successful, will become models for the broader health system. This article reviews two of the programs that might have a particular impact on care on the two sides of that interface: Medicaid and Medicare patient-centered medical home demonstration projects and expansion of a Substance Abuse and Mental Health Services Administration program that colocates primary care services in community mental health settings. The authors provide an overview of key supporting factors, including new financing mechanisms, quality assessment metrics, information technology infrastructure, and technical support, that will be important for ensuring that initiatives achieve their potential for improving care.

  4. Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teti, N.M.

    1993-12-31

    The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on themore » development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.« less

  5. Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2000-02-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.

  6. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  7. Exploring system interconnection architectures with VIPACES: from direct connections to NOCs

    NASA Astrophysics Data System (ADS)

    Sánchez-Peña, Armando; Carballo, Pedro P.; Núñez, Antonio

    2007-05-01

    This paper presents a simple environment for the verification of AMBA 3 AXI systems in Verification IP (VIP) production called VIPACES (Verification Interface Primitives for the development of AXI Compliant Elements and Systems). These primitives are presented as a not compiled library written in SystemC where interfaces are the core of the library. The definition of interfaces instead of generic modules let the user construct custom modules improving the resources spent during the verification phase as well as easily adapting his modules to the AMBA 3 AXI protocol. This topic is the main discussion in the VIPACES library. The paper focuses on comparing and contrasting the main interconnection schemes for AMBA 3 AXI as modeled by VIPACES. For assessing these results we propose a validation scenario with a particular architecture belonging to the domain of MPEG4 video decoding, which is compound by an AXI bus connecting an IDCT and other processing resources.

  8. Friction behavior of a multi-interface system and improved performance by AlMgB 14–TiB 2–C and diamond-like-carbon coatings

    DOE PAGES

    Qu, Jun; Blau, Peter J.; Higdon, Clifton; ...

    2016-03-29

    We investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling–sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB 14–TiB 2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. In conclusion, testing and analysis results suggest that the coatings effectively decreasedmore » the slip ratio for the roller–cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque.« less

  9. Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface

    NASA Technical Reports Server (NTRS)

    Teti, Nicholas M.

    1993-01-01

    The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on the development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.

  10. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  11. Prediction of interface residue based on the features of residue interaction network.

    PubMed

    Jiao, Xiong; Ranganathan, Shoba

    2017-11-07

    Protein-protein interaction plays a crucial role in the cellular biological processes. Interface prediction can improve our understanding of the molecular mechanisms of the related processes and functions. In this work, we propose a classification method to recognize the interface residue based on the features of a weighted residue interaction network. The random forest algorithm is used for the prediction and 16 network parameters and the B-factor are acting as the element of the input feature vector. Compared with other similar work, the method is feasible and effective. The relative importance of these features also be analyzed to identify the key feature for the prediction. Some biological meaning of the important feature is explained. The results of this work can be used for the related work about the structure-function relationship analysis via a residue interaction network model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Redesigning the specificity of protein-DNA interactions with Rosetta.

    PubMed

    Thyme, Summer; Baker, David

    2014-01-01

    Building protein tools that can selectively bind or cleave specific DNA sequences requires efficient technologies for modifying protein-DNA interactions. Computational design is one method for accomplishing this goal. In this chapter, we present the current state of protein-DNA interface design with the Rosetta macromolecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under study as potential gene therapy reagents, has been the main testing ground for these in silico protocols. At this time, the computational methods are most useful for designing endonuclease variants that can accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface changes will likely benefit from an approach that uses the computational design results in conjunction with a high-throughput directed evolution or screening procedure. The family of enzymes presents an engineering challenge because their interfaces are highly integrated and there is significant coordination between the binding and catalysis events. Future developments in the computational algorithms depend on experimental feedback to improve understanding and modeling of these complex enzymatic features. This chapter presents both the basic method of design that has been successfully used to modulate specificity and more advanced procedures that incorporate DNA flexibility and other properties that are likely necessary for reliable modeling of more extensive target site changes.

  13. Modeling the Electrode-Neuron Interface of Cochlear Implants: Effects of Neural Survival, Electrode Placement, and the Partial Tripolar Configuration

    PubMed Central

    Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.

    2010-01-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801

  14. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  15. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    USGS Publications Warehouse

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  16. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  17. Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster

    NASA Astrophysics Data System (ADS)

    Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady

    2015-04-01

    Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.

  18. Wheat stress indicator model, Crop Condition Assessment Division (CCAD) data base interface driver, user's manual

    NASA Technical Reports Server (NTRS)

    Hansen, R. F. (Principal Investigator)

    1981-01-01

    The use of the wheat stress indicator model CCAD data base interface driver is described. The purpose of this system is to interface the wheat stress indicator model with the CCAD operational data base. The interface driver routine decides what meteorological stations should be processed and calls the proper subroutines to process the stations.

  19. UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Degani, Asaf; Heymann, Michael

    2004-01-01

    In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.

  20. An improved water-filled impedance tube.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2003-06-01

    A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.

  1. Numerical Modeling of Initial Slip and Poroelastic Effects of the 2012 Costa Rica Earthquake Using GPS Data

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Hesse, M. A.; Stadler, G.

    2015-12-01

    Remote sensing and geodetic measurements are providing a new wealth of spatially distributed, time-series data that have the ability to improve our understanding of co-seismic rupture and post-seismic processes in subduction zones. We formulate a Bayesian inverse problem to infer the slip distribution on the plate interface using an elastic finite element model and GPS surface deformation measurements. We present an application to the co-seismic displacement during the 2012 earthquake on the Nicoya Peninsula in Costa Rica, which is uniquely positioned close to the Middle America Trench and directly over the seismogenic zone of the plate interface. The results of our inversion are then used as an initial condition in a coupled poroelastic forward model to investigate the role of poroelastic effects on post-seismic deformation and stress transfer. From this study we identify a horseshoe-shaped rupture area with a maximum slip of approximately 2.5 meters surrounding a locked patch that is likely to release stress in the future. We model the co-seismic pore pressure change as well as the pressure evolution and resulting deformation in the months after the earthquake. The results of the forward model indicate that earthquake-induced pore pressure changes dissipate quickly near the surface, resulting in relaxation of the surface in the seven to ten days following the earthquake. Near the subducting slab interface, pore pressure changes are an order of magnitude larger and may persist for many months after the earthquake.

  2. A Research Roadmap for Computation-Based Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less

  3. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui

    2018-06-01

    A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

  4. GiPSi:a framework for open source/open architecture software development for organ-level surgical simulation.

    PubMed

    Cavuşoğlu, M Cenk; Göktekin, Tolga G; Tendick, Frank

    2006-04-01

    This paper presents the architectural details of an evolving open source/open architecture software framework for developing organ-level surgical simulations. Our goal is to facilitate shared development of reusable models, to accommodate heterogeneous models of computation, and to provide a framework for interfacing multiple heterogeneous models. The framework provides an application programming interface for interfacing dynamic models defined over spatial domains. It is specifically designed to be independent of the specifics of the modeling methods used, and therefore facilitates seamless integration of heterogeneous models and processes. Furthermore, each model has separate geometries for visualization, simulation, and interfacing, allowing the model developer to choose the most natural geometric representation for each case. Input/output interfaces for visualization and haptics for real-time interactive applications have also been provided.

  5. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  6. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  7. Integrated Model for E-Learning Acceptance

    NASA Astrophysics Data System (ADS)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  8. A Hybrid 2D/3D User Interface for Radiological Diagnosis.

    PubMed

    Mandalika, Veera Bhadra Harish; Chernoglazov, Alexander I; Billinghurst, Mark; Bartneck, Christoph; Hurrell, Michael A; Ruiter, Niels de; Butler, Anthony P H; Butler, Philip H

    2018-02-01

    This paper presents a novel 2D/3D desktop virtual reality hybrid user interface for radiology that focuses on improving 3D manipulation required in some diagnostic tasks. An evaluation of our system revealed that our hybrid interface is more efficient for novice users and more accurate for both novice and experienced users when compared to traditional 2D only interfaces. This is a significant finding because it indicates, as the techniques mature, that hybrid interfaces can provide significant benefit to image evaluation. Our hybrid system combines a zSpace stereoscopic display with 2D displays, and mouse and keyboard input. It allows the use of 2D and 3D components interchangeably, or simultaneously. The system was evaluated against a 2D only interface with a user study that involved performing a scoliosis diagnosis task. There were two user groups: medical students and radiology residents. We found improvements in completion time for medical students, and in accuracy for both groups. In particular, the accuracy of medical students improved to match that of the residents.

  9. Improving Decision Making Skill Using an Online Volcanic Crisis Simulation: Impact of Data Presentation Format

    ERIC Educational Resources Information Center

    Barclay, Elizabeth J.; Renshaw, Carl E.; Taylor, Holly A.; Bilge, A. Reyan

    2011-01-01

    Creating effective computer-based learning exercises requires an understanding of optimal user interface designs for improving higher order cognitive skills. Using an online volcanic crisis simulation previously shown to improve decision making skill, we find that a user interface using a graphical presentation of the volcano monitoring data…

  10. Watering the Tree of Science: Science Education, Local Knowledge, and Agency in Zambia's PSA Program

    NASA Astrophysics Data System (ADS)

    Lample, Emily

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  11. Network performance analysis and management for cyber-physical systems and their applications

    NASA Astrophysics Data System (ADS)

    Emfinger, William A.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  12. Soft error aware physical synthesis

    NASA Astrophysics Data System (ADS)

    Assis, Thiago Rocha de

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

  13. Lattice Boltzmann simulations of multiple-droplet interaction dynamics.

    PubMed

    Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G; Degertekin, F Levent; Rosen, David W

    2014-03-01

    A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface phenomena.

  14. Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting

    PubMed Central

    Zhang, Jian; Zhang, Qiaoxia; Wang, Lianhui; Li, Xing’ao; Huang, Wei

    2016-01-01

    A model of interface induction for interlayer growing is proposed for bandgap engineering insights into photocatalysis. In the interface of CdS/ZnS core/shell nanorods, a lamellar solid solution intermediate with uniform thickness and high crystallinity was formed under interface induction process. Merged the novel charge carrier transfer layer, the photocurrent of the core/shell/shell nanorod (css-NR) array was significantly improved to 14.0 mA cm−2 at 0.0 V vs. SCE, nearly 8 times higher than that of the perfect CdS counterpart and incident photon to electron conversion efficiency (IPCE) values above 50% under AM 1.5G irradiation. In addition, this array photoelectrode showed excellent photocatalytic stability over 6000 s. These results suggest that the CdS/Zn1−xCdxS/ZnS css-NR array photoelectrode provides a scalable charge carrier transfer channel, as well as durability, and therefore is promising to be a large-area nanostructured CdS-based photoanodes in photoelectrochemical (PEC) water splitting system. PMID:27250648

  15. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  16. Diffusely scattered and transmitted elastic waves by random rough solid-solid interfaces using an elastodynamic Kirchhoff approximation

    NASA Astrophysics Data System (ADS)

    Shi, Fan; Lowe, Mike; Craster, Richard

    2017-06-01

    Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.

  17. Interfacial characterization of flexible hybrid electronics

    NASA Astrophysics Data System (ADS)

    Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott

    2018-03-01

    Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.

  18. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    PubMed

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  19. Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.

    PubMed

    Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang

    2014-03-27

    We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.

  20. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    NASA Astrophysics Data System (ADS)

    Stoker, D. S.; Baek, J.; Wang, W.; Kovar, D.; Becker, M. F.; Keto, J. W.

    2006-05-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG ( z -scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN -sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χxxxx(3)(3ω;ω,ω,ω)=1.52±0.25×10-13esu . The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects.

  1. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    NASA Astrophysics Data System (ADS)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  2. A multilayered sharp interface model of coupled freshwater and saltwater flow in coastal systems: Model development and application

    USGS Publications Warehouse

    Essaid, Hedeff I.

    1990-01-01

    A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.

