Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-01-01
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%. PMID:28273845
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-03-04
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.
He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun
2014-01-01
This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Improving IMES Localization Accuracy by Integrating Dead Reckoning Information
Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki
2016-01-01
Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492
Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev
2013-01-01
Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491
Reputation-Based Secure Sensor Localization in Wireless Sensor Networks
He, Jingsha; Xu, Jing; Zhu, Xingye; Zhang, Yuqiang; Zhang, Ting; Fu, Wanqing
2014-01-01
Location information of sensor nodes in wireless sensor networks (WSNs) is very important, for it makes information that is collected and reported by the sensor nodes spatially meaningful for applications. Since most current sensor localization schemes rely on location information that is provided by beacon nodes for the regular sensor nodes to locate themselves, the accuracy of localization depends on the accuracy of location information from the beacon nodes. Therefore, the security and reliability of the beacon nodes become critical in the localization of regular sensor nodes. In this paper, we propose a reputation-based security scheme for sensor localization to improve the security and the accuracy of sensor localization in hostile or untrusted environments. In our proposed scheme, the reputation of each beacon node is evaluated based on a reputation evaluation model so that regular sensor nodes can get credible location information from highly reputable beacon nodes to accomplish localization. We also perform a set of simulation experiments to demonstrate the effectiveness of the proposed reputation-based security scheme. And our simulation results show that the proposed security scheme can enhance the security and, hence, improve the accuracy of sensor localization in hostile or untrusted environments. PMID:24982940
Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique
Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J.
2017-01-01
The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system’s configuration and LS’s relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS’ localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision. PMID:28125056
Customization of UWB 3D-RTLS Based on the New Uncertainty Model of the AoA Ranging Technique.
Jachimczyk, Bartosz; Dziak, Damian; Kulesza, Wlodek J
2017-01-25
The increased potential and effectiveness of Real-time Locating Systems (RTLSs) substantially influence their application spectrum. They are widely used, inter alia, in the industrial sector, healthcare, home care, and in logistic and security applications. The research aims to develop an analytical method to customize UWB-based RTLS, in order to improve their localization performance in terms of accuracy and precision. The analytical uncertainty model of Angle of Arrival (AoA) localization in a 3D indoor space, which is the foundation of the customization concept, is established in a working environment. Additionally, a suitable angular-based 3D localization algorithm is introduced. The paper investigates the following issues: the influence of the proposed correction vector on the localization accuracy; the impact of the system's configuration and LS's relative deployment on the localization precision distribution map. The advantages of the method are verified by comparing them with a reference commercial RTLS localization engine. The results of simulations and physical experiments prove the value of the proposed customization method. The research confirms that the analytical uncertainty model is the valid representation of RTLS' localization uncertainty in terms of accuracy and precision and can be useful for its performance improvement. The research shows, that the Angle of Arrival localization in a 3D indoor space applying the simple angular-based localization algorithm and correction vector improves of localization accuracy and precision in a way that the system challenges the reference hardware advanced localization engine. Moreover, the research guides the deployment of location sensors to enhance the localization precision.
Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang
2017-05-30
In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.
DiBiase, Lauren; Fangman, Mary T.; Fleischauer, Aaron T.; Waller, Anna E.; MacDonald, Pia D. M.
2013-01-01
Objectives. We assessed the timeliness, accuracy, and cost of a new electronic disease surveillance system at the local health department level. We describe practices associated with lower cost and better surveillance timeliness and accuracy. Methods. Interviews conducted May through August 2010 with local health department (LHD) staff at a simple random sample of 30 of 100 North Carolina counties provided information on surveillance practices and costs; we used surveillance system data to calculate timeliness and accuracy. We identified LHDs with best timeliness and accuracy and used these categories to compare surveillance practices and costs. Results. Local health departments in the top tertiles for surveillance timeliness and accuracy had a lower cost per case reported than LHDs with lower timeliness and accuracy ($71 and $124 per case reported, respectively; P = .03). Best surveillance practices fell into 2 domains: efficient use of the electronic surveillance system and use of surveillance data for local evaluation and program management. Conclusions. Timely and accurate surveillance can be achieved in the setting of restricted funding experienced by many LHDs. Adopting best surveillance practices may improve both efficiency and public health outcomes. PMID:24134385
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.
Tuta, Jure; Juric, Matjaz B
2018-03-24
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.
MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method
Juric, Matjaz B.
2018-01-01
This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage. PMID:29587352
Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT
NASA Astrophysics Data System (ADS)
Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard
2015-03-01
We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun
2016-01-01
The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882
Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping
2017-01-01
Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid “particle degeneracy” problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network. PMID:29267252
Li, Xinbin; Zhang, Chenglin; Yan, Lei; Han, Song; Guan, Xinping
2017-12-21
Target localization, which aims to estimate the location of an unknown target, is one of the key issues in applications of underwater acoustic sensor networks (UASNs). However, the constrained property of an underwater environment, such as restricted communication capacity of sensor nodes and sensing noises, makes target localization a challenging problem. This paper relies on fractional sensor nodes to formulate a support vector learning-based particle filter algorithm for the localization problem in communication-constrained underwater acoustic sensor networks. A node-selection strategy is exploited to pick fractional sensor nodes with short-distance pattern to participate in the sensing process at each time frame. Subsequently, we propose a least-square support vector regression (LSSVR)-based observation function, through which an iterative regression strategy is used to deal with the distorted data caused by sensing noises, to improve the observation accuracy. At the same time, we integrate the observation to formulate the likelihood function, which effectively update the weights of particles. Thus, the particle effectiveness is enhanced to avoid "particle degeneracy" problem and improve localization accuracy. In order to validate the performance of the proposed localization algorithm, two different noise scenarios are investigated. The simulation results show that the proposed localization algorithm can efficiently improve the localization accuracy. In addition, the node-selection strategy can effectively select the subset of sensor nodes to improve the communication efficiency of the sensor network.
A hybrid localization technique for patient tracking.
Rodionov, Denis; Kolev, George; Bushminkin, Kirill
2013-01-01
Nowadays numerous technologies are employed for tracking patients and assets in hospitals or nursing homes. Each of them has advantages and drawbacks. For example, WiFi localization has relatively good accuracy but cannot be used in case of power outage or in the areas with poor WiFi coverage. Magnetometer positioning or cellular network does not have such problems but they are not as accurate as localization with WiFi. This paper describes technique that simultaneously employs different localization technologies for enhancing stability and average accuracy of localization. The proposed algorithm is based on fingerprinting method paired with data fusion and prediction algorithms for estimating the object location. The core idea of the algorithm is technology fusion using error estimation methods. For testing accuracy and performance of the algorithm testing simulation environment has been implemented. Significant accuracy improvement was showed in practical scenarios.
A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.
Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun
2017-11-29
As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.
A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks
Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek
2017-01-01
As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072
Research of converter transformer fault diagnosis based on improved PSO-BP algorithm
NASA Astrophysics Data System (ADS)
Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping
2017-09-01
To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.
NASA Astrophysics Data System (ADS)
Shiri, Jalal
2018-06-01
Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.
Döge, Julia; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias
2017-12-01
To assess auditory localization accuracy and speech reception threshold (SRT) in complex noise conditions in adult patients with acquired single-sided deafness, after intervention with a cochlear implant (CI) in the deaf ear. Nonrandomized, open, prospective patient series. Tertiary referral university hospital. Eleven patients with late-onset single-sided deafness (SSD) and normal hearing in the unaffected ear, who received a CI. All patients were experienced CI users. Unilateral cochlear implantation. Speech perception was tested in a complex multitalker equivalent noise field consisting of multiple sound sources. Speech reception thresholds in noise were determined in aided (with CI) and unaided conditions. Localization accuracy was assessed in complete darkness. Acoustic stimuli were radiated by multiple loudspeakers distributed in the frontal horizontal plane between -60 and +60 degrees. In the aided condition, results show slightly improved speech reception scores compared with the unaided condition in most of the patients. For 8 of the 11 subjects, SRT was improved between 0.37 and 1.70 dB. Three of the 11 subjects showed deteriorations between 1.22 and 3.24 dB SRT. Median localization error decreased significantly by 12.9 degrees compared with the unaided condition. CI in single-sided deafness is an effective treatment to improve the auditory localization accuracy. Speech reception in complex noise conditions is improved to a lesser extent in 73% of the participating CI SSD patients. However, the absence of true binaural interaction effects (summation, squelch) impedes further improvements. The development of speech processing strategies that respect binaural interaction seems to be mandatory to advance speech perception in demanding listening situations in SSD patients.
Parametric Loop Division for 3D Localization in Wireless Sensor Networks
Ahmad, Tanveer
2017-01-01
Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than two decades. A variety of algorithms were proposed to improve the localization accuracy. However, they are either limited to two-dimensional (2D) space, or require specific sensor deployment for proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region towards its center point, the proposed scheme provides better localization accuracy as compared to existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity. We provide an analytical framework for the proposed scheme and find its lower bound accuracy. Simulation results shows that the proposed algorithm provides an average localization accuracy of 0.89 m with a standard deviation of 1.2 m. PMID:28737714
Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.
Monica, Stefania; Ferrari, Gianluigi
2018-05-17
Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.
Experimental studies of high-accuracy RFID localization with channel impairments
NASA Astrophysics Data System (ADS)
Pauls, Eric; Zhang, Yimin D.
2015-05-01
Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase
Lu, Kelin; Zhou, Rui
2016-01-01
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883
Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.
Lu, Kelin; Zhou, Rui
2016-08-15
A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.
Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.
Parr, Andreas; Miesen, Robert; Vossiek, Martin
2016-06-25
In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.
Trust index based fault tolerant multiple event localization algorithm for WSNs.
Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue
2011-01-01
This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.
Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs
Xu, Xianghua; Gao, Xueyong; Wan, Jian; Xiong, Naixue
2011-01-01
This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP) localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms. PMID:22163972
EEG source localization: Sensor density and head surface coverage.
Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don
2015-12-30
The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
Accuracy improvement in the TDR-based localization of water leaks
NASA Astrophysics Data System (ADS)
Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian
A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.
A new fault diagnosis algorithm for AUV cooperative localization system
NASA Astrophysics Data System (ADS)
Shi, Hongyang; Miao, Zhiyong; Zhang, Yi
2017-10-01
Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Edge detection and localization with edge pattern analysis and inflection characterization
NASA Astrophysics Data System (ADS)
Jiang, Bo
2012-05-01
In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.
Zhu, Xiangbin; Qiu, Huiling
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.
High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections
2016-01-01
Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved. PMID:27893761
SoRS: Social recommendation using global rating reputation and local rating similarity
NASA Astrophysics Data System (ADS)
Qian, Fulan; Zhao, Shu; Tang, Jie; Zhang, Yanping
2016-11-01
Recommendation is an important and also challenging problem in online social networks. It needs to consider not only users' personalized interests, but also social relations between users. Indeed, in practice, users are often inclined to accept recommendations from friends or opinion leaders (users with high reputations). In this paper, we present a novel recommendation framework, social recommendation using global rating reputation and local rating similarity, which combine user reputation and social similarity based on ratings. User reputation can be obtained by iteratively calculating the correlation of historical ratings of user and intrinsic qualities of items. We view the user reputation as the user's global influence and the similarity based on rating of social relation as the user's local influence, introduce it in the basic social recommender model. Thus users with high reputation have a strong influence on the others, and on the other hand, the effect of a user with low reputation has been weakened. The recommendation accuracy of proposed framework can be improved by effectively removing nature noise because of less rigorous user ratings and strengthening the effect of user influence with high reputation. We also improve the similarity based on ratings by avoiding the high similarity with the less common ratings between friends. We evaluate our approach on three datasets including Movielens, Epinions and Douban. Empirical results demonstrate that proposed framework achieves significant improvements on recommendation accuracy. User reputation and local similarity which are both based on ratings have a lot of helpful in improvement of prediction accuracy. The reputation also can help to improve the recommendation precision with the small training sets.
Localization of multiple defects using the compact phased array (CPA) method
NASA Astrophysics Data System (ADS)
Senyurek, Volkan Y.; Baghalian, Amin; Tashakori, Shervin; McDaniel, Dwayne; Tansel, Ibrahim N.
2018-01-01
Array systems of transducers have found numerous applications in detection and localization of defects in structural health monitoring (SHM) of plate-like structures. Different types of array configurations and analysis algorithms have been used to improve the process of localization of defects. For accurate and reliable monitoring of large structures by array systems, a high number of actuator and sensor elements are often required. In this study, a compact phased array system consisting of only three piezoelectric elements is used in conjunction with an updated total focusing method (TFM) for localization of single and multiple defects in an aluminum plate. The accuracy of the localization process was greatly improved by including wave propagation information in TFM. Results indicated that the proposed CPA approach can locate single and multiple defects with high accuracy while decreasing the processing costs and the number of required transducers. This method can be utilized in critical applications such as aerospace structures where the use of a large number of transducers is not desirable.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros
2014-01-01
When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-11-13
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results.
Sun, Yongliang; Xu, Yubin; Li, Cheng; Ma, Lin
2013-01-01
A Kalman/map filtering (KMF)-aided fast normalized cross correlation (FNCC)-based Wi-Fi fingerprinting location sensing system is proposed in this paper. Compared with conventional neighbor selection algorithms that calculate localization results with received signal strength (RSS) mean samples, the proposed FNCC algorithm makes use of all the on-line RSS samples and reference point RSS variations to achieve higher fingerprinting accuracy. The FNCC computes efficiently while maintaining the same accuracy as the basic normalized cross correlation. Additionally, a KMF is also proposed to process fingerprinting localization results. It employs a new map matching algorithm to nonlinearize the linear location prediction process of Kalman filtering (KF) that takes advantage of spatial proximities of consecutive localization results. With a calibration model integrated into an indoor map, the map matching algorithm corrects unreasonable prediction locations of the KF according to the building interior structure. Thus, more accurate prediction locations are obtained. Using these locations, the KMF considerably improves fingerprinting algorithm performance. Experimental results demonstrate that the FNCC algorithm with reduced computational complexity outperforms other neighbor selection algorithms and the KMF effectively improves location sensing accuracy by using indoor map information and spatial proximities of consecutive localization results. PMID:24233027
Based on the CSI regional segmentation indoor localization algorithm
NASA Astrophysics Data System (ADS)
Zeng, Xi; Lin, Wei; Lan, Jingwei
2017-08-01
To solve the problem of high cost and low accuracy, the method of Channel State Information (CSI) regional segmentation are proposed in the indoor positioning. Because Channel State Information (CSI) stability, and effective against multipath effect, we used the Channel State Information (CSI) to segment location area. The method Acquisition CSI the influence of different link to pinpoint the location of the area. Then the method can improve the accuracy of positioning, and reduce the cost of the fingerprint localization algorithm.
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464
Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning
2012-01-01
In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.
Research on cardiovascular disease prediction based on distance metric learning
NASA Astrophysics Data System (ADS)
Ni, Zhuang; Liu, Kui; Kang, Guixia
2018-04-01
Distance metric learning algorithm has been widely applied to medical diagnosis and exhibited its strengths in classification problems. The k-nearest neighbour (KNN) is an efficient method which treats each feature equally. The large margin nearest neighbour classification (LMNN) improves the accuracy of KNN by learning a global distance metric, which did not consider the locality of data distributions. In this paper, we propose a new distance metric algorithm adopting cosine metric and LMNN named COS-SUBLMNN which takes more care about local feature of data to overcome the shortage of LMNN and improve the classification accuracy. The proposed methodology is verified on CVDs patient vector derived from real-world medical data. The Experimental results show that our method provides higher accuracy than KNN and LMNN did, which demonstrates the effectiveness of the Risk predictive model of CVDs based on COS-SUBLMNN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation.
Gao, Siwei; Liu, Yanheng; Wang, Jian; Deng, Weiwen; Oh, Heekuck
2016-07-16
This paper proposes a multi-sensory Joint Adaptive Kalman Filter (JAKF) through extending innovation-based adaptive estimation (IAE) to estimate the motion state of the moving vehicles ahead. JAKF views Lidar and Radar data as the source of the local filters, which aims to adaptively adjust the measurement noise variance-covariance (V-C) matrix 'R' and the system noise V-C matrix 'Q'. Then, the global filter uses R to calculate the information allocation factor 'β' for data fusion. Finally, the global filter completes optimal data fusion and feeds back to the local filters to improve the measurement accuracy of the local filters. Extensive simulation and experimental results show that the JAKF has better adaptive ability and fault tolerance. JAKF enables one to bridge the gap of the accuracy difference of various sensors to improve the integral filtering effectivity. If any sensor breaks down, the filtered results of JAKF still can maintain a stable convergence rate. Moreover, the JAKF outperforms the conventional Kalman filter (CKF) and the innovation-based adaptive Kalman filter (IAKF) with respect to the accuracy of displacement, velocity, and acceleration, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertholet, Jenny, E-mail: jennbe@rm.dk; Worm, Esben S.; Fledelius, Walther
Purpose: Image guided liver stereotactic body radiation therapy (SBRT) often relies on implanted fiducial markers. The target localization accuracy decreases with increased marker-target distance. This may occur partly because of liver rotations. The aim of this study was to examine time-resolved translations and rotations of liver marker constellations and investigate if time-resolved intrafraction rotational corrections can improve localization accuracy in liver SBRT. Methods and Materials: Twenty-nine patients with 3 implanted markers received SBRT in 3 to 6 fractions. The time-resolved trajectory of each marker was estimated from the projections of 1 to 3 daily cone beam computed tomography scans andmore » used to calculate the translation and rotation of the marker constellation. In all cone beam computed tomography projections, the time-resolved position of each marker was predicted from the position of another surrogate marker by assuming that the marker underwent either (1) the same translation as the surrogate marker; or (2) the same translation as the surrogate marker corrected by the rotation of the marker constellation. The localization accuracy was quantified as the root-mean-square error (RMSE) between the estimated and the actual marker position. For comparison, the RMSE was also calculated when the marker's position was estimated as its mean position for all the projections. Results: The mean translational and rotational range (2nd-98th percentile) was 2.0 mm/3.9° (right-left), 9.2 mm/2.9° (superior-inferior), 4.0 mm/4.0° (anterior-posterior), and 10.5 mm (3-dimensional). Rotational corrections decreased the mean 3-dimensional RMSE from 0.86 mm to 0.54 mm (P<.001) and halved the RMSE increase per millimeter increase in marker distance. Conclusions: Intrafraction rotations during liver SBRT reduce the accuracy of marker-guided target localization. Rotational correction can improve the localization accuracy with a factor of approximately 2 for large marker-target distances.« less
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-01-01
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon. PMID:28590413
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-06-07
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon.
Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie
2014-01-01
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle. PMID:24921337
Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie
2014-05-19
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.
An Improved Aerial Target Localization Method with a Single Vector Sensor
Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin
2017-01-01
This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956
Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations
Toth, Alex; Ellis, J. Austin; Evans, Tom; ...
2017-10-26
Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.
Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Alex; Ellis, J. Austin; Evans, Tom
Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.
Performance of Improved High-Order Filter Schemes for Turbulent Flows with Shocks
NASA Technical Reports Server (NTRS)
Kotov, Dmitry Vladimirovich; Yee, Helen M C.
2013-01-01
The performance of the filter scheme with improved dissipation control ? has been demonstrated for different flow types. The scheme with local ? is shown to obtain more accurate results than its counterparts with global or constant ?. At the same time no additional tuning is needed to achieve high accuracy of the method when using the local ? technique. However, further improvement of the method might be needed for even more complex and/or extreme flows.
Coordinate alignment of combined measurement systems using a modified common points method
NASA Astrophysics Data System (ADS)
Zhao, G.; Zhang, P.; Xiao, W.
2018-03-01
The co-ordinate metrology has been extensively researched for its outstanding advantages in measurement range and accuracy. The alignment of different measurement systems is usually achieved by integrating local coordinates via common points before measurement. The alignment errors would accumulate and significantly reduce the global accuracy, thus need to be minimized. In this thesis, a modified common points method (MCPM) is proposed to combine different traceable system errors of the cooperating machines, and optimize the global accuracy by introducing mutual geometric constraints. The geometric constraints, obtained by measuring the common points in individual local coordinate systems, provide the possibility to reduce the local measuring uncertainty whereby enhance the global measuring certainty. A simulation system is developed in Matlab to analyze the feature of MCPM using the Monto-Carlo method. An exemplary setup is constructed to verify the feasibility and efficiency of the proposed method associated with laser tracker and indoor iGPS systems. Experimental results show that MCPM could significantly improve the alignment accuracy.
O'Donnell, Daniel; Mancera, Mike; Savory, Eric; Christopher, Shawn; Schaffer, Jason; Roumpf, Steve
2015-01-01
Early and accurate identification of ST-elevation myocardial infarction (STEMI) by prehospital providers has been shown to significantly improve door to balloon times and improve patient outcomes. Previous studies have shown that paramedic accuracy in reading 12 lead ECGs can range from 86% to 94%. However, recent studies have demonstrated that accuracy diminishes for the more uncommon STEMI presentations (e.g. lateral). Unlike hospital physicians, paramedics rarely have the ability to review previous ECGs for comparison. Whether or not a prior ECG can improve paramedic accuracy is not known. The availability of prior ECGs improves paramedic accuracy in ECG interpretation. 130 paramedics were given a single clinical scenario. Then they were randomly assigned 12 computerized prehospital ECGs, 6 with and 6 without an accompanying prior ECG. All ECGs were obtained from a local STEMI registry. For each ECG paramedics were asked to determine whether or not there was a STEMI and to rate their confidence in their interpretation. To determine if the old ECGs improved accuracy we used a mixed effects logistic regression model to calculate p-values between the control and intervention. The addition of a previous ECG improved the accuracy of identifying STEMIs from 75.5% to 80.5% (p=0.015). A previous ECG also increased paramedic confidence in their interpretation (p=0.011). The availability of previous ECGs improves paramedic accuracy and enhances their confidence in interpreting STEMIs. Further studies are needed to evaluate this impact in a clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of using genealogy-based haplotypes for genomic prediction
2013-01-01
Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Conclusions Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy. PMID:23496971
The effect of using genealogy-based haplotypes for genomic prediction.
Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt
2013-03-06
Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.
NASA Astrophysics Data System (ADS)
Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun
2018-06-01
Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be extended to any subsequent brain connectivity analyses used to construct the associated dynamic brain networks.
Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter.
Sung, Kwangjae; Lee, Dong Kyu 'Roy'; Kim, Hwangnam
2018-05-26
The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.
Localized Density/Drag Prediction for Improved Onboard Orbit Propagation
2009-09-01
Localized Density/Drag Prediction for Improved Onboard Orbit Propagation Nathan B. Stastny, Frank R. Chavez, Chin Lin, T. Alan Lovell , Robert A...Terrestrial Physics, Vol. 70, 774-793, 2008 3. Storz, M.F, Bowman, B.R., Branson, J.I., High Accuracy Satellite Drag Model (HASDM), AIAA/ AAS ...Geomagnetic Indices, AIAA/ AAS Astrodynamics Specialist Conference, Honolulu, HI, Aug. 2008 5. Bruinsma, S., Biancale, R., Total Densities Derived from
Kernel PLS Estimation of Single-trial Event-related Potentials
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.
2004-01-01
Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.
Ikeda, Hidetoshi; Abe, Takehiko; Watanabe, Kazuo
2010-04-01
Fifty to eighty percent of Cushing disease is diagnosed by typical endocrine responses. Recently, the number of diagnoses of Cushing disease without typical Cushing syndrome has been increasing; therefore, improving ways to determine the localization of the adenoma and making an early diagnosis is important. This study was undertaken to determine the present diagnostic accuracy for Cushing microadenoma and to compare the differences in diagnostic accuracy between MR imaging and PET/MR imaging. During the past 3 years the authors analyzed the diagnostic accuracy in a series of 35 patients with Cushing adenoma that was verified by surgical pituitary exploration. All 35 cases of Cushing disease, including 20 cases of "overt" and 15 cases of "preclinical" Cushing disease, were studied. Superconductive MR images (1.5 or 3.0 T) and composite images from FDG-PET or methionine (MET)-PET and 3.0-T MR imaging were compared with the localization of adenomas verified by surgery. The diagnostic accuracy of superconductive MR imaging for detecting the localization of Cushing microadenoma was only 40%. The causes of unsatisfactory results for superconductive MR imaging were false-negative results (10 cases), false-positive results (6 cases), and instances of double pituitary adenomas (3 cases). In contrast, the accuracy of microadenoma localization using MET-PET/3.0-T MR imaging was 100% and that of FDG-PET/3.0-T MR imaging was 73%. Moreover, the adenoma location was better delineated on MET-PET/MR images than on FDG-PET/MR images. There was no significant difference in maximum standard uptake value of adenomas evaluated by MET-PET between preclinical Cushing disease and overt Cushing disease. Composite MET-PET/3.0-T MR imaging is useful for the improvement of the delineation of Cushing microadenoma and offers high-quality detectability for early-stage Cushing adenoma.
Local classifier weighting by quadratic programming.
Cevikalp, Hakan; Polikar, Robi
2008-10-01
It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-08-31
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-01-01
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284
NASA Astrophysics Data System (ADS)
Kim, Dae Hoe; Choi, Jae Young; Choi, Seon Hyeong; Ro, Yong Man
2012-03-01
In this study, a novel mammogram enhancement solution is proposed, aiming to improve the quality of subsequent mass segmentation in mammograms. It has been widely accepted that characteristics of masses are usually hyper-dense or uniform density with respect to its background. Also, their core parts are likely to have high-intensity values while the values of intensity tend to be decreased as the distance to core parts increases. Based on the aforementioned observations, we develop a new and effective mammogram enhancement method by combining local statistical measurements and Sliding Band Filtering (SBF). By effectively combining local statistical measurements and SBF, we are able to improve the contrast of the bright and smooth regions (which represent potential mass regions), as well as, at the same time, the regions where their surrounding gradients are converging to the centers of regions of interest. In this study, 89 mammograms were collected from the public MAIS database (DB) to demonstrate the effectiveness of the proposed enhancement solution in terms of improving mass segmentation. As for a segmentation method, widely used contour-based segmentation approach was employed. The contour-based method in conjunction with the proposed enhancement solution achieved overall detection accuracy of 92.4% with a total of 85 correct cases. On the other hand, without using our enhancement solution, overall detection accuracy of the contour-based method was only 78.3%. In addition, experimental results demonstrated the feasibility of our enhancement solution for the purpose of improving detection accuracy on mammograms containing dense parenchymal patterns.
Han, Guangjie; Liu, Li; Jiang, Jinfang; Shu, Lei; Rodrigues, Joel J.P.C.
2016-01-01
Localization is one of the hottest research topics in Underwater Wireless Sensor Networks (UWSNs), since many important applications of UWSNs, e.g., event sensing, target tracking and monitoring, require location information of sensor nodes. Nowadays, a large number of localization algorithms have been proposed for UWSNs. How to improve location accuracy are well studied. However, few of them take location reliability or security into consideration. In this paper, we propose a Collaborative Secure Localization algorithm based on Trust model (CSLT) for UWSNs to ensure location security. Based on the trust model, the secure localization process can be divided into the following five sub-processes: trust evaluation of anchor nodes, initial localization of unknown nodes, trust evaluation of reference nodes, selection of reference node, and secondary localization of unknown node. Simulation results demonstrate that the proposed CSLT algorithm performs better than the compared related works in terms of location security, average localization accuracy and localization ratio. PMID:26891300
Khazendar, S; Sayasneh, A; Al-Assam, H; Du, H; Kaijser, J; Ferrara, L; Timmerman, D; Jassim, S; Bourne, T
2015-01-01
Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.
Establishment of a high accuracy geoid correction model and geodata edge match
NASA Astrophysics Data System (ADS)
Xi, Ruifeng
This research has developed a theoretical and practical methodology for efficiently and accurately determining sub-decimeter level regional geoids and centimeter level local geoids to meet regional surveying and local engineering requirements. This research also provides a highly accurate static DGPS network data pre-processing, post-processing and adjustment method and a procedure for a large GPS network like the state level HRAN project. The research also developed an efficient and accurate methodology to join soil coverages in GIS ARE/INFO. A total of 181 GPS stations has been pre-processed and post-processed to obtain an absolute accuracy better than 1.5cm at 95% of the stations, and at all stations having a 0.5 ppm average relative accuracy. A total of 167 GPS stations in Iowa and around Iowa have been included in the adjustment. After evaluating GEOID96 and GEOID99, a more accurate and suitable geoid model has been established in Iowa. This new Iowa regional geoid model improved the accuracy from a sub-decimeter 10˜20 centimeter to 5˜10 centimeter. The local kinematic geoid model, developed using Kalman filtering, gives results better than third order leveling accuracy requirement with 1.5 cm standard deviation.
Skill in Precipitation Forecasting in the National Weather Service.
NASA Astrophysics Data System (ADS)
Charba, Jerome P.; Klein, William H.
1980-12-01
All known long-term records of forecasting performance for different types of precipitation forecasts in the National Weather Service were examined for relative skill and secular trends in skill. The largest upward trends were achieved by local probability of precipitation (PoP) forecasts for the periods 24-36 h and 36-48 h after 0000 and 1200 GMT. Over the last 13 years, the skill of these forecasts has improved at an average rate of 7.2% per 10-year interval. Over the same period, improvement has been smaller in local PoP skill in the 12-24 h range (2.0% per 10 years) and in the accuracy of "Yea/No" forecasts of measurable precipitation. The overall trend in accuracy of centralized quantitative precipitation forecasts of 0.5 in and 1.0 in has been slightly upward at the 0-24 h range and strongly upward at the 24-48 h range. Most of the improvement in these forecasts has been achieved from the early 1970s to the present. Strong upward accuracy trends in all types of precipitation forecasts within the past eight years are attributed primarily to improvements in numerical and statistical centralized guidance forecasts.The skill and accuracy of both measurable and quantitative precipitation forecasts is 35-55% greater during the cool season than during the warm season. Also, the secular rate of improvement of the cool season precipitation forecasts is 50-110% greater than that of the warm season. This seasonal difference in performance reflects the relative difficulty of forecasting predominantly stratiform precipitation of the cool season and convective precipitation of the warm season.
A retrospective evaluation of traffic forecasting techniques.