  3. Adaptive Interfaces

    DTIC Science & Technology

    1990-11-01

    to design and implement an adaptive intelligent interface for a command-and-control-style domain. The primary functionality of the resulting...technical tasks, as follows: 1. Analysis of Current Interface Technologies 2. Dejineation of User Roles 3. Development of User Models 4. Design of Interface...Management Association (FEMA). In the initial version of the prototype, two distin-t user models were designed . One type of user modeled by the system is

  4. Properties of interfaces and transport across them.

    PubMed

    Cabezas, H

    2000-01-01

    Much of the biological activity in cell cytoplasm occurs in compartments some of which may be formed, as suggested in this book, by phase separation, and many of the functions of such compartments depend on the transport or exchange of molecules across interfaces. Thus a fundamentally based discussion of the properties of phases, interfaces, and diffusive transport across interfaces has been given to further elucidate these phenomena. An operational criterion for the width of interfaces is given in terms of molecular and physical arguments, and the properties of molecules inside phases and interfaces are discussed in terms of molecular arguments. In general, the properties of the interface become important when the molecules diffusing across are smaller than the width of the interface. Equilibrium partitioning, Donnan phenomena, and electrochemical potentials at interfaces are also discussed in detail. The mathematical expressions for modeling transport across interfaces are discussed in detail. These describe a practical and detailed model for transport across interfaces. For molecules smaller than the width of the interface, this includes a detailed model for diffusion inside the interface. Last, the question of the time scale for phase formation and equilibration in biological systems is discussed.

  5. Improved usability of a multi-infusion setup using a centralized control interface: A task-based usability test

    PubMed Central

    Cnossen, Fokie; Dieperink, Willem; Bult, Wouter; de Smet, Anne Marie; Touw, Daan J.; Nijsten, Maarten W.

    2017-01-01

    The objective of this study was to assess the usability benefits of adding a bedside central control interface that controls all intravenous (IV) infusion pumps compared to the conventional individual control of multiple infusion pumps. Eighteen dedicated ICU nurses volunteered in a between-subjects task-based usability test. A newly developed central control interface was compared to conventional control of multiple infusion pumps in a simulated ICU setting. Task execution time, clicks, errors and questionnaire responses were evaluated. Overall the central control interface outperformed the conventional control in terms of fewer user actions (40±3 vs. 73±20 clicks, p<0.001) and fewer user errors (1±1 vs. 3±2 errors, p<0.05), with no difference in task execution times (421±108 vs. 406±119 seconds, not significant). Questionnaires indicated a significant preference for the central control interface. Despite being novice users of the central control interface, ICU nurses displayed improved performance with the central control interface compared to the conventional interface they were familiar with. We conclude that the new user interface has an overall better usability than the conventional interface. PMID:28800617

  6. Improved usability of a multi-infusion setup using a centralized control interface: A task-based usability test.

    PubMed

    Doesburg, Frank; Cnossen, Fokie; Dieperink, Willem; Bult, Wouter; de Smet, Anne Marie; Touw, Daan J; Nijsten, Maarten W

    2017-01-01

    The objective of this study was to assess the usability benefits of adding a bedside central control interface that controls all intravenous (IV) infusion pumps compared to the conventional individual control of multiple infusion pumps. Eighteen dedicated ICU nurses volunteered in a between-subjects task-based usability test. A newly developed central control interface was compared to conventional control of multiple infusion pumps in a simulated ICU setting. Task execution time, clicks, errors and questionnaire responses were evaluated. Overall the central control interface outperformed the conventional control in terms of fewer user actions (40±3 vs. 73±20 clicks, p<0.001) and fewer user errors (1±1 vs. 3±2 errors, p<0.05), with no difference in task execution times (421±108 vs. 406±119 seconds, not significant). Questionnaires indicated a significant preference for the central control interface. Despite being novice users of the central control interface, ICU nurses displayed improved performance with the central control interface compared to the conventional interface they were familiar with. We conclude that the new user interface has an overall better usability than the conventional interface.

  7. Reduction of the potential energy barrier and resistance at wafer-bonded n-GaAs/n-GaAs interfaces by sulfur passivation

    NASA Astrophysics Data System (ADS)

    Jackson, Michael J.; Jackson, Biyun L.; Goorsky, Mark S.

    2011-11-01

    Sulfur passivation and subsequent wafer-bonding treatments are demonstrated for III-V semiconductor applications using GaAs-GaAs direct wafer-bonded structures. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native-oxide-etch treatments. The electrical conductivity across a sulfur-treated 400 - °C-bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 min) at elevated temperatures (500-600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur-treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the observed temperature dependence of zero-bias conductance using a model for tunneling through a grain boundary reveals that the addition of sulfur at the interface lowered the interfacial energy barrier by 0.2 eV. The interface resistance for these sulfur-treated structures is 0.03 Ω.cm at room temperature. These results emphasize that sulfur-passivation techniques reduce interface states that otherwise limit the implementation of wafer bonding for high-efficiency solar cells and other devices.

  8. DockRank: Ranking docked conformations using partner-specific sequence homology-based protein interface prediction

    PubMed Central

    Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2015-01-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. PMID:23873600

  9. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction.

    PubMed

    Xue, Li C; Jordan, Rafael A; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-02-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. Copyright © 2013 Wiley Periodicals, Inc.

  10. Interaction of a sodium ion with the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  11. A theoretical model and phase field simulation on the evolution of interface roughness in the oxidation process

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Fang, Dai-Ning; Liu, Bin

    2012-01-01

    An oxidation kinetics model is developed to account for the effects of the oxidation interface curvature and the oxidation-induced volume change or Pilling-Bedworth ratio. For the oxidation of Fe-Cr-Al-Y alloy fiber, the predictions agree well with experimental results. By considering the influence of the oxidation interface curvature on oxidation rates, the evolution of fluctuant oxidation interface is predicted. We also developed the phase field method (PFM) to simulate the evolution of the interface roughness. Both the theoretical model and the PFM results show that the interface will become smooth during high temperature oxidation. Stress distribution and evolution are calculated by PFM, which indicates that the stress level decreases as the interface morphology evolves.

  12. Dependence of interface charge trapping on channel engineering in pentacene field effect transistors.

    PubMed

    Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho

    2014-07-01

    We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.

  13. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  14. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent in situ studies on model electrochemical components as well as operando studies performed by our groups at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory to illustrate that AP-XPS is both a chemically and an electrically specific tool since photoelectrons carry information on both the local chemistry and electrical potentials. The applications of AP-XPS to oxygen electrocatalysis shown in this Account span well-defined studies of (1) the oxide/oxygen gas interface, (2) the oxide/water vapor interface, and (3) operando measurements of half and full electrochemical cells. Using specially designed model devices, we can expose and isolate the electrode or interface of interest to the incident X-ray beam and AP-XPS analyzer to relate the electrical potentials to the composition/chemical state of the key components and interfaces. We conclude with an outlook on new developments of AP-XPS end stations, which may provide significant improvement in the observation of dynamics over a wide range of time scales, higher spatial resolution, and improved characterization of boundary or interface layers (solid/solid and liquid/solid).

  15. User interfaces in space science instrumentation

    NASA Astrophysics Data System (ADS)

    McCalden, Alec John

    This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.

  16. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  17. Implementation and evaluation of a community-based medication reconciliation (CMR) system at the hospital-community interface of care.

    PubMed

    Bailey, Allan L; Moe, Grace; Moe, Jessica; Oland, Ryan

    2009-01-01

    The WestView community-based medication reconciliation (CMR) aims to decrease medication error risk. A clinical pharmacist visits patients' homes within 72 hours of hospital discharge and compares medications in discharge orders, family physicians' charts, community pharmacy profiles and in the home. Discrepancies are discussed and reconciled with the dispenser, hospital prescriber and follow-up care provider. The CMR demonstrates successful integration that is patient-centred and standardized, bridging the hospital-community interface and improving information flow and communication channels across a family-physician-led multi-disciplinary team. A concurrent research study will evaluate the impact of CMR on health services utilization and to develop a risk prediction model.

  18. Inorganic Polymer Matrix Composite Strength Related to Interface Condition

    PubMed Central

    Radford, Donald W.; Grabher, Andrew; Bridge, John

    2009-01-01

    Resin transfer molding of an inorganic polymer binder was successfully demonstrated in the preparation of ceramic fiber reinforced engine exhaust valves. Unfortunately, in the preliminary processing trials, the resulting composite valves were too brittle for in-engine evaluation. To address this limited toughness, the effectiveness of a modified fiber-matrix interface is investigated through the use of carbon as a model material fiber coating. After sequential heat treatments composites molded from uncoated and carbon-coated fibers are compared using room temperature 3-point bend testing. Carbon-coated Nextel fiber reinforced geopolymer composites demonstrated a 50% improvement in strength, versus that of the uncoated fiber reinforced composites, after the 250 °C postcure.

  19. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.

    PubMed

    Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco

    2010-06-13

    Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.

  20. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.

  1. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  2. Protein-protein interface analysis and hot spots identification for chemical ligand design.

    PubMed

    Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua

    2014-01-01

    Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.

  3. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  4. Diffuse-Interface Methods in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  5. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  6. Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver

    DOE PAGES

    Shonibare, Olabanji Y.; Wardle, Kent E.

    2015-06-28

    A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less

  7. TOOKUIL: A case study in user interface development for safety code application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, D.L.; Harkins, C.K.; Hoole, J.G.

    1997-07-01

    Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less

  8. Understanding gas adsorption in MOF-5/graphene oxide composite materials.

    PubMed

    Lin, Li-Chiang; Paik, Dooam; Kim, Jihan

    2017-05-10

    Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.

  9. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  10. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    NASA Astrophysics Data System (ADS)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  11. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    PubMed

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface design problems were identified in the revised user interface. The usability of anesthesia information management systems can be evaluated using a low-fidelity simulated clinical environment. User testing of the revised user interface showed improvement in some usability metrics and highlighted areas for further revision. Vendors of AIMS and those who use them should consider adopting methods to evaluate and improve AIMS usability.

  12. Efficiently modelling urban heat storage: an interface conduction scheme in an urban land surface model (aTEB v2.0)

    NASA Astrophysics Data System (ADS)

    Lipson, Mathew J.; Hart, Melissa A.; Thatcher, Marcus

    2017-03-01

    Intercomparison studies of models simulating the partitioning of energy over urban land surfaces have shown that the heat storage term is often poorly represented. In this study, two implicit discrete schemes representing heat conduction through urban materials are compared. We show that a well-established method of representing conduction systematically underestimates the magnitude of heat storage compared with exact solutions of one-dimensional heat transfer. We propose an alternative method of similar complexity that is better able to match exact solutions at typically employed resolutions. The proposed interface conduction scheme is implemented in an urban land surface model and its impact assessed over a 15-month observation period for a site in Melbourne, Australia, resulting in improved overall model performance for a variety of common material parameter choices and aerodynamic heat transfer parameterisations. The proposed scheme has the potential to benefit land surface models where computational constraints require a high level of discretisation in time and space, for example at neighbourhood/city scales, and where realistic material properties are preferred, for example in studies investigating impacts of urban planning changes.

  13. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    DOE PAGES

    Canik, John M.; Tang, X. -Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less

  14. Prescribed fire applications in Forest and Woodlands: Integration of models and field studies to guide fire use

    Treesearch

    Kevin C. Ryan; Eric Rigolot; Francisco C. Rego; Herminio Botelho; Jose A. Vega; Paulo M. Fernandes; Tatiana M. Sofronova

    2010-01-01

    Globally prescribed burning is widely used for agro-forestry, restoration, and conservation to modify species composition and stand structure. Commonly stated goals of prescribed burns include to reduce hazardous fuels, improve species’ habitat, reduce the potential for severe fires in the wildland urban interface or protect municipal watersheds. Treatments may focus...

  15. Small Business Innovation Research (SBIR) Program, FY 1994. Program Solicitation 94.1, Closing Date: 14 January 1994

    DTIC Science & Technology

    1994-01-01

    is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a

  16. Analysis and modeling of heat-labile enterotoxins of Escherichia coli suggests a novel space with insights into receptor preference.

    PubMed

    Krishna Raja, M; Ghosh, Asit Ranjan; Vino, S; Sajitha Lulu, S

    2015-01-01

    Features of heat-labile enterotoxins of Escherichia coli which make them fit to use as novel receptors for antidiarrheals are not completely explored. Data-set of 14 different serovars of enterotoxigenic Escherichia coli producing heat-labile toxins were taken from NCBI Genbank database and used in the study. Sequence analysis showed mutations in different subunits and also at their interface residues. As these toxins lack crystallography structures, homology modeling using Modeller 9.11 led to the structural approximation for the E. coli producing heat-labile toxins. Interaction of modeled toxin subunits with proanthocyanidin, an antidiarrheal showed several strong hydrogen bonding interactions at the cost of minimized energy. The hits were subsequently characterized by molecular dynamics simulation studies to monitor their binding stabilities. This study looks into novel space where the ligand can choose the receptor preference not as a whole but as an individual subunit. Mutation at interface residues and interaction among subunits along with the binding of ligand to individual subunits would help to design a non-toxic labile toxin and also to improve the therapeutics.

  17. TGeoCad: an Interface between ROOT and CAD Systems

    NASA Astrophysics Data System (ADS)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  18. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  19. MAX: Multiplatform Applications for XAFS

    NASA Astrophysics Data System (ADS)

    Alain, Michalowicz; Jacques, Moscovici; Diane, Muller-Bouvet; Karine, Provost

    2009-11-01

    MAX is a new EXAFS and XANES analysis package, replacing our old "EXAFS pour le Mac" software suite. The major improvement is the ability to work with strictly the same code, compiled at once for Microsoft Windows, Apple MacOSX and LINUX systems, justifying the title "Multiplatform Applications for XAFS". It is organized as four modules: ABSORBIX (X-ray absorbance and fluorescence self-absorption calculations), CHEROKEE (EXAFS and XANES data treatment), ROUNDMIDNIGHT (EXAFS modeling and fit) and CRYSTALFFREV (from crystal structures and molecular modeling to FEFF EXAFS and XANES theoretical calculations). Most features developed in "EXAFS pour le Mac" are still available, but with much improvements in the user's interface, data treatment algorithms and new functionalities.

  20. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

    NASA Astrophysics Data System (ADS)

    Carrião, Marcus S.; Bakuzis, Andris F.

    2016-04-01

    The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy. Electronic supplementary information (ESI) available: Unit cells per region calculation; core-shell Hamiltonian; magnetisation description functions; energy argument of Brillouin function; polydisperse models; details of experimental procedure; LRT versus core-shell model; model calculation software; and shell thickness study. See DOI: 10.1039/C5NR09093H

  1. The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    1999-01-01

    We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.

  2. Model-driven approach to data collection and reporting for quality improvement.

    PubMed

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J; Majeed, Azeem; Bell, Derek

    2014-12-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A digital repository with an extensible data model for biobanking and genomic analysis management.

    PubMed

    Izzo, Massimiliano; Mortola, Francesco; Arnulfo, Gabriele; Fato, Marco M; Varesio, Luigi

    2014-01-01

    Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid.

  4. A digital repository with an extensible data model for biobanking and genomic analysis management

    PubMed Central

    2014-01-01

    Motivation Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. Results We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Conclusions Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid. PMID:25077808

  5. Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria

    PubMed Central

    Kim, Beom Seok; Choi, Geehong; Shin, Sangwoo; Gemming, Thomas; Cho, Hyung Hee

    2016-01-01

    The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems. PMID:27708341

  6. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  7. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations [Direct Simulation of Capacitive Charging of Graphene and Implications for Supercapacitor Design

    DOE PAGES

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...

    2015-03-11

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less

  8. Film bonded fuel cell interface configuration

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1985-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  9. Process for making film-bonded fuel cell interfaces

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  10. Finite element modeling of frictionally restrained composite interfaces

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.

  11. Sociable Interfaces

    DTIC Science & Technology

    2005-01-01

    Interface Compatibility); the tool is written in Ocaml [10], and the symbolic algorithms for interface compatibility and refinement are built on top...automata for a fire detection and reporting system. be encoded in the input language of the tool TIC. The refinement of sociable interfaces is discussed...are closely related to the I/O Automata Language (IOA) of [11]. Interface models are games between Input and Output, and in the models, it is es

  12. Application of a BOSS – Gaussian Interface for QM/MM Simulations of Henry and Methyl Transfer Reactions

    PubMed Central

    Vilseck, Jonah Z.; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L.

    2015-01-01

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with quantum mechanics alone. For several decades, semi-empirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the inter-program communication. The BOSS–Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS–Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations employing semiempirical methods. PMID:26311531

  13. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    PubMed Central

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-01-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833

  14. Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions.

    PubMed

    Vilseck, Jonah Z; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L

    2015-10-15

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with QM alone. For several decades, semiempirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the interprogram communication. The BOSS-Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS-Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations using semiempirical methods. © 2015 Wiley Periodicals, Inc.

  15. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  16. Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation

    DOE PAGES

    Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...

    2014-03-27

    We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less

  17. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  18. Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion

    NASA Astrophysics Data System (ADS)

    Choquet, C.; Diédhiou, M. M.; Rosier, C.

    2015-10-01

    We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.

  19. Trans-dimensional joint inversion of seabed scattering and reflection data.

    PubMed

    Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2013-03-01

    This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.

  20. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  1. The interface between blood preparation and use in Uganda.

    PubMed

    Kajja, I; Bimenya, G; Smit Sibinga, C

    2010-04-01

    The interface between preparation and use of blood impacts directly on the outcome of hemotherapy. The present study explores the knowledge and opinions of key players at, practical realities at, and quality improvement strategies of this interface. We surveyed clinicians (n = 81) and blood bank staff (n = 25) to assess their knowledge on key issues in their counterparts' working domains, the turnaround time on effecting a blood order from a hospital transfusion laboratory and strategies to improve communication of blood needs to blood banks. Out of 81 clinicians, 20 knew the four available blood products while only 17 knew the three uses of these products. Twenty-three blood bank staff reported the patient's condition as the main factor on which blood orders are based. Forty-four (54.3%) clinicians reported reception of a blood product within an hour of placing the order. Addressing infrastructure and human resource were some of the strategies suggested to improve this step of the transfusion chain. The knowledge of staff at the extreme ends of the clinical interface in their counterparts' working domain is far from adequate. However, they have well formed opinions on strategies to improve this interface.

  2. A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs

    DTIC Science & Technology

    2008-02-12

    interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh

  3. Delayed administration of recombinant human parathyroid hormone improves early biomechanical strength in a rat rotator cuff repair model.

    PubMed

    Duchman, Kyle R; Goetz, Jessica E; Uribe, Bastian U; Amendola, Andrew M; Barber, Joshua A; Malandra, Allison E; Fredericks, Douglas C; Hettrich, Carolyn M

    2016-08-01

    Despite advances in intraoperative techniques, rotator cuff repairs frequently do not heal. Recombinant human parathyroid hormone (rhPTH) has been shown to improve healing at the tendon-to-bone interface in an established acute rat rotator cuff repair model. We hypothesized that administration of rhPTH beginning on postoperative day 7 would result in improved early load to failure after acute rotator cuff repair in an established rat model. Acute rotator cuff repairs were performed in 108 male Sprague-Dawley rats. Fifty-four rats received daily injections of rhPTH beginning on postoperative day 7 until euthanasia or a maximum of 12 weeks postoperatively. The remaining 54 rats received no injections and served as the control group. Animals were euthanized at 2 and 16 weeks postoperatively and evaluated by gross inspection, biomechanical testing, and histologic analysis. At 2 weeks postoperatively, rats treated with rhPTH demonstrated significantly higher load to failure than controls (10.9 vs. 5.2 N; P = .003). No difference in load to failure was found between the 2 groups at 16 weeks postoperatively, although control repairs more frequently failed at the tendon-to-bone interface (45.5% vs. 22.7%; P = .111). Blood vessel density appeared equivalent between the 2 groups at both time points, but increased intracellular and extracellular vascular endothelial growth factor expression was noted in the rhPTH-treated group at 2 weeks. Delayed daily administration of rhPTH resulted in increased early load to failure and equivalent blood vessel density in an acute rotator cuff repair model. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Business Performer-Centered Design of User Interfaces

    NASA Astrophysics Data System (ADS)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  5. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  6. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  7. Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling.

    PubMed

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M

    2017-11-08

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2 -ESL < SnO 2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (V oc ). The improvement of the FF from the FTO to SnO 2 -ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.

  8. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE PAGES

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; ...

    2017-10-13

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  9. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  10. Surface and interface sciences of Li-ion batteries. -Research progress in electrode-electrolyte interface-

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Abe, Takeshi

    2017-12-01

    The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode-electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface are described for the further development of Li-ion batteries.

  11. Cognitive Task Analysis, Interface Design, and Technical Troubleshooting.

    ERIC Educational Resources Information Center

    Steinberg, Linda S.; Gitomer, Drew H.

    A model of the interface design process is proposed that makes use of two interdependent levels of cognitive analysis: the study of the criterion task through an analysis of expert/novice differences and the evaluation of the working user interface design through the application of a practical interface analysis methodology (GOMS model). This dual…

  12. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface.

    PubMed

    Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-13

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  13. Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design [Morphological design of silicon electrode with anisotropic interface reaction rate for lithium ion batteries

    DOE PAGES

    An, Yonghao; Wood, Brandon C.; Ye, Jianchao; ...

    2015-06-08

    Although crystalline silicon (c-Si) anodes promise very high energy densities in Li-ion batteries, their practical use is complicated by amorphization, large volume expansion and severe plastic deformation upon lithium insertion. Recent experiments have revealed the existence of a sharp interface between crystalline Si (c-Si) and the amorphous Li xSi alloy during lithiation, which propagates with a velocity that is orientation dependent; the resulting anisotropic swelling generates substantial strain concentrations that initiate cracks even in nanostructured Si. Here we describe a novel strategy to mitigate lithiation-induced fracture by using pristine c-Si structures with engineered anisometric morphologies that are deliberately designed tomore » counteract the anisotropy in the crystalline/amorphous interface velocity. This produces a much more uniform volume expansion, significantly reducing strain concentration. Based on a new, validated methodology that improves previous models of anisotropic swelling of c-Si, we propose optimal morphological designs for c-Si pillars and particles. The advantages of the new morphologies are clearly demonstrated by mesoscale simulations and verified by experiments on engineered c-Si micropillars. The results of this study illustrate that morphological design is effective in improving the fracture resistance of micron-sized Si electrodes, which will facilitate their practical application in next-generation Li-ion batteries. In conclusion, the model and design approach present in this paper also have general implications for the study and mitigation of mechanical failure of electrode materials that undergo large anisotropic volume change upon ion insertion and extraction.« less

  14. Improved superconducting qubit coherence using titanium nitride

    NASA Astrophysics Data System (ADS)

    Chang, Josephine B.; Vissers, Michael R.; Córcoles, Antonio D.; Sandberg, Martin; Gao, Jiansong; Abraham, David W.; Chow, Jerry M.; Gambetta, Jay M.; Beth Rothwell, Mary; Keefe, George A.; Steffen, Matthias; Pappas, David P.

    2013-07-01

    We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ˜60 μs, by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to qubits made with lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that surface losses from two-level system (TLS) defects residing at or near interfaces contribute to decoherence. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators, which is inconsistent with the predicted TLS model.

  15. Improvements to the User Interface for LHCb's Software continuous integration system.

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.; Kyriazi, S.

    2015-12-01

    The purpose of this paper is to identify a set of steps leading to an improved interface for LHCb's Nightly Builds Dashboard. The goal is to have an efficient application that meets the needs of both the project developers, by providing them with a user friendly interface, as well as those of the computing team supporting the system, by providing them with a dashboard allowing for better monitoring of the build job themselves. In line with what is already used by LHCb, the web interface has been implemented with the Flask Python framework for future maintainability and code clarity. The Database chosen to host the data is the schema-less CouchDB[7], serving the purpose of flexibility in document form changes. To improve the user experience, we use JavaScript libraries such as JQuery[11].

  16. Improvement of interfacial and electrical properties of Al2O3/ n-Ga0.47In0.53As for III-V impact ionization MOSFETs

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie, A.; Bollaert, S.; Talbo, V.; Mateos, J.; González, T.; Vasallo, B. G.; Wichmann, N.