DOT National Transportation Integrated Search
2016-08-01
Traffic forecasting techniquessuch as extrapolation of previous years traffic volumes, regional travel demand models, or : local trip generation rateshelp planners determine needed transportation improvements. Thus, knowing the accuracy of t...
Chandra, Rohit; Balasingham, Ilangko
2015-01-01
A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-01-01
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-02-04
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.
Oliveira, Marco Antônio Condé de; Maeda, Sérgio Setsuo; Dreyer, Patrícia; Lobo, Alberto; Andrade, Victor Piana de; Hoff, Ana O; Biscolla, Rosa Paula Mello; Smanio, Paola; Brandão, Cynthia M A; Vieira, José G
2010-06-01
In patients with primary hyperparathyroidism, candidates for surgical intervention, the parathyroid pre-operative localization is of fundamental importance in planning the appropriate surgical approach. The additional acquisition of SPECT and Technetium-99m images, during parathyroid scintigraphy with Sestamibi, is not common practice. Usually, only planar image acquisition, 15 minutes prior and 2 hours after radiopharmaceutical administration, is performed. In our experience, the complete protocol in parathyroid scintigraphy increases the accuracy of pre-operative parathyroid localization. The complete utilization of all available nuclear medicine methods (SPECT e 99mTc) and image interpretation in a multidisciplinary context can improve the accuracy of parathyroid scintigraphy.
NASA Astrophysics Data System (ADS)
Schaffer, B.; Kalverkamp, G.; Chaabane, M.; Biebl, E. M.
2012-09-01
We present a multi-user cooperative mobile transponder system which enables cars to localize pedestrians, bicyclists and other road users in order to improve traffic safety. The system operates at a center frequency of 5.768 GHz, offering the ability to test precision localization technology at frequencies close to the newly designated automotive safety related bands around 5.9 GHz. By carrying out a roundtrip time of flight measurement, the sensor can determine the distance from the onboard localization unit of a car to a road user who is equipped with an active transponder, employing the idea of a secondary radar and pulse compression. The onboard unit sends out a pseudo noise coded interrogation pulse, which is answered by one or more transponders after a short waiting time. Each transponder uses a different waiting time in order to allow for time division multiple access. We present the system setup as well as range measurement results, achieving an accuracy up to centimeters for the distance measurement and a range in the order of hundred meters. We also discuss the effect of clock drift and offset on distance accuracy for different waiting times and show how the system can be improved to further increase precision in a multiuser environment.
Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization
Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros
2017-01-01
Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K-Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors. PMID:28394268
Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.
Kanaris, Loizos; Kokkinis, Akis; Liotta, Antonio; Stavrou, Stavros
2017-04-10
Indoor user localization and tracking are instrumental to a broad range of services and applications in the Internet of Things (IoT) and particularly in Body Sensor Networks (BSN) and Ambient Assisted Living (AAL) scenarios. Due to the widespread availability of IEEE 802.11, many localization platforms have been proposed, based on the Wi-Fi Received Signal Strength (RSS) indicator, using algorithms such as K -Nearest Neighbour (KNN), Maximum A Posteriori (MAP) and Minimum Mean Square Error (MMSE). In this paper, we introduce a hybrid method that combines the simplicity (and low cost) of Bluetooth Low Energy (BLE) and the popular 802.11 infrastructure, to improve the accuracy of indoor localization platforms. Building on KNN, we propose a new positioning algorithm (dubbed i-KNN) which is able to filter the initial fingerprint dataset (i.e., the radiomap), after considering the proximity of RSS fingerprints with respect to the BLE devices. In this way, i-KNN provides an optimised small subset of possible user locations, based on which it finally estimates the user position. The proposed methodology achieves fast positioning estimation due to the utilization of a fragment of the initial fingerprint dataset, while at the same time improves positioning accuracy by minimizing any calculation errors.
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng
2015-10-01
The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.
Khazendar, S.; Sayasneh, A.; Al-Assam, H.; Du, H.; Kaijser, J.; Ferrara, L.; Timmerman, D.; Jassim, S.; Bourne, T.
2015-01-01
Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. Results: The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered. PMID:25897367
Adjusting the Stems Regional Forest Growth Model to Improve Local Predictions
W. Brad Smith
1983-01-01
A simple procedure using double sampling is described for adjusting growth in the STEMS regional forest growth model to compensate for subregional variations. Predictive accuracy of the STEMS model (a distance-independent, individual tree growth model for Lake States forests) was improved by using this procedure
Robust Eye Center Localization through Face Alignment and Invariant Isocentric Patterns
Teng, Dongdong; Chen, Dihu; Tan, Hongzhou
2015-01-01
The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz. PMID:26426929
Elminir, Hamdy K; Own, Hala S; Azzam, Yosry A; Riad, A M
2008-03-28
The problem we address here describes the on-going research effort that takes place to shed light on the applicability of using artificial intelligence techniques to predict the local noon erythemal UV irradiance in the plain areas of Egypt. In light of this fact, we use the bootstrap aggregating (bagging) algorithm to improve the prediction accuracy reported by a multi-layer perceptron (MLP) network. The results showed that, the overall prediction accuracy for the MLP network was only 80.9%. When bagging algorithm is used, the accuracy reached 94.8%; an improvement of about 13.9% was achieved. These improvements demonstrate the efficiency of the bagging procedure, and may be used as a promising tool at least for the plain areas of Egypt.
Liu, Haorui; Yi, Fengyan; Yang, Heli
2016-01-01
The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584
Laarne, P H; Tenhunen-Eskelinen, M L; Hyttinen, J K; Eskola, H J
2000-01-01
The effect of number of EEG electrodes on the dipole localization was studied by comparing the results obtained using the 10-20 and 10-10 electrode systems. Two anatomically detailed models with resistivity values of 177.6 omega m and 67.0 omega m for the skull were applied. Simulated potential values generated by current dipoles were applied to different combinations of the volume conductors and electrode systems. High and low resistivity models differed slightly in favour of the lower skull resistivity model when dipole localization was based on noiseless data. The localization errors were approximately three times larger using low resistivity model for generating the potentials, but applying high resistivity model for the inverse solution. The difference between the two electrode systems was minor in favour of the 10-10 electrode system when simulated, noiseless potentials were used. In the presence of noise the dipole localization algorithm operated more accurately using the denser electrode system. In conclusion, increasing the number of recording electrodes seems to improve the localization accuracy in the presence of noise. The absolute skull resistivity value also affects the accuracy, but using an incorrect value in modelling calculations seems to be the most serious source of error.
Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks
NASA Astrophysics Data System (ADS)
Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.
2017-09-01
Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell
2011-05-01
To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.
A modified adjoint-based grid adaptation and error correction method for unstructured grid
NASA Astrophysics Data System (ADS)
Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi
2018-05-01
Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.
Bourdel, Nicolas; Collins, Toby; Pizarro, Daniel; Bartoli, Adrien; Da Ines, David; Perreira, Bruno; Canis, Michel
2017-01-01
Augmented Reality (AR) is a technology that can allow a surgeon to see subsurface structures. This works by overlaying information from another modality, such as MRI and fusing it in real time with the endoscopic images. AR has never been developed for a very mobile organ like the uterus and has never been performed for gynecology. Myomas are not always easy to localize in laparoscopic surgery when they do not significantly change the surface of the uterus, or are at multiple locations. To study the accuracy of myoma localization using a new AR system compared to MRI-only localization. Ten residents were asked to localize six myomas (on a uterine model into a laparoscopic box) when either using AR or in conditions that simulate a standard method (only the MRI was available). Myomas were randomly divided in two groups: the control group (MRI only, AR not activated) and the AR group (AR activated). Software was used to automatically measure the distance between the point of contact on the uterine surface and the myoma. We compared these distances to the true shortest distance to obtain accuracy measures. The time taken to perform the task was measured, and an assessment of the complexity was performed. The mean accuracy in the control group was 16.80 mm [0.1-52.2] versus 0.64 mm [0.01-4.71] with AR. In the control group, the mean time to perform the task was 18.68 [6.4-47.1] s compared to 19.6 [3.9-77.5] s with AR. The mean score of difficulty (evaluated for each myoma) was 2.36 [1-4] versus 0.87 [0-4], respectively, for the control and the AR group. We developed an AR system for a very mobile organ. This is the first user study to quantitatively evaluate an AR system for improving a surgical task. In our model, AR improves localization accuracy.
Iowa calibration of MEPDG performance prediction models.
DOT National Transportation Integrated Search
2013-06-01
This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.
Artan, Yusuf; Haider, Masoom A; Langer, Deanna L; van der Kwast, Theodorus H; Evans, Andrew J; Yang, Yongyi; Wernick, Miles N; Trachtenberg, John; Yetik, Imam Samil
2010-09-01
Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the performance significantly when compared to SVM.
An ITK framework for deterministic global optimization for medical image registration
NASA Astrophysics Data System (ADS)
Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.
2006-03-01
Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.
Grieco-Calub, Tina M.; Litovsky, Ruth Y.
2010-01-01
Objectives To measure sound source localization in children who have sequential bilateral cochlear implants (BICIs); to determine if localization accuracy correlates with performance on a right-left discrimination task (i.e., spatial acuity); to determine if there is a measurable bilateral benefit on a sound source identification task (i.e., localization accuracy) by comparing performance under bilateral and unilateral listening conditions; to determine if sound source localization continues to improve with longer durations of bilateral experience. Design Two groups of children participated in this study: a group of 21 children who received BICIs in sequential procedures (5–14 years old) and a group of 7 typically-developing children with normal acoustic hearing (5 years old). Testing was conducted in a large sound-treated booth with loudspeakers positioned on a horizontal arc with a radius of 1.2 m. Children participated in two experiments that assessed spatial hearing skills. Spatial hearing acuity was assessed with a discrimination task in which listeners determined if a sound source was presented on the right or left side of center; the smallest angle at which performance on this task was reliably above chance is the minimum audible angle. Sound localization accuracy was assessed with a sound source identification task in which children identified the perceived position of the sound source from a multi-loudspeaker array (7 or 15); errors are quantified using the root-mean-square (RMS) error. Results Sound localization accuracy was highly variable among the children with BICIs, with RMS errors ranging from 19°–56°. Performance of the NH group, with RMS errors ranging from 9°–29° was significantly better. Within the BICI group, in 11/21 children RMS errors were smaller in the bilateral vs. unilateral listening condition, indicating bilateral benefit. There was a significant correlation between spatial acuity and sound localization accuracy (R2=0.68, p<0.01), suggesting that children who achieve small RMS errors tend to have the smallest MAAs. Although there was large intersubject variability, testing of 11 children in the BICI group at two sequential visits revealed a subset of children who show improvement in spatial hearing skills over time. Conclusions A subset of children who use sequential BICIs can acquire sound localization abilities, even after long intervals between activation of hearing in the first- and second-implanted ears. This suggests that children with activation of the second implant later in life may be capable of developing spatial hearing abilities. The large variability in performance among the children with BICIs suggests that maturation of sound localization abilities in children with BICIs may be dependent on various individual subject factors such as age of implantation and chronological age. PMID:20592615
Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at ...
NASA Astrophysics Data System (ADS)
He, Lin; Li, Jiancheng; Chu, Yonghai; Zhang, Tengxu
2017-04-01
National height reference systems have conventionally been linked to the coastal local mean sea level, observed at one tide gauge, such as the China national height datum 1985. Due to the effect of the local sea surface topography, the reference level surface of local datum is inconsistent with the global datum or other local datum. In order to unify or connect the local datum to the global height datum, it is necessary to obtain the zero-height geopotential value of local datum or the height offset with respect to the global datum. The GRACE and GOCE satellite mission are promising for purposes of unification of local vertical datums because they have brought a significant improvement in modeling of low-frequency or rather medium-frequency part of the Earth's static gravity field in the past ten years. The focus of this work is directed to the evaluation of most available Global Geopotential Models (GGMs) from GOCE and GRACE, both satellite only as well as combined ones. From the evaluation with the 649 GPS/Levelling benchmarks (BMs) in China, the GOCE/GRACE GGMs provide the accuracy at 42-52cm level, up to their max degree and order. The latest release 5 DIR, TIM GGMs improve the accuracies by 6-10cm compared to the release 1 models. The DIR_R1 is based on the fewer GOCE data performs equally well with the DIR_R4 and DIR_R5 model, this is attributed to the fact that during its development which used a priori information from EIGEN-51C. The zero-height geopotential value W0LVD for the China Local Vertical Datum (LVD) is 62636855.1606m2s-2 from the originally GOCE/GRACE GGMs. Taking into account the GPS/Levelling data contains the full spectral information, and the GOCE-only or GRACE-GOCE combined model are limited to the long wavelengths. To improve the accuracy of the GGMs, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. The effect of GRACE/GOCE omission error is investigated by extending the models with the high-resolution gravity field model EGM2008. In China, the effect of the GRACE/GOCE GGMs omission error is at the decimeter level. The combined GGMs (up to 2160 degree and order) could provide an accuracy at 20cm level, which is better than that from EGM2008. Meanwhile, if an appropriate degree and order is chosen for the GOCE-only or GRACE-GOCE combined GGMs to connect with the EGM2008, the extended GGMs provide an accuracy at 16cm level. From the extended GGMs, the geopotential value W0LVD determined for the China local vertical datum is 62636853.4351 m2s-2 indicates a bias of about 2.5649 m2/s-2 compared to the conventional value of 62,636,856.0 m2s-2. This is support by National key research and development program No:2016YFB0501702. Keywords: Global Geopotential Models; GRACE; GOCE; GPS/Levelling; zero-height geopotential
Locketz, Garrett D; Li, Peter M M C; Fischbein, Nancy J; Holdsworth, Samantha J; Blevins, Nikolas H
2016-10-01
A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment. To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone. Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings. If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings. Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90. The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.
Semi-Local DFT Functionals with Exact-Exchange-Like Features: Beyond the AK13
NASA Astrophysics Data System (ADS)
Armiento, Rickard
The Armiento-Kümmel functional from 2013 (AK13) is a non-empirical semi-local exchange functional on generalized gradient approximation form (GGA) in Kohn-Sham (KS) density functional theory (DFT). Recent works have established that AK13 gives improved electronic-structure exchange features over other semi-local methods, with a qualitatively improved orbital description and band structure. For example, the Kohn-Sham band gap is greatly extended, as it is for exact exchange. This talk outlines recent efforts towards new exchange-correlation functionals based on, and extending, the AK13 design ideas. The aim is to improve the quantitative accuracy, the description of energetics, and to address other issues found with the original formulation. Swedish e-Science Research Centre (SeRC).
Precision enhancement of pavement roughness localization with connected vehicles
NASA Astrophysics Data System (ADS)
Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.
2016-02-01
Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.
Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control
NASA Astrophysics Data System (ADS)
Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel
2014-08-01
We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
Johnstone, Patti M; Yeager, Kelly R; Pomeroy, Marnie L; Hawk, Nicole
2018-04-01
Open-fit domes (OFDs) coupled with behind-the-ear (BTE) hearing aids were designed for adult listeners with moderate-to-severe bilateral high-frequency hearing loss (BHFL) with little to no concurrent loss in the lower frequencies. Adult research shows that BHFL degrades sound localization accuracy (SLA) and that BTE hearing aids with conventional earmolds (CEs) make matters worse. In contrast, research has shown that OFDs enhance spatial hearing percepts in adults with BHFL. Although the benefits of OFDs have been studied in adults with BHFL, no published studies to date have investigated the use of OFDs in children with the same hearing loss configuration. This study seeks to use SLA measurements to assess efficacy of bilateral OFDs in children with BHFL. To measure SLA in children with BHFL to determine the extent to which hearing loss, age, duration of CE use, and OFDs affect localization accuracy. A within-participant experimental design using repeated measures was used to determine the effect of OFDs on localization accuracy in children with BHFL. A between-participant experimental design was used to compare localization accuracy between children with BHFL and age-matched controls with normal hearing (NH). Eighteen children with BHFL who used CE and 18 age-matched NH controls. Children in both groups were divided into two age groups: older children (10-16 yr) and younger children (6-9 yr). All testing was done in a sound-treated booth with a horizontal array of 15 loudspeakers (radius of 1 m). The stimulus was a spondee word, "baseball": the level averaged 60 dB SPL and randomly roved (±8 dB). Each child was asked to identify the location of a sound source. Localization error was calculated across the loudspeaker array for each listening condition. A significant interaction was found between immediate benefit from OFD and duration of CE usage. Longer CE usage was associated with degraded localization accuracy using OFDs. Regardless of chronological age, children who had used CEs for <6 yr showed immediate localization benefit using OFDs, whereas children who had used CEs for >6 yr showed immediate localization interference using OFDs. Development, however, may play a role in SLA in children with BHFL. When unaided, older children had significantly better localization acuity than younger children with BHFL. When compared to age-matched controls, children with BHFL of all ages showed greater localization error. Nearly all (94% [17/18]) children with BHFL spontaneously reported immediate own-voice improvement when using OFDs. OFDs can provide sound localization benefit to younger children with BHFL. However, immediate benefit from OFDs is reduced by prolonged use of CEs. Although developmental factors may play a role in improving localization abilities over time, children with BHFL will rarely equal that of peers without early use of minimally disruptive hearing aid technology. Also, the occlusion effect likely impacts children far more than currently thought. American Academy of Audiology.
Multi-element stochastic spectral projection for high quantile estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jordan, E-mail: jordan.ko@mac.com; Garnier, Josselin
2013-06-15
We investigate quantile estimation by multi-element generalized Polynomial Chaos (gPC) metamodel where the exact numerical model is approximated by complementary metamodels in overlapping domains that mimic the model’s exact response. The gPC metamodel is constructed by the non-intrusive stochastic spectral projection approach and function evaluation on the gPC metamodel can be considered as essentially free. Thus, large number of Monte Carlo samples from the metamodel can be used to estimate α-quantile, for moderate values of α. As the gPC metamodel is an expansion about the means of the inputs, its accuracy may worsen away from these mean values where themore » extreme events may occur. By increasing the approximation accuracy of the metamodel, we may eventually improve accuracy of quantile estimation but it is very expensive. A multi-element approach is therefore proposed by combining a global metamodel in the standard normal space with supplementary local metamodels constructed in bounded domains about the design points corresponding to the extreme events. To improve the accuracy and to minimize the sampling cost, sparse-tensor and anisotropic-tensor quadratures are tested in addition to the full-tensor Gauss quadrature in the construction of local metamodels; different bounds of the gPC expansion are also examined. The global and local metamodels are combined in the multi-element gPC (MEgPC) approach and it is shown that MEgPC can be more accurate than Monte Carlo or importance sampling methods for high quantile estimations for input dimensions roughly below N=8, a limit that is very much case- and α-dependent.« less
Improving the accuracy of k-nearest neighbor using local mean based and distance weight
NASA Astrophysics Data System (ADS)
Syaliman, K. U.; Nababan, E. B.; Sitompul, O. S.
2018-03-01
In k-nearest neighbor (kNN), the determination of classes for new data is normally performed by a simple majority vote system, which may ignore the similarities among data, as well as allowing the occurrence of a double majority class that can lead to misclassification. In this research, we propose an approach to resolve the majority vote issues by calculating the distance weight using a combination of local mean based k-nearest neighbor (LMKNN) and distance weight k-nearest neighbor (DWKNN). The accuracy of results is compared to the accuracy acquired from the original k-NN method using several datasets from the UCI Machine Learning repository, Kaggle and Keel, such as ionosphare, iris, voice genre, lower back pain, and thyroid. In addition, the proposed method is also tested using real data from a public senior high school in city of Tualang, Indonesia. Results shows that the combination of LMKNN and DWKNN was able to increase the classification accuracy of kNN, whereby the average accuracy on test data is 2.45% with the highest increase in accuracy of 3.71% occurring on the lower back pain symptoms dataset. For the real data, the increase in accuracy is obtained as high as 5.16%.
A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization
Wang, Chen; Zhang, Xiaojuan; Qu, Xiaodong; Pan, Xiao; Fang, Guangyou; Chen, Luzhao
2016-01-01
The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method. PMID:27999322
Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.
2009-01-01
This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.
Comprehensive and Practical Vision System for Self-Driving Vehicle Lane-Level Localization.
Du, Xinxin; Tan, Kok Kiong
2016-05-01
Vehicle lane-level localization is a fundamental technology in autonomous driving. To achieve accurate and consistent performance, a common approach is to use the LIDAR technology. However, it is expensive and computational demanding, and thus not a practical solution in many situations. This paper proposes a stereovision system, which is of low cost, yet also able to achieve high accuracy and consistency. It integrates a new lane line detection algorithm with other lane marking detectors to effectively identify the correct lane line markings. It also fits multiple road models to improve accuracy. An effective stereo 3D reconstruction method is proposed to estimate vehicle localization. The estimation consistency is further guaranteed by a new particle filter framework, which takes vehicle dynamics into account. Experiment results based on image sequences taken under different visual conditions showed that the proposed system can identify the lane line markings with 98.6% accuracy. The maximum estimation error of the vehicle distance to lane lines is 16 cm in daytime and 26 cm at night, and the maximum estimation error of its moving direction with respect to the road tangent is 0.06 rad in daytime and 0.12 rad at night. Due to its high accuracy and consistency, the proposed system can be implemented in autonomous driving vehicles as a practical solution to vehicle lane-level localization.
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Zhang, Baomin; Zhao, Xun; Li, Cong; Lu, Cunyue
2018-04-01
Conventional stereo vision algorithms suffer from high levels of hardware resource utilization due to algorithm complexity, or poor levels of accuracy caused by inadequacies in the matching algorithm. To address these issues, we have proposed a stereo range-finding technique that produces an excellent balance between cost, matching accuracy and real-time performance, for power line inspection using UAV. This was achieved through the introduction of a special image preprocessing algorithm and a weighted local stereo matching algorithm, as well as the design of a corresponding hardware architecture. Stereo vision systems based on this technique have a lower level of resource usage and also a higher level of matching accuracy following hardware acceleration. To validate the effectiveness of our technique, a stereo vision system based on our improved algorithms were implemented using the Spartan 6 FPGA. In comparative experiments, it was shown that the system using the improved algorithms outperformed the system based on the unimproved algorithms, in terms of resource utilization and matching accuracy. In particular, Block RAM usage was reduced by 19%, and the improved system was also able to output range-finding data in real time.
Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi
2017-01-01
The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345
Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.
Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin
2009-01-01
Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.
Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City.
Yang, Wan; Olson, Donald R; Shaman, Jeffrey
2016-11-01
The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast.
An Improved BLE Indoor Localization with Kalman-Based Fusion: An Experimental Study
Röbesaat, Jenny; Zhang, Peilin; Abdelaal, Mohamed; Theel, Oliver
2017-01-01
Indoor positioning has grasped great attention in recent years. A number of efforts have been exerted to achieve high positioning accuracy. However, there exists no technology that proves its efficacy in various situations. In this paper, we propose a novel positioning method based on fusing trilateration and dead reckoning. We employ Kalman filtering as a position fusion algorithm. Moreover, we adopt an Android device with Bluetooth Low Energy modules as the communication platform to avoid excessive energy consumption and to improve the stability of the received signal strength. To further improve the positioning accuracy, we take the environmental context information into account while generating the position fixes. Extensive experiments in a testbed are conducted to examine the performance of three approaches: trilateration, dead reckoning and the fusion method. Additionally, the influence of the knowledge of the environmental context is also examined. Finally, our proposed fusion method outperforms both trilateration and dead reckoning in terms of accuracy: experimental results show that the Kalman-based fusion, for our settings, achieves a positioning accuracy of less than one meter. PMID:28445421
NASA Astrophysics Data System (ADS)
Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.
2017-11-01
To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.
Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.
2014-12-01
The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.
Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell
2011-01-01
Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%.Conclusions: The phantom study indicated that the Calypso System’s localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems. PMID:21776780
NASA Astrophysics Data System (ADS)
Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung
2016-07-01
A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.
Omni-Directional Scanning Localization Method of a Mobile Robot Based on Ultrasonic Sensors.
Mu, Wei-Yi; Zhang, Guang-Peng; Huang, Yu-Mei; Yang, Xin-Gang; Liu, Hong-Yan; Yan, Wen
2016-12-20
Improved ranging accuracy is obtained by the development of a novel ultrasonic sensor ranging algorithm, unlike the conventional ranging algorithm, which considers the divergence angle and the incidence angle of the ultrasonic sensor synchronously. An ultrasonic sensor scanning method is developed based on this algorithm for the recognition of an inclined plate and to obtain the localization of the ultrasonic sensor relative to the inclined plate reference frame. The ultrasonic sensor scanning method is then leveraged for the omni-directional localization of a mobile robot, where the ultrasonic sensors are installed on a mobile robot and follow the spin of the robot, the inclined plate is recognized and the position and posture of the robot are acquired with respect to the coordinate system of the inclined plate, realizing the localization of the robot. Finally, the localization method is implemented into an omni-directional scanning localization experiment with the independently researched and developed mobile robot. Localization accuracies of up to ±3.33 mm for the front, up to ±6.21 for the lateral and up to ±0.20° for the posture are obtained, verifying the correctness and effectiveness of the proposed localization method.
A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem
Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.
2013-01-01
Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554
Improved Bayesian Infrasonic Source Localization for regional infrasound
Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.
2015-10-20
The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
Error assessment of local tie vectors in space geodesy
NASA Astrophysics Data System (ADS)
Falkenberg, Jana; Heinkelmann, Robert; Schuh, Harald
2014-05-01
For the computation of the ITRF, the data of the geometric space-geodetic techniques on co-location sites are combined. The combination increases the redundancy and offers the possibility to utilize the strengths of each technique while mitigating their weaknesses. To enable the combination of co-located techniques each technique needs to have a well-defined geometric reference point. The linking of the geometric reference points enables the combination of the technique-specific coordinate to a multi-technique site coordinate. The vectors between these reference points are called "local ties". The realization of local ties is usually reached by local surveys of the distances and or angles between the reference points. Identified temporal variations of the reference points are considered in the local tie determination only indirectly by assuming a mean position. Finally, the local ties measured in the local surveying network are to be transformed into the ITRF, the global geocentric equatorial coordinate system of the space-geodetic techniques. The current IERS procedure for the combination of the space-geodetic techniques includes the local tie vectors with an error floor of three millimeters plus a distance dependent component. This error floor, however, significantly underestimates the real accuracy of local tie determination. To fullfill the GGOS goals of 1 mm position and 0.1 mm/yr velocity accuracy, an accuracy of the local tie will be mandatory at the sub-mm level, which is currently not achievable. To assess the local tie effects on ITRF computations, investigations of the error sources will be done to realistically assess and consider them. Hence, a reasonable estimate of all the included errors of the various local ties is needed. An appropriate estimate could also improve the separation of local tie error and technique-specific error contributions to uncertainties and thus access the accuracy of space-geodetic techniques. Our investigations concern the simulation of the error contribution of each component of the local tie definition and determination. A closer look into the models of reference point definition, of accessibility, of measurement, and of transformation is necessary to properly model the error of the local tie. The effect of temporal variations on the local ties will be studied as well. The transformation of the local survey into the ITRF can be assumed to be the largest error contributor, in particular the orientation of the local surveying network to the ITRF.
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai
2017-01-13
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai
2017-01-01
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773
Confidence estimation for quantitative photoacoustic imaging
NASA Astrophysics Data System (ADS)
Gröhl, Janek; Kirchner, Thomas; Maier-Hein, Lena
2018-02-01
Quantification of photoacoustic (PA) images is one of the major challenges currently being addressed in PA research. Tissue properties can be quantified by correcting the recorded PA signal with an estimation of the corresponding fluence. Fluence estimation itself, however, is an ill-posed inverse problem which usually needs simplifying assumptions to be solved with state-of-the-art methods. These simplifications, as well as noise and artifacts in PA images reduce the accuracy of quantitative PA imaging (PAI). This reduction in accuracy is often localized to image regions where the assumptions do not hold true. This impedes the reconstruction of functional parameters when averaging over entire regions of interest (ROI). Averaging over a subset of voxels with a high accuracy would lead to an improved estimation of such parameters. To achieve this, we propose a novel approach to the local estimation of confidence in quantitative reconstructions of PA images. It makes use of conditional probability densities to estimate confidence intervals alongside the actual quantification. It encapsulates an estimation of the errors introduced by fluence estimation as well as signal noise. We validate the approach using Monte Carlo generated data in combination with a recently introduced machine learning-based approach to quantitative PAI. Our experiments show at least a two-fold improvement in quantification accuracy when evaluating on voxels with high confidence instead of thresholding signal intensity.
Ruhland, Janet L.; Yin, Tom C. T.; Tollin, Daniel J.
2013-01-01
Sound localization accuracy in elevation can be affected by sound spectrum alteration. Correspondingly, any stimulus manipulation that causes a change in the peripheral representation of the spectrum may degrade localization ability in elevation. The present study examined the influence of sound duration and level on localization performance in cats with the head unrestrained. Two cats were trained using operant conditioning to indicate the apparent location of a sound via gaze shift, which was measured with a search-coil technique. Overall, neither sound level nor duration had a notable effect on localization accuracy in azimuth, except at near-threshold levels. In contrast, localization accuracy in elevation improved as sound duration increased, and sound level also had a large effect on localization in elevation. For short-duration noise, the performance peaked at intermediate levels and deteriorated at low and high levels; for long-duration noise, this “negative level effect” at high levels was not observed. Simulations based on an auditory nerve model were used to explain the above observations and to test several hypotheses. Our results indicated that neither the flatness of sound spectrum (before the sound reaches the inner ear) nor the peripheral adaptation influences spectral coding at the periphery for localization in elevation, whereas neural computation that relies on “multiple looks” of the spectral analysis is critical in explaining the effect of sound duration, but not level. The release of negative level effect observed for long-duration sound could not be explained at the periphery and, therefore, is likely a result of processing at higher centers. PMID:23657278
Godfrey, Catherine C.; Michelow, Pamela M.; Godard, Mandana; Sahasrabuddhe, Vikrant V.; Darden, Janice; Firnhaber, Cynthia S.; Wetherall, Neal T.; Bremer, James; Coombs, Robert W.; Wilkin, Timothy
2014-01-01
Objectives To evaluate an external quality assurance (EQA) program for the laboratory diagnosis of human papillomavirus (HPV) disease that was established to improve international research capability within the Division of AIDS at the National Institute of Allergy and Infectious Disease–supported Adult AIDS Clinical Trials Group network. Methods A three-component EQA scheme was devised comprising assessments of diagnostic accuracy of cytotechnologists and pathologists using available EQA packages, review of quality and accuracy of clinical slides from local sites by an outside expert, and HPV DNA detection using the commercially available HPV test kit. Results Seven laboratories and 17 pathologists in Africa, India, and South America participated. EQA scores were suboptimal for standard packages in three of seven laboratories. There was good agreement between the local laboratory and the central reader 70% of the time (90% confidence interval, 42%-98%). Performance on the College of American Pathologists’ HPV DNA testing panel was successful in all laboratories tested. Conclusions The prequalifying EQA round identified correctable issues that will improve the laboratory diagnosis of HPV related cervical disease at the international sites and will provide a mechanism for ongoing education and continuous quality improvement. PMID:24225757
Weighted least squares techniques for improved received signal strength based localization.