    2015-10-01

    In this work, Metal - Oxide - Semiconductor Capacitors (MOSCaps) based on Al2O3/ n-Ga0.47In0.53As interface have been studied. In order to have high MOSFETs performance, it is necessary to improve the semiconductor - oxide interface quality. It is observed that the (NH4)2S passivation shows lower interface trap density in the order of 6×1011cm-2.eV-1. Also, it is observed that O2 plasma densification after a passivation in a NH4OH solution improves the electrical behaviour of the charge control. Low interface trap density in the order of 1×1012cm-2.eV-1 was obtained for different treatments presented in this work.

  17. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pristavu, G.; Brezeanu, G.; Badila, M.

    2015-06-29

    Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures.more » The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.« less

  18. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Barinaga, Charles J.

    1995-01-01

    An improvement to the system and method for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity.

  19. Protein docking prediction using predicted protein-protein interface.

    PubMed

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  20. Blind predictions of protein interfaces by docking calculations in CAPRI.

    PubMed

    Lensink, Marc F; Wodak, Shoshana J

    2010-11-15

    Reliable prediction of the amino acid residues involved in protein-protein interfaces can provide valuable insight into protein function, and inform mutagenesis studies, and drug design applications. A fast-growing number of methods are being proposed for predicting protein interfaces, using structural information, energetic criteria, or sequence conservation or by integrating multiple criteria and approaches. Overall however, their performance remains limited, especially when applied to nonobligate protein complexes, where the individual components are also stable on their own. Here, we evaluate interface predictions derived from protein-protein docking calculations. To this end we measure the overlap between the interfaces in models of protein complexes submitted by 76 participants in CAPRI (Critical Assessment of Predicted Interactions) and those of 46 observed interfaces in 20 CAPRI targets corresponding to nonobligate complexes. Our evaluation considers multiple models for each target interface, submitted by different participants, using a variety of docking methods. Although this results in a substantial variability in the prediction performance across participants and targets, clear trends emerge. Docking methods that perform best in our evaluation predict interfaces with average recall and precision levels of about 60%, for a small majority (60%) of the analyzed interfaces. These levels are significantly higher than those obtained for nonobligate complexes by most extant interface prediction methods. We find furthermore that a sizable fraction (24%) of the interfaces in models ranked as incorrect in the CAPRI assessment are actually correctly predicted (recall and precision ≥50%), and that these models contribute to 70% of the correct docking-based interface predictions overall. Our analysis proves that docking methods are much more successful in identifying interfaces than in predicting complexes, and suggests that these methods have an excellent potential of addressing the interface prediction challenge. © 2010 Wiley-Liss, Inc.

  1. Development of public science archive system of Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Baba, Hajime; Yasuda, Naoki; Ichikawa, Shin-Ichi; Yagi, Masafumi; Iwamoto, Nobuyuki; Takata, Tadafumi; Horaguchi, Toshihiro; Taga, Masatochi; Watanabe, Masaru; Okumura, Shin-Ichiro; Ozawa, Tomohiko; Yamamoto, Naotaka; Hamabe, Masaru

    2002-09-01

    We have developed a public science archive system, Subaru-Mitaka-Okayama-Kiso Archive system (SMOKA), as a successor of Mitaka-Okayama-Kiso Archive (MOKA) system. SMOKA provides an access to the public data of Subaru Telescope, the 188 cm telescope at Okayama Astrophysical Observatory, and the 105 cm Schmidt telescope at Kiso Observatory of the University of Tokyo. Since 1997, we have tried to compile the dictionary of FITS header keywords. The accomplishment of the dictionary enabled us to construct an unified public archive of the data obtained with various instruments at the telescopes. SMOKA has two kinds of user interfaces; Simple Search and Advanced Search. Novices can search data by simply selecting the name of the target with the Simple Search interface. Experts would prefer to set detailed constraints on the query, using the Advanced Search interface. In order to improve the efficiency of searching, several new features are implemented, such as archive status plots, calibration data search, an annotation system, and an improved Quick Look Image browsing system. We can efficiently develop and operate SMOKA by adopting a three-tier model for the system. Java servlets and Java Server Pages (JSP) are useful to separate the front-end presentation from the middle and back-end tiers.

  2. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  3. Continuation of research into software for space operations support: Conversion of the display manager to X Windows/Motif, volume 2

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.

    1990-01-01

    NASA is currently using a set of applications called the Display Builder and Display Manager. They run on Concurrent systems and heavily depend on the Graphic Kernel System (GKS). At this time however, these two applications would more appropriately be developed in X Windows, in which a low X is used for all actual text and graphics display and a standard widget set (such as Motif) is used for the user interface. Use of the X Windows will increase performance, improve the user interface, enhance portability, and improve reliability. Prototype of X Window/Motif based Display Manager provides the following advantages over a GKS based application: improved performance by using a low level X Windows, display of graphic and text will be more efficient; improved user interface by using Motif; Improved portability by operating on both Concurrent and Sun workstations; and Improved reliability.

  4. A Cross-Cultural Test of the Work-Family Interface in 48 Countries

    ERIC Educational Resources Information Center

    Jeffrey Hill, E.; Yang, Chongming; Hawkins, Alan J.; Ferris, Maria

    2004-01-01

    This study tests a cross-cultural model of the work-family interface. Using multigroup structural equation modeling with IBM survey responses from 48 countries (N= 25,380), results show that the same work-family interface model that fits the data globally also fits the data in a four-group model composed of culturally related groups of countries,…

  5. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.

    PubMed

    Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine

    2016-11-03

    Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that exposure of cells at the air-liquid interface represents a valid and sensitive method to assess the toxicity of several poorly soluble nanomaterials. We underlined the importance of the cellular model used and offer the possibility to deal with low deposition doses by using more sensitive and physiologic cellular models. This brings perspectives towards the use of relevant in vitro methods of exposure to assess nanomaterial toxicity.

  6. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  7. Improved EOS for describing high-temperature off-hugoniot states in epoxy

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Lanier, N. E.; Swift, D.; Workman, J.; Graham, Peter; Moore, Alastair

    2007-06-01

    Modeling of off-hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modeling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modeling of the data with the hydrodynamics code RAGE is unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code CHEETAH was used to prepare suitable EOS for input into the hydrodynamics modeling.

  8. Improved EOS for Describing High-Temperature Off-Hugoniot States in Epoxy

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Swift, D. C.; Lanier, N. E.; Workman, J.; Holmes, R. L.; Graham, P.; Moore, A.

    2007-12-01

    Modelling of off-Hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modelling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modelling of the data with the hydrodynamics code RAGE was unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code Cheetah was used to prepare suitable EOS for input into the hydrodynamics modelling.

  9. The solution of target assignment problem in command and control decision-making behaviour simulation

    NASA Astrophysics Data System (ADS)

    Li, Ni; Huai, Wenqing; Wang, Shaodan

    2017-08-01

    C2 (command and control) has been understood to be a critical military component to meet an increasing demand for rapid information gathering and real-time decision-making in a dynamically changing battlefield environment. In this article, to improve a C2 behaviour model's reusability and interoperability, a behaviour modelling framework was proposed to specify a C2 model's internal modules and a set of interoperability interfaces based on the C-BML (coalition battle management language). WTA (weapon target assignment) is a typical C2 autonomous decision-making behaviour modelling problem. Different from most WTA problem descriptions, here sensors were considered to be available resources of detection and the relationship constraints between weapons and sensors were also taken into account, which brought it much closer to actual application. A modified differential evolution (MDE) algorithm was developed to solve this high-dimension optimisation problem and obtained an optimal assignment plan with high efficiency. In case study, we built a simulation system to validate the proposed C2 modelling framework and interoperability interface specification. Also, a new optimisation solution was used to solve the WTA problem efficiently and successfully.

  10. A resource perspective on the work-home interface: the work-home resources model.

    PubMed

    ten Brummelhuis, Lieke L; Bakker, Arnold B

    2012-10-01

    The objective of this article is to provide a theoretical framework explaining positive and negative work-home processes integrally. Using insights from conservation of resources theory, we explain how personal resources (e.g., time, energy, and mood) link demanding and resourceful aspects of one domain to outcomes in the other domain. The resulting work-home resources (W-HR) model describes work-home conflict as a process whereby demands in one domain deplete personal resources and impede accomplishments in the other domain. Enrichment is described as a process of resource accumulation: Work and home resources increase personal resources. Those personal resources, in turn, can be utilized to improve home and work outcomes. Moreover, our resource approach to the work-home interface allows us to address two other issues that have thus far lacked a solid theoretical foundation. The W-HR model also explains how conditional factors such as personality and culture may influence the occurrence of work-home conflict and enrichment. Furthermore, the model allows us to examine how work-home conflict and enrichment develop over time. Finally, the model provides useful insights for other psychology subdisciplines, such as gender studies and developmental psychology.

  11. An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.

    PubMed

    Khaleghi, A; Chávez-Santiago, R; Balasingham, I

    2012-01-01

    Ultra wideband (UWB) technology has big potential for applications in wireless body area networks (WBANs). The inherent characteristics of UWB signals make them suitable for the wireless interface of medical sensors. In particular, implanted medical wireless sensors for monitoring physiological parameters, automatic drug provision, etc. can benefit greatly from this ultra low power (ULP) interface. As with any other wireless technology, accurate knowledge of the channel is necessary for the proper design of communication systems. Only a few models that describe the radio propagation inside the human body have been published. Moreover, there is no comprehensive UWB in-body propagation model that includes the frequency-dependent attenuation. Hence, this paper extends a statistical model for UWB propagation channels inside the human chest in the 1-6 GHz frequency range by including the frequency-dependent attenuation. This is done by modeling the spectrum shape of distorted pulses at different depths inside the human chest. The distortion of the pulse was obtained through numerical simulations using a voxel representation of the human body. We propose a mathematical expression for the spectrum shape of the distorted pulses that act as a window function to reproduce the effects of frequency-dependent attenuation.

  12. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    PubMed

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Performance evaluation of an automotive thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbante, Paolo; Frezzotti, Aldo; Gibelli, Livio

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviationsmore » of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.« less

  15. Pore-scale modeling of phase change in porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Cueto-Felgueroso, Luis; Fu, Xiaojing

    2017-11-01

    One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse interface, or phase field theories, particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play an important role. Here we present a diffuse interface model of single-component, two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization/condensation fronts, and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the break-up of wetting films.

  16. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  17. Usability and Functional Enhancements to an Online Interface for Predicting Post Fire Erosion (WEPP-PEP)

    NASA Astrophysics Data System (ADS)

    Lew, Roger; Dobre, Mariana; Elliot, William; Robichaud, Pete; Brooks, Erin; Frankenberger, Jim

    2017-04-01

    There is an increased interest in the United States to use soil burn severity maps in watershed-scale hydrologic models to estimate post-fire sediment erosion from burned areas. This information is needed by stakeholders in order to concentrate their pre- or post-fire management efforts in ecologically sensitive areas to decrease the probability of post-fire sediment delivery. But these tools traditionally have been time consuming and difficult to use by managers because input datasets must be obtained and correctly processed for valid results. The Water Erosion Prediction Project (WEPP) has previously been developed as an online and easy-to-use interface to help land managers with running simulations without any knowledge of computer programming or hydrologic modeling. The interface automates the acquisition of DEM, climate, soils, and landcover data, and also automates channel and hillslope delineation for the users. The backend is built with Mapserver, GDAL, PHP, C++, Python while the front end uses OpenLayers, and, of course, JavaScript. The existing WEPP online interface was enhanced to provide better usability to stakeholders in United States (Forest Service, BLM, USDA) as well as to provide enhanced functionality for managing both pre-fire and post-fire treatments. Previously, only site administrators could add burn severity maps. The interface now allows users to create accounts to upload and share FlamMap prediction maps, differenced Normalized Burned Ratio (dNBR), or Burned Area Reflectance Classification (BARC) maps. All maps are loaded into a sortable catalog so users can quickly find their area of interest. Once loaded, the interface has been modified to support running comparisons between baseline condition with "no burn" and with a burn severity classification map. The interface has also been enhanced to allow users to conduct single storm analyses to examine, for example, how much soil loss would result after a 100-year storm. An OpenLayers map allows users to overlay the watershed hillslopes and channels, burn severity, and erosion. The interface provides flowpath results for each hillslope and at the outlet, as well as return period and frequency analysis reports. Once problematic areas have been identified, the interface allows users to export the watershed in a format that can be used by the Erosion Risk Management Tool (ERMiT) and Disturbed WEPP (post-disturbance modeling) for more detailed hillslope-level analyses. Numerous other changes were made to improve the overall usability of the interface: allow simulations in both SI and English units, added immovable pop-up dialogs to guide the users, and removed extraneous information from the interface. In upcoming months, a workshop will be conducted to demonstrate these new capabilities to stakeholders. Efforts are underway to use site-specific SSURGO soils to that are modified based on burn severity rather than using generic soil classes.

  18. Situation awareness-based agent transparency for human-autonomy teaming effectiveness

    NASA Astrophysics Data System (ADS)

    Chen, Jessie Y. C.; Barnes, Michael J.; Wright, Julia L.; Stowers, Kimberly; Lakhmani, Shan G.

    2017-05-01

    We developed the Situation awareness-based Agent Transparency (SAT) model to support human operators' situation awareness of the mission environment through teaming with intelligent agents. The model includes the agent's current actions and plans (Level 1), its reasoning process (Level 2), and its projection of future outcomes (Level 3). Human-inthe-loop simulation experiments have been conducted (Autonomous Squad Member and IMPACT) to illustrate the utility of the model for human-autonomy team interface designs. Across studies, the results consistently showed that human operators' task performance improved as the agents became more transparent. They also perceived transparent agents as more trustworthy.

  19. A Data Services Upgrade for Advanced Composition Explorer (ACE) Data

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Hamell, G.

    2008-12-01

    Since early in 1998, NASA's Advanced Composition Explorer (ACE) spacecraft has provided continuous measurements of solar wind, interplanetary magnetic field, and energetic particle activity from L1, located approximately 0.01 AU sunward of Earth. The spacecraft has enough fuel to stay in orbit about L1 until ~2024. The ACE Science Center (ASC) provides access to ACE data, and performs level 1 and browse data processing for the science instruments. Thanks to a NASA Data Services Upgrade grant, we have recently retooled our legacy web interface to ACE data, enhancing data subsetting capabilities and improving online plotting options. We have also integrated a new application programming interface (API) and we are working to ensure that it will be compatible with emerging Virtual Observatory (VO) data services standards. The new API makes extensive use of metadata created using the Space Physics Archive Search and Extract (SPASE) data model. We describe these recent improvements to the ACE Science Center data services, and our plans for integrating these services into the VO system.

  20. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    USDA-ARS?s Scientific Manuscript database

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  1. Relaxation, Structure and Properties of Semi-coherent Interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-11-05

    Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.

  2. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

    PubMed

    Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen

    2015-04-01

    Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.

  3. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    NASA Astrophysics Data System (ADS)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  4. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    NASA Astrophysics Data System (ADS)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  5. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study

    PubMed Central

    Zhang, Hui; Yu, Rena C.

    2016-01-01

    It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30∘ and 60∘. Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle. PMID:28773921

  6. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study.

    PubMed

    Zhang, Hui; Yu, Rena C

    2016-09-26

    It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb's friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.

  7. Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures

    NASA Technical Reports Server (NTRS)

    Averill, Ronald C.

    2004-01-01

    An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.

  8. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Barinaga, C.J.

    1995-06-13

    An improvement to the system and method is disclosed for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity. 10 figs.

  9. Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Morway, E. D.; Healy, R. W.

    2016-12-01

    Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.

  10. Force Measurement Improvements to the National Transonic Facility Sidewall Model Support System

    NASA Technical Reports Server (NTRS)

    Goodliff, Scott L.; Balakrishna, Sundareswara; Butler, David; Cagle, C. Mark; Chan, David; Jones, Gregory S.; Milholen, William E., II

    2016-01-01

    The National Transonic Facility is a transonic pressurized cryogenic facility. The development of the high Reynolds number semi-span capability has advanced over the years to include transonic active flow control and powered testing using the sidewall model support system. While this system can be used in total temperatures down to -250Â F for conventional unpowered configurations, it is limited to temperatures above -60Â F when used with powered models that require the use of the high-pressure air delivery system. Thermal instabilities and non-repeatable mechanical arrangements revealed several data quality shortfalls by the force and moment measurement system. Recent modifications to the balance cavity recirculation system have improved the temperature stability of the balance and metric model-to-balance hardware. Changes to the mechanical assembly of the high-pressure air delivery system, particularly hardware that interfaces directly with the model and balance, have improved the repeatability of the force and moment measurement system. Drag comparisons with the high-pressure air system removed will also be presented in this paper.

  11. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.

    PubMed

    Valero, A; Hervás, C; García-Gimeno, R M; Zurera, G

    2007-08-01

    A new approach to predict the growth/no growth interface of Listeria monocytogenes as a function of storage temperature, pH, citric acid (CA) and ascorbic acid (AA) is presented. A linear logistic regression procedure was performed and a non-linear model was obtained by adding new variables by means of a Neural Network model based on Product Units (PUNN). The classification efficiency of the training data set and the generalization data of the new Logistic Regression PUNN model (LRPU) were compared with Linear Logistic Regression (LLR) and Polynomial Logistic Regression (PLR) models. 92% of the total cases from the LRPU model were correctly classified, an improvement on the percentage obtained using the PLR model (90%) and significantly higher than the results obtained with the LLR model, 80%. On the other hand predictions of LRPU were closer to data observed which permits to design proper formulations in minimally processed foods. This novel methodology can be applied to predictive microbiology for describing growth/no growth interface of food-borne microorganisms such as L. monocytogenes. The optimal balance is trying to find models with an acceptable interpretation capacity and with good ability to fit the data on the boundaries of variable range. The results obtained conclude that these kinds of models might well be very a valuable tool for mathematical modeling.

  12. Compliant Turbomachine Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  13. Universality of Critically Pinned Interfaces in Two-Dimensional Isotropic Random Media

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2018-05-01

    Based on extensive simulations, we conjecture that critically pinned interfaces in two-dimensional isotropic random media with short-range correlations are always in the universality class of ordinary percolation. Thus, in contrast to interfaces in >2 dimensions, there is no distinction between fractal (i.e., percolative) and rough but nonfractal interfaces. Our claim includes interfaces in zero-temperature random field Ising models (both with and without spontaneous nucleation), in heterogeneous bootstrap percolation, and in susceptible-weakened-infected-removed epidemics. It does not include models with long-range correlations in the randomness and models where overhangs are explicitly forbidden (which would imply nonisotropy of the medium).

  14. Kaizen newspaper

    NASA Technical Reports Server (NTRS)

    Shearer, Scott C. (Inventor); Proferes, John Nicholas (Inventor); Baker, Sr., Mitchell D. (Inventor); Reilly, Kenneth B. (Inventor); Tiwari, Vijai K. (Inventor)

    2013-01-01

    Systems, computer program products, and methods are disclosed for tracking an improvement event. An embodiment includes an event interface configured to receive a plurality of entries related to each of a plurality of improvement events. The plurality of entries includes a project identifier for the improvement event, a creation date, an objective, an action related to reaching the objective, and a first deadline related to the improvement event. A database interface is configured to store the plurality of entries in an event database.

  15. Design and validation of an improved graphical user interface with the 'Tool ball'.

    PubMed

    Lee, Kuo-Wei; Lee, Ying-Chu

    2012-01-01

    The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. A Novel Interfacing Technique for Distributed Hybrid Simulations Combining EMT and Transient Stability Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Dewu; Xie, Xiaorong; Jiang, Qirong

    With steady increase of power electronic devices and nonlinear dynamic loads in large scale AC/DC systems, the traditional hybrid simulation method, which incorporates these components into a single EMT subsystem and hence causes great difficulty for network partitioning and significant deterioration in simulation efficiency. To resolve these issues, a novel distributed hybrid simulation method is proposed in this paper. The key to realize this method is a distinct interfacing technique, which includes: i) a new approach based on the two-level Schur complement to update the interfaces by taking full consideration of the couplings between different EMT subsystems; and ii) amore » combined interaction protocol to further improve the efficiency while guaranteeing the simulation accuracy. The advantages of the proposed method in terms of both efficiency and accuracy have been verified by using it for the simulation study of an AC/DC hybrid system including a two-terminal VSC-HVDC and nonlinear dynamic loads.« less

  17. Physics behind the oscillation of pressure tensor autocorrelation function for nanocolloidal dispersions.

    PubMed

    Wang, Tao; Wang, Xinwei; Luo, Zhongyang; Cen, Kefa

    2008-08-01

    In this work, extensive equilibrium molecular dynamics simulations are conducted to explore the physics behind the oscillation of pressure tensor autocorrelation function (PTACF) for nanocolloidal dispersions, which leads to strong instability in viscosity calculation. By reducing the particle size and density, we find the intensity of the oscillation decreases while the frequency of the oscillation becomes higher. Careful analysis of the relationship between the oscillation and nanoparticle characteristics reveals that the stress wave scattering/reflection at the particle-liquid interface plays a critical role in PTACF oscillation while the Brownian motion/vibration of solid particles has little effect. Our modeling proves that it is practical to eliminate the PTACF oscillation through suppressing the acoustic mismatch at the solid-liquid interface by designing special nanoparticle materials. It is also found when the particle size is comparable with the wavelength of the stress wave, diffraction of stress wave happens at the interface. Such effect substantially reduces the PTACF oscillation and improves the stability of viscosity calculation.

  18. Double-scattering/reflection in a Single Nanoparticle for Intensified Ultrasound Imaging

    PubMed Central

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-01-01

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled). PMID:25739832

  19. PubMedReco: A Real-Time Recommender System for PubMed Citations.

    PubMed

    Samuel, Hamman W; Zaïane, Osmar R

    2017-01-01

    We present a recommender system, PubMedReco, for real-time suggestions of medical articles from PubMed, a database of over 23 million medical citations. PubMedReco can recommend medical article citations while users are conversing in a synchronous communication environment such as a chat room. Normally, users would have to leave their chat interface to open a new web browser window, and formulate an appropriate search query to retrieve relevant results. PubMedReco automatically generates the search query and shows relevant citations within the same integrated user interface. PubMedReco analyzes relevant keywords associated with the conversation and uses them to search for relevant citations using the PubMed E-utilities programming interface. Our contributions include improvements to the user experience for searching PubMed from within health forums and chat rooms, and a machine learning model for identifying relevant keywords. We demonstrate the feasibility of PubMedReco using BMJ's Doc2Doc forum discussions.

  20. Exploring parameter space effects on structure-property relationships of surfactants at liquid-liquid interfaces.

    PubMed

    Emborsky, Christopher P; Cox, Kenneth R; Chapman, Walter G

    2011-08-28

    The ubiquitous use of surfactants in commercial and industrial applications has led to many experimental, theoretical, and simulation based studies. These efforts seek to provide a molecular level understanding of the effects on structuring behavior and the corresponding impacts on observable properties (e.g., interfacial tension). With such physical detail, targeted system design can be improved over typical techniques of observational trends and phenomenological correlations by taking advantage of predictive system response. This research provides a systematic study of part of the broad parameter space effects on equilibrium microstructure and interfacial properties of amphiphiles at a liquid-liquid interface using the interfacial statistical associating fluid theory density functional theory as a molecular model for the system from the bulk to the interface. Insights into the molecular level physics and thermodynamics governing the system behavior are discussed as they relate to both predictions qualitatively consistent with experimental observations and extensions beyond currently available studies. © 2011 American Institute of Physics

  1. Interface methods for using intranet portal organizational memory information system.

    PubMed

    Ji, Yong Gu; Salvendy, Gavriel

    2004-12-01

    In this paper, an intranet portal is considered as an information infrastructure (organizational memory information system, OMIS) supporting organizational learning. The properties and the hierarchical structure of information and knowledge in an intranet portal OMIS was identified as a problem for navigation tools of an intranet portal interface. The problem relates to navigation and retrieval functions of intranet portal OMIS and is expected to adversely affect user performance, satisfaction, and usefulness. To solve the problem, a conceptual model for navigation tools of an intranet portal interface was proposed and an experiment using a crossover design was conducted with 10 participants. In the experiment, a separate access method (tabbed tree tool) was compared to an unified access method (single tree tool). The results indicate that each information/knowledge repository for which a user has a different structural knowledge should be handled separately with a separate access to increase user satisfaction and the usefulness of the OMIS and to improve user performance in navigation.