Tarrío, Paula; Bernardos, Ana M; Casar, José R
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.
Calibration of a fluxgate magnetometer array and its application in magnetic object localization
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu
2013-07-01
The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei; Wang, Weiping
2016-01-01
Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs’ RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user’s location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area. PMID:26999139
Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization
Tarrío, Paula; Bernardos, Ana M.; Casar, José R.
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092
Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy
Duwé, Sam; Neely, Robert K.; Zhang, Jin
2012-01-01
Abstract. We present Localizer, a freely available and open source software package that implements the computational data processing inherent to several types of superresolution fluorescence imaging, such as localization (PALM/STORM/GSDIM) and fluctuation imaging (SOFI/pcSOFI). Localizer delivers high accuracy and performance and comes with a fully featured and easy-to-use graphical user interface but is also designed to be integrated in higher-level analysis environments. Due to its modular design, Localizer can be readily extended with new algorithms as they become available, while maintaining the same interface and performance. We provide front-ends for running Localizer from Igor Pro, Matlab, or as a stand-alone program. We show that Localizer performs favorably when compared with two existing superresolution packages, and to our knowledge is the only freely available implementation of SOFI/pcSOFI microscopy. By dramatically improving the analysis performance and ensuring the easy addition of current and future enhancements, Localizer strongly improves the usability of superresolution imaging in a variety of biomedical studies. PMID:23208219
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.
Hybrid active contour model for inhomogeneous image segmentation with background estimation
NASA Astrophysics Data System (ADS)
Sun, Kaiqiong; Li, Yaqin; Zeng, Shan; Wang, Jun
2018-03-01
This paper proposes a hybrid active contour model for inhomogeneous image segmentation. The data term of the energy function in the active contour consists of a global region fitting term in a difference image and a local region fitting term in the original image. The difference image is obtained by subtracting the background from the original image. The background image is dynamically estimated from a linear filtered result of the original image on the basis of the varying curve locations during the active contour evolution process. As in existing local models, fitting the image to local region information makes the proposed model robust against an inhomogeneous background and maintains the accuracy of the segmentation result. Furthermore, fitting the difference image to the global region information makes the proposed model robust against the initial contour location, unlike existing local models. Experimental results show that the proposed model can obtain improved segmentation results compared with related methods in terms of both segmentation accuracy and initial contour sensitivity.
Tan, Chun-Wei; Kumar, Ajay
2014-07-10
Accurate iris recognition from the distantly acquired face or eye images requires development of effective strategies which can account for significant variations in the segmented iris image quality. Such variations can be highly correlated with the consistency of encoded iris features and the knowledge that such fragile bits can be exploited to improve matching accuracy. A non-linear approach to simultaneously account for both local consistency of iris bit and also the overall quality of the weight map is proposed. Our approach therefore more effectively penalizes the fragile bits while simultaneously rewarding more consistent bits. In order to achieve more stable characterization of local iris features, a Zernike moment-based phase encoding of iris features is proposed. Such Zernike moments-based phase features are computed from the partially overlapping regions to more effectively accommodate local pixel region variations in the normalized iris images. A joint strategy is adopted to simultaneously extract and combine both the global and localized iris features. The superiority of the proposed iris matching strategy is ascertained by providing comparison with several state-of-the-art iris matching algorithms on three publicly available databases: UBIRIS.v2, FRGC, CASIA.v4-distance. Our experimental results suggest that proposed strategy can achieve significant improvement in iris matching accuracy over those competing approaches in the literature, i.e., average improvement of 54.3%, 32.7% and 42.6% in equal error rates, respectively for UBIRIS.v2, FRGC, CASIA.v4-distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Hieken, T; Mutter, R
2015-06-15
Purpose To investigate the feasibility of utilizing carbon fiducials to increase localization accuracy of lumpectomy cavity for partial breast irradiation (PBI). Methods Carbon fiducials were placed intraoperatively in the lumpectomy cavity following resection of breast cancer in 11 patients. The patients were scheduled to receive whole breast irradiation (WBI) with a boost or 3D-conformal PBI. WBI patients were initially setup to skin tattoos using lasers, followed by orthogonal kV on-board-imaging (OBI) matching to bone per clinical practice. Cone beam CT (CBCT) was acquired weekly for offline review. For the boost component of WBI and PBI, patients were setup with lasers,more » followed by OBI matching to fiducials, with final alignment by CBCT matching to fiducials. Using carbon fiducials as a surrogate for the lumpectomy cavity and CBCT matching to fiducials as the gold standard, setup uncertainties to lasers, OBI bone, OBI fiducials, and CBCT breast were compared. Results Minimal imaging artifacts were introduced by fiducials on the planning CT and CBCT. The fiducials were sufficiently visible on OBI for online localization. The mean magnitude and standard deviation of setup errors were 8.4mm ± 5.3 mm (n=84), 7.3mm ± 3.7mm (n=87), 2.2mm ± 1.6mm (n=40) and 4.8mm ± 2.6mm (n=87), for lasers, OBI bone, OBI fiducials and CBCT breast tissue, respectively. Significant migration occurred in one of 39 implanted fiducials in a patient with a large postoperative seroma. Conclusion OBI carbon fiducial-based setup can improve localization accuracy with minimal imaging artifacts. With increased localization accuracy, setup uncertainties can be reduced from 8mm using OBI bone matching to 3mm using OBI fiducial matching for PBI treatment. This work demonstrates the feasibility of utilizing carbon fiducials to increase localization accuracy to the lumpectomy cavity for PBI. This may be particularly attractive for localization in the setting of proton therapy and other scenarios in which metal clips are contraindicated.« less
Guenaga, Katia F; Otoch, Jose P; Artifon, Everson L A
2016-01-01
New surgical techniques in the treatment of rectal cancer have improved survival mainly by reducing local recurrences. A preoperative staging method is required to accurately identify tumor stage and planning the appropriate treatment. MRI and ERUS are currently being used for the local staging (T stage). In this review, the accuracy of MRI and ERUS with rigid probe was compared against the gold standard of the pathological findings in the resection specimens. Five studies met the inclusion criteria and were included in this meta-analysis. The accuracy was 91.0% to ERUS and 86.8% to MRI (p=0.27). The result has no statistical significance but with pronounced heterogeneity between the included trials as well as other published reviews. We can conclude that there is a clear need for good quality, larger scale and prospective studies.
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.J.; Fessenden, T.
1998-08-17
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y J; Fessenden, T
1998-09-02
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Cryogenic colocalization microscopy for nanometer-distance measurements.
Weisenburger, Siegfried; Jing, Bo; Hänni, Dominik; Reymond, Luc; Schuler, Benjamin; Renn, Alois; Sandoghdar, Vahid
2014-03-17
The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.
Mills, Travis; Lalancette, Marc; Moses, Sandra N; Taylor, Margot J; Quraan, Maher A
2012-07-01
Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40-100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as "leakage" of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer's ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate localization.
Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City
2016-01-01
The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast. PMID:27855155
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.
Sastrawan, J; Jones, C; Akhalwaya, I; Uys, H; Biercuk, M J
2016-08-01
We introduce concepts from optimal estimation to the stabilization of precision frequency standards limited by noisy local oscillators. We develop a theoretical framework casting various measures for frequency standard variance in terms of frequency-domain transfer functions, capturing the effects of feedback stabilization via a time series of Ramsey measurements. Using this framework, we introduce an optimized hybrid predictive feedforward measurement protocol that employs results from multiple past measurements and transfer-function-based calculations of measurement covariance to improve the accuracy of corrections within the feedback loop. In the presence of common non-Markovian noise processes these measurements will be correlated in a calculable manner, providing a means to capture the stochastic evolution of the local oscillator frequency during the measurement cycle. We present analytic calculations and numerical simulations of oscillator performance under competing feedback schemes and demonstrate benefits in both correction accuracy and long-term oscillator stability using hybrid feedforward. Simulations verify that in the presence of uncompensated dead time and noise with significant spectral weight near the inverse cycle time predictive feedforward outperforms traditional feedback, providing a path towards developing a class of stabilization software routines for frequency standards limited by noisy local oscillators.
Hoos, Anne B.; Patel, Anant R.
1996-01-01
Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.
Sound source localization identification accuracy: Envelope dependencies.
Yost, William A
2017-07-01
Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.
Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI
Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng
2016-01-01
Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860
FFT-local gravimetric geoid computation
NASA Technical Reports Server (NTRS)
Nagy, Dezso; Fury, Rudolf J.
1989-01-01
Model computations show that changes of sampling interval introduce only 0.3 cm changes, whereas zero padding provides an improvement of more than 5 cm in the fast Fourier transformation (FFT) generated geoid. For the Global Positioning System (GPS) survey of Franklin County, Ohio, the parameters selected as a result of model computations, allow large reduction in local data requirements while still retaining the cm accuracy when tapering and padding is applied. The results are shown in tables.
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares.
Chen, Jian; Ou, Gang; Peng, Ao; Zheng, Lingxiang; Shi, Jianghong
2018-05-07
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m.
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares
Chen, Jian; Ou, Gang; Zheng, Lingxiang; Shi, Jianghong
2018-01-01
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m. PMID:29735960
Object localization using a biosonar beam: how opening your mouth improves localization.
Arditi, G; Weiss, A J; Yovel, Y
2015-08-01
Determining the location of a sound source is crucial for survival. Both predators and prey usually produce sound while moving, revealing valuable information about their presence and location. Animals have thus evolved morphological and neural adaptations allowing precise sound localization. Mammals rely on the temporal and amplitude differences between the sound signals arriving at their two ears, as well as on the spectral cues available in the signal arriving at a single ear to localize a sound source. Most mammals rely on passive hearing and are thus limited by the acoustic characteristics of the emitted sound. Echolocating bats emit sound to perceive their environment. They can, therefore, affect the frequency spectrum of the echoes they must localize. The biosonar sound beam of a bat is directional, spreading different frequencies into different directions. Here, we analyse mathematically the spatial information that is provided by the beam and could be used to improve sound localization. We hypothesize how bats could improve sound localization by altering their echolocation signal design or by increasing their mouth gape (the size of the sound emitter) as they, indeed, do in nature. Finally, we also reveal a trade-off according to which increasing the echolocation signal's frequency improves the accuracy of sound localization but might result in undesired large localization errors under low signal-to-noise ratio conditions.
Object localization using a biosonar beam: how opening your mouth improves localization
Arditi, G.; Weiss, A. J.; Yovel, Y.
2015-01-01
Determining the location of a sound source is crucial for survival. Both predators and prey usually produce sound while moving, revealing valuable information about their presence and location. Animals have thus evolved morphological and neural adaptations allowing precise sound localization. Mammals rely on the temporal and amplitude differences between the sound signals arriving at their two ears, as well as on the spectral cues available in the signal arriving at a single ear to localize a sound source. Most mammals rely on passive hearing and are thus limited by the acoustic characteristics of the emitted sound. Echolocating bats emit sound to perceive their environment. They can, therefore, affect the frequency spectrum of the echoes they must localize. The biosonar sound beam of a bat is directional, spreading different frequencies into different directions. Here, we analyse mathematically the spatial information that is provided by the beam and could be used to improve sound localization. We hypothesize how bats could improve sound localization by altering their echolocation signal design or by increasing their mouth gape (the size of the sound emitter) as they, indeed, do in nature. Finally, we also reveal a trade-off according to which increasing the echolocation signal's frequency improves the accuracy of sound localization but might result in undesired large localization errors under low signal-to-noise ratio conditions. PMID:26361552
On-board error correction improves IR earth sensor accuracy
NASA Astrophysics Data System (ADS)
Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.
1989-10-01
Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.
Vapor deposition process provides new method for fabricating high temperature thermocouples
NASA Technical Reports Server (NTRS)
Remley, G. A.; Zellner, G. J.
1967-01-01
Fabrication techniques for high temperature thermocouples bind all components so that differential thermal expansion and contraction do not result in mechanical slippage and localized stress concentrations. Installation space is reduced or larger thermoelements and thicker insulation can be used to improve temperature measurement accuracy.
3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.
Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B
2011-05-01
To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D tumor localization to be on the order of 1 mm on average and 2 mm at 95 percentile for both digital and physical phantoms, and within 2 mm on average and 4 mm at 95 percentile for lung cancer patients. The results also indicate that the accuracy is not affected by the breathing pattern, be it regular or irregular. High computational efficiency can be achieved on GPU, requiring 0.1-0.3 s for each x-ray projection.
Global positioning method based on polarized light compass system
NASA Astrophysics Data System (ADS)
Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong
2018-05-01
This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafata, K; Ren, L; Cai, J
2016-06-15
Purpose: To develop a methodology based on digitally-reconstructed-fluoroscopy (DRF) to quantitatively assess target localization accuracy of lung SBRT, and to evaluate using both a dynamic digital phantom and a patient dataset. Methods: For each treatment field, a 10-phase DRF is generated based on the planning 4DCT. Each frame is pre-processed with a morphological top-hat filter, and corresponding beam apertures are projected to each detector plane. A template-matching algorithm based on cross-correlation is used to detect the tumor location in each frame. Tumor motion relative beam aperture is extracted in the superior-inferior direction based on each frame’s impulse response to themore » template, and the mean tumor position (MTP) is calculated as the average tumor displacement. The DRF template coordinates are then transferred to the corresponding MV-cine dataset, which is retrospectively filtered as above. The treatment MTP is calculated within each field’s projection space, relative to the DRF-defined template. The field’s localization error is defined as the difference between the DRF-derived-MTP (planning) and the MV-cine-derived-MTP (delivery). A dynamic digital phantom was used to assess the algorithm’s ability to detect intra-fractional changes in patient alignment, by simulating different spatial variations in the MV-cine and calculating the corresponding change in MTP. Inter-and-intra-fractional variation, IGRT accuracy, and filtering effects were investigated on a patient dataset. Results: Phantom results demonstrated a high accuracy in detecting both translational and rotational variation. The lowest localization error of the patient dataset was achieved at each fraction’s first field (mean=0.38mm), with Fx3 demonstrating a particularly strong correlation between intra-fractional motion-caused localization error and treatment progress. Filtering significantly improved tracking visibility in both the DRF and MV-cine images. Conclusion: We have developed and evaluated a methodology to quantify lung SBRT target localization accuracy based on digitally-reconstructed-fluoroscopy. Our approach may be useful in potentially reducing treatment margins to optimize lung SBRT outcomes. R01-184173.« less
Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)
NASA Technical Reports Server (NTRS)
Choset, Howie; Burdick, Joel
1994-01-01
Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.
Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
1996-01-01
Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.
On Accuracy of Adaptive Grid Methods for Captured Shocks
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2002-01-01
The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.
Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discri...
Use and Analysis of Finite Element Methods for Problems of Solid Mechanics and Fracture
1993-01-19
improve global accuracy and convergence rates, specific activities such as mesh refinement may be undertaken local to the crack tips. A criticism ...Sciences, Centro Internacional de Metodos Numnericos en Ingenieria, Barcelona, 1992 11 1 |l!avacek, J Rosenberg, A E Beagles and J R Whiteman
Humans make efficient use of natural image statistics when performing spatial interpolation.
D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S
2013-12-16
Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.
Lucky Imaging: Improved Localization Accuracy for Single Molecule Imaging
Cronin, Bríd; de Wet, Ben; Wallace, Mark I.
2009-01-01
We apply the astronomical data-analysis technique, Lucky imaging, to improve resolution in single molecule fluorescence microscopy. We show that by selectively discarding data points from individual single-molecule trajectories, imaging resolution can be improved by a factor of 1.6 for individual fluorophores and up to 5.6 for more complex images. The method is illustrated using images of fluorescent dye molecules and quantum dots, and the in vivo imaging of fluorescently labeled linker for activation of T cells. PMID:19348772
Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Castelli, Eric; Nguyen, Viet-Tung; Nguyen, Dinh-Van
2014-01-01
Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually.
Dao, Trung-Kien; Nguyen, Hung-Long; Pham, Thanh-Thuy; Nguyen, Viet-Tung; Nguyen, Dinh-Van
2014-01-01
Many user localization technologies and methods have been proposed for either indoor or outdoor environments. However, each technology has its own drawbacks. Recently, many researches and designs have been proposed to build a combination of multiple localization technologies system which can provide higher precision results and solve the limitation in each localization technology alone. In this paper, a conceptual design of a general localization platform using combination of multiple localization technologies is introduced. The combination is realized by dividing spaces into grid points. To demonstrate this platform, a system with GPS, RFID, WiFi, and pedometer technologies is established. Experiment results show that the accuracy and availability are improved in comparison with each technology individually. PMID:25147866
3D source localization of interictal spikes in epilepsy patients with MRI lesions
NASA Astrophysics Data System (ADS)
Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin
2006-08-01
The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC indicate that FINE provides a more satisfactory fitting of the scalp potential measurements than MUSIC in all patients. The present results suggest that FINE provides a useful brain source imaging technique, from clinical EEG recordings, for identifying and localizing epileptogenic regions in epilepsy patients with focal partial seizures. The present study may lead to the establishment of a high-resolution source localization technique from scalp-recorded EEGs for aiding presurgical planning in epilepsy patients.
Robust finger vein ROI localization based on flexible segmentation.
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-10-24
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.
Robust Finger Vein ROI Localization Based on Flexible Segmentation
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-01-01
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769
Link prediction with node clustering coefficient
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve
2016-06-01
Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
Is choline PET useful for identifying intraprostatic tumour lesions? A literature review.
Chan, Joachim; Syndikus, Isabel; Mahmood, Shelan; Bell, Lynn; Vinjamuri, Sobhan
2015-09-01
More than 80% of patients with intermediate-risk or high-risk localized prostate cancer are cured with radiation doses of 74-78 Gy, but high doses increase the risk for late bowel and bladder toxicity among long-term survivors. Dose painting, defined as dose escalation to areas in the prostate containing the tumour, rather than to the whole gland, minimizes dose to normal tissues and hence toxicity. It requires accurate identification of the location and size of these lesions, for which functional MRI is the current gold standard. Many studies have assessed the use of choline PET in staging newly diagnosed patients. This review will discuss important imaging variables affecting the accuracy of choline PET scans, how choline PET contributes to tumour identification and is used in radiotherapy planning and how PET can improve the patient pathway involving prostate radiotherapy. In summary, the available literature shows that the accuracy of choline PET improves with higher tracer doses and delayed imaging (although the optimal uptake time is unclear), and tumour identification by MRI is improved by the addition of PET imaging. We propose future research with prolonged choline uptake time and multiphase imaging, which may further improve accuracy.
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-01-01
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment. PMID:27128917
Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons.
Zhuang, Yuan; Yang, Jun; Li, You; Qi, Longning; El-Sheimy, Naser
2016-04-26
Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target's location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Ryan N.; Hughes, Scott A.
The coalescence of massive black holes generates gravitational waves (GWs) that will be measurable by space-based detectors such as LISA to large redshifts. The spins of a binary's black holes have an important impact on its waveform. Specifically, geodetic and gravitomagnetic effects cause the spins to precess; this precession then modulates the waveform, adding periodic structure which encodes useful information about the binary's members. Following pioneering work by Vecchio, we examine the impact upon GW measurements of including these precession-induced modulations in the waveform model. We find that the additional periodicity due to spin precession breaks degeneracies among certain parameters,more » greatly improving the accuracy with which they may be measured. In particular, mass measurements are improved tremendously, by one to several orders of magnitude. Localization of the source on the sky is also improved, though not as much--low redshift systems can be localized to an ellipse which is roughly 10-a fewx10 arcminutes in the long direction and a factor of 2 smaller in the short direction. Though not a drastic improvement relative to analyses which neglect spin precession, even modest gains in source localization will greatly facilitate searches for electromagnetic counterparts to GW events. Determination of distance to the source is likewise improved: We find that relative error in measured luminosity distance is commonly {approx}0.1%-0.4% at z{approx}1. Finally, with the inclusion of precession, we find that the magnitude of the spins themselves can typically be determined for low redshift systems with an accuracy of about 0.1%-10%, depending on the spin value, allowing accurate surveys of mass and spin evolution over cosmic time.« less
Gogol-Prokurat, Melanie
2011-01-01
If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables were not available at large extents. No single model met all habitat prioritization criteria, and the best models were overlaid to identify consensus areas of high suitability. Although the four species modeled here co-occur and are treated together for conservation planning, model accuracy and predicted suitable areas varied among species.
Mitcham, Trevor; Taghavi, Houra; Long, James; Wood, Cayla; Fuentes, David; Stefan, Wolfgang; Ward, John; Bouchard, Richard
2017-09-01
Photoacoustic (PA) imaging is capable of probing blood oxygen saturation (sO 2 ), which has been shown to correlate with tissue hypoxia, a promising cancer biomarker. However, wavelength-dependent local fluence changes can compromise sO 2 estimation accuracy in tissue. This work investigates using PA imaging with interstitial irradiation and local fluence correction to assess precision and accuracy of sO 2 estimation of blood samples through ex vivo bovine prostate tissue ranging from 14% to 100% sO 2 . Study results for bovine blood samples at distances up to 20 mm from the irradiation source show that local fluence correction improved average sO 2 estimation error from 16.8% to 3.2% and maintained an average precision of 2.3% when compared to matched CO-oximeter sO 2 measurements. This work demonstrates the potential for future clinical translation of using fluence-corrected and interstitially driven PA imaging to accurately and precisely assess sO 2 at depth in tissue with high resolution.
Accelerometer-based on-body sensor localization for health and medical monitoring applications
Vahdatpour, Alireza; Amini, Navid; Xu, Wenyao; Sarrafzadeh, Majid
2011-01-01
In this paper, we present a technique to recognize the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it provides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89% accuracy in estimating the location of devices on the body. In order to study the feasibility of classification of left limbs from right limbs (e.g., left arm vs. right arm), we performed analysis, based of which no meaningful classification was observed. Personalized ultraviolet monitoring and wireless transmission power control comprise two immediate applications of our on-body device localization approach. Such applications, along with their corresponding feasibility studies, are discussed. PMID:22347840
2016-03-03
for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved
SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.
Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan
2015-11-24
Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.
Keidser, Gitte; O'Brien, Anna; Hain, Jens-Uwe; McLelland, Margot; Yeend, Ingrid
2009-11-01
Frequency-dependent microphone directionality alters the spectral shape of sound as a function of arrival azimuth. The influence of this on horizontal-plane localization performance was investigated. Using a 360 degrees loudspeaker array and five stimuli with different spectral characteristics, localization performance was measured on 21 hearing-impaired listeners when wearing no hearing aids and aided with no directionality, partial (from 1 and 2 kHz) directionality, and full directionality. The test schemes were also evaluated in everyday life. Without hearing aids, localization accuracy was significantly poorer than normative data. Due to inaudibility of high-frequency energy, front/back reversals were prominent. Front/back reversals remained prominent when aided with omnidirectional microphones. For stimuli with low-frequency emphasis, directionality had no further effect on localization. For stimuli with sufficient mid- and high-frequency information, full directionality had a small positive effect on front/back localization but a negative effect on left/right localization. Partial directionality further improved front/back localization and had no significant effect on left/right localization. The field test revealed no significant effects. The alternative spectral cues provided by frequency-dependent directionality improve front/back localization in hearing-aid users.
Janousova, Eva; Schwarz, Daniel; Kasparek, Tomas
2015-06-30
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer-aided diagnostics of neuropsychiatric diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung
Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A secondmore » study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Results: Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Conclusions: Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2–3 weeks after simulation)« less
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S
2014-10-01
Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2-3 weeks after simulation).
Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation
NASA Astrophysics Data System (ADS)
Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui
2017-05-01
Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.
Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization.
Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua
2015-01-05
Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m.
Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization
Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng Chai; Xie, Lihua
2015-01-01
Location-based services (LBS) have attracted a great deal of attention recently. Outdoor localization can be solved by the GPS technique, but how to accurately and efficiently localize pedestrians in indoor environments is still a challenging problem. Recent techniques based on WiFi or pedestrian dead reckoning (PDR) have several limiting problems, such as the variation of WiFi signals and the drift of PDR. An auxiliary tool for indoor localization is landmarks, which can be easily identified based on specific sensor patterns in the environment, and this will be exploited in our proposed approach. In this work, we propose a sensor fusion framework for combining WiFi, PDR and landmarks. Since the whole system is running on a smartphone, which is resource limited, we formulate the sensor fusion problem in a linear perspective, then a Kalman filter is applied instead of a particle filter, which is widely used in the literature. Furthermore, novel techniques to enhance the accuracy of individual approaches are adopted. In the experiments, an Android app is developed for real-time indoor localization and navigation. A comparison has been made between our proposed approach and individual approaches. The results show significant improvement using our proposed framework. Our proposed system can provide an average localization accuracy of 1 m. PMID:25569750
Evaluation of a head-repositioner and Z-plate system for improved accuracy of dose delivery.
Charney, Sarah C; Lutz, Wendell R; Klein, Mary K; Jones, Pamela D
2009-01-01
Radiation therapy requires accurate dose delivery to targets often identifiable only on computed tomography (CT) images. Translation between the isocenter localized on CT and laser setup for radiation treatment, and interfractional head repositioning are frequent sources of positioning error. The objective was to design a simple, accurate apparatus to eliminate these sources of error. System accuracy was confirmed with phantom and in vivo measurements. A head repositioner that fixates the maxilla via dental mold with fiducial marker Z-plates attached was fabricated to facilitate the connection between the isocenter on CT and laser treatment setup. A phantom study targeting steel balls randomly located within the head repositioner was performed. The center of each ball was marked on a transverse CT slice on which six points of the Z-plate were also visible. Based on the relative position of the six Z-plate points and the ball center, the laser setup position on each Z-plate and a top plate was calculated. Based on these setup marks, orthogonal port films, directed toward each target, were evaluated for accuracy without regard to visual setup. A similar procedure was followed to confirm accuracy of in vivo treatment setups in four dogs using implanted gold seeds. Sequential port films of three dogs were made to confirm interfractional accuracy. Phantom and in vivo measurements confirmed accuracy of 2 mm between isocenter on CT and the center of the treatment dose distribution. Port films confirmed similar accuracy for interfractional treatments. The system reliably connects CT target localization to accurate initial and interfractional radiation treatment setup.
The High Energy Transient Explorer (HETE): Mission and Science Overview
NASA Astrophysics Data System (ADS)
Ricker, G. R.; Atteia, J.-L.; Crew, G. B.; Doty, J. P.; Fenimore, E. E.; Galassi, M.; Graziani, C.; Hurley, K.; Jernigan, J. G.; Kawai, N.; Lamb, D. Q.; Matsuoka, M.; Pizzichini, G.; Shirasaki, Y.; Tamagawa, T.; Vanderspek, R.; Vedrenne, G.; Villasenor, J.; Woosley, S. E.; Yoshida, A.
2003-04-01
The High Energy Transient Explorer (HETE ) mission is devoted to the study of gamma-ray bursts (GRBs) using soft X-ray, medium X-ray, and gamma-ray instruments mounted on a compact spacecraft. The HETE satellite was launched into equatorial orbit on 9 October 2000. A science team from France, Japan, Brazil, India, Italy, and the US is responsible for the HETE mission, which was completed for ~ 1/3 the cost of a NASA Small Explorer (SMEX). The HETE mission is unique in that it is entirely ``self-contained,'' insofar as it relies upon dedicated tracking, data acquisition, mission operations, and data analysis facilities run by members of its international Science Team. A powerful feature of HETE is its potential for localizing GRBs within seconds of the trigger with good precision (~ 10') using medium energy X-rays and, for a subset of bright GRBs, improving the localization to ~ 30''accuracy using low energy X-rays. Real-time GRB localizations are transmitted to ground observers within seconds via a dedicated network of 14 automated ``Burst Alert Stations,'' thereby allowing prompt optical, IR, and radio follow-up, leading to the identification of counterparts for a large fraction of HETE -localized GRBs. HETE is the only satellite that can provide near-real time localizations of GRBs, and that can localize GRBs that do not have X-ray, optical, and radio afterglows, during the next two years. These capabilities are the key to allowing HETE to probe further the unique physics that produces the brightest known photon sources in the universe. To date (December 2002), HETE has produced 31 GRB localizations. Localization accuracies are routinely in the 4'- 20' range; for the five GRBs with SXC localization, accuracies are ~1-2'. In addition, HETE has detected ~ 25 bursts from soft gamma repeaters (SGRs), and >600 X-ray bursts (XRBs).