  2. Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging.

    PubMed

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-03-05

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled).

  3. Brain-Computer Interfaces in Medicine

    PubMed Central

    Shih, Jerry J.; Krusienski, Dean J.; Wolpaw, Jonathan R.

    2012-01-01

    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function. PMID:22325364

  4. The OGC Sensor Web Enablement framework

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Botts, M.

    2006-12-01

    Sensor observations are at the core of natural sciences. Improvements in data-sharing technologies offer the promise of much greater utilisation of observational data. A key to this is interoperable data standards. The Open Geospatial Consortium's (OGC) Sensor Web Enablement initiative (SWE) is developing open standards for web interfaces for the discovery, exchange and processing of sensor observations, and tasking of sensor systems. The goal is to support the construction of complex sensor applications through real-time composition of service chains from standard components. The framework is based around a suite of standard interfaces, and standard encodings for the message transferred between services. The SWE interfaces include: Sensor Observation Service (SOS)-parameterized observation requests (by observation time, feature of interest, property, sensor); Sensor Planning Service (SPS)-tasking a sensor- system to undertake future observations; Sensor Alert Service (SAS)-subscription to an alert, usually triggered by a sensor result exceeding some value. The interface design generally follows the pattern established in the OGC Web Map Service (WMS) and Web Feature Service (WFS) interfaces, where the interaction between a client and service follows a standard sequence of requests and responses. The first obtains a general description of the service capabilities, followed by obtaining detail required to formulate a data request, and finally a request for a data instance or stream. These may be implemented in a stateless "REST" idiom, or using conventional "web-services" (SOAP) messaging. In a deployed system, the SWE interfaces are supplemented by Catalogue, data (WFS) and portrayal (WMS) services, as well as authentication and rights management. The standard SWE data formats are Observations and Measurements (O&M) which encodes observation metadata and results, Sensor Model Language (SensorML) which describes sensor-systems, Transducer Model Language (TML) which covers low-level data streams, and domain-specific GML Application Schemas for definitions of the target feature types. The SWE framework has been demonstrated in several interoperability testbeds. These were based around emergency management, security, contamination and environmental monitoring scenarios.

  5. Ab initio modeling of transport and thermodynamic stability for hafnia memristive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter

    HfO 2-based memristive switching devices are currently under intensive investigation due to their high performance and mature fabrication techniques. However, several critical issues have to be addressed to bring them from lab to market. We have recently looked into two important issues with the use of density functional theory methods. One is the wide distribution of device resistance in off-states. We have modeled the switching process of a Pt-HfO 2-Pt structure for which quantized conductance was observed. Oxygen atoms moving inside a conductive oxygen vacancy filament divide the filament into several quantum wells. Device conductance changes exponentially when one oxygenmore » atom moves away from interface into filament. We propose that the high sensitivity of device conductance to the position of oxygen atoms results in the large variation of device off-state resistance. Another issue that we have recently addressed is the poor switching performance of devices based on a TiN-HfO 2-TiN structure. While recent experiments have shown that by inserting an "oxygen scavenger" metal between positive electrode and oxide significantly improves device performance, the fundamental understanding of the improvement is lacking.We provide detailed understanding how scavenger layers improve device performance. First, we show that Ta insertion facilitates formation of on-states by reducing the formation energy. Second, the inserted Ta layer reduces the Schottky barrier height in the off-states by changing interface electric dipole at the oxide electrode interface. Nevertheless, the device maintains a high on/off resistance ratio. Finally, with Ta insertion the on-state conductance becomes much less sensitive to the specific location from which the oxygen was removed from the oxide. In conclusion, our studies provide fundamental understanding needed for enabling realization of a non-volatile memory technology with reduced energy consumption.« less

  6. Ab initio modeling of transport and thermodynamic stability for hafnia memristive devices

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2017-09-05

    HfO 2-based memristive switching devices are currently under intensive investigation due to their high performance and mature fabrication techniques. However, several critical issues have to be addressed to bring them from lab to market. We have recently looked into two important issues with the use of density functional theory methods. One is the wide distribution of device resistance in off-states. We have modeled the switching process of a Pt-HfO 2-Pt structure for which quantized conductance was observed. Oxygen atoms moving inside a conductive oxygen vacancy filament divide the filament into several quantum wells. Device conductance changes exponentially when one oxygenmore » atom moves away from interface into filament. We propose that the high sensitivity of device conductance to the position of oxygen atoms results in the large variation of device off-state resistance. Another issue that we have recently addressed is the poor switching performance of devices based on a TiN-HfO 2-TiN structure. While recent experiments have shown that by inserting an "oxygen scavenger" metal between positive electrode and oxide significantly improves device performance, the fundamental understanding of the improvement is lacking.We provide detailed understanding how scavenger layers improve device performance. First, we show that Ta insertion facilitates formation of on-states by reducing the formation energy. Second, the inserted Ta layer reduces the Schottky barrier height in the off-states by changing interface electric dipole at the oxide electrode interface. Nevertheless, the device maintains a high on/off resistance ratio. Finally, with Ta insertion the on-state conductance becomes much less sensitive to the specific location from which the oxygen was removed from the oxide. In conclusion, our studies provide fundamental understanding needed for enabling realization of a non-volatile memory technology with reduced energy consumption.« less

  7. Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; San Yip, Pak; Tang, Chak Wah; Lau, Kei May; Li, Qiang

    2018-04-01

    Layered semiconductor molybdenum disulfide (MoS2) has recently emerged as a promising material for flexible electronic and optoelectronic devices because of its finite bandgap and high degree of gate control. Here, we report a hydrogen fluoride (HF) passivation technique for improving the carrier mobility and interface quality of chemical vapor deposited monolayer MoS2 on a SiO2/Si substrate. After passivation, the fabricated MoS2 back-gate transistors demonstrate a more than double improvement in average electron mobility, a reduced gate hysteresis gap of 3 V, and a low interface trapped charge density of ˜5.8 × 1011 cm-2. The improvements are attributed to the satisfied interface dangling bonds, thus a reduction of interface trap states and trapped charges. Surface x-ray photoelectron spectroscopy analysis and first-principles simulation were performed to verify the HF passivation effect. The results here highlight the necessity of a MoS2/dielectric passivation strategy and provides a viable route for enhancing the performance of MoS2 nano-electronic devices.

  8. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  9. A smoothed two- and three-dimensional interface reconstruction method

    DOE PAGES

    Mosso, Stewart; Garasi, Christopher; Drake, Richard

    2008-04-22

    The Patterned Interface Reconstruction algorithm reduces the discontinuity between material interfaces in neighboring computational elements. This smoothing improves the accuracy of the reconstruction for smooth bodies. The method can be used in two- and three-dimensional Cartesian and unstructured meshes. Planar interfaces will be returned for planar volume fraction distributions. Finally, the algorithm is second-order accurate for smooth volume fraction distributions.

  10. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  11. Toward Topology Dualism: Improving the Accuracy of AS Annotations for Routers

    NASA Astrophysics Data System (ADS)

    Huffaker, Bradley; Dhamdhere, Amogh; Fomenkov, Marina; Claffy, Kc

    To describe, analyze, and model the topological and structural characteristics of the Internet, researchers use Internet maps constructed at the router or autonomous system (AS) level. Although progress has been made on each front individually, a dual graph representing connectivity of routers with AS labels remains an elusive goal. We take steps toward merging the router-level and AS-level views of the Internet. We start from a collection of traces, i.e. sequences of IP addresses obtained with large-scale traceroute measurements from a distributed set of vantage points. We use state-of-the-art alias resolution techniques to identify interfaces belonging to the same router. We develop novel heuristics to assign routers to ASes, producing an AS-router dual graph. We validate our router assignment heuristics using data provided by tier-1 and tier-2 ISPs and five research networks, and show that we successfully assign 80% of routers with interfaces from multiple ASes to the correct AS. When we include routers with interfaces from a single AS, the accuracy drops to 71%, due to the 24% of total inferred routers for which our measurement or alias resolution fails to find an interface belonging to the correct AS. We use our dual graph construct to estimate economic properties of the AS-router dual graph, such as the number of internal and border routers owned by different types of ASes. We also demonstrate how our techniques can improve IP-AS mapping, including resolving up to 62% of false loops we observed in AS paths derived from traceroutes.

  12. Introducing a new open source GIS user interface for the SWAT model

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  13. COMPARATIVE EFFECTIVENESS OF AN ADJUSTABLE TRANSFEMORAL PROSTHETIC INTERFACE ACCOMMODATING VOLUME FLUCTUATION: CASE STUDY

    PubMed Central

    Kahle, Jason T.; Klenow, Tyler D.; Highsmith, M. Jason

    2016-01-01

    The socket-limb interface is vital for functionality and provides stability and mobility for the amputee. Volume fluctuation can lead to compromised fit and function. Current socket technology does not accommodate for volume fluctuation. An adjustable interface may improve function and comfort by filling this technology gap. The purpose of this study was to compare the effectiveness of the standard of care (SOC) ischial ramus containment to an adjustable transfemoral prosthetic interface socket in the accommodation of volume fluctuation. A prospective experimental case study using repeated measures of subjective and performance outcome measures between socket conditions was employed. In the baseline volume condition, the adjustable socket improved subjective and performance measures 19% to 37% over SOC, whereas the two-minute walk test demonstrated equivalence. In the volume loss condition, the adjustable socket improved all subjective and performance measures 22% to 93%. All aggregated data improved 16% to 50% compared with the SOC. In simulated volume gain, the SOC socket failed, while the subject was able to complete the protocol using the adjustable socket. In this case study, the SOC socket was inferior to the comparative adjustable transfemoral amputation interface in subjective and performance outcomes. There is a lack of clinical trials and evidence comparing socket functional outcomes related to volume fluctuation. PMID:28066526

  14. The Effect of Prosthetic Socket Interface Design on Socket Comfort, Residual Limb Health, and Function for the Transfemoral Amputee

    DTIC Science & Technology

    2017-10-01

    significantly lower trim lines, without ischial containment compared with a traditional interface. However, these alternative designs could compromise...overall function compared to the standard of care interface design . Therefore the focus of this clinical trial is to determine if the DS and Sub-I...alternative interface designs will improve socket comfort, residual limb health and function compared to the standard of care IRC interface design . 15

  15. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  16. Framework of distributed coupled atmosphere-ocean-wave modeling system

    NASA Astrophysics Data System (ADS)

    Wen, Yuanqiao; Huang, Liwen; Deng, Jian; Zhang, Jinfeng; Wang, Sisi; Wang, Lijun

    2006-05-01

    In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed. The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.

  17. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items tomore » be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.« less

  18. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  19. Generation of an artificial skin construct containing a non-degradable fiber mesh: a potential transcutaneous interface

    PubMed Central

    Cahn, Frederick; Kyriakides, Themis R

    2009-01-01

    Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation. PMID:18689926

  20. Framework for non-coherent interface models at finite displacement jumps and finite strains

    NASA Astrophysics Data System (ADS)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  1. A design of an interface board between a MRC thermistor probe and a personal computer.

    DOT National Transportation Integrated Search

    2013-09-01

    The main purpose of this project was to design and build a prototype of an interface board between an MRC temperature probe : (thermistor array) and a personal laptop computer. This interface board replaces and significantly improve the capabilities ...

  2. A Question of Interface Design: How Do Online Service GUIs Measure Up?

    ERIC Educational Resources Information Center

    Head, Alison J.

    1997-01-01

    Describes recent improvements in graphical user interfaces (GUIs) offered by online services. Highlights include design considerations, including computer engineering capabilities and users' abilities; fundamental GUI design principles; user empowerment; visual communication and interaction; and an evaluation of online search interfaces. (LRW)

  3. Effect of two layouts on high technology AAC navigation and content location by people with aphasia.

    PubMed

    Wallace, Sarah E; Hux, Karen

    2014-03-01

    Navigating high-technology augmentative and alternative communication (AAC) devices with dynamic displays can be challenging for people with aphasia. The purpose of this study was to determine which of two AAC interfaces two people with aphasia could use most efficiently and accurately. The researchers used a BCB'C' alternating treatment design to provide device-use instruction to two people with severe aphasia regarding two personalised AAC interfaces that had different navigation layouts but identical content. One interface had static buttons for homepage and go-back features, and the other interface had static buttons in a navigation ring layout. Throughout treatment, the researchers monitored participants' mastery patterns regarding navigation efficiency and accuracy when locating target messages. Participants' accuracy and efficiency improved with both interfaces given intervention; however, the navigation ring layout appeared more transparent and better facilitated navigation than the homepage layout. People with aphasia can learn to navigate computerised devices; however, interface layout can substantially affect the efficiency and accuracy with which they locate messages. Given intervention incorporating errorless learning principles, people with chronic aphasia can learn to navigate across multiple device levels to locate target sentences. Both navigation ring and homepage interfaces may be used by people with aphasia. Some people with aphasia may be more consistent and efficient in finding target sentences using the navigation ring interface than the homepage interface. Additionally, the navigation ring interface may be more transparent and easier for people with aphasia to master--that is, they may require fewer intervention sessions to learn to navigate the navigation ring interface. Generalisation of learning may result from use of the navigation ring interface. Specifically, people with aphasia may improve navigation with the homepage interface as a result of instruction on the navigation interface, but not vice versa.

  4. Proteins at the air-water interface in a lattice model

    NASA Astrophysics Data System (ADS)

    Zhao, Yani; Cieplak, Marek

    2018-03-01

    We construct a lattice protein version of the hydrophobic-polar model to study the effects of the air-water interface on the protein and on an interfacial layer formed through aggregation of many proteins. The basic unit of the model is a 14-mer that is known to have a unique ground state in three dimensions. The equilibrium and kinetic properties of the systems with and without the interface are studied through a Monte Carlo process. We find that the proteins at high dilution can be pinned and depinned many times from the air-water interface. When pinned, the proteins undergo deformation. The staying time depends on the strength of the coupling to the interface. For dense protein systems, we observe glassy effects. Thus, the lattice model yields results which are similar to those obtained through molecular dynamics in off-lattice models. In addition, we study dynamical effects induced by local temperature gradients in protein films.

  5. Model for the Operation of a Monolayer MoS2 Thin-Film Transistor with Charges Trapped near the Channel Interface

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Park, Junghak; Kim, Deok-kee; Jeon, Sanghun

    2017-04-01

    We propose a model that describes the operation characteristics of a two-dimensional electron gas (2DEG) in a monolayer transition-metal dichalcogenide thin-film transistor (TFT) having trapped charges near the channel interface. We calculate the drift mobility of the carriers scattered by charged defects located in the channel or near the channel interfaces. The calculated drift mobility is a function of the 2DEG areal density of interface traps. Finally, we calculate the model transfer (ID-VG S ) and output (ID-VS D ) characteristics and verify them by comparing with the experimental results performed with monolayer MoS2 TFTs. We find the modeled results to be excellently consistent with the experiments. This proposed model can be utilized for measuring the interface-trapped charge and trap site densities from the measured transfer curves directly, avoiding more complicated and expensive measurement methods.

  6. Computational Modeling of Interfacial Behaviors in Nanocomposite Materials

    PubMed Central

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2017-01-01

    Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123

  7. 3D simulation of LISM oxygen flux with PUIs inside of heliosphere

    DOE PAGES

    Kawamura, Akito D.; Heerikhuisen, Jacob; Pogorelov, Nikolai V.; ...

    2012-11-20

    The structure of the heliospheric interface has attracted increasing attention with continual improvements in modelling and observations, during the last half decade. The Interstellar Boundary Explore (IBEX) spacecraft is returning important data that require a theoretical model of Heliosphere to ensure proper interpretation. Furthermore, we develop a framework for understanding the measurements of heavier-than-hydrogen atoms by IBEX in terms of a 3D MHD-neutral numerical solution of the sun's interaction with the interstellar medium, combined with a test particle approach for heavy atoms and ions.

  8. Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface.

    PubMed

    Andrews, Steven S

    2017-03-01

    Smoldyn is a spatial and stochastic biochemical simulator. It treats each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions, all with good accuracy. This article presents several new features. Smoldyn now supports two types of rule-based modeling. These are a wildcard method, which is very convenient, and the BioNetGen package with extensions for spatial simulation, which is better for complicated models. Smoldyn also includes new algorithms for simulating the diffusion of surface-bound molecules and molecules with excluded volume. Both are exact in the limit of short time steps and reasonably good with longer steps. In addition, Smoldyn supports single-molecule tracking simulations. Finally, the Smoldyn source code can be accessed through a C/C ++ language library interface. Smoldyn software, documentation, code, and examples are at http://www.smoldyn.org . steven.s.andrews@gmail.com. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. A thermal control approach for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Oglebay, J. C.

    1979-01-01

    A thrust subsystem thermal control design is defined for a Solar Electric Propulsion System (SEPS) proposed for the comet Halley Flyby/comet Tempel 2 rendezvous mission. A 114 node analytic model, developed and coded on the systems improved numerical differencing analyzer program, was employed. A description of the resulting thrust subsystem thermal design is presented as well as a description of the analytic model and comparisons of the predicted temperature profiles for various SEPS thermal configurations that were generated using this model. It was concluded that: (1) a BIMOD engine system thermal design can be autonomous; (2) an independent thrust subsystem thermal design is feasible; (3) the interface module electronics temperatures can be controlled by a passive radiator and supplementary heaters; (4) maintaining heat pipes above the freezing point would require an additional 322 watts of supplementary heating power for the situation where no thrusters are operating; (5) insulation is required around the power processors, and between the interface module and the avionics module, as well as in those areas which may be subjected to solar heating; and (6) insulation behind the heat pipe radiators is not necessary.

  10. Pilot-Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory

  11. Comparison of two kinds of interface, based on guided navigation or usability principles, for improving the adoption of computerized decision support systems: application to the prescription of antibiotics.

    PubMed

    Tsopra, Rosy; Jais, Jean-Philippe; Venot, Alain; Duclos, Catherine

    2014-02-01

    It is important to consider the way in which information is presented by the interfaces of clinical decision support systems, to favor the adoption of these systems by physicians. Interface design can focus on decision processes (guided navigation) or usability principles. The aim of this study was to compare these two approaches in terms of perceived usability, accuracy rate, and confidence in the system. We displayed clinical practice guidelines for antibiotic treatment via two types of interface, which we compared in a crossover design. General practitioners were asked to provide responses for 10 clinical cases and the System Usability Scale (SUS) for each interface. We assessed SUS scores, the number of correct responses, and the confidence level for each interface. SUS score and percentage confidence were significantly higher for the interface designed according to usability principles (81 vs 51, p=0.00004, and 88.8% vs 80.7%, p=0.004). The percentage of correct responses was similar for the two interfaces. The interface designed according to usability principles was perceived to be more usable and inspired greater confidence among physicians than the guided navigation interface. Consideration of usability principles in the construction of an interface--in particular 'effective information presentation', 'consistency', 'efficient interactions', 'effective use of language', and 'minimizing cognitive load'--seemed to improve perceived usability and confidence in the system.

  12. An optimization based study of equivalent circuit models for representing recordings at the neuron-electrode interface

    PubMed Central

    Thakore, Vaibhav; Molnar, Peter; Hickman, James J.

    2014-01-01

    Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342

  13. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  14. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    PubMed

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  15. Space Station module Power Management And Distribution (PMAD) system

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    1990-01-01

    This project consists of several tasks which are unified toward experimentally demonstrating the operation of a highly autonomous, user-supportive power management and distribution system for Space Station Freedom (SSF) habitation/laboratory modules. This goal will be extended to a demonstration of autonomous, cooperative power system operation for the whole SSF power system through a joint effort with NASA's Lewis Research Center, using their Autonomous Power System. Short term goals for the space station module power management and distribution include having an operational breadboard reflecting current plans for SSF, improving performance of the system communications, and improving the organization and mutability of the artificial intelligence (AI) systems. In the middle term, intermediate levels of autonomy will be added, user interfaces will be modified, and enhanced modeling capabilities will be integrated in the system. Long term goals involve conversion of all software into Ada, vigorous verification and validation efforts and, finally, seeing an impact of this research on the operation of SSF. Conversion of the system to a DC Star configuration is now in progress, and should be completed by the end of October, 1989. This configuration reflects the latest SSF module architecture. Hardware is now being procured which will improve system communications significantly. The Knowledge-Based Management System (KBMS) is initially developed and the rules from FRAMES have been implemented in the KBMS. Rules in the other two AI systems are also being grouped modularly, making them more tractable, and easier to eventually move into the KBMS. Adding an intermediate level of autonomy will require development of a planning utility, which will also be built using the KBMS. These changes will require having the user interface for the whole system available from one interface. An Enhanced Model will be developed, which will allow exercise of the system through the interface without requiring all of the power hardware to be operational. The functionality of the AI systems will continue to be advanced, including incipient failure detection. Ada conversion will begin with the lowest level processor (LLP) code. Then selected pieces of the higher level functionality will be recorded in Ada and, where possible, moved to the LLP level. Validation and verification will be done on the Ada code, and will complete sometimes after completion of the Ada conversion.

  16. Improved Accuracy Using Recursive Bayesian Estimation Based Language Model Fusion in ERP-Based BCI Typing Systems

    PubMed Central

    Orhan, U.; Erdogmus, D.; Roark, B.; Oken, B.; Purwar, S.; Hild, K. E.; Fowler, A.; Fried-Oken, M.

    2013-01-01

    RSVP Keyboard™ is an electroencephalography (EEG) based brain computer interface (BCI) typing system, designed as an assistive technology for the communication needs of people with locked-in syndrome (LIS). It relies on rapid serial visual presentation (RSVP) and does not require precise eye gaze control. Existing BCI typing systems which uses event related potentials (ERP) in EEG suffer from low accuracy due to low signal-to-noise ratio. Henceforth, RSVP Keyboard™ utilizes a context based decision making via incorporating a language model, to improve the accuracy of letter decisions. To further improve the contributions of the language model, we propose recursive Bayesian estimation, which relies on non-committing string decisions, and conduct an offline analysis, which compares it with the existing naïve Bayesian fusion approach. The results indicate the superiority of the recursive Bayesian fusion and in the next generation of RSVP Keyboard™ we plan to incorporate this new approach. PMID:23366432

  17. Designing the OPAC User Interface to Improve Access and Retrieval.

    ERIC Educational Resources Information Center

    Basista, Thomas; And Others

    1991-01-01

    Discussion of problems with retrieval of records in library online public access catalogs (OPACs) focuses on an ongoing research project at the Indiana University of Pennsylvania (IUP) that has been trying to improve subject retrieval vocabulary control using natural and thesaural language and on the design of a good graphical user interface.…

  18. Improved haptic interface for colonoscopy simulation.

    PubMed

    Woo, Hyun Soo; Kim, Woo Seok; Ahn, Woojin; Lee, Doo Yong; Yi, Sun Young

    2007-01-01

    This paper presents an improved haptic interface of the KAIST-Ewha colonoscopy simulator II. The haptic interface enables the distal portion of the colonoscope to be freely bent while guaranteeing enough workspace and reflective forces for colonoscopy simulation. Its force-torque sensor measures profiles of the user. Manipulation of the colonoscope tip is monitored by four deflection sensors, and triggers computation to render accurate graphic images corresponding to the angle knob rotation. Tack switches are attached on the valve-actuation buttons of the colonoscope to simulate air-injection or suction, and the corresponding deformation of the colon.