Sound source localization method in an environment with flow based on Amiet-IMACS
NASA Astrophysics Data System (ADS)
Wei, Long; Li, Min; Qin, Sheng; Fu, Qiang; Yang, Debin
2017-05-01
A sound source localization method is proposed to localize and analyze the sound source in an environment with airflow. It combines the improved mapping of acoustic correlated sources (IMACS) method and Amiet's method, and is called Amiet-IMACS. It can localize uncorrelated and correlated sound sources with airflow. To implement this approach, Amiet's method is used to correct the sound propagation path in 3D, which improves the accuracy of the array manifold matrix and decreases the position error of the localized source. Then, the mapping of acoustic correlated sources (MACS) method, which is as a high-resolution sound source localization algorithm, is improved by self-adjusting the constraint parameter at each irritation process to increase convergence speed. A sound source localization experiment using a pair of loud speakers in an anechoic wind tunnel under different flow speeds is conducted. The experiment exhibits the advantage of Amiet-IMACS in localizing a more accurate sound source position compared with implementing IMACS alone in an environment with flow. Moreover, the aerodynamic noise produced by a NASA EPPLER 862 STRUT airfoil model in airflow with a velocity of 80 m/s is localized using the proposed method, which further proves its effectiveness in a flow environment. Finally, the relationship between the source position of this airfoil model and its frequency, along with its generation mechanism, is determined and interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Biomarkers in localized prostate cancer
Ferro, Matteo; Buonerba, Carlo; Terracciano, Daniela; Lucarelli, Giuseppe; Cosimato, Vincenzo; Bottero, Danilo; Deliu, Victor M; Ditonno, Pasquale; Perdonà, Sisto; Autorino, Riccardo; Coman, Ioman; De Placido, Sabino; Di Lorenzo, Giuseppe; De Cobelli, Ottavio
2016-01-01
Biomarkers can improve prostate cancer diagnosis and treatment. Accuracy of prostate-specific antigen (PSA) for early diagnosis of prostate cancer is not satisfactory, as it is an organ- but not cancer-specific biomarker, and it can be improved by using models that incorporate PSA along with other test results, such as prostate cancer antigen 3, the molecular forms of PSA (proPSA, benign PSA and intact PSA), as well as kallikreins. Recent reports suggest that new tools may be provided by metabolomic studies as shown by preliminary data on sarcosine. Additional molecular biomarkers have been identified by the use of genomics, proteomics and metabolomics. We review the most relevant biomarkers for early diagnosis and management of localized prostate cancer. PMID:26768791
Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku
2014-01-01
Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.
Loiselle, Louise H; Dorman, Michael F; Yost, William A; Cook, Sarah J; Gifford, Rene H
2016-08-01
To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Eleven bilateral listeners with MED-EL (Durham, NC) CIs and 8 listeners with hearing-preservation CIs with symmetrical low frequency, acoustic hearing using the MED-EL or Cochlear device were evaluated using 2 tests designed to task binaural hearing, localization, and a simulated cocktail party. Access to interaural cues for localization was constrained by the use of low-pass, high-pass, and wideband noise stimuli. Sound-source localization accuracy for listeners with bilateral CIs in response to the high-pass noise stimulus and sound-source localization accuracy for the listeners with hearing-preservation CIs in response to the low-pass noise stimulus did not differ significantly. Speech understanding in a cocktail party listening environment improved for all listeners when interaural cues, either interaural time difference or interaural level difference, were available. The findings of the current study indicate that similar degrees of benefit to sound-source localization and speech understanding in complex listening environments are possible with 2 very different rehabilitation strategies: the provision of bilateral CIs and the preservation of hearing.
Modeling habitat for Marbled Murrelets on the Siuslaw National Forest, Oregon, using lidar data
Hagar, Joan C.; Aragon, Ramiro; Haggerty, Patricia; Hollenbeck, Jeff P.
2018-03-28
Habitat models using lidar-derived variables that quantify fine-scale variation in vegetation structure can improve the accuracy of occupancy estimates for canopy-dwelling species over models that use variables derived from other remote sensing techniques. However, the ability of models developed at such a fine spatial scale to maintain accuracy at regional or larger spatial scales has not been tested. We tested the transferability of a lidar-based habitat model for the threatened Marbled Murrelet (Brachyramphus marmoratus) between two management districts within a larger regional conservation zone in coastal western Oregon. We compared the performance of the transferred model against models developed with data from the application location. The transferred model had good discrimination (AUC = 0.73) at the application location, and model performance was further improved by fitting the original model with coefficients from the application location dataset (AUC = 0.79). However, the model selection procedure indicated that neither of these transferred models were considered competitive with a model trained on local data. The new model trained on data from the application location resulted in the selection of a slightly different set of lidar metrics from the original model, but both transferred and locally trained models consistently indicated positive relationships between the probability of occupancy and lidar measures of canopy structural complexity. We conclude that while the locally trained model had superior performance for local application, the transferred model could reasonably be applied to the entire conservation zone.
2011-01-01
Background Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction. Methods A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy. Results The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph. Conclusions The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation. PMID:21952080
Chirico, Peter G.; Malpeli, Katherine C.; Trimble, Sarah M.
2012-01-01
This study compares the ASTER Global DEM version 1 (GDEMv1) and version 2 (GDEMv2) for two study sites with distinct terrain and land cover characteristics in western Africa. The effects of land cover, slope, relief, and stack number are evaluated through both absolute and relative DEM statistical comparisons. While GDEMv2 at times performed better than GDEMv1, this improvement was not consistent, revealing the complex nature and interaction of terrain and land cover characteristics, which influences the accuracy of GDEM tiles on local and regional scales.
Should all acromioclavicular joint injections be performed under image guidance?
Javed, S; Sadozai, Z; Javed, A; Din, A; Schmitgen, G
2017-01-01
Steroid and local anaesthetic injection to the acromioclavicular joint (ACJ) is a very common diagnostic and therapeutic procedure, which is often performed in the outpatient department. However, it can be difficult to localize this joint because of its small size, presence of osteophytes and variable morphology in the population. We performed a study to determine whether the use of an image intensifier (X-ray guidance), in theatre, improves the accuracy of this injection. This was a prospective study carried out between March 2014 and March 2015. The injections were performed by two senior orthopaedic surgeons. First, we clinically palpated the ACJ and marked the area over this point as A. Then, with the use of a needle and an image intensifier in a single plane, we identified the actual location of the ACJ and marked this point as B. We measured the distance between A and B in millimetres (mm) and determined the accuracy of the injections. Further analysis taking into account the ACJ capsular attachments was also performed. In total, 45 patients and 50 injections were included in the study; five patients had repeated injections at different times. We found that only 12 injections (24%) were palpated to be correct with no discrepancies between A and B (95% confidence interval: 14-37%). For the remaining 38 injections (76%), the use of an image intensifier had significantly improved the accuracy of ACJ location ( p < 0.05). Taking the capsular attachments of the ACJ into consideration reduced the number of inaccurate injections to 27 (54%). We recommend the use of an image intensifier (or ultrasound guidance) to accurately determine the location of the ACJ for steroid and local anaesthetic injections. This prevents an injection into the wrong place, which can lead to wrong diagnosis and/or suboptimal treatment.
Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong
2013-01-07
Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.
Jin, Shuo; Li, Dengwang; Yin, Yong
2013-01-01
Accurate registration of 18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from 18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381
Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data
Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei
2013-01-01
Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-04-17
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach.
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-01-01
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach. PMID:28420187
NASA Technical Reports Server (NTRS)
Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.
1973-01-01
High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.
Precision time distribution within a deep space communications complex
NASA Technical Reports Server (NTRS)
Curtright, J. B.
1972-01-01
The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.
QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.
Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon
2012-01-01
Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume.
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
Simms, Rebecca A; Yelland, Andrew; Ping, Helen; Beringer, Antonia J; Draycott, Timothy J; Fox, Robert
2014-06-01
Risk management is a core part of healthcare practice, especially within maternity services, where litigation and societal costs are high. There has been little investigation into the experiences and opinions of those staff directly involved in risk management: lead obstetricians and specialist risk midwives, who are ideally placed to identify how current implementation of risk management strategies can be improved. A qualitative study of consultant-led maternity units in an English region. Semistructured interviews were conducted with the obstetric and midwifery risk management leads for each unit. We explored their approach to risk management, particularly their opinions regarding quality monitoring and related barriers/issues. Interviews were recorded, transcribed and thematically analysed. Twenty-seven staff from 12/15 maternity units participated. Key issues identified included: concern for the accuracy and validity of their local data, potential difficulties related to data collation, the negative impact of external interference by national regulatory bodies on local clinical priorities, the influence of the local culture of the maternity unit on levels of engagement in the risk management process, and scepticism about the value of benchmarking of maternity units without adjustment for population characteristics. Local maternity risk managers may provide valuable, clinically relevant insights into current issues in clinical data monitoring. Improvements should focus on the accuracy and ease of data collation with a need for an agreed maternity indicators set, populated from validated databases, and not reliant on data collection systems that distract clinicians from patient activity and quality improvement. It is clear that working relationships between risk managers, their own clinical teams and external national bodies require improvement and alignment. Further discussion regarding benchmarking between maternity units is required prior to implementation. These findings are likely to be relevant to other clinical specialties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Pasaniuc, Bogdan; Sankararaman, Sriram; Torgerson, Dara G.; Gignoux, Christopher; Zaitlen, Noah; Eng, Celeste; Rodriguez-Cintron, William; Chapela, Rocio; Ford, Jean G.; Avila, Pedro C.; Rodriguez-Santana, Jose; Chen, Gary K.; Le Marchand, Loic; Henderson, Brian; Reich, David; Haiman, Christopher A.; Gonzàlez Burchard, Esteban; Halperin, Eran
2013-01-01
Motivation: Local ancestry analysis of genotype data from recently admixed populations (e.g. Latinos, African Americans) provides key insights into population history and disease genetics. Although methods for local ancestry inference have been extensively validated in simulations (under many unrealistic assumptions), no empirical study of local ancestry accuracy in Latinos exists to date. Hence, interpreting findings that rely on local ancestry in Latinos is challenging. Results: Here, we use 489 nuclear families from the mainland USA, Puerto Rico and Mexico in conjunction with 3204 unrelated Latinos from the Multiethnic Cohort study to provide the first empirical characterization of local ancestry inference accuracy in Latinos. Our approach for identifying errors does not rely on simulations but on the observation that local ancestry in families follows Mendelian inheritance. We measure the rate of local ancestry assignments that lead to Mendelian inconsistencies in local ancestry in trios (MILANC), which provides a lower bound on errors in the local ancestry estimates. We show that MILANC rates observed in simulations underestimate the rate observed in real data, and that MILANC varies substantially across the genome. Second, across a wide range of methods, we observe that loci with large deviations in local ancestry also show enrichment in MILANC rates. Therefore, local ancestry estimates at such loci should be interpreted with caution. Finally, we reconstruct ancestral haplotype panels to be used as reference panels in local ancestry inference and show that ancestry inference is significantly improved by incoroprating these reference panels. Availability and implementation: We provide the reconstructed reference panels together with the maps of MILANC rates as a public resource for researchers analyzing local ancestry in Latinos at http://bogdanlab.pathology.ucla.edu. Contact: bpasaniuc@mednet.ucla.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23572411
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.
Nie, Xiaohua; Wang, Wei; Nie, Haoyao
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
Saeedi, Ramyar; Purath, Janet; Venkatasubramanian, Krishna; Ghasemzadeh, Hassan
2014-01-01
Mobile wearable sensors have demonstrated great potential in a broad range of applications in healthcare and wellness. These technologies are known for their potential to revolutionize the way next generation medical services are supplied and consumed by providing more effective interventions, improving health outcomes, and substantially reducing healthcare costs. Despite these potentials, utilization of these sensor devices is currently limited to lab settings and in highly controlled clinical trials. A major obstacle in widespread utilization of these systems is that the sensors need to be used in predefined locations on the body in order to provide accurate outcomes such as type of physical activity performed by the user. This has reduced users' willingness to utilize such technologies. In this paper, we propose a novel signal processing approach that leverages feature selection algorithms for accurate and automatic localization of wearable sensors. Our results based on real data collected using wearable motion sensors demonstrate that the proposed approach can perform sensor localization with 98.4% accuracy which is 30.7% more accurate than an approach without a feature selection mechanism. Furthermore, utilizing our node localization algorithm aids the activity recognition algorithm to achieve 98.8% accuracy (an increase from 33.6% for the system without node localization).
NASA Astrophysics Data System (ADS)
O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.
2018-04-01
Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.
Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.
2018-01-01
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525
Effects of head movement and proprioceptive feedback in training of sound localization
Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti
2013-01-01
We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686
Aronis, Konstantinos N; Ashikaga, Hiroshi
Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9-11mm) inter-electrode distance (IED) of the multi-electrode basket catheter. We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2-30mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED=1mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10mm, the error is 3.8mm (phase singularity), 3.7mm (dominant frequency), and 11.8mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10mm ranges from 30.0mm (two rotors) to 96.1mm (five rotors). The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Siami, Mohammad; Gholamian, Mohammad Reza; Basiri, Javad
2014-10-01
Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets - Australian and German - from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.
NASA Astrophysics Data System (ADS)
Liu, H.; Dong, H.; Liu, Z.; Ge, J.; Bai, B.; Zhang, C.
2017-10-01
The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.
Scoring and staging systems using cox linear regression modeling and recursive partitioning.
Lee, J W; Um, S H; Lee, J B; Mun, J; Cho, H
2006-01-01
Scoring and staging systems are used to determine the order and class of data according to predictors. Systems used for medical data, such as the Child-Turcotte-Pugh scoring and staging systems for ordering and classifying patients with liver disease, are often derived strictly from physicians' experience and intuition. We construct objective and data-based scoring/staging systems using statistical methods. We consider Cox linear regression modeling and recursive partitioning techniques for censored survival data. In particular, to obtain a target number of stages we propose cross-validation and amalgamation algorithms. We also propose an algorithm for constructing scoring and staging systems by integrating local Cox linear regression models into recursive partitioning, so that we can retain the merits of both methods such as superior predictive accuracy, ease of use, and detection of interactions between predictors. The staging system construction algorithms are compared by cross-validation evaluation of real data. The data-based cross-validation comparison shows that Cox linear regression modeling is somewhat better than recursive partitioning when there are only continuous predictors, while recursive partitioning is better when there are significant categorical predictors. The proposed local Cox linear recursive partitioning has better predictive accuracy than Cox linear modeling and simple recursive partitioning. This study indicates that integrating local linear modeling into recursive partitioning can significantly improve prediction accuracy in constructing scoring and staging systems.
Contemporary strategies to improve the outcome in locally advanced pancreatic cancer.
Schneider, Rick; Späth, Christoph; Nitsche, Ulrich; Erkan, Mert; Kleeff, Jörg
2017-10-01
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of less than 7%. After many years of basic and clinical research efforts, pancreatic cancer patients presenting with locally advanced, unresectable tumors remain a therapeutic challenge. Despite the lack of high quality randomized controlled trials, perioperative/neoadjuvant treatment strategies seem to be beneficial in these patients. At present the FOLFIRINOX regimen, which was established in the palliative setting, is increasingly recognized as the backbone of neoadjuvant therapy for locally advanced PDAC. Surgical resection follows the same principles and guidelines as upfront surgery specifically regarding the extent of resection including lymphadenectomy, vascular resections and multivisceral resections. Because of the limited diagnostic accuracy of restaging after neoadjuvant treatment, an adjusted intraoperative strategy is necessary to minimize the risk of debulking procedures and maximize the chance of a potential curative resection. Locally advanced PDAC requires a multidisciplinary and individualized treatment approach, and further research efforts for novel and innovative therapies. This article provides an updated overview on strategies to improve the outcome in locally advanced PDAC.
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Advancements in MR Imaging of the Prostate: From Diagnosis to Interventions
Bonekamp, David; Jacobs, Michael A.; El-Khouli, Riham; Stoianovici, Dan
2011-01-01
Prostate cancer is the most frequently diagnosed cancer in males and the second leading cause of cancer-related death in men. Assessment of prostate cancer can be divided into detection, localization, and staging; accurate assessment is a prerequisite for optimal clinical management and therapy selection. Magnetic resonance (MR) imaging has been shown to be of particular help in localization and staging of prostate cancer. Traditional prostate MR imaging has been based on morphologic imaging with standard T1-weighted and T2-weighted sequences, which has limited accuracy. Recent advances include additional functional and physiologic MR imaging techniques (diffusion-weighted imaging, MR spectroscopy, and perfusion imaging), which allow extension of the obtainable information beyond anatomic assessment. Multiparametric MR imaging provides the highest accuracy in diagnosis and staging of prostate cancer. In addition, improvements in MR imaging hardware and software (3-T vs 1.5-T imaging) continue to improve spatial and temporal resolution and the signal-to-noise ratio of MR imaging examinations. Another recent advancement in the field is MR imaging guidance for targeted prostate biopsy, which is an alternative to the current standard of transrectal ultrasonography–guided systematic biopsy. © RSNA, 2011 PMID:21571651
NASA Astrophysics Data System (ADS)
Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg
2018-05-01
Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.
NASA Astrophysics Data System (ADS)
Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun
2018-05-01
Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.
Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo
2014-11-18
Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.
Experimental Evaluation of UWB Indoor Positioning for Sport Postures
Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli
2018-01-01
Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267
NASA Astrophysics Data System (ADS)
Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi
2017-01-01
Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.
Quasi-particle energy spectra in local reduced density matrix functional theory.
Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
Protein docking prediction using predicted protein-protein interface.
Li, Bin; Kihara, Daisuke
2012-01-10
Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.
Carlson, Jay D; Mittek, Mateusz; Parkison, Steven A; Sathler, Pedro; Bayne, David; Psota, Eric T; Perez, Lance C; Bonasera, Stephen J
2014-01-01
As a first step toward building a smart home behavioral monitoring system capable of classifying a wide variety of human behavior, a wireless sensor network (WSN) system is presented for RSSI localization. The low-cost, non-intrusive system uses a smart watch worn by the user to broadcast data to the WSN, where the strength of the radio signal is evaluated at each WSN node to localize the user. A method is presented that uses simultaneous localization and mapping (SLAM) for system calibration, providing automated fingerprinting associating the radio signal strength patterns to the user's location within the living space. To improve the accuracy of localization, a novel refinement technique is introduced that takes into account typical movement patterns of people within their homes. Experimental results demonstrate that the system is capable of providing accurate localization results in a typical living space.
Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048
Anchor-free localization method for mobile targets in coal mine wireless sensor networks.
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.
Olney, Cynthia A.; Backus, Joyce E. B.; Klein, Lori J.
2010-01-01
Objectives: Through interviews with the National Library of Medicine's MedlinePlus Go Local collaborators, an evaluation team sought to identify process characteristics that are critical for long-term sustainability of Go Local projects and to describe the impact that Go Local projects have on sponsoring institutions. Methods: Go Local project coordinators (n = 44) at 31 sponsor institutions participated in semi-structured interviews about their experiences developing and maintaining Go Local sites. Interviews were summarized, checked for accuracy by the participating librarians, and analyzed using a general inductive methodology. Results: Institutional factors that support Go Local projects were identified through the interviews, as well as strategies for staffing and partnerships with external organizations. Positive outcomes for sponsoring institutions also were identified. Conclusions: The findings may influence the National Library of Medicine team's decisions about improvements to its Go Local system and the support it provides to sponsoring institutions. The findings may benefit current sponsoring institutions as well as those considering or planning a Go Local project. PMID:20098657
Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L
2015-08-01
Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.
Safe Handling of Snakes in an ED Setting.
Cockrell, Melanie; Swanson, Kristofer; Sanders, April; Prater, Samuel; von Wenckstern, Toni; Mick, JoAnn
2017-01-01
Efforts to improve consistency in management of snakes and venomous snake bites in the emergency department (ED) can improve patient and staff safety and outcomes, as well as improve surveillance data accuracy. The emergency department at a large academic medical center identified an opportunity to implement a standardized process for snake disposal and identification to reduce staff risk exposure to snake venom from snakes patients brought with them to the ED. A local snake consultation vendor and zoo Herpetologist assisted with development of a process for snake identification and disposal. All snakes have been identified and securely disposed of using the newly implemented process and no safety incidents have been reported. Other emergency department settings may consider developing a standardized process for snake disposal using listed specialized consultants combined with local resources and suppliers to promote employee and patient safety. Copyright © 2017 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Adaptive Local Realignment of Protein Sequences.
DeBlasio, Dan; Kececioglu, John
2018-06-11
While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.
Search-free license plate localization based on saliency and local variance estimation
NASA Astrophysics Data System (ADS)
Safaei, Amin; Tang, H. L.; Sanei, S.
2015-02-01
In recent years, the performance and accuracy of automatic license plate number recognition (ALPR) systems have greatly improved, however the increasing number of applications for such systems have made ALPR research more challenging than ever. The inherent computational complexity of search dependent algorithms remains a major problem for current ALPR systems. This paper proposes a novel search-free method of localization based on the estimation of saliency and local variance. Gabor functions are then used to validate the choice of candidate license plate. The algorithm was applied to three image datasets with different levels of complexity and the results compared with a number of benchmark methods, particularly in terms of speed. The proposed method outperforms the state of the art methods and can be used for real time applications.
Robust Stereo Visual Odometry Using Improved RANSAC-Based Methods for Mobile Robot Localization
Liu, Yanqing; Gu, Yuzhang; Li, Jiamao; Zhang, Xiaolin
2017-01-01
In this paper, we present a novel approach for stereo visual odometry with robust motion estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus). Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially generated by sampling the input feature points on the order of ages and similarities of the features; second, the evaluation of hypotheses is performed based on the SPRT (Sequential Probability Ratio Test) that makes bad hypotheses discarded very fast without verifying all the data points; third, we aggregate the three best hypotheses to get the final estimation instead of only selecting the best hypothesis. The first two aspects improve the speed of RANSAC by generating good hypotheses and discarding bad hypotheses in advance, respectively. The last aspect improves the accuracy of motion estimation. Our method was evaluated in the KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) and the New Tsukuba dataset. Experimental results show that the proposed method achieves better results for both speed and accuracy than RANSAC. PMID:29027935
Olivocochlear Efferent Control in Sound Localization and Experience-Dependent Learning
Irving, Samuel; Moore, David R.; Liberman, M. Charles; Sumner, Christian J.
2012-01-01
Efferent auditory pathways have been implicated in sound localization and its plasticity. We examined the role of the olivocochlear system (OC) in horizontal sound localization by the ferret and in localization learning following unilateral earplugging. Under anesthesia, adult ferrets underwent olivocochlear bundle section at the floor of the fourth ventricle, either at the midline or laterally (left). Lesioned and control animals were trained to localize 1 s and 40ms amplitude-roved broadband noise stimuli from one of 12 loudspeakers. Neither type of lesion affected normal localization accuracy. All ferrets then received a left earplug and were tested and trained over 10 d. The plug profoundly disrupted localization. Ferrets in the control and lateral lesion groups improved significantly during subsequent training on the 1 s stimulus. No improvement (learning) occurred in the midline lesion group. Markedly poorer performance and failure to learn was observed with the 40 ms stimulus in all groups. Plug removal resulted in a rapid resumption of normal localization in all animals. Insertion of a subsequent plug in the right ear produced similar results to left earplugging. Learning in the lateral lesion group was independent of the side of the lesion relative to the earplug. Lesions in all reported cases were verified histologically. The results suggest the OC system is not needed for accurate localization, but that it is involved in relearning localization during unilateral conductive hearing loss. PMID:21325517
NASA Astrophysics Data System (ADS)
Zhang, X.; Srinivasan, R.
2008-12-01
In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.
NASA Astrophysics Data System (ADS)
Lange, Thomas; Wörz, Stefan; Rohr, Karl; Schlag, Peter M.
2009-02-01
The qualitative and quantitative comparison of pre- and postoperative image data is an important possibility to validate surgical procedures, in particular, if computer assisted planning and/or navigation is performed. Due to deformations after surgery, partially caused by the removal of tissue, a non-rigid registration scheme is a prerequisite for a precise comparison. Interactive landmark-based schemes are a suitable approach, if high accuracy and reliability is difficult to achieve by automatic registration approaches. Incorporation of a priori knowledge about the anatomical structures to be registered may help to reduce interaction time and improve accuracy. Concerning pre- and postoperative CT data of oncological liver resections the intrahepatic vessels are suitable anatomical structures. In addition to using branching landmarks for registration, we here introduce quasi landmarks at vessel segments with high localization precision perpendicular to the vessels and low precision along the vessels. A comparison of interpolating thin-plate splines (TPS), interpolating Gaussian elastic body splines (GEBS) and approximating GEBS on landmarks at vessel branchings as well as approximating GEBS on the introduced vessel segment landmarks is performed. It turns out that the segment landmarks provide registration accuracies as good as branching landmarks and can improve accuracy if combined with branching landmarks. For a low number of landmarks segment landmarks are even superior.
Hongbo Guo; Xiaowei He; Muhan Liu; Zeyu Zhang; Zhenhua Hu; Jie Tian
2017-06-01
Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.
Kang, Tae Wook; Rhim, Hyunchul; Lee, Min Woo; Kim, Young-sun; Choi, Dongil; Lim, Hyo Keun
2014-01-01
To perform a systematic review of compliance with standardized terminology and reporting criteria for radiofrequency (RF) tumor ablation, proposed by the International Working Group on Image-Guided Tumor Ablation in 2003, in the published reports. Literature search in the PubMed database was performed using index keywords, PubMed limit system, and eligibility criteria. The entire content of each article was reviewed to assess the terminology used for procedure terms, imaging findings, therapeutic efficacy, follow-up, and complications. Accuracy of the terminology and the use of alternative terms instead of standard terminology were analyzed. In addition, disparities in accuracy of terminology in articles according to the medical specialty and the type of radiology journal were evaluated. Among the articles (n = 308) included in this study, the accuracy of the terms 'procedure or session', 'treatment', 'index tumor', 'ablation zone', 'technical success', 'primary technique effectiveness rate', 'secondary technique effectiveness rate', 'local tumor progression', 'major complication', and 'minor complication' was 97% (298/307), 97% (291/300), 8% (25/307), 65% (103/159), 55% (52/94), 33% (42/129), 94% (17/18), 45% (88/195), 99% (79/80), and 100% (77/77), respectively. The overall accuracy of each term showed a tendency to improve over the years. The most commonly used alternative terms for 'technical success' and 'local tumor progression' were 'complete ablation' and 'local (tumor) recurrence', respectively. The accuracy of terminology in articles published in radiology journals was significantly greater than that of terminology in articles published in non-radiology journals, especially in Radiology and The Journal of Vascular and Interventional Radiology. The proposal for standardization of terminology and reporting criteria for RF tumor ablation has been gaining support according to the recently published scientific reports, especially in the field of radiology. However, more work is still needed for the complete standardization of terminology.
Kang, Tae Wook; Lee, Min Woo; Kim, Young-sun; Choi, Dongil; Lim, Hyo Keun
2014-01-01
Objective To perform a systematic review of compliance with standardized terminology and reporting criteria for radiofrequency (RF) tumor ablation, proposed by the International Working Group on Image-Guided Tumor Ablation in 2003, in the published reports. Materials and Methods Literature search in the PubMed database was performed using index keywords, PubMed limit system, and eligibility criteria. The entire content of each article was reviewed to assess the terminology used for procedure terms, imaging findings, therapeutic efficacy, follow-up, and complications. Accuracy of the terminology and the use of alternative terms instead of standard terminology were analyzed. In addition, disparities in accuracy of terminology in articles according to the medical specialty and the type of radiology journal were evaluated. Results Among the articles (n = 308) included in this study, the accuracy of the terms 'procedure or session', 'treatment', 'index tumor', 'ablation zone', 'technical success', 'primary technique effectiveness rate', 'secondary technique effectiveness rate', 'local tumor progression', 'major complication', and 'minor complication' was 97% (298/307), 97% (291/300), 8% (25/307), 65% (103/159), 55% (52/94), 33% (42/129), 94% (17/18), 45% (88/195), 99% (79/80), and 100% (77/77), respectively. The overall accuracy of each term showed a tendency to improve over the years. The most commonly used alternative terms for 'technical success' and 'local tumor progression' were 'complete ablation' and 'local (tumor) recurrence', respectively. The accuracy of terminology in articles published in radiology journals was significantly greater than that of terminology in articles published in non-radiology journals, especially in Radiology and The Journal of Vascular and Interventional Radiology. Conclusion The proposal for standardization of terminology and reporting criteria for RF tumor ablation has been gaining support according to the recently published scientific reports, especially in the field of radiology. However, more work is still needed for the complete standardization of terminology. PMID:24497798
Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie
2016-02-01
Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study.
Discrimination of natural and cultivated vegetation using Thematic Mapper spectral data
NASA Technical Reports Server (NTRS)
Degloria, Stephen D.; Bernstein, Ralph; Dizenzo, Silvano
1986-01-01
The availability of high quality spectral data from the current suite of earth observation satellite systems offers significant improvements in the ability to survey and monitor food and fiber production on both a local and global basis. Current research results indicate that Landsat TM data when used in either digital or analog formats achieve higher land-cover classification accuracies than MSS data using either comparable or improved spectral bands and spatial resolution. A review of these quantitative results is presented for both natural and cultivated vegetation.
Improvement of the Earth's gravity field from terrestrial and satellite data
NASA Technical Reports Server (NTRS)
1987-01-01
The terrestrial gravity data base was updated. Studies related to the Geopotential Research Mission (GRM) have primarily considered the local recovery of gravity anomalies on the surface of the Earth based on satellite to satellite tracking or gradiometer data. A simulation study was used to estimate the accuracy of 1 degree-mean anomalies which could be recovered from the GRM data. Numerous procedures were developed for the intent of performing computations at the laser stations in the SL6 system to improve geoid undulation calculations.
Auditory and visual localization accuracy in young children and adults.
Martin, Karen; Johnstone, Patti; Hedrick, Mark
2015-06-01
This study aimed to measure and compare sound and light source localization ability in young children and adults who have normal hearing and normal/corrected vision in order to determine the extent to which age, type of stimuli, and stimulus order affects sound localization accuracy. Two experiments were conducted. The first involved a group of adults only. The second involved a group of 30 children aged 3 to 5 years. Testing occurred in a sound-treated booth containing a semi-circular array of 15 loudspeakers set at 10° intervals from -70° to 70° azimuth. Each loudspeaker had a tiny light bulb and a small picture fastened underneath. Seven of the loudspeakers were used to randomly test sound and light source identification. The sound stimulus was the word "baseball". The light stimulus was a flashing of a light bulb triggered by the digital signal of the word "baseball". Each participant was asked to face 0° azimuth, and identify the location of the test stimulus upon presentation. Adults used a computer mouse to click on an icon; children responded by verbally naming or walking toward the picture underneath the corresponding loudspeaker or light. A mixed experimental design using repeated measures was used to determine the effect of age and stimulus type on localization accuracy in children and adults. A mixed experimental design was used to compare the effect of stimulus order (light first/last) and varying or fixed intensity sound on localization accuracy in children and adults. Localization accuracy was significantly better for light stimuli than sound stimuli for children and adults. Children, compared to adults, showed significantly greater localization errors for audition. Three-year-old children had significantly greater sound localization errors compared to 4- and 5-year olds. Adults performed better on the sound localization task when the light localization task occurred first. Young children can understand and attend to localization tasks, but show poorer localization accuracy than adults in sound localization. This may be a reflection of differences in sensory modality development and/or central processes in young children, compared to adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones
Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon
2016-01-01
The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284
Initial Investigation of preclinical integrated SPECT and MR imaging.
Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan
2010-02-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.
Initial Investigation of Preclinical Integrated SPECT and MR Imaging
Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan
2014-01-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527
Short-term Power Load Forecasting Based on Balanced KNN
NASA Astrophysics Data System (ADS)
Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei
2018-03-01
To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.
Chen, Xiang; He, Si-Min; Bu, Dongbo; Zhang, Fa; Wang, Zhiyong; Chen, Runsheng; Gao, Wen
2008-09-15
RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is proved to be NP-hard. Due to kinetic reasons the real RNA secondary structure often has local instead of global minimum free energy. This implies that we may improve the performance of RNA secondary structure prediction by taking kinetics into account and minimize free energy in a local area. we propose a novel algorithm named FlexStem to predict RNA secondary structures with pseudoknots. Still based on MFE criterion, FlexStem adopts comprehensive energy models that allow complex pseudoknots. Unlike classical thermodynamic methods, our approach aims to simulate the RNA folding process by successive addition of maximal stems, reducing the search space while maintaining or even improving the prediction accuracy. This reduced space is constructed by our maximal stem strategy and stem-adding rule induced from elaborate statistical experiments on real RNA secondary structures. The strategy and the rule also reflect the folding characteristic of RNA from a new angle and help compensate for the deficiency of merely relying on MFE in RNA structure prediction. We validate FlexStem by applying it to tRNAs, 5SrRNAs and a large number of pseudoknotted structures and compare it with the well-known algorithms such as RNAfold, PKNOTS, PknotsRG, HotKnots and ILM according to their overall sensitivities and specificities, as well as positive and negative controls on pseudoknots. The results show that FlexStem significantly increases the prediction accuracy through its local search strategy. Software is available at http://pfind.ict.ac.cn/FlexStem/. Supplementary data are available at Bioinformatics online.
How effective are DNA barcodes in the identification of African rainforest trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J
2013-01-01
DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.
How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.
2013-01-01
Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications. PMID:23565134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tellarini, Matteo; Ross, Ashley J.; Wands, David
Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f {sub NL}, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modellingmore » redshift space distortions (RSD) in the tree-level galaxy bispectrum including f {sub NL}. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f {sub NL} from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ {sub f} {sub N{sub L}}—the accuracy of the determination of local non-linear parameter f {sub NL}—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f {sub NL} constraints competitive with Planck , and future surveys could improve them further.« less
Magnitude of pseudopotential localization errors in fixed node diffusion quantum Monte Carlo
Kent, Paul R.; Krogel, Jaron T.
2017-06-22
Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less
NASA Astrophysics Data System (ADS)
Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui
2016-03-01
Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.
Modified linear predictive coding approach for moving target tracking by Doppler radar
NASA Astrophysics Data System (ADS)
Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao
2016-07-01
Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Yuya; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp
In this study, the analytical energy gradient for the spin-free infinite-order Douglas-Kroll-Hess (IODKH) method at the levels of the Hartree-Fock (HF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) is developed. Furthermore, adopting the local unitary transformation (LUT) scheme for the IODKH method improves the efficiency in computation of the analytical energy gradient. Numerical assessments of the present gradient method are performed at the HF, DFT, and MP2 levels for the IODKH with and without the LUT scheme. The accuracies are examined for diatomic molecules such as hydrogen halides, halogen dimers, coinage metal (Cu, Ag, and Au) halides,more » and coinage metal dimers, and 20 metal complexes, including the fourth–sixth row transition metals. In addition, the efficiencies are investigated for one-, two-, and three-dimensional silver clusters. The numerical results confirm the accuracy and efficiency of the present method.« less
Jana, Subrata; Samal, Prasanjit
2017-06-29
Semilocal density functionals for the exchange-correlation energy of electrons are extensively used as they produce realistic and accurate results for finite and extended systems. The choice of techniques plays a crucial role in constructing such functionals of improved accuracy and efficiency. An accurate and efficient semilocal exchange energy functional in two dimensions is constructed by making use of the corresponding hole which is derived based on the density matrix expansion. The exchange hole involved is localized under the generalized coordinate transformation and satisfies all the relevant constraints. Comprehensive testing and excellent performance of the functional is demonstrated versus exact exchange results. The accuracy of results obtained by using the newly constructed functional is quite remarkable as it substantially reduces the errors present in the local and nonempirical exchange functionals proposed so far for two-dimensional quantum systems. The underlying principles involved in the functional construction are physically appealing and hold promise for developing range separated and nonlocal exchange functionals in two dimensions.
Minimally invasive treatment for localized prostate cancer.
Porres, D; Pfister, D; Heidenreich, A
2012-12-01
The vast majority of men newly diagnosed with prostate cancer have clinically localized disease. Besides active surveillance in low risk cancers and open radical prostatectomy as the traditional gold standard more and more patients demand a effective tumor control through a minimally invasive approach. After the introduction of laparoscopy for the treatment of prostate cancer especially the robot-assisted radical prostatectomy gained in importance. In recent years the accuracy for cancer localisation within the prostate was considerably improved, which enables the increasing use of focal therapy techniques. In addition to the robot-assisted and conventional laparoscopic radical prostatectomy the current and future importance of cryotherapy, HIFU and vascular targeted photodynamic therapy for localized prostate cancer will be analyzed in the following review article.
Multigrid techniques for the solution of the passive scalar advection-diffusion equation
NASA Technical Reports Server (NTRS)
Phillips, R. E.; Schmidt, F. W.
1985-01-01
The solution of elliptic passive scalar advection-diffusion equations is required in the analysis of many turbulent flow and convective heat transfer problems. The accuracy of the solution may be affected by the presence of regions containing large gradients of the dependent variables. The multigrid concept of local grid refinement is a method for improving the accuracy of the calculations in these problems. In combination with the multilevel acceleration techniques, an accurate and efficient computational procedure is developed. In addition, a robust implementation of the QUICK finite-difference scheme is described. Calculations of a test problem are presented to quantitatively demonstrate the advantages of the multilevel-multigrid method.
Minimalist ensemble algorithms for genome-wide protein localization prediction.
Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun
2012-07-03
Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
Minimalist ensemble algorithms for genome-wide protein localization prediction
2012-01-01
Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391
Aronis, Konstantinos N.; Ashikaga, Hiroshi
2018-01-01
Background Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9–11 mm) inter-electrode distance (IED) of the multi-electrode basket catheter. Methods and results We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2–30 mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED = 1 mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10 mm, the error is 3.8 mm (phase singularity), 3.7 mm (dominant frequency), and 11.8 mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10 mm ranges from 30.0 mm (two rotors) to 96.1 mm (five rotors). Conclusions The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. PMID:28988690
NASA Astrophysics Data System (ADS)
Biteen, Julie
2013-03-01
Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.
Visual Tracking via Sparse and Local Linear Coding.
Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan
2015-11-01
The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.
Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.
Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya
2018-04-04
Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.
Application of an image-guided navigation system in breast cancer localization
NASA Astrophysics Data System (ADS)
Alderliesten, Tanja; Loo, Claudette; Schlief, Angelique T. E. F.; Paape, Anita; van der Meer, Michiel; Gilhuijs, Kenneth G. A.
2009-02-01
Image-guided navigation on the basis of pre-therapy images in a deformable organ, such as the breast, requires a survey of the factors that cause uncertainties. A deformable breast-tissue-mimicking phantom with simulated tumors was employed to investigate the accuracy of lesion localization with a needle instrument coupled to an optical measurement system. The RMS deviation was 1.1 mm with errors <= 2.0 mm in 96% of the procedures. Ultrasonography data acquired during needle localization of breast tumors were analyzed in 20 patients (23 tumors; 12 benign, 11 malignant) to investigate the deformation due to presence of instruments. The overall RMS tumor shift was 2.3 mm after release of pressure on the needle. To establish an optimal strategy to correct for breast motion due to breathing experiments with a volunteer were performed. Tracking a single centre marker was found to be most effective to improve registration accuracy. Average deviations of 8.2 mm were reduced to 1.1 mm. The combined impact of these different uncertainties resulted in distributions defined by: μ = 2.5 mm, σ = 1.4 mm (benign and malignant), μ = 3.1 mm, σ = 1.8 mm (benign), μ = 1.7 mm, σ = 0.9 mm (malignant).
Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.
Williams, Jason A
2012-06-01
The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.
Novel Hyperspectral Anomaly Detection Methods Based on Unsupervised Nearest Regularized Subspace
NASA Astrophysics Data System (ADS)
Hou, Z.; Chen, Y.; Tan, K.; Du, P.
2018-04-01
Anomaly detection has been of great interest in hyperspectral imagery analysis. Most conventional anomaly detectors merely take advantage of spectral and spatial information within neighboring pixels. In this paper, two methods of Unsupervised Nearest Regularized Subspace-based with Outlier Removal Anomaly Detector (UNRSORAD) and Local Summation UNRSORAD (LSUNRSORAD) are proposed, which are based on the concept that each pixel in background can be approximately represented by its spatial neighborhoods, while anomalies cannot. Using a dual window, an approximation of each testing pixel is a representation of surrounding data via a linear combination. The existence of outliers in the dual window will affect detection accuracy. Proposed detectors remove outlier pixels that are significantly different from majority of pixels. In order to make full use of various local spatial distributions information with the neighboring pixels of the pixels under test, we take the local summation dual-window sliding strategy. The residual image is constituted by subtracting the predicted background from the original hyperspectral imagery, and anomalies can be detected in the residual image. Experimental results show that the proposed methods have greatly improved the detection accuracy compared with other traditional detection method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Paul R.; Krogel, Jaron T.
Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less
Precise calibration of pupil images in pyramid wavefront sensor.
Liu, Yong; Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Yang, Chengliang; Xuan, Li
2017-04-20
The pyramid wavefront sensor (PWFS) is a novel wavefront sensor with several inspiring advantages compared with Shack-Hartmann wavefront sensors. The PWFS uses four pupil images to calculate the local tilt of the incoming wavefront. Pupil images are conjugated with a telescope pupil so that each pixel in the pupil image is diffraction-limited by the telescope pupil diameter, thus the sensing error of the PWFS is much lower than that of the Shack-Hartmann sensor and is related to the extraction and alignment accuracy of pupil images. However, precise extraction of these images is difficult to conduct in practice. Aiming at improving the sensing accuracy, we analyzed the physical model of calibration of a PWFS and put forward an extraction algorithm. The process was verified via a closed-loop correction experiment. The results showed that the sensing accuracy of the PWFS increased after applying the calibration and extraction method.
High Order Numerical Methods for LES of Turbulent Flows with Shocks
NASA Technical Reports Server (NTRS)
Kotov, D. V.; Yee, H. C.; Hadjadj, A.; Wray, A.; Sjögreen, B.
2014-01-01
Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a comparative study of different approaches to reduce this loss of accuracy within the framework of the dynamic Germano SGS model. One of the possible approaches is to apply Harten's subcell resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid points adjacent to the exact shock location. The other considered approach is local disabling of the SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence interaction problem for comparison of the considered modifications of the SGS filtering procedure. For the considered test case both approaches show a similar improvement in the accuracy near the shock.
Maclean, Donald; Younes, Hakim Ben; Forrest, Margaret; Towers, Hazel K
2012-03-01
Accurate and timely clinical data are required for clinical and organisational purposes and is especially important for patient management, audit of surgical performance and the electronic health record. The recent introduction of computerised theatre management systems has enabled real-time (point-of-care) operative procedure coding by clinical staff. However the accuracy of these data is unknown. The aim of this Scottish study was to compare the accuracy of theatre nurses' real-time coding on the local theatre management system with the central Scottish Morbidity Record (SMR01). Paired procedural codes were recorded, qualitatively graded for precision and compared (n = 1038). In this study, real-time, point-of-care coding by theatre nurses resulted in significant coding errors compared with the central SMR01 database. Improved collaboration between full-time coders and clinical staff using computerised decision support systems is suggested.
Bashford, Gregory R; Burnfield, Judith M; Perez, Lance C
2013-01-01
Automating documentation of physical activity data (e.g., duration and speed of walking or propelling a wheelchair) into the electronic medical record (EMR) offers promise for improving efficiency of documentation and understanding of best practices in the rehabilitation and home health settings. Commercially available devices which could be used to automate documentation of physical activities are either cumbersome to wear or lack the specificity required to differentiate activities. We have designed a novel system to differentiate and quantify physical activities, using inexpensive accelerometer-based biomechanical data technology and wireless sensor networks, a technology combination that has not been used in a rehabilitation setting to date. As a first step, a feasibility study was performed where 14 healthy young adults (mean age = 22.6 ± 2.5 years, mean height = 173 ± 10.0 cm, mean mass = 70.7 ± 11.3 kg) carried out eight different activities while wearing a biaxial accelerometer sensor. Activities were performed at each participants self-selected pace during a single testing session in a controlled environment. Linear discriminant analysis was performed by extracting spectral parameters from the subjects accelerometer patterns. It is shown that physical activity classification alone results in an average accuracy of 49.5%, but when combined with rule-based constraints using a wireless sensor network with localization capabilities in an in silico simulated room, accuracy improves to 99.3%. When fully implemented, our technology package is expected to improve goal setting, treatment interventions and patient outcomes by enhancing clinicians understanding of patients physical performance within a day and across the rehabilitation program.
Method and system for determining radiation shielding thickness and gamma-ray energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio
2015-12-15
A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.
Improved algorithms for the retrieval of the h2 Love number of Mercury from laser altimetry data
NASA Astrophysics Data System (ADS)
Thor, Robin; Kallenbach, Reinald; Christensen, Ulrich; Oberst, Jürgen; Stark, Alexander; Steinbrügge, Gregor
2017-04-01
We simulate measurements to be performed by the BepiColombo laser altimeter (BELA) aboard the Mercury Planetary Orbiter (MPO) of the BepiColombo mission and investigate whether coverage and accuracy will be sufficient to retrieve the h2 Love number of Mercury. The h2 Love number describes the tidal response of Mercury's surface and is a function of the materials in its interior and their properties and distribution. Therefore, it can serve as an important constraint for models of the internal structure. The tide-generating potential from the Sun causes periodic radial displacements of up to ˜2 m on Mercury which can be detected by laser altimetry. In this study, we simultaneously extract the static global shape, parametrized by local basis functions, and its variability in time. The usage of cubic splines as local basis functions in both longitudinal and latitudinal direction provides an improvement over the methodology of Koch et al. (2010, Planetary and Space Science, 58(14), 2022-2030) who used cubic splines in longitudinal direction, but only step functions in latitudinal direction. We achieve a relative 1σ accuracy of the h2 Love number of 1.7% assuming nominal data acquisition for BELA during a one-year mission, but considering only stochastic noise.
He, Bo; Zhang, Shujing; Yan, Tianhong; Zhang, Tao; Liang, Yan; Zhang, Hongjin
2011-01-01
Mobile autonomous systems are very important for marine scientific investigation and military applications. Many algorithms have been studied to deal with the computational efficiency problem required for large scale simultaneous localization and mapping (SLAM) and its related accuracy and consistency. Among these methods, submap-based SLAM is a more effective one. By combining the strength of two popular mapping algorithms, the Rao-Blackwellised particle filter (RBPF) and extended information filter (EIF), this paper presents a combined SLAM-an efficient submap-based solution to the SLAM problem in a large scale environment. RBPF-SLAM is used to produce local maps, which are periodically fused into an EIF-SLAM algorithm. RBPF-SLAM can avoid linearization of the robot model during operating and provide a robust data association, while EIF-SLAM can improve the whole computational speed, and avoid the tendency of RBPF-SLAM to be over-confident. In order to further improve the computational speed in a real time environment, a binary-tree-based decision-making strategy is introduced. Simulation experiments show that the proposed combined SLAM algorithm significantly outperforms currently existing algorithms in terms of accuracy and consistency, as well as the computing efficiency. Finally, the combined SLAM algorithm is experimentally validated in a real environment by using the Victoria Park dataset.
Pairwise graphical models for structural health monitoring with dense sensor arrays
NASA Astrophysics Data System (ADS)
Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral
2017-09-01
Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.
Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas
Moreau, Julien; Ambellouis, Sébastien; Ruichek, Yassine
2017-01-01
A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density). PMID:28106746
Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model
NASA Astrophysics Data System (ADS)
Kim, Sangjo; Kim, Kuisoon; Son, Changmin
2018-04-01
An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-01-01
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145
Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.
Wang, Xuan; Liu, Jinghong; Zhou, Qianfei
2016-12-25
In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.
A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks.
Cheikhrouhou, Omar; M Bhatti, Ghulam; Alroobaea, Roobaea
2018-05-08
With the increasing realization of the Internet-of-Things (IoT) and rapid proliferation of wireless sensor networks (WSN), estimating the location of wireless sensor nodes is emerging as an important issue. Traditional ranging based localization algorithms use triangulation for estimating the physical location of only those wireless nodes that are within one-hop distance from the anchor nodes. Multi-hop localization algorithms, on the other hand, aim at localizing the wireless nodes that can physically be residing at multiple hops away from anchor nodes. These latter algorithms have attracted a growing interest from research community due to the smaller number of required anchor nodes. One such algorithm, known as DV-Hop (Distance Vector Hop), has gained popularity due to its simplicity and lower cost. However, DV-Hop suffers from reduced accuracy due to the fact that it exploits only the network topology (i.e., number of hops to anchors) rather than the distances between pairs of nodes. In this paper, we propose an enhanced DV-Hop localization algorithm that also uses the RSSI values associated with links between one-hop neighbors. Moreover, we exploit already localized nodes by promoting them to become additional anchor nodes. Our simulations have shown that the proposed algorithm significantly outperforms the original DV-Hop localization algorithm and two of its recently published variants, namely RSSI Auxiliary Ranging and the Selective 3-Anchor DV-hop algorithm. More precisely, in some scenarios, the proposed algorithm improves the localization accuracy by almost 95%, 90% and 70% as compared to the basic DV-Hop, Selective 3-Anchor, and RSSI DV-Hop algorithms, respectively.
Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.
Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael
2015-08-01
In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.
Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi
2014-01-01
We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.
Beevi, K Sabeena; Nair, Madhu S; Bindu, G R
2016-08-01
The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.
An information-theoretic approach to designing the plane spacing for multifocal plane microscopy
Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.
2015-01-01
Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup. PMID:26113764
NASA Astrophysics Data System (ADS)
Bidaut, Luc M.
1991-06-01
In order to help in analyzing PET data and really take advantage of their metabolic content, a system was designed and implemented to align and process data from various medical imaging modalities, particularly (but not only) for brain studies. Although this system is for now mostly used for anatomical localization, multi-modality ROIs and pharmaco-kinetic modeling, more multi-modality protocols will be implemented in the future, not only to help in PET reconstruction data correction and semi-automated ROI definition, but also for helping in improving diagnostic accuracy along with surgery and therapy planning.
A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.
2018-01-01
A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.
NASA Astrophysics Data System (ADS)
Goh, Shu Ting
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.
Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim
2015-12-01
Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
CD-Based Indices for Link Prediction in Complex Network.
Wang, Tao; Wang, Hongjue; Wang, Xiaoxia
2016-01-01
Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.
Lane Level Localization; Using Images and HD Maps to Mitigate the Lateral Error
NASA Astrophysics Data System (ADS)
Hosseinyalamdary, S.; Peter, M.
2017-05-01
In urban canyon where the GNSS signals are blocked by buildings, the accuracy of measured position significantly deteriorates. GIS databases have been frequently utilized to improve the accuracy of measured position using map matching approaches. In map matching, the measured position is projected to the road links (centerlines) in this approach and the lateral error of measured position is reduced. By the advancement in data acquision approaches, high definition maps which contain extra information, such as road lanes are generated. These road lanes can be utilized to mitigate the positional error and improve the accuracy in position. In this paper, the image content of a camera mounted on the platform is utilized to detect the road boundaries in the image. We apply color masks to detect the road marks, apply the Hough transform to fit lines to the left and right road boundaries, find the corresponding road segment in GIS database, estimate the homography transformation between the global and image coordinates of the road boundaries, and estimate the camera pose with respect to the global coordinate system. The proposed approach is evaluated on a benchmark. The position is measured by a smartphone's GPS receiver, images are taken from smartphone's camera and the ground truth is provided by using Real-Time Kinematic (RTK) technique. Results show the proposed approach significantly improves the accuracy of measured GPS position. The error in measured GPS position with average and standard deviation of 11.323 and 11.418 meters is reduced to the error in estimated postion with average and standard deviation of 6.725 and 5.899 meters.
CD-Based Indices for Link Prediction in Complex Network
Wang, Tao; Wang, Hongjue; Wang, Xiaoxia
2016-01-01
Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405
Magpies can use local cues to retrieve their food caches.
Feenders, Gesa; Smulders, Tom V
2011-03-01
Much importance has been placed on the use of spatial cues by food-hoarding birds in the retrieval of their caches. In this study, we investigate whether food-hoarding birds can be trained to use local cues ("beacons") in their cache retrieval. We test magpies (Pica pica) in an active hoarding-retrieval paradigm, where local cues are always reliable, while spatial cues are not. Our results show that the birds use the local cues to retrieve their caches, even when occasionally contradicting spatial information is available. The design of our study does not allow us to test rigorously whether the birds prefer using local over spatial cues, nor to investigate the process through which they learn to use local cues. We furthermore provide evidence that magpies develop landmark preferences, which improve their retrieval accuracy. Our findings support the hypothesis that birds are flexible in their use of memory information, using a combination of the most reliable or salient information to retrieve their caches. © Springer-Verlag 2010
Local intensity area descriptor for facial recognition in ideal and noise conditions
NASA Astrophysics Data System (ADS)
Tran, Chi-Kien; Tseng, Chin-Dar; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Lee, Tsair-Fwu
2017-03-01
We propose a local texture descriptor, local intensity area descriptor (LIAD), which is applied for human facial recognition in ideal and noisy conditions. Each facial image is divided into small regions from which LIAD histograms are extracted and concatenated into a single feature vector to represent the facial image. The recognition is performed using a nearest neighbor classifier with histogram intersection and chi-square statistics as dissimilarity measures. Experiments were conducted with LIAD using the ORL database of faces (Olivetti Research Laboratory, Cambridge), the Face94 face database, the Georgia Tech face database, and the FERET database. The results demonstrated the improvement in accuracy of our proposed descriptor compared to conventional descriptors [local binary pattern (LBP), uniform LBP, local ternary pattern, histogram of oriented gradients, and local directional pattern]. Moreover, the proposed descriptor was less sensitive to noise and had low histogram dimensionality. Thus, it is expected to be a powerful texture descriptor that can be used for various computer vision problems.
Localization of incipient tip vortex cavitation using ray based matched field inversion method
NASA Astrophysics Data System (ADS)
Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon
2015-10-01
Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.
PET guidance for liver radiofrequency ablation: an evaluation
NASA Astrophysics Data System (ADS)
Lei, Peng; Dandekar, Omkar; Mahmoud, Faaiza; Widlus, David; Malloy, Patrick; Shekhar, Raj
2007-03-01
Radiofrequency ablation (RFA) is emerging as the primary mode of treatment of unresectable malignant liver tumors. With current intraoperative imaging modalities, quick, precise, and complete localization of lesions remains a challenge for liver RFA. Fusion of intraoperative CT and preoperative PET images, which relies on PET and CT registration, can produce a new image with complementary metabolic and anatomic data and thus greatly improve the targeting accuracy. Unlike neurological images, alignment of abdominal images by combined PET/CT scanner is prone to errors as a result of large nonrigid misalignment in abdominal images. Our use of a normalized mutual information-based 3D nonrigid registration technique has proven powerful for whole-body PET and CT registration. We demonstrate here that this technique is capable of acceptable abdominal PET and CT registration as well. In five clinical cases, both qualitative and quantitative validation showed that the registration is robust and accurate. Quantitative accuracy was evaluated by comparison between the result from the algorithm and clinical experts. The accuracy of registration is much less than the allowable margin in liver RFA. Study findings show the technique's potential to enable the augmentation of intraoperative CT with preoperative PET to reduce procedure time, avoid repeating procedures, provide clinicians with complementary functional/anatomic maps, avoid omitting dispersed small lesions, and improve the accuracy of tumor targeting in liver RFA.
Enhanced Methods for Local Ancestry Assignment in Sequenced Admixed Individuals
Brown, Robert; Pasaniuc, Bogdan
2014-01-01
Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed, most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs. PMID:24743331
Oetting, Janna B
2018-04-05
Although the 5 studies presented within this clinical forum include children who differ widely in locality, language learning profile, and age, all were motivated by a desire to improve the accuracy at which developmental language disorder is identified within linguistically diverse schools. The purpose of this prologue is to introduce the readers to a conceptual framework that unites the studies while also highlighting the approaches and methods each research team is pursuing to improve assessment outcomes within their respective linguistically diverse community. A disorder within diversity framework is presented to replace previous difference vs. disorder approaches. Then, the 5 studies within the forum are reviewed by clinical question, type of tool(s), and analytical approach. Across studies of different linguistically diverse groups, research teams are seeking answers to similar questions about child language screening and diagnostic practices, using similar analytical approaches to answer their questions, and finding promising results with tools focused on morphosyntax. More studies that are modeled after or designed to extend those in this forum are needed to improve the accuracy at which developmental language disorder is identified.
A new generation of effective core potentials for correlated calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani
Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less
Genetic algorithm-based improved DOA estimation using fourth-order cumulants
NASA Astrophysics Data System (ADS)
Ahmed, Ammar; Tufail, Muhammad
2017-05-01
Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.
A new generation of effective core potentials for correlated calculations
Bennett, Michael Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; ...
2017-12-12
Here, we outline ideas on desired properties for a new generation of effective core potentials (ECPs) that will allow valence-only calculations to reach the full potential offered by recent advances in many-body wave function methods. The key improvements include consistent use of correlated methods throughout ECP constructions and improved transferability as required for an accurate description of molecular systems over a range of geometries. The guiding principle is the isospectrality of all-electron and ECP Hamiltonians for a subset of valence states. We illustrate these concepts on a few first- and second-row atoms (B, C, N, O, S), and we obtainmore » higher accuracy in transferability than previous constructions while using semi-local ECPs with a small number of parameters. In addition, the constructed ECPs enable many-body calculations of valence properties with higher (or same) accuracy than their all-electron counterparts with uncorrelated cores. This implies that the ECPs include also some of the impacts of core-core and core-valence correlations on valence properties. The results open further prospects for ECP improvements and refinements.« less
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D
2013-07-01
To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.
Zhang, Shengwei; Arfanakis, Konstantinos
2012-01-01
Purpose To investigate the effect of standardized and study-specific human brain diffusion tensor templates on the accuracy of spatial normalization, without ignoring the important roles of data quality and registration algorithm effectiveness. Materials and Methods Two groups of diffusion tensor imaging (DTI) datasets, with and without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2, ICBM81) as well as study-specific templates, using three registration approaches. The accuracy of inter-subject spatial normalization was compared across templates, using the most effective registration technique for each template and group of data. Results It was demonstrated that, for DTI data with visible artifacts, the study-specific template resulted in significantly higher spatial normalization accuracy than standardized templates. However, for data without visible artifacts, the study-specific template and the standardized template of higher quality (IIT2) resulted in similar normalization accuracy. Conclusion For DTI data with visible artifacts, a carefully constructed study-specific template may achieve higher normalization accuracy than that of standardized templates. However, as DTI data quality improves, a high-quality standardized template may be more advantageous than a study-specific template, since in addition to high normalization accuracy, it provides a standard reference across studies, as well as automated localization/segmentation when accompanied by anatomical labels. PMID:23034880
Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman
2018-04-11
Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.
Ji, Eun Sook; Park, Kyu-Hyun
2012-12-01
This study was conducted to evaluate methane (CH4) and nitrous oxide (N2O) emissions from livestock agriculture in 16 local administrative districts of Korea from 1990 to 2030. National Inventory Report used 3 yr averaged livestock population but this study used 1 yr livestock population to find yearly emission fluctuations. Extrapolation of the livestock population from 1990 to 2009 was used to forecast future livestock population from 2010 to 2030. Past (yr 1990 to 2009) and forecasted (yr 2010 to 2030) averaged enteric CH4 emissions and CH4 and N2O emissions from manure treatment were estimated. In the section of enteric fermentation, forecasted average CH4 emissions from 16 local administrative districts were estimated to increase by 4%-114% compared to that of the past except for Daejeon (-63%), Seoul (-36%) and Gyeonggi (-7%). As for manure treatment, forecasted average CH4 emissions from the 16 local administrative districts were estimated to increase by 3%-124% compared to past average except for Daejeon (-77%), Busan (-60%), Gwangju (-48%) and Seoul (-8%). For manure treatment, forecasted average N2O emissions from the 16 local administrative districts were estimated to increase by 10%-153% compared to past average CH4 emissions except for Daejeon (-60%), Seoul (-4.0%), and Gwangju (-0.2%). With the carbon dioxide equivalent emissions (CO2-Eq), forecasted average CO2-Eq from the 16 local administrative districts were estimated to increase by 31%-120% compared to past average CH4 emissions except Daejeon (-65%), Seoul (-24%), Busan (-18%), Gwangju (-8%) and Gyeonggi (-1%). The decreased CO2-Eq from 5 local administrative districts was only 34 kt, which was insignificantly small compared to increase of 2,809 kt from other 11 local administrative districts. Annual growth rates of enteric CH4 emissions, CH4 and N2O emissions from manure management in Korea from 1990 to 2009 were 1.7%, 2.6%, and 3.2%, respectively. The annual growth rate of total CO2-Eq was 2.2%. Efforts by the local administrative offices to improve the accuracy of activity data are essential to improve GHG inventories. Direct measurements of GHG emissions from enteric fermentation and manure treatment systems will further enhance the accuracy of the GHG data. (Key Words: Greenhouse Gas, Methane, Nitrous Oxide, Carbon Dioxide Equivalent Emission, Climate Change).