  19. Integration of Evidence Base into a Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Saile, Lyn; Lopez, Vilma; Bickham, Grandin; Kerstman, Eric; FreiredeCarvalho, Mary; Byrne, Vicky; Butler, Douglas; Myers, Jerry; Walton, Marlei

    2011-01-01

    INTRODUCTION: A probabilistic decision support model such as the Integrated Medical Model (IMM) utilizes an immense amount of input data that necessitates a systematic, integrated approach for data collection, and management. As a result of this approach, IMM is able to forecasts medical events, resource utilization and crew health during space flight. METHODS: Inflight data is the most desirable input for the Integrated Medical Model. Non-attributable inflight data is collected from the Lifetime Surveillance for Astronaut Health study as well as the engineers, flight surgeons, and astronauts themselves. When inflight data is unavailable cohort studies, other models and Bayesian analyses are used, in addition to subject matters experts input on occasion. To determine the quality of evidence of a medical condition, the data source is categorized and assigned a level of evidence from 1-5; the highest level is one. The collected data reside and are managed in a relational SQL database with a web-based interface for data entry and review. The database is also capable of interfacing with outside applications which expands capabilities within the database itself. Via the public interface, customers can access a formatted Clinical Findings Form (CLiFF) that outlines the model input and evidence base for each medical condition. Changes to the database are tracked using a documented Configuration Management process. DISSCUSSION: This strategic approach provides a comprehensive data management plan for IMM. The IMM Database s structure and architecture has proven to support additional usages. As seen by the resources utilization across medical conditions analysis. In addition, the IMM Database s web-based interface provides a user-friendly format for customers to browse and download the clinical information for medical conditions. It is this type of functionality that will provide Exploratory Medicine Capabilities the evidence base for their medical condition list. CONCLUSION: The IMM Database in junction with the IMM is helping NASA aerospace program improve the health care and reduce risk for the astronauts crew. Both the database and model will continue to expand to meet customer needs through its multi-disciplinary evidence based approach to managing data. Future expansion could serve as a platform for a Space Medicine Wiki of medical conditions.

  20. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal-human interface. © 2012 Blackwell Verlag GmbH.

  1. Evolvix BEST Names for semantic reproducibility across code2brain interfaces

    PubMed Central

    Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha

    2016-01-01

    Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836

  2. Interface plasmonic properties of silver coated by ultrathin metal oxides

    NASA Astrophysics Data System (ADS)

    Sytchkova, A.; Zola, D.; Grilli, M. L.; Piegari, A.; Fang, M.; He, H.; Shao, J.

    2011-09-01

    Many fields of high technology take advantage of conductor-dielectric interface properties. Deeper knowledge of physical processes that determine the optical response of the structures containing metal-dielectric interfaces is important for improving the performance of thin film devices containing such materials. Here we present a study on optical properties of several ultrathin metal oxides deposited over thin silver layers. Some widely used materials (Al2O3, SiO2, Y2O3, HfO2) were selected for deposition by r.f. sputtering, and the created metal-dielectric structures with two of them, alumina and silica, were investigated in this work using attenuated total reflectance (ATR) technique and by variable-angle spectroscopic ellipsometry (VASE). VASE was performed with a help of a commercial ellipsometer at various incident angles and in a wide spectral range. A home-made sample holder manufactured for WVASE ellipsometer and operational in Otto configuration has been implemented for angle-resolved and spectral ATR measurements. Simultaneous analysis of data obtained by these two independent techniques allows elaboration of a representative model for plasmonic-related phenomena at metal-dielectric interface. The optical constants of the interface layers formed between metal and ultrathin oxide layers are investigated. A series of oxides chosen for this study allows a comparative analysis aimed for selection of the most appropriate materials for different applications.

  3. Increasing productivity of the McAuto CAD/CAE system by user-specific applications programming

    NASA Technical Reports Server (NTRS)

    Plotrowski, S. M.; Vu, T. H.

    1985-01-01

    Significant improvements in the productivity of the McAuto Computer-Aided Design/Computer-Aided Engineering (CAD/CAE) system were achieved by applications programming using the system's own Graphics Interactive Programming language (GRIP) and the interface capabilities with the main computer on which the system resides. The GRIP programs for creating springs, bar charts, finite element model representations and aiding management planning are presented as examples.

  4. AE9/AP9/SPM Model Application Programming Interface, Version 1.00.000

    DTIC Science & Technology

    2014-02-18

    propagator, a SatEph implementation and a Kepler +J2 only propagator. Clients of this class can choose which to use... Kepler -J2 orbit propagator Parameters: none Return values: none void useSGP4ImprovedMode...values: none void setOrbitType ( const string& strOrbit ) Usage: Sets the type of orbit to compute for the Kepler /J2 propagator. Valid values are

  5. Improving Quality Using Architecture Fault Analysis with Confidence Arguments

    DTIC Science & Technology

    2015-03-01

    CMU/SEI-2015-TR-006 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii List of Figures Figure 1: Architecture-Centric...Requirements Decomposition 5 Figure 2: A System and Its Interface with Its Environment 6 Figure 3: AADL Graphical Symbols 8 Figure 4: Textual AADL Example...8 Figure 5: Textual AADL Error Model Example 9 Figure 6: Potential Hazard Sources in the Feedback Control Loop [Leveson 2012] 11 Figure 7

  6. Intelligent and Adaptive Interface (IAI) for Cognitive Cockpit (CC)

    DTIC Science & Technology

    2004-03-31

    goals3 and plans and generating system plans would be incorporated as task knowledge. The Dialogue Model, which is currently undeveloped in LOCATE...pieces of software. Modularity can also serve to improve the organisational effectiveness of software, whereby a suitable division of labour among...a sophisticated tool in support of future combat aircraft acquisition. While CA can monitor similar activities in countries like the UK and USA we

  7. Commercial Building Energy Saver, API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    2015-08-27

    The CBES API provides Application Programming Interface to a suite of functions to improve energy efficiency of buildings, including building energy benchmarking, preliminary retrofit analysis using a pre-simulation database DEEP, and detailed retrofit analysis using energy modeling with the EnergyPlus simulation engine. The CBES API is used to power the LBNL CBES Web App. It can be adopted by third party developers and vendors into their software tools and platforms.

  8. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    DOE PAGES

    Martinez, Enrique Saez; Senninger, Oriane; Caro, Alfredo; ...

    2018-03-08

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role ofmore » interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. Furthermore, this model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.« less

  9. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    NASA Technical Reports Server (NTRS)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  10. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    NASA Astrophysics Data System (ADS)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  11. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Enrique Saez; Senninger, Oriane; Caro, Alfredo

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role ofmore » interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. Furthermore, this model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.« less

  12. Using GOMS models and hypertext to create representations of medical procedures for online display

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo; Halgren, Shannon; Gosbee, John; Rudisill, Marianne

    1991-01-01

    This study investigated two methods to improve organization and presentation of computer-based medical procedures. A literature review suggested that the GOMS (goals, operators, methods, and selecton rules) model can assist in rigorous task analysis, which can then help generate initial design ideas for the human-computer interface. GOMS model are hierarchical in nature, so this study also investigated the effect of hierarchical, hypertext interfaces. We used a 2 x 2 between subjects design, including the following independent variables: procedure organization - GOMS model based vs. medical-textbook based; navigation type - hierarchical vs. linear (booklike). After naive subjects studies the online procedures, measures were taken of their memory for the content and the organization of the procedures. This design was repeated for two medical procedures. For one procedure, subjects who studied GOMS-based and hierarchical procedures remembered more about the procedures than other subjects. The results for the other procedure were less clear. However, data for both procedures showed a 'GOMSification effect'. That is, when asked to do a free recall of a procedure, subjects who had studies a textbook procedure often recalled key information in a location inconsistent with the procedure they actually studied, but consistent with the GOMS-based procedure.

  13. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    NASA Astrophysics Data System (ADS)

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  14. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.

    2008-02-15

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less

  15. Improved light extraction efficiency of GaN-based flip-chip light-emitting diodes with an antireflective interface layer

    NASA Astrophysics Data System (ADS)

    Wu, Dongxue; Ma, Ping; Liu, Boting; Zhang, Shuo; Wang, Junxi; Li, Jinmin

    2016-05-01

    GaN-based flip-chip light-emitting diodes (FC-LEDs) grown on nanopatterned sapphire substrates (NPSS) are fabricated using self-assembled SiO2 nanospheres as masks during inductively coupled plasma etching. By controlling the pattern spacing, epitaxial GaN can be grown from the top or bottom of patterns to obtain two different GaN/substrate interfaces. The optoelectronic characteristics of FC-LED chips with different GaN/sapphire interfaces are studied. The FC-LED with an antireflective interface layer consisting of a NPSS with GaN in the pattern spacings demonstrates better optical properties than the FC-LED with an interface embedded with air voids. Our study indicates that the two types of FC-LEDs grown on NPSS show higher crystal quality and improved electrical and optical characteristics compared with those of FC-LEDs grown on conventional planar sapphire substrates.

  16. Improving information recognition and performance of recycling chimneys.

    PubMed

    Durugbo, Christopher

    2013-01-01

    The aim of this study was to assess and improve how recyclers (individuals carrying out the task of recycling) make use of visual cues to carryout recycling tasks in relation to 'recycling chimneys' (repositories for recycled waste). An initial task analysis was conducted through an activity sampling study and an eye tracking experiment using a mobile eye tracker to capture fixations of recyclers during recycling tasks. Following data collection using the eye tracker, a set of recommendations for improving information representation were then identified using the widely researched skills, rules, knowledge framework, and for a comparative study to assess the performance of improved interfaces for recycling chimneys based on Ecological Interface Design principles. Information representation on recycling chimneys determines how we recycle waste. This study describes an eco-ergonomics-based approach to improve the design of interfaces for recycling chimneys. The results are valuable for improving the performance of waste collection processes in terms of minimising contamination and increasing the quantity of recyclables.

  17. Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models

    PubMed Central

    Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei

    2014-01-01

    Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189

  18. User interface for ground-water modeling: Arcview extension

    USGS Publications Warehouse

    Tsou, Ming‐shu; Whittemore, Donald O.

    2001-01-01

    Numerical simulation for ground-water modeling often involves handling large input and output data sets. A geographic information system (GIS) provides an integrated platform to manage, analyze, and display disparate data and can greatly facilitate modeling efforts in data compilation, model calibration, and display of model parameters and results. Furthermore, GIS can be used to generate information for decision making through spatial overlay and processing of model results. Arc View is the most widely used Windows-based GIS software that provides a robust user-friendly interface to facilitate data handling and display. An extension is an add-on program to Arc View that provides additional specialized functions. An Arc View interface for the ground-water flow and transport models MODFLOW and MT3D was built as an extension for facilitating modeling. The extension includes preprocessing of spatially distributed (point, line, and polygon) data for model input and postprocessing of model output. An object database is used for linking user dialogs and model input files. The Arc View interface utilizes the capabilities of the 3D Analyst extension. Models can be automatically calibrated through the Arc View interface by external linking to such programs as PEST. The efficient pre- and postprocessing capabilities and calibration link were demonstrated for ground-water modeling in southwest Kansas.

  19. Fluid and mass transfer at subduction interfaces-The field metamorphic record

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.; Penniston-Dorland, Sarah C.

    2016-01-01

    The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical/isotopic compositions could improve models aimed at identifying the relative contributions of end-member rock reservoirs through analyses of arc volcanic rocks. Production of rocks rich in hydrous minerals, along the subduction interface, could stabilize H2O to great depths in subduction zones and influence deep-Earth H2O cycling. Enhancement of decarbonation reactions and dissolution by fluid infiltration facilitated by deformation at the interface could influence the C flux from subducting slabs entering the sub-arc mantle wedge and various forearc reservoirs. In this paper, we consider records of fluid and mass transfer at localities representing various depths and structural expressions of evolving paleo-interfaces, ranging widely in structural character, the rock types involved (ultramafic, mafic, sedimentary), and the rheology of these rocks. We stress commonalities in styles of fluid and mass transfer as related to deformation style and the associated geometries of fluid mobility at subduction interfaces. Variations in thermal structure among individual margins will lead to significant differences in not only the rheology of subducting rocks, and thus seismicity, but also the profiles of devolatilization and melting, through the forearc and subarc, and the element/mineral solubilities in any aqueous fluids or silicate melts that are produced. One key factor in considering fluid and mass transfer in the subduction interface, influencing C cycling and other chemical additions to arcs, is the uncertain degree to which sub-crustal ultramafic rocks in downgoing slabs are hydrated and release H2O-rich fluids.

  20. Transient thermoelectric supercooling: Isosceles current pulses from a response surface perspective and the performance effects of pulse cooling a heat generating mass

    NASA Astrophysics Data System (ADS)

    Piggott, Alfred J., III

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..

Top