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Wang, Chujun; Chen, Yong
2018-01-01
Large-capacity encoding fiber Bragg grating (FBG) sensor network is widely used in modern long-term health monitoring system. Encoding FBG sensors have greatly improved the capacity of distributed FBG sensor network. However, the error of addressing increases correspondingly with the enlarging of capacity. To address the issue, an improved algorithm called genetic tracking algorithm (GTA) is proposed in the paper. In the GTA, for improving the success rate of matching and reducing the large number of redundant matching operations generated by sequential matching, the individuals are designed based on the feasible matching. Then, two kinds of self-crossover ways and a dynamic variation during mutation process are designed to increase the diversity of individuals and to avoid falling into local optimum. Meanwhile, an assistant decision is proposed to handle the issue that the GTA cannot solve when the variation of sensor information is highly overlapped. The simulation results indicate that the proposed GTA has higher accuracy compared with the traditional tracking algorithm and the enhanced tracking algorithm. In order to address the problems of spectrum fragmentation and low sharing degree of spectrum resources in survivable.
A Reverse Localization Scheme for Underwater Acoustic Sensor Networks
Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad
2012-01-01
Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time. PMID:22666034
A reverse localization scheme for underwater acoustic sensor networks.
Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad
2012-01-01
Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time.
Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.
Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237
Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics
Pervez, Md Shahriar; Brown, Jesslyn F.
2010-01-01
Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.
[The underwater and airborne horizontal localization of sound by the northern fur seal].
Babushina, E S; Poliakov, M A
2004-01-01
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.
Ding, A Adam; Wu, Hulin
2014-10-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.
Ding, A. Adam; Wu, Hulin
2015-01-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093
Synthetic aperture imaging in ultrasound calibration
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.
2014-03-01
Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Cole, Brandi; Twibill, Kristen; Lam, Patrick; Hackett, Lisa
2016-01-01
Background This cross-sectional analytic diagnostic accuracy study was designed to compare the accuracy of ultrasound performed by general sonographers in local radiology practices with ultrasound performed by an experienced musculoskeletal sonographer for the detection of rotator cuff tears. Methods In total, 238 patients undergoing arthroscopy who had previously had an ultrasound performed by both a general sonographer and a specialist musculoskeletal sonographer made up the study cohort. Accuracy of diagnosis was compared with the findings at arthroscopy. Results When analyzed as all tears versus no tears, musculoskeletal sonography had an accuracy of 97%, a sensitivity of 97% and a specificity of 95%, whereas general sonography had an accuracy of 91%, a sensitivity of 91% and a specificity of 86%. When the partial tears were split with those ≥ 50% thickness in the tear group and those < 50% thickness in the no-tear group, musculoskeletal sonography had an accuracy of 97%, a sensitivity of 97% and a specificity of 100% and general sonography had an accuracy of 85%, a sensitivity of 84% and a specificity of 87%. Conclusions Ultrasound in the hands of an experienced musculoskeletal sonographer is highly accurate for the diagnosis of rotator cuff tears. General sonography has improved subsequent to earlier studies but remains inferior to an ultrasound performed by a musculoskeletal sonographer. PMID:27660657
A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.
Yang, Wenlun; Fu, Minyue
2017-11-01
Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Gyroaveraging operations using adaptive matrix operators
NASA Astrophysics Data System (ADS)
Dominski, Julien; Ku, Seung-Hoe; Chang, Choong-Seock
2018-05-01
A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidal equilibrium has been studied. A successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.
The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.
Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson
2008-09-01
To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.
Dictionary-based image reconstruction for superresolution in integrated circuit imaging.
Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim
2015-06-01
Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Nonpalpable breast tumors: diagnosis with stereotaxic localization and fine-needle aspiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowlatshahi, K.; Gent, H.J.; Schmidt, R.
1989-02-01
Modern mammography is the most effective means of detecting nonpalpable breast cancers, but correct diagnosis for malignancy is made in only 20%-30% of the cases. The conventional method of lesion localization usually results in approximate placement of the hookwire in the breast. The authors report the results of stereotaxic localization, combined with fine-needle aspiration and cytologic study, performed in 528 cases. Clinically occult breast lesions were localized precisely (within 2 mm 96% of the time), sampled by means of a 23-gauge needle, and marked with either methylene blue or a hookwire for subsequent open excisional biopsy. The results indicate amore » sensitivity of 95%, specificity of 91%, and accuracy of 92% for the fine-needle aspiration procedure. This technique offers a significantly improved preoperative method of diagnosing small breast lesions with minimal pain, no complications, reduced cost, and no disfigurement or scar interfering with subsequent mammographic follow-up.« less
Uneri, Ali; Nithiananthan, Sajendra; Schafer, Sebastian; Otake, Yoshito; Stayman, J. Webster; Kleinszig, Gerhard; Sussman, Marc S.; Prince, Jerry L.; Siewerdsen, Jeffrey H.
2013-01-01
Purpose: Surgical resection is the preferred modality for curative treatment of early stage lung cancer, but localization of small tumors (<10 mm diameter) during surgery presents a major challenge that is likely to increase as more early-stage disease is detected incidentally and in low-dose CT screening. To overcome the difficulty of manual localization (fingers inserted through intercostal ports) and the cost, logistics, and morbidity of preoperative tagging (coil or dye placement under CT-fluoroscopy), the authors propose the use of intraoperative cone-beam CT (CBCT) and deformable image registration to guide targeting of small tumors in video-assisted thoracic surgery (VATS). A novel algorithm is reported for registration of the lung from its inflated state (prior to pleural breach) to the deflated state (during resection) to localize surgical targets and adjacent critical anatomy. Methods: The registration approach geometrically resolves images of the inflated and deflated lung using a coarse model-driven stage followed by a finer image-driven stage. The model-driven stage uses image features derived from the lung surfaces and airways: triangular surface meshes are morphed to capture bulk motion; concurrently, the airways generate graph structures from which corresponding nodes are identified. Interpolation of the sparse motion fields computed from the bounding surface and interior airways provides a 3D motion field that coarsely registers the lung and initializes the subsequent image-driven stage. The image-driven stage employs an intensity-corrected, symmetric form of the Demons method. The algorithm was validated over 12 datasets, obtained from porcine specimen experiments emulating CBCT-guided VATS. Geometric accuracy was quantified in terms of target registration error (TRE) in anatomical targets throughout the lung, and normalized cross-correlation. Variations of the algorithm were investigated to study the behavior of the model- and image-driven stages by modifying individual algorithmic steps and examining the effect in comparison to the nominal process. Results: The combined model- and image-driven registration process demonstrated accuracy consistent with the requirements of minimally invasive VATS in both target localization (∼3–5 mm within the target wedge) and critical structure avoidance (∼1–2 mm). The model-driven stage initialized the registration to within a median TRE of 1.9 mm (95% confidence interval (CI) maximum = 5.0 mm), while the subsequent image-driven stage yielded higher accuracy localization with 0.6 mm median TRE (95% CI maximum = 4.1 mm). The variations assessing the individual algorithmic steps elucidated the role of each step and in some cases identified opportunities for further simplification and improvement in computational speed. Conclusions: The initial studies show the proposed registration method to successfully register CBCT images of the inflated and deflated lung. Accuracy appears sufficient to localize the target and adjacent critical anatomy within ∼1–2 mm and guide localization under conditions in which the target cannot be discerned directly in CBCT (e.g., subtle, nonsolid tumors). The ability to directly localize tumors in the operating room could provide a valuable addition to the VATS arsenal, obviate the cost, logistics, and morbidity of preoperative tagging, and improve patient safety. Future work includes in vivo testing, optimization of workflow, and integration with a CBCT image guidance system. PMID:23298134
Uneri, Ali; Nithiananthan, Sajendra; Schafer, Sebastian; Otake, Yoshito; Stayman, J Webster; Kleinszig, Gerhard; Sussman, Marc S; Prince, Jerry L; Siewerdsen, Jeffrey H
2013-01-01
Surgical resection is the preferred modality for curative treatment of early stage lung cancer, but localization of small tumors (<10 mm diameter) during surgery presents a major challenge that is likely to increase as more early-stage disease is detected incidentally and in low-dose CT screening. To overcome the difficulty of manual localization (fingers inserted through intercostal ports) and the cost, logistics, and morbidity of preoperative tagging (coil or dye placement under CT-fluoroscopy), the authors propose the use of intraoperative cone-beam CT (CBCT) and deformable image registration to guide targeting of small tumors in video-assisted thoracic surgery (VATS). A novel algorithm is reported for registration of the lung from its inflated state (prior to pleural breach) to the deflated state (during resection) to localize surgical targets and adjacent critical anatomy. The registration approach geometrically resolves images of the inflated and deflated lung using a coarse model-driven stage followed by a finer image-driven stage. The model-driven stage uses image features derived from the lung surfaces and airways: triangular surface meshes are morphed to capture bulk motion; concurrently, the airways generate graph structures from which corresponding nodes are identified. Interpolation of the sparse motion fields computed from the bounding surface and interior airways provides a 3D motion field that coarsely registers the lung and initializes the subsequent image-driven stage. The image-driven stage employs an intensity-corrected, symmetric form of the Demons method. The algorithm was validated over 12 datasets, obtained from porcine specimen experiments emulating CBCT-guided VATS. Geometric accuracy was quantified in terms of target registration error (TRE) in anatomical targets throughout the lung, and normalized cross-correlation. Variations of the algorithm were investigated to study the behavior of the model- and image-driven stages by modifying individual algorithmic steps and examining the effect in comparison to the nominal process. The combined model- and image-driven registration process demonstrated accuracy consistent with the requirements of minimally invasive VATS in both target localization (∼3-5 mm within the target wedge) and critical structure avoidance (∼1-2 mm). The model-driven stage initialized the registration to within a median TRE of 1.9 mm (95% confidence interval (CI) maximum = 5.0 mm), while the subsequent image-driven stage yielded higher accuracy localization with 0.6 mm median TRE (95% CI maximum = 4.1 mm). The variations assessing the individual algorithmic steps elucidated the role of each step and in some cases identified opportunities for further simplification and improvement in computational speed. The initial studies show the proposed registration method to successfully register CBCT images of the inflated and deflated lung. Accuracy appears sufficient to localize the target and adjacent critical anatomy within ∼1-2 mm and guide localization under conditions in which the target cannot be discerned directly in CBCT (e.g., subtle, nonsolid tumors). The ability to directly localize tumors in the operating room could provide a valuable addition to the VATS arsenal, obviate the cost, logistics, and morbidity of preoperative tagging, and improve patient safety. Future work includes in vivo testing, optimization of workflow, and integration with a CBCT image guidance system.
Zhang, Yu; Zhu, Xiaofei; Liu, Ri; Wang, Xianglian; Sun, Gaofeng; Song, Jiaqi; Lu, Jianping; Zhang, Huojun
2018-04-01
To identify whether the combination of pre-treatment radiological and clinical factors can predict the overall survival (OS) in patients with locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiation and sequential S-1 (a prodrug of 5-FU combined with two modulators) therapy with improved accuracy compared with that of established clinical and radiologic risk models. Patients admitted with LAPC underwent diffusion weighted imaging (DWI) scan at 3.0-T (b = 600 s/mm 2 ). The mean signal intensity (SI b = 600) of region-of-interest (ROI) was measured. The Log-rank test was done for tumor location, biliary stent, S-1, and other treatments and the Cox regression analysis was done to identify independent prognostic factors for OS. Prediction error curves (PEC) were used to assess potential errors in prediction of survival. The accuracy of prediction was evaluated by Integrated Brier Score (IBS) and C index. 41 patients were included in this study. The median OS was 11.7 months (2.8-23.23 months). The 1-year OS was 46%. Multivariate analysis showed that pre-treatment SI b = 600 value and administration of S-1 were independent predictors for OS. The performance of pre-treatment SI b = 600 and S-1 treatment in combination was better than that of SI b = 600 or S-1 treatment alone. The combination of pre-treatment SI b = 600 and S-1 treatment could predict the OS in patients with LAPC undergoing SBRT and sequential S-1 therapy with improved accuracy compared with that of established clinical and radiologic risk models. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Local staging and assessment of colon cancer with 1.5-T magnetic resonance imaging
Blake, Helena; Jeyadevan, Nelesh; Abulafi, Muti; Swift, Ian; Toomey, Paul; Brown, Gina
2016-01-01
Objective: The aim of this study was to assess the accuracy of 1.5-T MRI in the pre-operative local T and N staging of colon cancer and identification of extramural vascular invasion (EMVI). Methods: Between 2010 and 2012, 60 patients with adenocarcinoma of the colon were prospectively recruited at 2 centres. 55 patients were included for final analysis. Patients received pre-operative 1.5-T MRI with high-resolution T2 weighted, gadolinium-enhanced T1 weighted and diffusion-weighted images. These were blindly assessed by two expert radiologists. Accuracy of the T-stage, N-stage and EMVI assessment was evaluated using post-operative histology as the gold standard. Results: Results are reported for two readers. Identification of T3 disease demonstrated an accuracy of 71% and 51%, sensitivity of 74% and 42% and specificity of 74% and 83%. Identification of N1 disease demonstrated an accuracy of 57% for both readers, sensitivity of 26% and 35% and specificity of 81% and 74%. Identification of EMVI demonstrated an accuracy of 74% and 69%, sensitivity 63% and 26% and specificity 80% and 91%. Conclusion: 1.5-T MRI achieved a moderate accuracy in the local evaluation of colon cancer, but cannot be recommended to replace CT on the basis of this study. Advances in knowledge: This study confirms that MRI is a viable alternative to CT for the local assessment of colon cancer, but this study does not reproduce the very high accuracy reported in the only other study to assess the accuracy of MRI in colon cancer staging. PMID:27226219
Li, Shuying; Wang, Yunyan; Hu, Likuan; Liang, Yingchun; Cai, Jing
2014-11-01
The large errors of routine localization for eyeball tumors restricted X-ray radiosurgery application, just for the eyeball to turn around. To localize the accuracy site, the micro-vacuo-certo-contacting ophthalmophanto (MVCCOP) method was used. Also, the outcome of patients with tumors in the eyeball was evaluated. In this study, computed tomography (CT) localization accuracy was measured by repeating CT scan using MVCCOP to fix the eyeball in radiosurgery. This study evaluated the outcome of the tumors and the survival of the patients by follow-up. The results indicated that the accuracy of CT localization of Brown-Roberts-Wells (BRW) head ring was 0.65 mm and maximum error was 1.09 mm. The accuracy of target localization of tumors in the eyeball using MVCCOP was 0.87 mm averagely, and the maximum error was 1.19 mm. The errors of fixation of the eyeball were 0.84 mm averagely and 1.17 mm maximally. The total accuracy was 1.34 mm, and 95% confidence accuracy was 2.09 mm. The clinical application of this method in 14 tumor patients showed satisfactory results, and all of the tumors showed the clear rims. The site of ten retinoblastomas was decreased significantly. The local control interval of tumors were 6 ∼ 24 months, median of 10.5 months. The survival of ten patients was 7 ∼ 30 months, median of 16.5 months. Also, the tumors were kept stable or shrank in the other four patients with angioma and melanoma. In conclusion, the MVCCOP is suitable and dependable for X-ray radiosurgery for eyeball tumors. The tumor control and survival of patients are satisfactory, and this method can effectively postpone or avoid extirpation of eyeball.
Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity
Lee, Hui Sun; Im, Wonpil
2013-01-01
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yupeng; Gorkin, David U.; Dickel, Diane E.
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Li, Shaohong L; Truhlar, Donald G
2015-07-14
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaohong L.; Truhlar, Donald G.
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...
2017-02-13
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Li, Shaohong L.; Truhlar, Donald G.
2015-05-22
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less
Localization of an Underwater Control Network Based on Quasi-Stable Adjustment.
Zhao, Jianhu; Chen, Xinhua; Zhang, Hongmei; Feng, Jie
2018-03-23
There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results' accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method.
Localization of an Underwater Control Network Based on Quasi-Stable Adjustment
Chen, Xinhua; Zhang, Hongmei; Feng, Jie
2018-01-01
There exists a common problem in the localization of underwater control networks that the precision of the absolute coordinates of known points obtained by marine absolute measurement is poor, and it seriously affects the precision of the whole network in traditional constraint adjustment. Therefore, considering that the precision of underwater baselines is good, we use it to carry out quasi-stable adjustment to amend known points before constraint adjustment so that the points fit the network shape better. In addition, we add unconstrained adjustment for quality control of underwater baselines, the observations of quasi-stable adjustment and constrained adjustment, to eliminate the unqualified baselines and improve the results’ accuracy of the two adjustments. Finally, the modified method is applied to a practical LBL (Long Baseline) experiment and obtains a mean point location precision of 0.08 m, which improves by 38% compared with the traditional method. PMID:29570627
Border-oriented post-processing refinement on detected vehicle bounding box for ADAS
NASA Astrophysics Data System (ADS)
Chen, Xinyuan; Zhang, Zhaoning; Li, Minne; Li, Dongsheng
2018-04-01
We investigate a new approach for improving localization accuracy of detected vehicles for object detection in advanced driver assistance systems(ADAS). Specifically, we implement a bounding box refinement as a post-processing of the state-of-the-art object detectors (Faster R-CNN, YOLOv2, etc.). The bounding box refinement is achieved by individually adjusting each border of the detected bounding box to its target location using a regression method. We use HOG features which perform well on the edge detection of vehicles to train the regressor and the regressor is independent of the CNN-based object detectors. Experiment results on the KITTI 2012 benchmark show that we can achieve up to 6% improvements over YOLOv2 and Faster R-CNN object detectors on the IoU threshold of 0.8. Also, the proposed refinement framework is computationally light, allowing for processing one bounding box within a few milliseconds on CPU. Further, this refinement method can be added to any object detectors, especially those with high speed but less accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, D.A.
Beginning in 1989, the citizens and commissioners of Alachua County, Florida began to develop a siting plan for a new solid waste disposal facility (SWDF). Through a cooperative effort with a private consulting firm, several evaluative criteria were selected and then translated into parameters for a geographical information system (GIS). Despite efforts to avoid vulnerable hydrogeology, the preferred site selected was in close proximity to the well field supplying Gainesville, Florida, home to approximately 75 percent of the county's population. The results brought forth a wave of protests from local residents claiming that leachate from the proposed SWDF would contaminatemore » their drinking water. In this study, DRASTIC'' was applied in order to improve the accuracy and defensibility of the aquifer protection-based GIS parameters. DRASTIC'', a method for evaluating ground water contamination potential, is an acronym which stands for Depth to Water, Net Recharge, Aquifer Media, Soil Media, Topography, Impact of Vadose Zone Media, and Conductivity (Hydraulic)''.« less
Zheng, Hai-ming; Li, Guang-jie; Wu, Hao
2015-06-01
Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie
2014-04-15
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less
NASA Astrophysics Data System (ADS)
Wagner, Ryan; Killgore, Jason P.; Tung, Ryan C.; Raman, Arvind; Hurley, Donna C.
2015-01-01
Contact resonance atomic force microscopy (CR-AFM) methods currently utilize the eigenvalues, or resonant frequencies, of an AFM cantilever in contact with a surface to quantify local mechanical properties. However, the cantilever eigenmodes, or vibrational shapes, also depend strongly on tip-sample contact stiffness. In this paper, we evaluate the potential of eigenmode measurements for improved accuracy and sensitivity of CR-AFM. We apply a recently developed, in situ laser scanning method to experimentally measure changes in cantilever eigenmodes as a function of tip-sample stiffness. Regions of maximum sensitivity for eigenvalues and eigenmodes are compared and found to occur at different values of contact stiffness. The results allow the development of practical guidelines for CR-AFM experiments, such as optimum laser spot positioning for different experimental conditions. These experiments provide insight into the complex system dynamics that can affect CR-AFM and lay a foundation for enhanced nanomechanical measurements with CR-AFM.
Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin
2014-01-01
Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.
NASA Astrophysics Data System (ADS)
Okamoto, Kyosuke; Tsuno, Seiji
2015-10-01
In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves can improve, which will in turn improve the accuracy of the EEW system.
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.
Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J
2014-02-01
In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.
Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning
Bhawiyuga, Adhitya
2018-01-01
Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning. PMID:29617341
Estimation of Local Orientations in Fibrous Structures With Applications to the Purkinje System
Plank, Gernot; Trayanova, Natalia A.; Vidal, René
2011-01-01
The extraction of the cardiac Purkinje system (PS) from intensity images is a critical step toward the development of realistic structural models of the heart. Such models are important for uncovering the mechanisms of cardiac disease and improving its treatment and prevention. Unfortunately, the manual extraction of the PS is a challenging and error-prone task due to the presence of image noise and numerous fiber junctions. To deal with these challenges, we propose a framework that estimates local fiber orientations with high accuracy and reconstructs the fibers via tracking. Our key contribution is the development of a descriptor for estimating the orientation distribution function (ODF), a spherical function encoding the local geometry of the fibers at a point of interest. The fiber/branch orientations are identified as the modes of the ODFs via spherical clustering and guide the extraction of the fiber centerlines. Experiments on synthetic data evaluate the sensitivity of our approach to image noise, width of the fiber, and choice of the mode detection strategy, and show its superior performance compared to those of the existing descriptors. Experiments on the free-running PS in an MR image also demonstrate the accuracy of our method in reconstructing such sparse fibrous structures. PMID:21335301
NASA Astrophysics Data System (ADS)
Ahmed, H. M.; Al-azawi, R. J.; Abdulhameed, A. A.
2018-05-01
Huge efforts have been put in the developing of diagnostic methods to skin cancer disease. In this paper, two different approaches have been addressed for detection the skin cancer in dermoscopy images. The first approach uses a global method that uses global features for classifying skin lesions, whereas the second approach uses a local method that uses local features for classifying skin lesions. The aim of this paper is selecting the best approach for skin lesion classification. The dataset has been used in this paper consist of 200 dermoscopy images from Pedro Hispano Hospital (PH2). The achieved results are; sensitivity about 96%, specificity about 100%, precision about 100%, and accuracy about 97% for globalization approach while, sensitivity about 100%, specificity about 100%, precision about 100%, and accuracy about 100% for Localization Approach, these results showed that the localization approach achieved acceptable accuracy and better than globalization approach for skin cancer lesions classification.
A fingerprint classification algorithm based on combination of local and global information
NASA Astrophysics Data System (ADS)
Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu
2011-12-01
Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.
Tahmasbi, Amir; Ward, E. Sally; Ober, Raimund J.
2015-01-01
Fluorescence microscopy is a photon-limited imaging modality that allows the study of subcellular objects and processes with high specificity. The best possible accuracy (standard deviation) with which an object of interest can be localized when imaged using a fluorescence microscope is typically calculated using the Cramér-Rao lower bound, that is, the inverse of the Fisher information. However, the current approach for the calculation of the best possible localization accuracy relies on an analytical expression for the image of the object. This can pose practical challenges since it is often difficult to find appropriate analytical models for the images of general objects. In this study, we instead develop an approach that directly uses an experimentally collected image set to calculate the best possible localization accuracy for a general subcellular object. In this approach, we fit splines, i.e. smoothly connected piecewise polynomials, to the experimentally collected image set to provide a continuous model of the object, which can then be used for the calculation of the best possible localization accuracy. Due to its practical importance, we investigate in detail the application of the proposed approach in single molecule fluorescence microscopy. In this case, the object of interest is a point source and, therefore, the acquired image set pertains to an experimental point spread function. PMID:25837101
Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn
2015-01-01
Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
A coherent fiber link for very long baseline interferometry.
Clivati, Cecilia; Costanzo, Giovanni A; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Zucco, Massimo; Ambrosini, Roberto; Bortolotti, Claudio; Perini, Federico; Roma, Mauro; Calonico, Davide
2015-11-01
We realize a coherent fiber link for application in very long baseline interferometry (VLBI) for radio astronomy and geodesy. A 550-km optical fiber connects the Italian National Metrological Institute (INRIM) to a radio telescope in Italy and is used for the primary Cs fountain clock stability and accuracy dissemination. We use an ultrastable laser frequency- referenced to the primary standard as a transfer oscillator; at the radio telescope, an RF signal is generated from the laser by using an optical frequency comb. This scheme now provides the traceability of the local maser to the SI second, realized by the Cs fountain at the 1.7 × 10(-16) accuracy. The fiber link never limits the experiment and is robust enough to sustain radio astronomical campaigns. This experiment opens the possibility of replacing the local hydrogen masers at the VLBI sites with optically-synthesized RF signals. This could improve VLBI resolution by providing more accurate and stable frequency references and, in perspective, by enabling common- clock VLBI based on a network of telescopes connected by fiber links.
Ahmed, Najeeb; Niyaz, Kashif; Borakati, Aditya; Marafi, Fahad; Birk, Rubinder; Usmani, Sharjeel
2018-02-26
Differentiated thyroid cancer (DTC) has a good prognosis overall; however, lifelong follow-up is required for many cases. Radioiodine planar imaging with iodine-123 (I-123) or radioiodine-131 (I-131) remains the standard in the follow-up after initial surgery and ablation of residual thyroid tissue using I-131 therapy. Radioiodine imaging is also used in risk-stratifying and for staging of thyroid cancer, and in long-term follow-up. Unfortunately, the lack of anatomical detail on planar gamma camera imaging and superimposition of areas presenting with increased radioiodine uptake can make accurate diagnosis and localization of radioiodine-avid metastatic disease challenging, leading to false positive results and potentially to over-treatment of patients. Hybrid SPECT/CT allows precise anatomical localization and superior characterization of foci of increased tracer uptake when compared to planar imaging. This, in turn, allows the differentiation of pathological and physiological uptake, increasing the accuracy of image interpretation and ultimately improving the accuracy of DTC staging and subsequent patient management. In this review, we look at the unique and emerging role that SPECT/CT plays in the management of DTC, illustrated by examples from our own clinical practice. Creative Commons Attribution License
SPH with dynamical smoothing length adjustment based on the local flow kinematics
NASA Astrophysics Data System (ADS)
Olejnik, Michał; Szewc, Kamil; Pozorski, Jacek
2017-11-01
Due to the Lagrangian nature of Smoothed Particle Hydrodynamics (SPH), the adaptive resolution remains a challenging task. In this work, we first analyse the influence of the simulation parameters and the smoothing length on solution accuracy, in particular in high strain regions. Based on this analysis we develop a novel approach to dynamically adjust the kernel range for each SPH particle separately, accounting for the local flow kinematics. We use the Okubo-Weiss parameter that distinguishes the strain and vorticity dominated regions in the flow domain. The proposed development is relatively simple and implies only a moderate computational overhead. We validate the modified SPH algorithm for a selection of two-dimensional test cases: the Taylor-Green flow, the vortex spin-down, the lid-driven cavity and the dam-break flow against a sharp-edged obstacle. The simulation results show good agreement with the reference data and improvement of the long-term accuracy for unsteady flows. For the lid-driven cavity case, the proposed dynamical adjustment remedies the problem of tensile instability (particle clustering).
Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter
2014-09-01
computational power, communications bandwidth, and payload space . Therefore, techniques used to improve positional accuracy must account for these...Chapter 3, an implementation of CL using an EKF in a two-dimensional (2-D) space of motion is presented, and further modified to allow for CL in UAVs...known, two points are possible of which one will be far out in space and can be eliminated. Thus, the point on the surface has been determined. Over the
Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J
2012-01-01
Amyloid-β plaques are an Alzheimer’s disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer’s disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1–1000, amyloid burden from 0–10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source–detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source–detector pairs). PMID:19794239
Guild, Georgia E.; Stangoulis, James C. R.
2016-01-01
Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644
NASA Astrophysics Data System (ADS)
Han, Song; Zhang, Wei; Zhang, Jie
2017-09-01
A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.
Qin, Chao; Sun, Yongqi; Dong, Yadong
2017-01-01
Essential proteins are the proteins that are indispensable to the survival and development of an organism. Deleting a single essential protein will cause lethality or infertility. Identifying and analysing essential proteins are key to understanding the molecular mechanisms of living cells. There are two types of methods for predicting essential proteins: experimental methods, which require considerable time and resources, and computational methods, which overcome the shortcomings of experimental methods. However, the prediction accuracy of computational methods for essential proteins requires further improvement. In this paper, we propose a new computational strategy named CoTB for identifying essential proteins based on a combination of topological properties, subcellular localization information and orthologous protein information. First, we introduce several topological properties of the protein-protein interaction (PPI) network. Second, we propose new methods for measuring orthologous information and subcellular localization and a new computational strategy that uses a random forest prediction model to obtain a probability score for the proteins being essential. Finally, we conduct experiments on four different Saccharomyces cerevisiae datasets. The experimental results demonstrate that our strategy for identifying essential proteins outperforms traditional computational methods and the most recently developed method, SON. In particular, our strategy improves the prediction accuracy to 89, 78, 79, and 85 percent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100 level, respectively.
Guettier, Jean-Marc; Kam, Anthony; Chang, Richard; Skarulis, Monica C; Cochran, Craig; Alexander, H Richard; Libutti, Steven K; Pingpank, James F; Gorden, Phillip
2009-04-01
Selective intraarterial calcium injection of the major pancreatic arteries with hepatic venous sampling [calcium arterial stimulation (CaStim)] has been used as a localizing tool for insulinomas at the National Institutes of Health (NIH) since 1989. The accuracy of this technique for localizing insulinomas was reported for all cases until 1996. The aim of the study was to assess the accuracy and track record of the CaStim over time and in the context of evolving technology and to review issues related to result interpretation and procedure complications. CaStim was the only invasive preoperative localization modality used at our center. Endoscopic ultrasound (US) was not studied. We conducted a retrospective case review at a referral center. Twenty-nine women and 16 men (mean age, 47 yr; range, 13-78) were diagnosed with an insulinoma from 1996-2008. A supervised fast was conducted to confirm the diagnosis of insulinoma. US, computed tomography (CT), magnetic resonance imaging (MRI), and CaStim were used as preoperative localization studies. Localization predicted by each preoperative test was compared to surgical localization for accuracy. We measured the accuracy of US, CT, MRI, and CaStim for localization of insulinomas preoperatively. All 45 patients had surgically proven insulinomas. Thirty-eight of 45 (84%) localized to the correct anatomical region by CaStim. In five of 45 (11%) patients, the CaStim was falsely negative. Two of 45 (4%) had false-positive localizations. The CaStim has remained vastly superior to abdominal US, CT, or MRI over time as a preoperative localizing tool for insulinomas. The utility of the CaStim for this purpose and in this setting is thus validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.
2016-05-15
Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2more » mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.« less
Nonconforming mortar element methods: Application to spectral discretizations
NASA Technical Reports Server (NTRS)
Maday, Yvon; Mavriplis, Cathy; Patera, Anthony
1988-01-01
Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.
CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern
NASA Astrophysics Data System (ADS)
Gong, Qian; Qu, Zhiyi; Hao, Kun
2017-07-01
Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.
Localization of diffusion sources in complex networks with sparse observations
NASA Astrophysics Data System (ADS)
Hu, Zhao-Long; Shen, Zhesi; Tang, Chang-Bing; Xie, Bin-Bin; Lu, Jian-Feng
2018-04-01
Locating sources in a large network is of paramount importance to reduce the spreading of disruptive behavior. Based on the backward diffusion-based method and integer programming, we propose an efficient approach to locate sources in complex networks with limited observers. The results on model networks and empirical networks demonstrate that, for a certain fraction of observers, the accuracy of our method for source localization will improve as the increase of network size. Besides, compared with the previous method (the maximum-minimum method), the performance of our method is much better with a small fraction of observers, especially in heterogeneous networks. Furthermore, our method is more robust against noise environments and strategies of choosing observers.
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-08-13
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well.
Yang, Wanan; Li, Yan; Qin, Fengqing
2015-01-01
To actively maneuver a robotic capsule for interactive diagnosis in the gastrointestinal tract, visualizing accurate position and orientation of the capsule when it moves in the gastrointestinal tract is essential. A possible method that encloses the circuits, batteries, imaging device, etc into the capsule looped by an axially magnetized permanent-magnet ring is proposed. Based on expression of the axially magnetized permanent-magnet ring's magnetic fields, a localization and orientation model was established. An improved hybrid strategy that combines the advantages of particle-swarm optimization, clone algorithm, and the Levenberg-Marquardt algorithm was found to solve the model. Experiments showed that the hybrid strategy has good accuracy, convergence, and real time performance.
Spatial localization deficits and auditory cortical dysfunction in schizophrenia
Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.
2014-01-01
Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608
Localization accuracy of sphere fiducials in computed tomography images
NASA Astrophysics Data System (ADS)
Kobler, Jan-Philipp; Díaz Díaz, Jesus; Fitzpatrick, J. Michael; Lexow, G. Jakob; Majdani, Omid; Ortmaier, Tobias
2014-03-01
In recent years, bone-attached robots and microstereotactic frames have attracted increasing interest due to the promising targeting accuracy they provide. Such devices attach to a patient's skull via bone anchors, which are used as landmarks during intervention planning as well. However, as simulation results reveal, the performance of such mechanisms is limited by errors occurring during the localization of their bone anchors in preoperatively acquired computed tomography images. Therefore, it is desirable to identify the most suitable fiducials as well as the most accurate method for fiducial localization. We present experimental results of a study focusing on the fiducial localization error (FLE) of spheres. Two phantoms equipped with fiducials made from ferromagnetic steel and titanium, respectively, are used to compare two clinically available imaging modalities (multi-slice CT (MSCT) and cone-beam CT (CBCT)), three localization algorithms as well as two methods for approximating the FLE. Furthermore, the impact of cubic interpolation applied to the images is investigated. Results reveal that, generally, the achievable localization accuracy in CBCT image data is significantly higher compared to MSCT imaging. The lowest FLEs (approx. 40 μm) are obtained using spheres made from titanium, CBCT imaging, template matching based on cross correlation for localization, and interpolating the images by a factor of sixteen. Nevertheless, the achievable localization accuracy of spheres made from steel is only slightly inferior. The outcomes of the presented study will be valuable considering the optimization of future microstereotactic frame prototypes as well as the operative workflow.
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Optimization-based scatter estimation using primary modulation for computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Ma, Jingchen; Zhao, Jun, E-mail: junzhao
Purpose: Scatter reduces the image quality in computed tomography (CT), but scatter correction remains a challenge. A previously proposed primary modulation method simultaneously obtains the primary and scatter in a single scan. However, separating the scatter and primary in primary modulation is challenging because it is an underdetermined problem. In this study, an optimization-based scatter estimation (OSE) algorithm is proposed to estimate and correct scatter. Methods: In the concept of primary modulation, the primary is modulated, but the scatter remains smooth by inserting a modulator between the x-ray source and the object. In the proposed algorithm, an objective function ismore » designed for separating the scatter and primary. Prior knowledge is incorporated in the optimization-based framework to improve the accuracy of the estimation: (1) the primary is always positive; (2) the primary is locally smooth and the scatter is smooth; (3) the location of penumbra can be determined; and (4) the scatter-contaminated data provide knowledge about which part is smooth. Results: The simulation study shows that the edge-preserving weighting in OSE improves the estimation accuracy near the object boundary. Simulation study also demonstrates that OSE outperforms the two existing primary modulation algorithms for most regions of interest in terms of the CT number accuracy and noise. The proposed method was tested on a clinical cone beam CT, demonstrating that OSE corrects the scatter even when the modulator is not accurately registered. Conclusions: The proposed OSE algorithm improves the robustness and accuracy in scatter estimation and correction. This method is promising for scatter correction of various kinds of x-ray imaging modalities, such as x-ray radiography, cone beam CT, and the fourth-generation CT.« less
Cryo-balloon catheter localization in fluoroscopic images
NASA Astrophysics Data System (ADS)
Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert
2013-03-01
Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.
Luo, Junhai; Fu, Liang
2017-06-09
With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe
2015-07-01
Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-08-14
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.
Classification of event location using matched filters via on-floor accelerometers
NASA Astrophysics Data System (ADS)
Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.
2017-04-01
Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.
Acoustic localization at large scales: a promising method for grey wolf monitoring.
Papin, Morgane; Pichenot, Julian; Guérold, François; Germain, Estelle
2018-01-01
The grey wolf ( Canis lupus ) is naturally recolonizing its former habitats in Europe where it was extirpated during the previous two centuries. The management of this protected species is often controversial and its monitoring is a challenge for conservation purposes. However, this elusive carnivore can disperse over long distances in various natural contexts, making its monitoring difficult. Moreover, methods used for collecting signs of presence are usually time-consuming and/or costly. Currently, new acoustic recording tools are contributing to the development of passive acoustic methods as alternative approaches for detecting, monitoring, or identifying species that produce sounds in nature, such as the grey wolf. In the present study, we conducted field experiments to investigate the possibility of using a low-density microphone array to localize wolves at a large scale in two contrasting natural environments in north-eastern France. For scientific and social reasons, the experiments were based on a synthetic sound with similar acoustic properties to howls. This sound was broadcast at several sites. Then, localization estimates and the accuracy were calculated. Finally, linear mixed-effects models were used to identify the factors that influenced the localization accuracy. Among 354 nocturnal broadcasts in total, 269 were recorded by at least one autonomous recorder, thereby demonstrating the potential of this tool. Besides, 59 broadcasts were recorded by at least four microphones and used for acoustic localization. The broadcast sites were localized with an overall mean accuracy of 315 ± 617 (standard deviation) m. After setting a threshold for the temporal error value associated with the estimated coordinates, some unreliable values were excluded and the mean accuracy decreased to 167 ± 308 m. The number of broadcasts recorded was higher in the lowland environment, but the localization accuracy was similar in both environments, although it varied significantly among different nights in each study area. Our results confirm the potential of using acoustic methods to localize wolves with high accuracy, in different natural environments and at large spatial scales. Passive acoustic methods are suitable for monitoring the dynamics of grey wolf recolonization and so, will contribute to enhance conservation and management plans.
Reaching nearby sources: comparison between real and virtual sound and visual targets
Parseihian, Gaëtan; Jouffrais, Christophe; Katz, Brian F. G.
2014-01-01
Sound localization studies over the past century have predominantly been concerned with directional accuracy for far-field sources. Few studies have examined the condition of near-field sources and distance perception. The current study concerns localization and pointing accuracy by examining source positions in the peripersonal space, specifically those associated with a typical tabletop surface. Accuracy is studied with respect to the reporting hand (dominant or secondary) for auditory sources. Results show no effect on the reporting hand with azimuthal errors increasing equally for the most extreme source positions. Distance errors show a consistent compression toward the center of the reporting area. A second evaluation is carried out comparing auditory and visual stimuli to examine any bias in reporting protocol or biomechanical difficulties. No common bias error was observed between auditory and visual stimuli indicating that reporting errors were not due to biomechanical limitations in the pointing task. A final evaluation compares real auditory sources and anechoic condition virtual sources created using binaural rendering. Results showed increased azimuthal errors, with virtual source positions being consistently overestimated to more lateral positions, while no significant distance perception was observed, indicating a deficiency in the binaural rendering condition relative to the real stimuli situation. Various potential reasons for this discrepancy are discussed with several proposals for improving distance perception in peripersonal virtual environments. PMID:25228855
Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data
NASA Technical Reports Server (NTRS)
Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan
2013-01-01
High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.
Local Subspace Classifier with Transform-Invariance for Image Classification
NASA Astrophysics Data System (ADS)
Hotta, Seiji
A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-01-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a through review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
Kwon, Young-Hoo; Casebolt, Jeffrey B
2006-07-01
One of the most serious obstacles to accurate quantification of the underwater motion of a swimmer's body is image deformation caused by refraction. Refraction occurs at the water-air interface plane (glass) owing to the density difference. Camera calibration-reconstruction algorithms commonly used in aquatic research do not have the capability to correct this refraction-induced nonlinear image deformation and produce large reconstruction errors. The aim of this paper is to provide a thorough review of: the nature of the refraction-induced image deformation and its behaviour in underwater object-space plane reconstruction; the intrinsic shortcomings of the Direct Linear Transformation (DLT) method in underwater motion analysis; experimental conditions that interact with refraction; and alternative algorithms and strategies that can be used to improve the calibration-reconstruction accuracy. Although it is impossible to remove the refraction error completely in conventional camera calibration-reconstruction methods, it is possible to improve the accuracy to some extent by manipulating experimental conditions or calibration frame characteristics. Alternative algorithms, such as the localized DLT and the double-plane method are also available for error reduction. The ultimate solution for the refraction problem is to develop underwater camera calibration and reconstruction algorithms that have the capability to correct refraction.
NASA Astrophysics Data System (ADS)
Hou, Huirang; Zheng, Dandan; Nie, Laixiao
2015-04-01
For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.
NASA Astrophysics Data System (ADS)
Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans
The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation values<0.5. Although top-down disaggregation of traffic emissions generally exhibits low accuracy, the accuracy is significantly higher in compact cities and might be further improved by applying a correction factor for the city center. Therefore, the method can be used by local environmental authorities in cities with limited resources and with little knowledge on the pollution situation to get an overview on the spatial distribution of the emissions generated by traffic activities.
Gyroaveraging operations using adaptive matrix operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock
A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less
Semantic image segmentation with fused CNN features
NASA Astrophysics Data System (ADS)
Geng, Hui-qiang; Zhang, Hua; Xue, Yan-bing; Zhou, Mian; Xu, Guang-ping; Gao, Zan
2017-09-01
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network (CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field (CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.
Gyroaveraging operations using adaptive matrix operators
Dominski, Julien; Ku, Seung -Hoe; Chang, Choong -Seock
2018-05-17
A new adaptive scheme to be used in particle-in-cell codes for carrying out gyroaveraging operations with matrices is presented. This new scheme uses an intermediate velocity grid whose resolution is adapted to the local thermal Larmor radius. The charge density is computed by projecting marker weights in a field-line following manner while preserving the adiabatic magnetic moment μ. These choices permit to improve the accuracy of the gyroaveraging operations performed with matrices even when strong spatial variation of temperature and magnetic field is present. Accuracy of the scheme in different geometries from simple 2D slab geometry to realistic 3D toroidalmore » equilibrium has been studied. As a result, a successful implementation in the gyrokinetic code XGC is presented in the delta-f limit.« less
NASA Astrophysics Data System (ADS)
Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.
2018-02-01
While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.
Procedures for adjusting regional regression models of urban-runoff quality using local data
Hoos, A.B.; Sisolak, J.K.
1993-01-01
Statistical operations termed model-adjustment procedures (MAP?s) can be used to incorporate local data into existing regression models to improve the prediction of urban-runoff quality. Each MAP is a form of regression analysis in which the local data base is used as a calibration data set. Regression coefficients are determined from the local data base, and the resulting `adjusted? regression models can then be used to predict storm-runoff quality at unmonitored sites. The response variable in the regression analyses is the observed load or mean concentration of a constituent in storm runoff for a single storm. The set of explanatory variables used in the regression analyses is different for each MAP, but always includes the predicted value of load or mean concentration from a regional regression model. The four MAP?s examined in this study were: single-factor regression against the regional model prediction, P, (termed MAP-lF-P), regression against P,, (termed MAP-R-P), regression against P, and additional local variables (termed MAP-R-P+nV), and a weighted combination of P, and a local-regression prediction (termed MAP-W). The procedures were tested by means of split-sample analysis, using data from three cities included in the Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification data set differed among the three test data bases and among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue concentration models) and, in many cases, was not clearly indicated by the values of standard error of estimate for the calibration data set. A scheme to guide MAP selection, based on exploratory data analysis of the calibration data set, is presented and tested. The MAP?s were tested for sensitivity to the size of a calibration data set. As expected, predictive accuracy of all MAP?s for the verification data set decreased as the calibration data-set size decreased, but predictive accuracy was not as sensitive for the MAP?s as it was for the local regression models.
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
[Spectral scatter correction of coal samples based on quasi-linear local weighted method].
Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng
2014-07-01
The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.
Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.
2013-01-01
Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413
An improved feature extraction algorithm based on KAZE for multi-spectral image
NASA Astrophysics Data System (ADS)
Yang, Jianping; Li, Jun
2018-02-01
Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.
Relation of sound intensity and accuracy of localization.
Farrimond, T
1989-08-01
Tests were carried out on 17 subjects to determine the accuracy of monaural sound localization when the head is not free to turn toward the sound source. Maximum accuracy of localization for a constant-volume sound source coincided with the position for maximum perceived intensity of the sound in the front quadrant. There was a tendency for sounds to be perceived more often as coming from a position directly toward the ear. That is, for sounds in the front quadrant, errors of localization tended to be predominantly clockwise (i.e., biased toward a line directly facing the ear). Errors for sounds occurring in the rear quadrant tended to be anticlockwise. The pinna's differential effect on sound intensity between front and rear quadrants would assist in identifying the direction of movement of objects, for example an insect, passing the ear.
Local blur analysis and phase error correction method for fringe projection profilometry systems.
Rao, Li; Da, Feipeng
2018-05-20
We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.
Locally adaptive decision in detection of clustered microcalcifications in mammograms.
Sainz de Cea, María V; Nishikawa, Robert M; Yang, Yongyi
2018-02-15
In computer-aided detection or diagnosis of clustered microcalcifications (MCs) in mammograms, the performance often suffers from not only the presence of false positives (FPs) among the detected individual MCs but also large variability in detection accuracy among different cases. To address this issue, we investigate a locally adaptive decision scheme in MC detection by exploiting the noise characteristics in a lesion area. Instead of developing a new MC detector, we propose a decision scheme on how to best decide whether a detected object is an MC or not in the detector output. We formulate the individual MCs as statistical outliers compared to the many noisy detections in a lesion area so as to account for the local image characteristics. To identify the MCs, we first consider a parametric method for outlier detection, the Mahalanobis distance detector, which is based on a multi-dimensional Gaussian distribution on the noisy detections. We also consider a non-parametric method which is based on a stochastic neighbor graph model of the detected objects. We demonstrated the proposed decision approach with two existing MC detectors on a set of 188 full-field digital mammograms (95 cases). The results, evaluated using free response operating characteristic (FROC) analysis, showed a significant improvement in detection accuracy by the proposed outlier decision approach over traditional thresholding (the partial area under the FROC curve increased from 3.95 to 4.25, p-value <10 -4 ). There was also a reduction in case-to-case variability in detected FPs at a given sensitivity level. The proposed adaptive decision approach could not only reduce the number of FPs in detected MCs but also improve case-to-case consistency in detection.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-09-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.
Locally adaptive decision in detection of clustered microcalcifications in mammograms
NASA Astrophysics Data System (ADS)
Sainz de Cea, María V.; Nishikawa, Robert M.; Yang, Yongyi
2018-02-01
In computer-aided detection or diagnosis of clustered microcalcifications (MCs) in mammograms, the performance often suffers from not only the presence of false positives (FPs) among the detected individual MCs but also large variability in detection accuracy among different cases. To address this issue, we investigate a locally adaptive decision scheme in MC detection by exploiting the noise characteristics in a lesion area. Instead of developing a new MC detector, we propose a decision scheme on how to best decide whether a detected object is an MC or not in the detector output. We formulate the individual MCs as statistical outliers compared to the many noisy detections in a lesion area so as to account for the local image characteristics. To identify the MCs, we first consider a parametric method for outlier detection, the Mahalanobis distance detector, which is based on a multi-dimensional Gaussian distribution on the noisy detections. We also consider a non-parametric method which is based on a stochastic neighbor graph model of the detected objects. We demonstrated the proposed decision approach with two existing MC detectors on a set of 188 full-field digital mammograms (95 cases). The results, evaluated using free response operating characteristic (FROC) analysis, showed a significant improvement in detection accuracy by the proposed outlier decision approach over traditional thresholding (the partial area under the FROC curve increased from 3.95 to 4.25, p-value <10-4). There was also a reduction in case-to-case variability in detected FPs at a given sensitivity level. The proposed adaptive decision approach could not only reduce the number of FPs in detected MCs but also improve case-to-case consistency in detection.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-01-01
Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037
Improved iris localization by using wide and narrow field of view cameras for iris recognition
NASA Astrophysics Data System (ADS)
Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung
2013-10-01
Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.
Gallo, David A; Cramer, Stefanie J; Wong, Jessica T; Bennett, David A
2012-07-01
Alzheimer's disease (AD) can impair metacognition in addition to more basic cognitive functions like memory. However, while global metacognitive inaccuracies are well documented (i.e., low deficit awareness, or anosognosia), the evidence is mixed regarding the effects of AD on local or task-based metacognitive judgments. Here we investigated local metacognition with respect to the confidence-accuracy relationship in episodic memory (i.e., metamemory). AD and control participants studied pictures of common objects and their verbal labels, and then took forced-choice picture recollection tests using the verbal labels as retrieval cues. We found that item-based confidence judgments discriminated between accurate and inaccurate recollection responses in both groups, implicating relatively spared metamemory in AD. By contrast, there was evidence for global metacognitive deficiencies, as AD participants underestimated the severity of their everyday problems compared to an informant's assessment. Within the AD group, individual differences in global metacognition were related to recollection accuracy, and global metacognition for everyday memory problems was related to task-based metacognitive accuracy. These findings suggest that AD can spare the confidence-accuracy relationship in recollection tasks, and that global and local metacognition measures tap overlapping neuropsychological processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
De Luca, Barbara M.; Hinshaw, Steven A.; Ziswiler, Korrin
2013-01-01
The purpose for this research was to determine the accuracy of the perceptions of school administrators and community leaders regarding education finance information. School administrators and community leaders in this research project included members of three groups: public school administrators, other public school leaders, and leaders in the…
Zhou, Hang; Yang, Yang; Shen, Hong-Bin
2017-03-15
Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Moore, Sarah J; Herst, Patries M; Louwe, Robert J W
2018-05-01
A remarkable improvement in patient positioning was observed after the implementation of various process changes aiming to increase the consistency of patient positioning throughout the radiotherapy treatment chain. However, no tool was available to describe these changes over time in a standardised way. This study reports on the feasibility of Statistical Process Control (SPC) to highlight changes in patient positioning accuracy and facilitate correlation of these changes with the underlying process changes. Metrics were designed to quantify the systematic and random patient deformation as input for the SPC charts. These metrics were based on data obtained from multiple local ROI matches for 191 patients who were treated for head-and-neck cancer during the period 2011-2016. SPC highlighted a significant improvement in patient positioning that coincided with multiple intentional process changes. The observed improvements could be described as a combination of a reduction in outliers and a systematic improvement in the patient positioning accuracy of all patients. SPC is able to track changes in the reproducibility of patient positioning in head-and-neck radiation oncology, and distinguish between systematic and random process changes. Identification of process changes underlying these trends requires additional statistical analysis and seems only possible when the changes do not overlap in time. Copyright © 2018 Elsevier B.V. All rights reserved.
Relocation of Wyoming mine production blasts using calibration explosions
Finn, Carol A.; Kraft, Gordon D.; Sibol, Matthew S.; Jones, Ronald L.; Pulaski, Mark E.
2001-01-01
Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Association of Seismology and the Physics of the Earth’s Interior (IASPEI) travel-time tables, coupled with JHDderived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.
Imaging of the meninges and the extra-axial spaces.
Kirmi, Olga; Sheerin, Fintan; Patel, Neel
2009-12-01
The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qishi; Berry, M. L..; Grieme, M.
We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model.
Guo, Chunsheng; Shen, Jia; Sun, Yao; Ying, Na
2015-09-03
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Multiscale Methods for Nuclear Reactor Analysis
NASA Astrophysics Data System (ADS)
Collins, Benjamin S.
The ability to accurately predict local pin powers in nuclear reactors is necessary to understand the mechanisms that cause fuel pin failure during steady state and transient operation. In the research presented here, methods are developed to improve the local solution using high order methods with boundary conditions from a low order global solution. Several different core configurations were tested to determine the improvement in the local pin powers compared to the standard techniques, that use diffusion theory and pin power reconstruction (PPR). Two different multiscale methods were developed and analyzed; the post-refinement multiscale method and the embedded multiscale method. The post-refinement multiscale methods use the global solution to determine boundary conditions for the local solution. The local solution is solved using either a fixed boundary source or an albedo boundary condition; this solution is "post-refinement" and thus has no impact on the global solution. The embedded multiscale method allows the local solver to change the global solution to provide an improved global and local solution. The post-refinement multiscale method is assessed using three core designs. When the local solution has more energy groups, the fixed source method has some difficulties near the interface: however the albedo method works well for all cases. In order to remedy the issue with boundary condition errors for the fixed source method, a buffer region is used to act as a filter, which decreases the sensitivity of the solution to the boundary condition. Both the albedo and fixed source methods benefit from the use of a buffer region. Unlike the post-refinement method, the embedded multiscale method alters the global solution. The ability to change the global solution allows for refinement in areas where the errors in the few group nodal diffusion are typically large. The embedded method is shown to improve the global solution when it is applied to a MOX/LEU assembly interface, the fuel/reflector interface, and assemblies where control rods are inserted. The embedded method also allows for multiple solution levels to be applied in a single calculation. The addition of intermediate levels to the solution improves the accuracy of the method. Both multiscale methods considered here have benefits and drawbacks, but both can provide improvements over the current PPR methodology.
Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures
NASA Astrophysics Data System (ADS)
Reuss, Matthias; Fördős, Ferenc; Blom, Hans; Öktem, Ozan; Högberg, Björn; Brismar, Hjalmar
2017-02-01
A common method to assess the performance of (super resolution) microscopes is to use the localization precision of emitters as an estimate for the achieved resolution. Naturally, this is widely used in super resolution methods based on single molecule stochastic switching. This concept suffers from the fact that it is hard to calibrate measures against a real sample (a phantom), because true absolute positions of emitters are almost always unknown. For this reason, resolution estimates are potentially biased in an image since one is blind to true position accuracy, i.e. deviation in position measurement from true positions. We have solved this issue by imaging nanorods fabricated with DNA-origami. The nanorods used are designed to have emitters attached at each end in a well-defined and highly conserved distance. These structures are widely used to gauge localization precision. Here, we additionally determined the true achievable localization accuracy and compared this figure of merit to localization precision values for two common super resolution microscope methods STED and STORM.
Accuracy of colonoscopy in localizing colonic cancer.
Stanciu, C; Trifan, Anca; Khder, Saad Alla
2007-01-01
It is important to establish the precise localization of colonic cancer preoperatively; while colonoscopy is regarded as the diagnostic gold standard for colorectal cancer, its ability to localize the tumor is less reliable. To define the accuracy of colonoscopy in identifying the location of colonic cancer. All of the patients who had a colorectal cancer diagnosed by colonoscopy at the Institute of Gastroenterology and Hepatology, Iaşi and subsequently received a surgical intervention at three teaching hospitals in Iaşi, between January 2001 and December 2005, were included in this study. Endoscopic records and operative notes were carefully reviewed, and tumor localization was recorded. There were 161 patients (89 men, 72 women, aged 61.3 +/- 12.8 years) who underwent conventional surgery for colon cancer detected by colonoscopy during the study period. Twenty-two patients (13.66%) had erroneous colonoscopic localization of the tumors. The overall accuracy of preoperative colonoscopic localization was 87.58%. Colonoscopy is an accurate, reliable method for locating colon cancer, although additional techniques (i.e., endoscopic tattooing) should be performed at least for small lesions.
Good Practices for Learning to Recognize Actions Using FV and VLAD.
Wu, Jianxin; Zhang, Yu; Lin, Weiyao
2016-12-01
High dimensional representations such as Fisher vectors (FV) and vectors of locally aggregated descriptors (VLAD) have shown state-of-the-art accuracy for action recognition in videos. The high dimensionality, on the other hand, also causes computational difficulties when scaling up to large-scale video data. This paper makes three lines of contributions to learning to recognize actions using high dimensional representations. First, we reviewed several existing techniques that improve upon FV or VLAD in image classification, and performed extensive empirical evaluations to assess their applicability for action recognition. Our analyses of these empirical results show that normality and bimodality are essential to achieve high accuracy. Second, we proposed a new pooling strategy for VLAD and three simple, efficient, and effective transformations for both FV and VLAD. Both proposed methods have shown higher accuracy than the original FV/VLAD method in extensive evaluations. Third, we proposed and evaluated new feature selection and compression methods for the FV and VLAD representations. This strategy uses only 4% of the storage of the original representation, but achieves comparable or even higher accuracy. Based on these contributions, we recommend a set of good practices for action recognition in videos for practitioners in this field.
Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH
NASA Astrophysics Data System (ADS)
Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.
2018-01-01
Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.
A New Era in Geodesy and Cartography: Implications for Landing Site Operations
NASA Technical Reports Server (NTRS)
Duxbury, T. C.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.
Solving ODE Initial Value Problems With Implicit Taylor Series Methods
NASA Technical Reports Server (NTRS)
Scott, James R.
2000-01-01
In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
Exploiting domain information for Word Sense Disambiguation of medical documents.
Stevenson, Mark; Agirre, Eneko; Soroa, Aitor
2012-01-01
Current techniques for knowledge-based Word Sense Disambiguation (WSD) of ambiguous biomedical terms rely on relations in the Unified Medical Language System Metathesaurus but do not take into account the domain of the target documents. The authors' goal is to improve these methods by using information about the topic of the document in which the ambiguous term appears. The authors proposed and implemented several methods to extract lists of key terms associated with Medical Subject Heading terms. These key terms are used to represent the document topic in a knowledge-based WSD system. They are applied both alone and in combination with local context. A standard measure of accuracy was calculated over the set of target words in the widely used National Library of Medicine WSD dataset. The authors report a significant improvement when combining those key terms with local context, showing that domain information improves the results of a WSD system based on the Unified Medical Language System Metathesaurus alone. The best results were obtained using key terms obtained by relevance feedback and weighted by inverse document frequency.
Exploiting domain information for Word Sense Disambiguation of medical documents
Agirre, Eneko; Soroa, Aitor
2011-01-01
Objective Current techniques for knowledge-based Word Sense Disambiguation (WSD) of ambiguous biomedical terms rely on relations in the Unified Medical Language System Metathesaurus but do not take into account the domain of the target documents. The authors' goal is to improve these methods by using information about the topic of the document in which the ambiguous term appears. Design The authors proposed and implemented several methods to extract lists of key terms associated with Medical Subject Heading terms. These key terms are used to represent the document topic in a knowledge-based WSD system. They are applied both alone and in combination with local context. Measurements A standard measure of accuracy was calculated over the set of target words in the widely used National Library of Medicine WSD dataset. Results and discussion The authors report a significant improvement when combining those key terms with local context, showing that domain information improves the results of a WSD system based on the Unified Medical Language System Metathesaurus alone. The best results were obtained using key terms obtained by relevance feedback and weighted by inverse document frequency. PMID:21900701
Active surface model improvement by energy function optimization for 3D segmentation.
Azimifar, Zohreh; Mohaddesi, Mahsa
2015-04-01
This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sensitivity and accuracy of hybrid fluorescence-mediated tomography in deep tissue regions.
Rosenhain, Stefanie; Al Rawashdeh, Wa'el; Kiessling, Fabian; Gremse, Felix
2017-09-01
Fluorescence-mediated tomography (FMT) enables noninvasive assessment of the three-dimensional distribution of near-infrared fluorescence in mice. The combination with micro-computed tomography (µCT) provides anatomical data, enabling improved fluorescence reconstruction and image analysis. The aim of our study was to assess sensitivity and accuracy of µCT-FMT under realistic in vivo conditions in deeply-seated regions. Accordingly, we acquired fluorescence reflectance images (FRI) and µCT-FMT scans of mice which were prepared with rectal insertions with different amounts of fluorescent dye. Default and high-sensitivity scans were acquired and background signal was analyzed for three FMT channels (670 nm, 745 nm, and 790 nm). Analysis was performed for the original and an improved FMT reconstruction using the µCT data. While FRI and the original FMT reconstruction could detect 100 pmol, the improved FMT reconstruction could detect 10 pmol and significantly improved signal localization. By using a finer sampling grid and increasing the exposure time, the sensitivity could be further improved to detect 0.5 pmol. Background signal was highest in the 670 nm channel and most prominent in the gastro-intestinal tract and in organs with high relative amounts of blood. In conclusion, we show that µCT-FMT allows sensitive and accurate assessment of fluorescence in deep tissue regions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Developing Local Oral Reading Fluency Cut Scores for Predicting High-Stakes Test Performance
ERIC Educational Resources Information Center
Grapin, Sally L.; Kranzler, John H.; Waldron, Nancy; Joyce-Beaulieu, Diana; Algina, James
2017-01-01
This study evaluated the classification accuracy of a second grade oral reading fluency curriculum-based measure (R-CBM) in predicting third grade state test performance. It also compared the long-term classification accuracy of local and publisher-recommended R-CBM cut scores. Participants were 266 students who were divided into a calibration…
He, Bo; Liu, Yang; Dong, Diya; Shen, Yue; Yan, Tianhong; Nian, Rui
2015-01-01
In this paper, a novel iterative sparse extended information filter (ISEIF) was proposed to solve the simultaneous localization and mapping problem (SLAM), which is very crucial for autonomous vehicles. The proposed algorithm solves the measurement update equations with iterative methods adaptively to reduce linearization errors. With the scalability advantage being kept, the consistency and accuracy of SEIF is improved. Simulations and practical experiments were carried out with both a land car benchmark and an autonomous underwater vehicle. Comparisons between iterative SEIF (ISEIF), standard EKF and SEIF are presented. All of the results convincingly show that ISEIF yields more consistent and accurate estimates compared to SEIF and preserves the scalability advantage over EKF, as well. PMID:26287194
Govyadinov, Alexander A; Amenabar, Iban; Huth, Florian; Carney, P Scott; Hillenbrand, Rainer
2013-05-02
Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.
NASA Astrophysics Data System (ADS)
Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.
2015-03-01
Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.
Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas
2015-01-01
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742
NASA Astrophysics Data System (ADS)
Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu
2018-04-01
A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.
Shooter position estimation with muzzle blast and shockwave measurements from separate locations
NASA Astrophysics Data System (ADS)
Grasing, David
2016-05-01
There are two acoustical events associated with small arms fire: the muzzle blast (created by bullets being expelled from the barrel of the weapon), and the shockwave (created by bullets which exceed the speed of sound). Assuming the ballistics of a round are known, the times and directions of arrival of the acoustic events furnish sufficient information to determine the origin of the shot. Existing methods tacitly assume that it is a single sensor which makes measurements of the times and direction of arrival. If the sensor is located past the point where the bullet goes transonic or if the sensor is far off the axis of the shot line a single sensor localization become highly inaccurate due to the ill-conditioning of the localization problem. In this paper, a more general approach is taken which allows for localizations from measurements made at separate locations. There are considerable advantages to this approach, the most noteworthy of which is the improvement in localization accuracy due to the improvement in the conditioning of the problem. Additional benefits include: the potential to locate in cases where a single sensor has insufficient information, furnishing high quality initialization to data fusion algorithms, and the potential to identify the round from a set of possible rounds.
An improved local radial point interpolation method for transient heat conduction analysis
NASA Astrophysics Data System (ADS)
Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang
2013-06-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
NASA Astrophysics Data System (ADS)
Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret
2003-12-01
A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.
Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot
2013-01-01
Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.
High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions
NASA Astrophysics Data System (ADS)
Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake
2017-03-01
We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.
Improving Localization Accuracy: Successive Measurements Error Modeling
Abu Ali, Najah; Abu-Elkheir, Mervat
2015-01-01
Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345
A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.
Amiri, Shahram; Wilson, David R; Masri, Bassam A; Anglin, Carolyn
2014-07-01
C-arm fluoroscopy is frequently used in clinical applications as a low-cost and mobile real-time qualitative assessment tool. C-arms, however, are not widely accepted for applications involving quantitative assessments, mainly due to the lack of reliable and low-cost position tracking methods, as well as adequate calibration and registration techniques. The solution suggested in this work is a tracked C-arm (TC-arm) which employs a low-cost sensor tracking module that can be retrofitted to any conventional C-arm for tracking the individual joints of the device. Registration and offline calibration methods were developed that allow accurate tracking of the gantry and determination of the exact intrinsic and extrinsic parameters of the imaging system for any acquired fluoroscopic image. The performance of the system was evaluated in comparison to an Optotrak[Formula: see text] motion tracking system and by a series of experiments on accurately built ball-bearing phantoms. Accuracies of the system were determined for 2D-3D registration, three-dimensional landmark localization, and for generating panoramic stitched views in simulated intraoperative applications. The system was able to track the center point of the gantry with an accuracy of [Formula: see text] mm or better. Accuracies of 2D-3D registrations were [Formula: see text] mm and [Formula: see text]. Three-dimensional landmark localization had an accuracy of [Formula: see text] of the length (or [Formula: see text] mm) on average, depending on whether the landmarks were located along, above, or across the table. The overall accuracies of the two-dimensional measurements conducted on stitched panoramic images of the femur and lumbar spine were 2.5 [Formula: see text] 2.0 % [Formula: see text] and [Formula: see text], respectively. The TC-arm system has the potential to achieve sophisticated quantitative fluoroscopy assessment capabilities using an existing C-arm imaging system. This technology may be useful to improve the quality of orthopedic surgery and interventional radiology.
NASA Astrophysics Data System (ADS)
Muda, I.; Dharsuky, A.; Siregar, H. S.; Sadalia, I.
2017-03-01
This study examines the pattern of readiness dimensional accuracy of financial statements of local government in North Sumatra with a routine pattern of two (2) months after the fiscal year ends and patterns of at least 3 (three) months after the fiscal year ends. This type of research is explanatory survey with quantitative methods. The population and the sample used is of local government officials serving local government financial reports. Combined Analysis And Cross-Loadings Loadings are used with statistical tools WarpPLS. The results showed that there was a pattern that varies above dimensional accuracy of the financial statements of local government in North Sumatra.
Identifying aMCI with Functional Connectivity Network Characteristics based on Subtle AAL Atlas.
Zhuo, Zhizheng; Mo, Xiao; Ma, Xiangyu; Han, Ying; Li, Haiyun
2018-05-02
To investigate the subtle functional connectivity alterations of aMCI based on AAL atlas with 1024 regions (AAL_1024 atlas). Functional MRI images of 32 aMCI patients (Male/Female:15/17, Ages:66.8±8.36y) and 35 normal controls (Male/Female:13/22, Ages: 62.4±8.14y) were obtained in this study. Firstly, functional connectivity networks were constructed by Pearson's Correlation based on the subtle AAL_1024 atlas. Then, local and global network parameters were calculated from the thresholding functional connectivity matrices. Finally, multiple-comparison analysis was performed on these parameters to find the functional network alterations of aMCI. And furtherly, a couple of classifiers were adopted to identify the aMCI by using the network parameters. More subtle local brain functional alterations were detected by using AAL_1024 atlas. And the predominate nodes including hippocampus, inferior temporal gyrus, inferior parietal gyrus were identified which was not detected by AAL_90 atlas. The identification of aMCI from normal controls were significantly improved with the highest accuracy (98.51%), sensitivity (100%) and specificity (97.14%) compared to those (88.06%, 84.38% and 91.43% for the highest accuracy, sensitivity and specificity respectively) obtained by using AAL_90 atlas. More subtle functional connectivity alterations of aMCI could be found based on AAL_1024 atlas than those based on AAL_90 atlas. Besides, the identification of aMCI could also be improved. Copyright © 2018. Published by Elsevier B.V.
Li, Baopu; Meng, Max Q-H
2012-05-01
Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.
Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang
2018-02-20
We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-02-11
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.
Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong
2016-01-01
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172
Robust non-rigid registration algorithm based on local affine registration
NASA Astrophysics Data System (ADS)
Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng
2018-04-01
Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.
Kocur, Dušan; Švecová, Mária; Rovňáková, Jana
2013-01-01
In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968
Kocur, Dušan; Svecová, Mária; Rovňáková, Jana
2013-09-09
In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.
False star detection and isolation during star tracking based on improved chi-square tests.
Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua
2017-08-01
The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.
Efficient Unsteady Flow Visualization with High-Order Access Dependencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less
NASA Astrophysics Data System (ADS)
Gandolfi, S.; Poluzzi, L.; Tavasci, L.
2012-12-01
Precise Point Positioning (PPP) is one of the possible approaches for GNSS data processing. As known this technique is faster and more flexible compared to the others which are based on a differenced approach and constitute a reliable methods for accurate positioning of remote GNSS stations, even in some remote area such as Antarctica. Until few years ago one of the major limits of the method was the impossibility to resolve the ambiguity as integer but nowadays many methods are available to resolve this aspect. The first software package permitting a PPP solution was the GIPSY OASIS realized, developed and maintained by JPL (NASA). JPL produce also orbits and files ready to be used with GIPSY. Recently, using these products came possible to resolve ambiguities improving the stability of solutions. PPP permit to estimate position into the reference frame of the orbits (IGS) and when coordinate in others reference frames, such al ITRF, are needed is necessary to apply a transformation. Within his products JPL offer, for each day, a global 7 parameter transformation that permit to locate the survey into the ITRF RF. In some cases it's also possible to create a costumed process and obtain analogous parameters using local/regional reference network of stations which coordinates are available also in the desired reference frame. In this work some tests on accuracy has been carried out comparing different PPP solutions obtained using the same software packages (GIPSY) but considering the ambiguity resolution, the global and regional transformation parameters. In particular two test area have been considered, first one located in Antarctica and the second one in Italy. Aim of the work is the evaluation of the impact of ambiguity resolution and the use of local/regional transformation parameter in the final solutions. Tests shown how the ambiguity resolution improve the precision, especially in the EAST component with a scattering reduction about 8%. And the use of global transformation parameter permit to improve the accuracy of about 59%, 63% and 29% in the three components N E U, but other tests shown how is possible to improve the accuracy of 67% 71% and 53% using regional transformation parameters. Example of the impact of global vs regional parameters transformation in a GPS time series
Besharati Tabrizi, Leila; Mahvash, Mehran
2015-07-01
An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.
Scene-aware joint global and local homographic video coding
NASA Astrophysics Data System (ADS)
Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.
2016-09-01
Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.
Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen
2017-01-16
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.
Evaluation of the new respiratory gating system
Shi, Chengyu; Tang, Xiaoli; Chan, Maria
2018-01-01
Objective The newly released Respiratory Gating for Scanners (RGSC; Varian Medical Systems, Palo Alto, CA, USA) system has limited existing quality assurance (QA) protocols and pertinent publications. Herein, we report our experiences of the RGSC system acceptance and QA. Methods The RGSC system integration was tested with peripheral equipment, spatial reproducibility, and dynamic localization accuracy for regular and irregular breathing patterns, respectively. A QUASAR Respiratory Motion Phantom and a mathematical fitting method were used for data acquisition and analysis. Results The results showed that the RGSC system could accurately measure regular motion periods of 3–10 s. For irregular breathing patterns, differences from the existing Real-time Position Management (RPM; Varian Medical Systems, Palo Alto, CA) system were observed. For dynamic localization measurements, the RGSC system showed 76% agreement with the programmed test data within ±5% tolerance in terms of fitting period. As s comparison, the RPM system showed 66% agreement within ±5% tolerance, and 65% for the RGSC versus RPM measurements. Conclusions New functions and positioning accuracy improve the RGSC system’s ability to achieve higher dynamic treatment precision. A 4D phantom is helpful for the QA tests. Further investigation is required for the whole RGSC system performance QA. PMID:29722356
Chen, C L; Kaber, D B; Dempsey, P G
2000-06-01
A new and improved method to feedforward neural network (FNN) development for application to data classification problems, such as the prediction of levels of low-back disorder (LBD) risk associated with industrial jobs, is presented. Background on FNN development for data classification is provided along with discussions of previous research and neighborhood (local) solution search methods for hard combinatorial problems. An analytical study is presented which compared prediction accuracy of a FNN based on an error-back propagation (EBP) algorithm with the accuracy of a FNN developed by considering results of local solution search (simulated annealing) for classifying industrial jobs as posing low or high risk for LBDs. The comparison demonstrated superior performance of the FNN generated using the new method. The architecture of this FNN included fewer input (predictor) variables and hidden neurons than the FNN developed based on the EBP algorithm. Independent variable selection methods and the phenomenon of 'overfitting' in FNN (and statistical model) generation for data classification are discussed. The results are supportive of the use of the new approach to FNN development for applications to musculoskeletal disorders and risk forecasting in other domains.
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.
2017-01-01
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886
Quantifying Anthropogenic Dust Emissions
NASA Astrophysics Data System (ADS)
Webb, Nicholas P.; Pierre, Caroline
2018-02-01
Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.
NASA Astrophysics Data System (ADS)
Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.
2015-06-01
Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.
Tagaste, Barbara; Riboldi, Marco; Spadea, Maria F; Bellante, Simone; Baroni, Guido; Cambria, Raffaella; Garibaldi, Cristina; Ciocca, Mario; Catalano, Gianpiero; Alterio, Daniela; Orecchia, Roberto
2012-04-01
To compare infrared (IR) optical vs. stereoscopic X-ray technologies for patient setup in image-guided stereotactic radiotherapy. Retrospective data analysis of 233 fractions in 127 patients treated with hypofractionated stereotactic radiotherapy was performed. Patient setup at the linear accelerator was carried out by means of combined IR optical localization and stereoscopic X-ray image fusion in 6 degrees of freedom (6D). Data were analyzed to evaluate the geometric and dosimetric discrepancy between the two patient setup strategies. Differences between IR optical localization and 6D X-ray image fusion parameters were on average within the expected localization accuracy, as limited by CT image resolution (3 mm). A disagreement between the two systems below 1 mm in all directions was measured in patients treated for cranial tumors. In extracranial sites, larger discrepancies and higher variability were observed as a function of the initial patient alignment. The compensation of IR-detected rotational errors resulted in a significantly improved agreement with 6D X-ray image fusion. On the basis of the bony anatomy registrations, the measured differences were found not to be sensitive to patient breathing. The related dosimetric analysis showed that IR-based patient setup caused limited variations in three cases, with 7% maximum dose reduction in the clinical target volume and no dose increase in organs at risk. In conclusion, patient setup driven by IR external surrogates localization in 6D featured comparable accuracy with respect to procedures based on stereoscopic X-ray imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Accuracy evaluation of 3D lidar data from small UAV
NASA Astrophysics Data System (ADS)
Tulldahl, H. M.; Bissmarck, Fredrik; Larsson, Hâkan; Grönwall, Christina; Tolt, Gustav
2015-10-01
A UAV (Unmanned Aerial Vehicle) with an integrated lidar can be an efficient system for collection of high-resolution and accurate three-dimensional (3D) data. In this paper we evaluate the accuracy of a system consisting of a lidar sensor on a small UAV. High geometric accuracy in the produced point cloud is a fundamental qualification for detection and recognition of objects in a single-flight dataset as well as for change detection using two or several data collections over the same scene. Our work presented here has two purposes: first to relate the point cloud accuracy to data processing parameters and second, to examine the influence on accuracy from the UAV platform parameters. In our work, the accuracy is numerically quantified as local surface smoothness on planar surfaces, and as distance and relative height accuracy using data from a terrestrial laser scanner as reference. The UAV lidar system used is the Velodyne HDL-32E lidar on a multirotor UAV with a total weight of 7 kg. For processing of data into a geographically referenced point cloud, positioning and orientation of the lidar sensor is based on inertial navigation system (INS) data combined with lidar data. The combination of INS and lidar data is achieved in a dynamic calibration process that minimizes the navigation errors in six degrees of freedom, namely the errors of the absolute position (x, y, z) and the orientation (pitch, roll, yaw) measured by GPS/INS. Our results show that low-cost and light-weight MEMS based (microelectromechanical systems) INS equipment with a dynamic calibration process can obtain significantly improved accuracy compared to processing based solely on INS data.
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang
2012-05-01
Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.
Geometrical accuracy improvement in flexible roll forming lines
NASA Astrophysics Data System (ADS)
Larrañaga, J.; Berner, S.; Galdos, L.; Groche, P.
2011-01-01
The general interest to produce profiles with variable cross section in a cost-effective way has increased in the last few years. The flexible roll forming process allows producing profiles with variable cross section lengthwise in a continuous way. Until now, only a few flexible roll forming lines were developed and built up. Apart from the flange wrinkling along the transition zone of u-profiles with variable cross section, the process limits have not been investigated and solutions for shape deviations are unknown. During the PROFOM project a flexible roll forming machine has been developed with the objective of producing high technological components for automotive body structures. In order to investigate the limits of the process, different profile geometries and steel grades including high strength steels have been applied. During the first experimental tests, several errors have been identified, as a result of the complex stress states generated during the forming process. In order to improve the accuracy of the target profiles and to meet the tolerance demands of the automotive industry, a thermo-mechanical solution has been proposed. Additional mechanical devices, supporting flexible the roll forming process, have been implemented in the roll forming line together with local heating techniques. The combination of both methods shows a significant increase of the accuracy. In the present investigation, the experimental results of the validation process are presented.
Saad, David A.; Schwarz, Gregory E.; Robertson, Dale M.; Booth, Nathaniel
2011-01-01
Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases.
NASA Astrophysics Data System (ADS)
Liu, C. L.; Kirchengast, G.; Zhang, K. F.; Norman, R.; Li, Y.; Zhang, S. C.; Carter, B.; Fritzer, J.; Schwaerz, M.; Choy, S. L.; Wu, S. Q.; Tan, Z. X.
2013-09-01
Global Navigation Satellite System (GNSS) radio occultation (RO) is an innovative meteorological remote sensing technique for measuring atmospheric parameters such as refractivity, temperature, water vapour and pressure for the improvement of numerical weather prediction (NWP) and global climate monitoring (GCM). GNSS RO has many unique characteristics including global coverage, long-term stability of observations, as well as high accuracy and high vertical resolution of the derived atmospheric profiles. One of the main error sources in GNSS RO observations that significantly affect the accuracy of the derived atmospheric parameters in the stratosphere is the ionospheric error. In order to mitigate the effect of this error, the linear ionospheric correction approach for dual-frequency GNSS RO observations is commonly used. However, the residual ionospheric errors (RIEs) can be still significant, especially when large ionospheric disturbances occur and prevail such as during the periods of active space weather. In this study, the RIEs were investigated under different local time, propagation direction and solar activity conditions and their effects on RO bending angles are characterised using end-to-end simulations. A three-step simulation study was designed to investigate the characteristics of the RIEs through comparing the bending angles with and without the effects of the RIEs. This research forms an important step forward in improving the accuracy of the atmospheric profiles derived from the GNSS RO technique.
Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning
NASA Astrophysics Data System (ADS)
Fortunati, Valerio; Verhaart, René F.; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; van Walsum, Theo
2015-08-01
A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck. Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available. The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used. Using the proposed approach we improved the performance of the approach previously presented for H&N hyperthermia treatment planning, making the method suitable for clinical application.
Jung, Kyoung-Mi; Jang, Won-Hee; Lee, Yong-Kyoung; Yum, Young Na; Sohn, Soojung; Kim, Bae-Hwan; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min
2012-03-25
Non-radioisotopic local lymph node assay (LLNA) using 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FCM) is gaining attention since it is free from the regulatory issues in traditional LLNA (tLLNA) accompanying in vivo uses of radioisotope, (3)H-thymidine. However, there is also concern over compromised performance of non-radioisotopic LLNA, raising needs for additional endpoints to improve the accuracy. With the full 22 reference substances enlisted in OECD Test Guideline No. 429, we evaluated the performance of LLNA:BrdU-FCM along with the concomitant measurements of B/T cell ratio and ex vivo cytokine production from isolated lymph node cells (LNCs) to examine the utility of these markers as secondary endpoints. Mice (Balb/c, female) were topically treated with substances on both ears for 3 days and then, BrdU was intraperitoneally injected on day 5. After a day, lymph nodes were isolated and undergone FCM to determine BrdU incorporation and B/T cell sub-typing with B220+ and CD3e+. Ex vivo cytokine production by LNCs was measured such as IL-2, IL-4, IL-6, IL-12, IFN-γ, MCP-1, GM-CSF and TNFα. Mice treated with sensitizers showed preferential increases in B cell population and the selective production of IL-2, which matched well with the increases in BrdU incorporation. When compared with guinea pig or human data, BrdU incorporation, B cell increase and IL-2 production ex vivo could successfully identify sensitizers with the accuracy comparable to tLLNA, suggesting that these markers may be useful for improving the accuracy of LLNA:BrdU-FCM or as stand-alone non-radioisotopic endpoints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Zhao, S; Chen, Y
2014-06-01
Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less
Perceptual experience and posttest improvements in perceptual accuracy and consistency.
Wagman, Jeffrey B; McBride, Dawn M; Trefzger, Amanda J
2008-08-01
Two experiments investigated the relationship between perceptual experience (during practice) and posttest improvements in perceptual accuracy and consistency. Experiment 1 investigated the potential relationship between how often knowledge of results (KR) is provided during a practice session and posttest improvements in perceptual accuracy. Experiment 2 investigated the potential relationship between how often practice (PR) is provided during a practice session and posttest improvements in perceptual consistency. The results of both experiments are consistent with previous findings that perceptual accuracy improves only when practice includes KR and that perceptual consistency improves regardless of whether practice includes KR. In addition, the results showed that although there is a relationship between how often KR is provided during a practice session and posttest improvements in perceptual accuracy, there is no relationship between how often PR is provided during a practice session and posttest improvements in consistency.
Skaggs, Beth; Pinto, Isabel; Masamha, Jessina; Turgeon, David; Gudo, Eduardo Samo
2016-04-15
Mozambique's ministry of health (MOH) recognized the need to establish a national laboratory quality assurance (NLQA) program to improve the reliability and accuracy of laboratory testing. The Becton Dickinson-US President's Emergency Plan for AIDS Relief Public-Private Partnership (PPP) was used to garner MOH commitment and train a cadre of local auditors and managers to support sustainability and country ownership of a NLQA program. From January 2011 to April 2012, the World Health Organization Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist and the Strengthening Laboratory Management Towards Accreditation (SLMTA) curriculum were used in 6 MOH laboratories. PPP volunteers provided training and mentorship to build the capacity of local auditors and program managers to promote institutionalization and sustainability of the program within the MOH. SLIPTA was launched in 6 MOH laboratories, and final audits demonstrated improvements across the 13 quality system essentials, compared with baseline. Training and mentorship of MOH staff by PPP volunteers resulted in 18 qualified auditors and 28 managers/quality officers capacitated to manage the improvement process in their laboratories. SLIPTA helps laboratories improve the quality and reliability of their service even in the absence of full accreditation. Local capacity building ensures sustainability by creating country buy-in, reducing costs of audits, and institutionalizing program management. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Mansour, M M; Spink, A E F
2013-01-01
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study.
Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Grebmer, Christian; Telishevska, Marta; Brkic, Amir; Semmler, Verena; Lennerz, Carsten; Kaess, Bernhard; Kottmaier, Marc; Kolb, Christof; Deisenhofer, Isabel; Hessling, Gabriele
2015-10-01
Data about localization reproducibility as well as spatial and visual accuracy of the new MediGuide® sensor-based electroanatomic navigation technology are scarce. We therefore sought to quantify these parameters based on phantom experiments. A realistic heart phantom was generated in a 3D-Printer. A CT scan was performed on the phantom. The phantom itself served as ground-truth reference to ensure exact and reproducible catheter placement. A MediGuide® catheter was repeatedly tagged at selected positions to assess accuracy of point localization. The catheter was also used to acquire a MediGuide®-scaled geometry in the EnSite Velocity® electroanatomic mapping system. The acquired geometries (MediGuide®-scaled and EnSite Velocity®-scaled) were compared to a CT segmentation of the phantom to quantify concordance. Distances between landmarks were measured in the EnSite Velocity®- and MediGuide®-scaled geometry and the CT dataset for Bland-Altman comparison. The visualization of virtual MediGuide® catheter tips was compared to their corresponding representation on fluoroscopic cine-loops. Point localization accuracy was 0.5 ± 0.3 mm for MediGuide® and 1.4 ± 0.7 mm for EnSite Velocity®. The 3D accuracy of the geometries was 1.1 ± 1.4 mm (MediGuide®-scaled) and 3.2 ± 1.6 mm (not MediGuide®-scaled). The offset between virtual MediGuide® catheter visualization and catheter representation on corresponding fluoroscopic cine-loops was 0.4 ± 0.1 mm. The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold. © 2015 Wiley Periodicals, Inc.
Improved Motor-Timing: Effects of Synchronized Metro-Nome Training on Golf Shot Accuracy
Sommer, Marius; Rönnqvist, Louise
2009-01-01
This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. Twenty-six experienced male golfers participated (mean age 27 years; mean golf handicap 12.6) in this study. Pre- and post-test investigations of golf shots made by three different clubs were conducted by use of a golf simulator. The golfers were randomized into two groups: a SMT group and a Control group. After the pre-test, the golfers in the SMT group completed a 4-week SMT program designed to improve their motor timing, the golfers in the Control group were merely training their golf-swings during the same time period. No differences between the two groups were found from the pre-test outcomes, either for motor timing scores or for golf shot accuracy. However, the post-test results after the 4-weeks SMT showed evident motor timing improvements. Additionally, significant improvements for golf shot accuracy were found for the SMT group and with less variability in their performance. No such improvements were found for the golfers in the Control group. As with previous studies that used a SMT program, this study’s results provide further evidence that motor timing can be improved by SMT and that such timing improvement also improves golf accuracy. Key points This study investigates the effect of synchronized metronome training (SMT) on motor timing and how this training might affect golf shot accuracy. A randomized control group design was used. The 4 week SMT intervention showed significant improvements in motor timing, golf shot accuracy, and lead to less variability. We conclude that this study’s results provide further evidence that motor timing can be improved by SMT training and that such timing improvement also improves golf accuracy. PMID:24149608
Walking pattern analysis and SVM classification based on simulated gaits.
Mao, Yuxiang; Saito, Masaru; Kanno, Takehiro; Wei, Daming; Muroi, Hiroyasu
2008-01-01
Three classes of walking patterns, normal, caution and danger, were simulated by tying elastic bands to joints of lower body. In order to distinguish one class from another, four local motions suggested by doctors were investigated stepwise, and differences between levels were evaluated using t-tests. The human adaptability in the tests was also evaluated. We improved average classification accuracy to 84.50% using multiclass support vector machine classifier and concluded that human adaptability is a factor that can cause obvious bias in contiguous data collections.
Correlative light-electron fractography for fatigue striations characterization in metallic alloys.
Hein, Luis Rogerio de Oliveira; de Oliveira, José Alberto; de Campos, Kamila Amato
2013-09-01
The correlative light-electron fractography technique combines correlative microscopy concepts to the extended depth-from-focus reconstruction method, associating the reliable topographic information of 3-D maps from light microscopy ordered Z-stacks to the finest lateral resolution and large focus depth from scanning electron microscopy. Fatigue striations spacing analysis can be precisely measured, by correcting the mean surface tilting with the knowledge of local elevation data from elevation maps. This new technique aims to improve the accuracy of quantitative fractography in fatigue fracture investigations. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vuković, Josip; Kos, Tomislav
2017-10-01
The ionosphere introduces positioning error in Global Navigation Satellite Systems (GNSS). There are several approaches for minimizing the error, with various levels of accuracy and different extents of coverage area. To model the state of the ionosphere in a region containing low number of reference GNSS stations, a locally adapted NeQuick 2 model can be used. Data ingestion updates the model with local level of ionization, enabling it to follow the observed changes of ionization levels. The NeQuick 2 model was adapted to local reference Total Electron Content (TEC) data using single station approach and evaluated using calibrated TEC data derived from 41 testing GNSS stations distributed around the data ingestion point. Its performance was observed in European middle latitudes in different ionospheric conditions of the period between 2011 and 2015. The modelling accuracy was evaluated in four azimuthal quadrants, with coverage radii calculated for three error thresholds: 12, 6 and 3 TEC Units (TECU). Diurnal radii change was observed for groups of days within periods of low and high solar activity and different seasons of the year. The statistical analysis was conducted on those groups of days, revealing trends in each of the groups, similarities between days within groups and the 95th percentile radii as a practically applicable measure of model performance. In almost all cases the modelling accuracy was better than 12 TECU, having the biggest radius from the data ingestion point. Modelling accuracy better than 6 TECU was achieved within reduced radius in all observed periods, while accuracy better than 3 TECU was reached only in summer. The calculated radii and interpolated error levels were presented on maps. That was especially useful in analyzing the model performance during the strongest geomagnetic storms of the observed period, with each of them having unique development and influence on model accuracy. Although some of the storms severely degraded the model accuracy, during most of the disturbed periods the model could be used, but with lower accuracy than in the quiet geomagnetic conditions. The comprehensive analysis of locally adapted NeQuick 2 model performance highlighted the challenges of using the single point data ingestion applied to a large region in middle latitudes and determined the achievable radii for different error thresholds in various ionospheric conditions.
Microseismic event location by master-event waveform stacking
NASA Astrophysics Data System (ADS)
Grigoli, F.; Cesca, S.; Dahm, T.
2016-12-01
Waveform stacking location methods are nowadays extensively used to monitor induced seismicity monitoring assoiciated with several underground industrial activities such as Mining, Oil&Gas production and Geothermal energy exploitation. In the last decade a significant effort has been spent to develop or improve methodologies able to perform automated seismological analysis for weak events at a local scale. This effort was accompanied by the improvement of monitoring systems, resulting in an increasing number of large microseismicity catalogs. The analysis of microseismicity is challenging, because of the large number of recorded events often characterized by a low signal-to-noise ratio. A significant limitation of the traditional location approaches is that automated picking is often done on each seismogram individually, making little or no use of the coherency information between stations. In order to improve the performance of the traditional location methods, in the last year, alternative approaches have been proposed. These methods exploits the coherence of the waveforms recorded at different stations and do not require any automated picking procedure. The main advantage of this methods relies on their robustness even when the recorded waveforms are very noisy. On the other hand, like any other location method, the location performance strongly depends on the accuracy of the available velocity model. When dealing with inaccurate velocity models, in fact, location results can be affected by large errors. Here we will introduce a new automated waveform stacking location method which is less dependent on the knowledge of the velocity model and presents several benefits, which improve the location accuracy: 1) it accounts for phase delays due to local site effects, e.g. surface topography or variable sediment thickness 2) theoretical velocity model are only used to estimate travel times within the source volume, and not along the whole source-sensor path. We finally compare the location results for both synthetics and real data with those obtained by using classical waveforms stacking approaches.